Problems and Methods in Actuarial Science (STK 3505) Exercises 2, 16.9.2015

Problem 1 Show that

$$
{ }_{k} p_{x}=p_{x} p_{x+1} p_{x+2} \cdot \ldots \cdot p_{x+k-1}, \quad k=1,2,3, \ldots,
$$

where ${ }_{k} p_{x}$ and p_{x+j} are (conditional) survival probabilities of a life (x) aged x years.

Problem 2

(i) Verify the relations

$$
{ }_{s+t} p_{x}={ }_{s} p_{x} \cdot{ }_{t} p_{x+s}
$$

and

$$
{ }_{s \mid t} q_{x}={ }_{s} p_{x} \cdot t q_{x+s} .
$$

(ii) Let μ_{x+t} be the force of mortality of a life (x) at the age $x+t$. Argue why

$$
{ }_{s} q_{x+t} \approx \mu_{x+t} \cdot s
$$

for small values of s.
Problem 3 Assume the polynomial growth model of Weibull (1939) for the dynamics of the force of mortality, that is μ_{x+t} is described by

$$
\mu_{x+t}=k(x+t)^{n}
$$

for fixed parameters $k, n>0$.
Derive an explicit formula for the survival probability ${ }_{t} p_{x}$.
Problem 4 Consider an endowment for which a payment of 1 unit is provided at the end of the year of death, if this occurs within the first n years, otherwise at the end of the nth year. Thus its present value Z is given by

$$
Z=Z_{1}+Z_{2}
$$

with

$$
Z_{1}=v^{K+1} 1_{\{K<n\}}
$$

is the present value of a term insurance and

$$
Z_{2}=v^{n} 1_{\{K \geq n\}}
$$

is the present value of a pure endowment. Show that the variance of Z can be written as

$$
\begin{equation*}
\operatorname{Var}[Z]=\operatorname{Var}\left[Z_{1}\right]+\operatorname{Var}\left[Z_{2}\right]-2 A_{x: n\rceil}^{1} \cdot A_{x: n\rceil}^{1}, \tag{1}
\end{equation*}
$$

where $A_{x: n\rceil}^{1}=E\left[Z_{1}\right]$ and $A_{x: n\rceil}^{1}=E\left[Z_{2}\right]$ are the corresponding net single premiums.

Give an interpretation of relation (1).
Problem 5 Consider the following table of values of e_{x} :

$\frac{\text { Age } x}{75}$	$\frac{e_{x}}{10.5}$
76	10.0
77	9.5

Compute the probability that a life age 75 will survive to age 77 .
Hint: Prove that

$$
e_{x+j}=p_{x+j}\left(1+e_{x+j+1}\right), j=0,1,
$$

where

$$
e_{x+j}=\sum_{k \geq 1}{ }_{k} p_{x+j}, j=0,1
$$

Problem 6 Denote by K the curtate of the future life time $T=T(x)$ of a life (x) and let S be the remaining fraction of the year during which (x) is alive in the year of death, i.e.

$$
S=T-K
$$

(i) Show that the random variable S has a continuous distribution between 0 and 1 .
(ii) Assume that the random variable S and K are independent and that S is uniformly distributed on $[0,1]$, i.e.

$$
\operatorname{Pr}(S \leq t)=t, 0 \leq t \leq 1 .
$$

Prove that

$$
\operatorname{Var}[T]=\operatorname{Var}[K]+\frac{1}{12},
$$

where $\operatorname{Var}[X]$ denotes the variance of a random variable X, i.e.

$$
\operatorname{Var}[X]:=E\left[(X-E[X])^{2}\right] .
$$

Problem 7 Assume that the sum insured is payable at the end of the m th part of the year of death, that is at time $K+S^{(m)}$, where K is the curtate of the future life time T and $S^{(m)}=\frac{1}{m}[m S+1]$ with $S=T-K$ and [:] the Gauss bracket. So the present value of a whole life insurance of 1 unit becomes

$$
Z=v^{K+S^{(m)}} .
$$

Denote by $A_{x}^{(m)}$ its net single premium.
Suppose that K, S are independent random variables and that S is uniformly distributed on $[0,1]$. Verify the relation

$$
A_{x}^{(m)}=\frac{i}{i^{(m)}} A_{x}
$$

where A_{x} is the net single premium of an ordinary whole life insurance.
Problem 8 Let $c(t), t \geq 0$ be a function. Consider an insurance with a payment of $c(T)$ at the instant of death. Thus its present value is given by

$$
Z=c(T) v^{T} .
$$

Then its net single premium has the representation

$$
E[Z]=\sum_{j \geq 0} l_{j+1} \cdot v^{j+1} \cdot j p_{x} \cdot q_{x+j},
$$

where

$$
l_{j+1}=E\left[c(j+S)(1+i)^{1-S} \mid K=j\right] .
$$

See e.g. Section 3 in Gerber.
Let us impose on the force of mortatlity μ_{x+t} the extrapolation condition

$$
\mu_{x+j+u}=\mu_{x+j+\frac{1}{2}} \text { for } 0<u<1, j \in \mathbb{N}_{0} .
$$

Compute l_{j+1}.
For the choice of an exponentially increasing sum insured, that is $c(t)=e^{\tau t}, \tau \geq 0$, derive the formula

$$
l_{j+1}=e^{\tau j} \frac{\mu_{x+j+\frac{1}{2}}}{1-p_{x+j}} \frac{e^{\delta}-p_{x+j} e^{\tau}}{\delta+\mu_{x+j+\frac{1}{2}}-\tau},
$$

provided the denominator is unequal zero. Here δ is the force of interest.

