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Problem 1

Consider the binary monotone system (C, φ) shown in the figure
below. The component set of the system is C = {1,2, . . . ,6}. Let
X = (X1,X2, . . . ,X6) denote the vector of component state variables,
and assume throughout this exercise that X1,X2, . . . ,X6 are
stochastically independent. Let p = (p1,p2, . . . ,p6) denote the vector
of component reliabilities, where pi = P(Xi = 1), i = 1,2, . . . ,6. We
assume that 0 < pi < 1 for i = 1,2, . . . ,6.
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Figure: A binary monotone system of 6 components.

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Solution exam STK3405/4405 2018 STK 3405/4405 2 / 29



uiobmcrop

Problem 1

a) Find the minimal path and cut sets of the system.

SOLUTION: Minimal path sets:

P1 = {1,4,5},P2 = {2,6},P3 = {1,3,6},P4 = {2,3,5},P5 = {1,3,5}

Minimal cut sets:

K1 = {1,2},K2 = {5,6},K3 = {2,3,4},K4 = {1,3,6},K5 = {2,3,5},
K6 = {3,4,6}
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Problem 1

b) Use the result in a) to find an expression for the structure function
of the system, and explain briefly how this can be used to find the
system reliability. A detailed calculation is not required.

SOLUTION: The structure function can be expressed either as a
series of the minimal cut parallel structures:

φ(X) =
∏6

i=1
∐

j∈Ki
Xi (1)

or as a parallel of the minimal path series structures:

φ(X) =
∐5

i=1
∏

j∈Pi
Xi (2)
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Problem 1

The system reliability, h(p), is defined as:

h(p) = E[φ(X)].

Hence, one can find the system reliability by expanding either (1) or (2)
into a sum of products of the component state variables. Using the
independence of the components, the reliability of the system can then
be found by replacing the component state variables Xi , i = 1,2, . . . ,6,
with the corresponding component reliabilities p1,p2, . . . ,p6.
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Problem 1

c) Use the factoring algorithm to derive the reliability of the system in
a different way from the one in b).

SOLUTION: By pivoting with respect to component 3, we see that the
reliability h(p) is:

h(p) = p3h(13,p) + (1− p3)h(13,p).

We consider the two cases separately:

Component 3 is functioning:
In this case, the system becomes a series connection of two parallel
systems (1 and 2 in parallel), (5 and 6 in parallel). Component 4
becomes irrelevant, see Figure 7.
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Problem 1
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Figure: Resulting system if component 3 works.
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Problem 1

Hence, the reliability function in this case is:

h(13,p) = (p1
∐

p2)(p5
∐

p6)

= (p1 + p2 − p1p2)(p5 + p6 − p5p6).
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Problem 1

Component 3 is not functioning:
In this case, the system becomes a parallel connection of two series
systems, (2 and 6 in series), (1, 4 and 5 in series), so the reliability
function in this case is:

h(03,p) = (p2p6)
∐

(p1p4p5)

= p2p6 + p1p4p5 − p1p2p4p5p6.

Hence, the reliability function is:

h(p) = p3h(13,p) + (1− p3)h(03,p)

= p3(p1 + p2 − p1p2)(p5 + p6 − p5p6) + (1− p3)(p2p6 + p1p4p5

− p1p2p4p5p6).

Note that if you factor with respect to any of the other components, you
will have to perform at least one additional pivot.
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d) What is the definition of the Birnbaum measure for the reliability
importance of a component?

SOLUTION: The Birnbaum measure for the reliability importance of a
component is defined as follows. Let (C, φ) be a binary monotone
system, and let i ∈ C. Moreover, let X be the vector of component
state variables. The Birnbaum measure for the reliability importance of
component i , denoted I(i)B is defined as:

I(i)B := P(Component i is critical for the system)

= P(φ(1i ,X)− φ(0i ,X) = 1).

A. B. Huseby and K. R. Dahl (Univ. of Oslo) Solution exam STK3405/4405 2018 STK 3405/4405 10 / 29



uiobmcrop

e) What is the reliability importance of the component 3 according to
the Birnbaum measure? How can you use this result to find the
structural importance of component 3?

SOLUTION: We know that:

I(3)B =
∂h(p)
∂p3

= h(13,p)− h(03,p).

