STK 3505
 Solutions

Problem 1

(i) Since the claim numbers $N(t), t \geq 0$ in the Cramer-Lundberg model are modeled by a homogeneous Poisson process with intensity $\lambda>0$, we know that the inter-arrival times $W_{i}, i \geq 1$ are i.i.d. with common distribution $W_{i} \sim \operatorname{Exp}(\lambda)$. So by Exercises 5, Problem 2 we know that the MLE $\widehat{\lambda}$ is given by

$$
\hat{\lambda}=\frac{n}{T_{n}} .
$$

The observed inter-arrival times are $W_{1}=1$ (i.e. $09 / 30 / 1988$ is excluded), $W_{2}=3, W_{3}=$ $4 \ldots, W_{12}=2$. So $n=12$ (sample size) and $T_{n}=W_{1}+\ldots+W_{11}=38$ (nth arrival time of a fire loss for $n=12$) we get

$$
\widehat{\lambda}=\frac{n}{T_{n}}=\frac{12}{38} \approx 0.316 .
$$

(ii) Since $W_{i} \sim \operatorname{Exp}(\widehat{\lambda}), i \geq 1$, we have

$$
P\left(W_{1}>5\right)=1-P\left(W_{1} \leq 5\right)=1-(1-\exp (-\widehat{\lambda} 5))=\exp (-\widehat{\lambda} 5) \approx 0.206
$$

(iii) Since $N(t)$ is independent of the i.i.d. fire losses $X_{i}, i \geq 1$ we know (see Exercises 6) that

$$
\begin{aligned}
E[S(t)] & =E\left[\sum_{i=1}^{N(t)} X_{i}\right]=E[N(t)] \cdot E\left[X_{1}\right](\text { "Wald's identity") } \\
& =t \widehat{\lambda} \cdot E\left[X_{1}\right]
\end{aligned}
$$

Since

$$
E\left[X_{1}\right] \approx \frac{1}{12} \sum_{i=1}^{12} X_{i}=5.70186
$$

we get for $t=365$ days

$$
p_{E V}(t)=(1+0.20) E[S(t)]=1.20 \cdot 365 \cdot 0.316 \cdot 5.70186=788.657(\text { mio DKK }) .
$$

Problem 2 (i) The survival probability is given by

$$
{ }_{t} p_{x}=\left(1-\frac{t}{120-x}\right)^{1 / 6}
$$

for $0 \leq t<120-x$. We know that

$$
\stackrel{\circ}{e}_{x}=\int_{0}^{\infty}\left({ }_{t} p_{x}\right) d t=\int_{0}^{120-x}\left({ }_{t} p_{x}\right) d t=\int_{0}^{120-x}\left(1-\frac{t}{120-x}\right)^{1 / 6} d t
$$

Using substitution for $u=1-t /(120-x)$, we get

$$
\grave{e}_{x}=(120-x) \int_{0}^{1} u^{1 / 6} d u=\frac{6}{7}(120-x) .
$$

So $\stackrel{\circ}{30}_{30}=77.143$.
(ii) Use the recursion formula

$$
e_{x}=p_{x}\left(1+e_{x+1}\right),
$$

where $x=30$ and $e_{x}=49.5$. Then

$$
e_{x+10} \approx 40.4
$$

Problem 3 The present value of the benefits and of the premiums are given by

$$
Z=15000 v^{5} \mathbf{1}_{\{K \geq 5\}}+\left(\sum_{j=0}^{K}(1+i)^{K+1-j} \Pi_{j}\right) v^{K+1} \mathbf{1}_{\{K<5\}}
$$

and'

$$
V=\sum_{j=0}^{\min (4, K)} \Pi_{j} v^{j}
$$

respectively. So the expected total loss of the insurer is given by

$$
\begin{aligned}
E[L]= & 15000 v^{5} \cdot{ }_{5} p_{x}+\Pi \sum_{l=0}^{4}\left(\sum_{j=0}^{l}\left(\frac{1.03}{1.03}\right)^{j}\right)_{l} p_{x} \cdot q_{x+l} \\
& \left.-\Pi\left(\sum_{l=0}^{4}\left(\sum_{j=0}^{l}\left(\frac{1.03}{1.03}\right)^{j}\right)_{l} p_{x} \cdot q_{x+l}+\sum_{j=0}^{4}\left(\frac{1.03}{1.03}\right)^{j}\right) \cdot{ }_{5} p_{x}\right) .
\end{aligned}
$$

Using the equivalence principle, i.e. $E[L]=0$ yields

$$
\Pi=\frac{15000 v^{5}}{\left.\sum_{j=0}^{4}\left(\frac{1.03}{1.03}\right)^{j}\right)}=\frac{15000}{5} v^{5},
$$

which shows that the net premiums are independent of the distribution of the future life time. So we get

$$
\Pi_{0}=\Pi=2587.83, \Pi_{1}=2665.46, \Pi_{2}=2745.42, \Pi_{3}=2827.79, \Pi_{4}=2912.62
$$

