Problems and Methods in Actuarial Science (STK 3505) Exercises 1, 9.9.2015

Problem 1 Consider a perpetuity depending on the parameters
m number of payments per year
q number of payment increases per year.
More precisely, the cash flow scheme of the perpetuity is given by

time (in years)				payment
0,	$\frac{1}{m}$,	\cdots	$\frac{1}{q}-\frac{1}{m}$	$\frac{1}{m q}$
$\frac{1}{q}$,	$\frac{1}{q}+\frac{1}{m}$,	\cdots	$\frac{2}{q}-\frac{1}{m}$	$\frac{2}{m q}$
$\frac{2}{q}$,	$\frac{1}{q}+\frac{1}{m}$,	\cdots	$\frac{3}{q}-\frac{1}{m}$	$\frac{3}{m q}$
$\frac{3}{q}$,	$\frac{3}{q}+\frac{1}{m}$,	\cdots	$\frac{4}{q}-\frac{1}{m}$	$\frac{4}{m q}$
\vdots	\vdots	\vdots	\vdots	\vdots

Derive a formula for the present value $\left(I^{(q)} \ddot{a}\right)_{\infty\rceil}^{(m)}$ of this payment stream.
Problem 2 Let $T=n \in \mathbb{N}$ denote the duration of an annuity.
(i) Show that

$$
\begin{aligned}
a_{n\rceil}: \quad & \frac{1-v^{n}}{i}(\mathrm{PV} \text { of an immediate annuity } \\
& \text { with annual payments of } 1 \text { starting in } 1), \\
a_{n\rceil}^{(m)}:= & \frac{1-v^{n}}{i^{(m)}}(\mathrm{PV} \text { of an immediate annuity } \\
& \text { with payments } \left.\frac{1}{m} m \text { times per year }\right) .
\end{aligned}
$$

(ii) Consider the accumulated value of an immediate annuity $s_{n\rceil}$, that is

$$
s_{n\rceil}:=(1+i)^{n} a_{n\rceil}
$$

Verify that

$$
\frac{1}{a_{n\rceil}}=\frac{1}{s_{n\rceil}}+i
$$

Problem 3 (Repayment of a debt) Let S be the present value of a debt that is to be repaid by payments r_{1}, \ldots, r_{n} at the end of the years $k=1,2, \ldots, n$. Further denote by S_{k} the principal outstanding, i.e. the value of the remaining debt at time k immediately after r_{k} has been paid (dvs. verdien av restgjeld på tid k etter avdrag).

Show that

$$
r_{k}=i S_{k-1}+\left(S_{k-1}-S_{k}\right), k=1, \ldots, n
$$

that is each payment can be represented as the sum of the interest on the running debt and the reduction of principal (dvs. amortisajon av restgjelden).

Problem 4 A bond is a contract which gives the bondholder (or lender) the right to demand from the bond issuer (or borrower) a series of future payments. The cash flow of the bond is given by a payment of $c F$ at the end of each period and a final payment C at maturity $T=N$.Here F denotes the face value and c stands for the coupon rate. C is called the redemption value, which usually equals F. The present value $P V$ of the bond can be evaluated as

$$
P V=c F \frac{1-(1+i)^{-N}}{i}+C(1+i)^{-N}
$$

where $i \geq 0$ is the yield to maturity (effective per period) required by the lender.
Consider a company which is supposed to retire a bond issue with five annual payments of 15000. The first payment is due to December 31, 2015. In order to accumulate the funds, the company begins making annual payments of X on January 1, 2006 into an account paying effective annual interest of 6%. The final payment is due to January 1, 2015. Determine X.

Problem 5 John pays 98.51 for a bond that is due to mature for 100 in one year. It has coupons at 4% convertible semiannually. Calculate the annual yield rate convertible semiannually.