Hence, by using c), we see that

I(3)B = (p1 + p2 − p1p2)(p5 + p6 − p5p6)− p2p6 − p1p4p5

+p1p2p4p5p6.
(3)
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Problem 1

By using equation (3), we find that:

J(3)
B = I(3)B

∣∣
pi=1/2 i = 1, . . . ,6

=
[
h(13,p)− h(03,p)

]∣∣
pi=1/2 i = 1, . . . ,6

=
7

32
.
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Problem 1

Alternatively:

J(3)
B = the number of critical path sets for component 3/(26−1)

Since we have the following 7 critical path sets for component 3, the
previous answer is verified:

{1,3,5}, {1,3,6}, {2,3,5}, {1,2,3,5}, {1,3,5,6}, {1,3,4,6}, {2,3,4,5}.
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Problem 1

f) Assume that pi = p for i = 1,2, . . . ,6, i.e., that all the components
have the same component reliability. What can you say about the
reliability importance of the other 5 components?

SOLUTION: From symmetry in the reliability block diagram, we see
that the reliability importance of components 1 and 5 must be the
same. Also by symmetry, the reliability importance of components 2
and 6 must be the same. The explicit expressions for the reliability
importance can be computed in a similar way as in e).
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Problem 2

Consider a binary monotone system (C, φ), where C = {1,2,3} and
where the structure function φ is given by:

φ(X ) = I(
3∑

i=1

Xi ≥ 2).

Here X = (X1,X2,X3) denotes the vector of component state variables
and I(·) denotes the indicator function.
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Problem 2

a) Show that the structure function φ can be written as:

φ(X ) = X1X2 + X1X3 + X2X3 − 2X1X2X3.

SOLUTION: By using pivotal decomposition we get:

φ(X ) = I(
3∑

i=1

Xi ≥ 2)

= X1φ(11,X ) + (1− X1)φ(01,X )

= X1 · I(
3∑

i=2

Xi ≥ 1) + (1− X1) · I(
3∑

i=2

Xi ≥ 2)

= X1 · (X2 q X3) + (1− X1)X2 · X3

= X1 · (X1 + X3 − X2X3) + (1− X1)X2 · X3

= X1X2 + X1X3 + X2X3 − 2X1X2X3.
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Problem 2

In the following we assume that:

Xi = Y0 · Yi , i = 1,2,3,

where Y0,Y1,Y2,Y3 are independent binary stochastic variables and:

P(Y0 = 1) = θ, P(Y1 = 1) = P(Y2 = 1) = P(Y3 = 1) = q,

where 0 < θ < 1 and 0 < q < 1.
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Problem 2

b) Explain why this implies that X1,X2,X3 are associated stochastic
variables.

SOLUTION: Since X1,X2,X3 are non-decreasing functions of the
independent variables Y0,Y1,Y2,Y3, it follows that X1,X2,X3 are
associated stochastic variables.
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Problem 2

We then introduce h = E[φ(X )] = P(φ(X ) = 1).

c) Show that:
h = h(θ,q) = θq2(3− 2q).

SOLUTION: By conditioning on the state of Y0 we get:

h = h(θ,q) = E[φ(X )]

= P(Y0 = 1) · E[φ(X )|Y0 = 1] + P(Y0 = 0) · E[φ(X )|Y0 = 0]
= θ · E[Y1Y2 + Y1Y3 + Y2Y3 − 2Y1Y2Y3] + (1− θ) · 0
= θ(3q2 − 2q3) = θq2(3− 2q).
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Problem 2

Assume that we ignore the dependence between the Xis, and instead
compute the system reliability as if X1,X2,X3 are independent and:

P(Xi = 1) = θq, i = 1,2,3.

Let h̃ denote the system reliability we then get.

d) Show that:
h̃ = h̃(θ,q) = θ2q2(3− 2θq).

SOLUTION: Assuming that X1,X2,X3 are independent we get:

h̃ = E[X1X2 + X1X3 + X2X3 − 2X1X2X3]

= (θ · q)2 + (θ · q)2 + (θ · q)2 − 2(θ · q)3

= θ2q2(3− 2θq).
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Problem 2

e) Assume that θ = 1
2 . Show that we then have h̃ < h for all

0 < q < 1.

SOLUTION: We introduce d(θ,q) = h(θ,q)− h̃(θ,q) given by:

d(θ,q) = h(θ,q)− h̃(θ,q) = θq2(3− 2q)− θ2q2(3− 2θq)

= θq2[3− 2q − 3θ + 2θ2q]

= θq2[3(1− θ)− 2q(1− θ2)]

= θ(1− θ)q2[3− 2q(1 + θ)]

If θ = 1
2 we get for all 0 < q < 1 that:

d(θ,q) = (
1
4
)q2[3− 2q(

3
2
)] = (

3
4
)q2[1− q] > 0.

