## Løsningsforslag til prøveeksamen

Problem 1 Since the total claim amounts $S_{i}(t), i=1,2$ are independent compound Poisson random variables (for $t=1$ ), we know that the aggregated total claim amounts

$$
\widetilde{S}(t)=S_{1}(t)+S_{2}(t)
$$

have compound Poisson distributed with

$$
\widetilde{S}(t) \stackrel{d}{=} \sum_{j=1}^{N_{\lambda}} Y_{j}
$$

with clain numbers $N_{\lambda} \sim \operatorname{Pois}(\lambda), \lambda=\lambda_{1}+\lambda_{2}=\frac{17}{20}$ and i.i.d fire loss claim sizes $Y_{j}$ specified by the "mixture distribution", that is

$$
P\left(Y_{1}=x\right)=p_{1} P\left(X_{1}^{(1)}=x\right)+p_{2} P\left(X_{1}^{(2)}=x\right),
$$

where

$$
p_{i}=\frac{\lambda_{i}}{\lambda_{1}+\lambda_{2}}, i=1,2 .
$$

See T. Mikosch.
Therefore we get

$$
P\left(Y_{1}=x\right)=\left\{\begin{array}{cc}
0 & , x \neq 1,2,3 \\
5 / 68 & x=1 \\
47 / 68 & x=2 \\
4 / 17 & x=3
\end{array}\right.
$$

In this case the Panjer recursion is given by

$$
p_{n}=\sum_{i=1}^{n} \frac{17 i}{20 n} \cdot P\left(X_{1}=i\right) \cdot p_{n-i}, n \geq 1,
$$

with initial value

$$
p_{0}=P\left(N_{\lambda}=0\right)=e^{-\lambda} \approx 0.427415
$$

This implies

$$
\begin{aligned}
P(\widetilde{S}(1) & =1) \approx 0.0267, P(\widetilde{S}(1)=2) \approx 0.2519, P(\widetilde{S}(1)=3) \approx 0.1012 \\
(, \ldots, P(\widetilde{S}(1) & =10) \approx 0.00196)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
P(\widetilde{S}(1) & \leq 1) \approx 0.4541, P(\widetilde{S}(1) \leq 2) \approx 0.7061, P(\widetilde{S}(1) \leq 3) \approx 0.8073 \\
(, \ldots, P(\widetilde{S}(1) & \leq 10) \approx 0.9984)
\end{aligned}
$$

## Problem 2

(i) Because of the equivalence principle $\Pi_{0}$ satisfies the equation

$$
\sum_{k=0}^{3} c_{k+1} v^{k+1} \cdot{ }_{k} p_{x} q_{x+k}+E v^{4} \cdot{ }_{4} p_{x}-\sum_{k=0}^{3} \Pi_{k} v^{k} \cdot{ }_{k} p_{x}=0
$$

where $c_{k+1}=(1+2 k), k=0,1,2,3$. Solving the latter equation gives

$$
\Pi_{0}=0.699115
$$

(ii) