Problems and Methods in Actuarial Science (STK 3505) Exercises 1, 9.9.2015

Problem 1 Consider a perpetuity depending on the parameters

m number of payments per year

q number of payment increases per year.

More precisely, the cash flow scheme of the perpetuity is given by

time (in years)				payment
0,	$\frac{1}{m}$,		$\frac{1}{a} - \frac{1}{m}$	1
$\frac{1}{2}$	$\frac{1}{1} + \frac{1}{1}$.		$\frac{q}{2}$ $\underline{-}$ $\frac{m}{1}$	$\frac{mq}{2}$
$\frac{q}{2}$,	$\frac{q}{2} + \frac{m}{1}$		$\frac{q}{3}$ $\underline{\frac{m}{1}}$	$\frac{mq}{3}$
$\frac{q}{3}$	$\begin{array}{ccc} q & m' \\ 3 & 1 \end{array}$		$egin{array}{ccc} q & m \ 4 & 1 \end{array}$	${}^{mq}_4$
\overline{q} ,	$\overline{q} + \overline{m}$,	•••	$\overline{q} - \overline{m}$	\overline{mq}
•	•	•	•	•
:	:	:	:	:

Derive a formula for the present value $(I^{(q)}\ddot{a})^{(m)}_{\infty}$ of this payment stream.

Problem 2 Let $T = n \in \mathbb{N}$ denote the duration of an annuity. (i) Show that

$$a_{n\rceil}$$
 : = $\frac{1-v^n}{i}$ (PV of an immediate annuity
with annual payments of 1 starting in 1),

$$a_{n}^{(m)}$$
 : $=\frac{1-v^{n}}{i^{(m)}}$ (PV of an immediate annuity
with payments $\frac{1}{m}m$ times per year).

(ii) Consider the accumulated value of an immediate annuity s_{n} , that is

$$s_{n\rceil} := (1+i)^n a_{n\rceil}.$$

Verify that

$$\frac{1}{a_{n\rceil}} = \frac{1}{s_{n\rceil}} + i$$

Problem 3 (Repayment of a debt) Let S be the present value of a debt that is to be repaid by payments $r_1, ..., r_n$ at the end of the years k = 1, 2, ..., n. Further denote by S_k the *principal outstanding*, i.e. the value of the remaining debt at time k immediately after r_k has been paid (dvs. verdien av restgjeld på tid k etter avdrag).

Show that

$$r_k = iS_{k-1} + (S_{k-1} - S_k), \ k = 1, ..., n,$$

that is each payment can be represented as the sum of the interest on the running debt and the *reduction of principal* (dvs. amortisajon av restgjelden).

Problem 4 A bond is a contract which gives the bondholder (or lender) the right to demand from the bond issuer (or borrower) a series of future payments. The cash flow of the bond is given by a payment of cF at the end of each period and a final payment C at maturity T = N. Here F denotes the face value and c stands for the coupon rate. C is called the redemption value, which usually equals F. The present value PV of the bond can be evaluated as

$$PV = cF \frac{1 - (1 + i)^{-N}}{i} + C (1 + i)^{-N},$$

where $i \ge 0$ is the yield to maturity (effective per period) required by the lender.

Consider a company which is supposed to retire a bond issue with five annual payments of 15000. The first payment is due to December 31, 2015. In order to accumulate the funds, the company begins making annual payments of X on January 1, 2006 into an account paying effective annual interest of 6%. The final payment is due to January 1, 2015. Determine X.

Problem 5 John pays 98.51 for a bond that is due to mature for 100 in one year. It has coupons at 4% convertible semiannually. Calculate the annual yield rate convertible semiannually.