Hence, h̃ < h for all 0 < q < 1. Thus, in this case we always
underestimate the system reliability if we ignore the dependence.
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Problem 2

f) Assume instead that θ = 3
4 . What can you say about the

relationship between h̃ and h in this case?

SOLUTION: If θ = 3
4 we get that:

d(θ,q) = (
3
16

)q2[3− 2q(
7
4
)] = (

3
32

)q2[6− 7q]

Hence, d(θ,q) > 0 if and only if 7q < 6. Thus, we conclude that h̃ < h
if and only if q < 6

7 . Conversely, h̃ > h if and only if q > 6
7 .

We observe that in this case we always underestimate the system
reliability if we ignore the dependence when q < 6

7 , while we
overestimate the system reliability if we ignore the dependence when
q > 6

7 .
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Problem 3

Let (C, φ) be a binary monotone system, and let X denote the vector
of component state variables. In this problem we consider how the
system reliability h = P(φ(X ) = 1) can be estimated using Monte
Carlo simulation. The simplest Monte Carlo estimate is:

ĥMC =
1
N

N∑
r=1

φ(X r ),

where X 1, . . . ,X N are data generated from the distribution of X .
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Problem 3

In order to improve this estimate we let S = S(X ) be a stochastic
variable with values in the set {s1, . . . , sk}. We assume that the
distribution of S is known, and introduce:

θj = E [φ|S = sj ], j = 1, . . . , k .

We then use Monte Carlo simulation in order to estimate θ1, . . . , θk ,
and generate data from the conditional distribution of X given S. We let
{X r ,j : r = 1, . . . ,Nj} denote the vectors generated from the distribution
of X given that S = sj , j = 1, . . . , k , and get the following estimates:

θ̂j =
1
Nj

Nj∑
r=1

φ(X r ,j), j = 1, . . . , k .

These estimates are then combined into the following estimate of the
system reliability:

ĥCMC =
k∑

j=1

θ̂jP(S = sj).
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Problem 3

a) Show that E [ĥCMC ] = h and that the variance of the estimate is
given by:

Var(ĥCMC) =
k∑

j=1

1
Nj

Var(φ|S = sj)[P(S = sj)]
2

SOLUTION: We first note that the variances of the estimates θ̂1, . . . , θ̂k
are given by:

Var(θ̂j) =
1

N2
j

Nj∑
r=1

Var(φ|S = sj) =
1
Nj

Var(φ|S = sj), j = 1, . . . , k .

Inserting this into the variance of ĥCMC we get:

Var(ĥCMC) = Var[
k∑

j=1

θ̂jP(S = sj)] =
k∑

j=1

Var(θ̂j)[P(S = sj)]
2

=
k∑

j=1

1
Nj

Var(φ|S = sj)[P(S = sj)]
2.
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Problem 3

b) Assume that Nj ≈ N · P(S = sj), j = 1, . . . , k . Show that we then
have:

Var(ĥCMC) ≈
1
N
(Var(φ)− Var[E(φ|S)]),

and explain briefly why this implies that Var(ĥCMC) ≤ Var(ĥMC).
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Problem 3

SOLUTION: By inserting Nj ≈ N · P(S = sj), j = 1, . . . , k into the
expression found in (a) we get:

Var(ĥCMC) ≈
k∑

j=1

1
N · P(S = sj)

Var(φ|S = sj)[P(S = sj)]
2

=
1
N

k∑
j=1

Var(φ|S = sj)P(S = sj) =
1
N

E [Var(φ|S)]

=
1
N
(

Var(φ)− Var[E(φ|S)]
)
,

where we have used the formula:

Var(φ) = Var[E(φ|S)] + E [Var(φ|S)].
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Problem 3

Since obviously Var[E(φ|S)] ≥ 0, it follows that:

1
N
(

Var(φ)− Var[E(φ|S)]
)
≤ 1

N
Var(φ) = Var(ĥMC)

Hence, we conclude that Var(ĥCMC) ≤ Var(ĥMC).
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Problem 3

c) What should one take into account when choosing S?

SOLUTION: From (b) we see that the conditional estimate has smaller
variance than the original Monte Carlo estimate provided that
Var[E(φ | S)] is positive. This quantity can be interpreted as a measure
of how much information S contains relative to φ. Thus, when looking
for good choices for S we should look for variables containing as much
information about φ as possible. However, there are some other
important points that need to be considered. First of all S must have a
distribution that can be derived analytically in polynomial time.
Secondly, the number of possible values of S, i.e., k , must be
polynomially limited by n. Finally, it must be possible to sample
efficiently from the distribution of X given S.

END
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