Problem 4 (i)

$$
\stackrel{\circ}{e}_{x}=E[T]=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\frac{1}{\lambda}=53.19 \text { (years). }
$$

(ii) Since

$$
{ }_{t} q_{x}=1-e^{-\lambda t}
$$

the force of mortality μ_{x+t} for (25) is given by

$$
\mu_{x+t} \stackrel{\text { def }}{=}-\frac{d}{d t} \log \left({ }_{t} p_{x}\right)=\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}}=\lambda=0.0188 .
$$

(iii) We know that

$$
\operatorname{Pr}(S \leq t \mid K=k)=\frac{t q_{x+k}}{q_{x+k}}, 0 \leq t \leq 1, k \geq 0
$$

See e.g. (2.4.6) in Gerber. Further, we see that

$$
{ }_{t} q_{x+k} \stackrel{\text { def }}{=} \frac{G(k+t)-G(k)}{1-G(k)}=\frac{e^{-\lambda k}\left(1-e^{-\lambda t}\right)}{e^{-\lambda k}}=1-e^{-\lambda t} .
$$

So

$$
\operatorname{Pr}(S \leq t \mid K=k)=\frac{1-e^{-\lambda t}}{1-e^{-\lambda}}
$$

HenceThen differentiation w.r.t. to t on both sides shows that

$$
\frac{d}{d t} \operatorname{Pr}(S \leq t)=\frac{\lambda e^{-\lambda t}}{1-e^{-\lambda}}
$$

is the probability density of S. So using integration by parts we get

$$
E[S]=\int_{0}^{1} t \frac{\lambda e^{-\lambda t}}{1-e^{-\lambda}} d t=\frac{1}{\lambda}-\frac{e^{-\lambda}}{1-e^{-\lambda}}=0.498433 .
$$

Problem 5 We know from Problem 2, Exercises 4 that the net annual premium Q is given by

$$
\frac{15000 A_{x}}{\left(1+\frac{d}{2}\right) \ddot{a}_{x: \overline{10 \mid}}-\left(1-v^{10} \cdot 10 p_{x}\right) / 2},
$$

where $d=i /(1+i)$ is the discount rate. Using the fact that

$$
A_{x}=1-d \ddot{a}_{x}
$$

and

$$
\ddot{a}_{x: \bar{n} \mid}=\sum_{k=0}^{n-1} v^{k} \cdot{ }_{k} p_{x},
$$

(see (4.28) and (4.2.12) in Gerber), we get that $Q=213.707$.
Then we can compute the premium reserves by

$$
{ }_{k} V+\Pi_{k}=v\left(c_{k+1} q_{x+k}+_{k+1} V p_{x+k}\right)
$$

for ${ }_{0} V=0, \Pi_{k}=Q, k=0, \ldots, 9, \Pi_{k}=0, k \geq 10, c(k+1)=\left\{\begin{array}{ll}\frac{1}{2} Q+15000, & \text { if } k<10 \\ 15000 & \text { else }\end{array}\right.$ and obtain

$$
{ }_{1} V=206.214,{ }_{2} V=422.268,{ }_{3} V=648.545,{ }_{4} V=885.597,{ }_{5} V=1133.87
$$

Problem 6 The present value of the benefit payments are given by

$$
Z= \begin{cases}200000 v^{K+1}, & \text { if } K<25 \\ 100000 v^{25}, & \text { if } K \geq 25\end{cases}
$$

and annual premium payments Q are made as long as the policyholder is alive during the contract period.

Using the equivalence principle, we therefore find

$$
Q=\frac{E[Z]}{\ddot{a}_{x: 25 \mid}} .
$$

We get that

$$
E[Z]=200000 \sum_{k=0}^{24} v^{k+1} \cdot{ }_{k} p_{x} q_{x+k}+100000 v^{25}{ }_{25} p_{x}
$$

See (3.2.7), (3.2.10) and (3.2.14) in Gerber or the manuscript. On the other hand, we know that

$$
{ }_{k} p_{x}=\exp \left(-\int_{0}^{k} \mu_{x+s} d s\right)=\exp \left(-\int_{x}^{x+k} \mu_{u} d u\right) .
$$

Hence, by applying numerical integration, we obtain $Q=3394.11$.
Then we can compute the premium reserves by

$$
{ }_{k} V+\Pi_{k}=v\left(c_{k+1} q_{x+k}+_{k+1} V p_{x+k}\right)
$$

for ${ }_{0} V=0, \Pi_{k}=Q, k=0, \ldots, 24, \Pi_{25}=-100000, \Pi_{k}=0, k>25, c(k+1)= \begin{cases}200000, & \text { if } k<25 \\ 0 & \text { else }\end{cases}$ and get that

$$
{ }_{1} V=3080.9,{ }_{2} V=6233.46,{ }_{3} V=9458.56,{ }_{4} V=12757, \ldots,{ }_{24} V=95026,{ }_{25} V=100000 .
$$

Problem 7 See the self-explaining hint.

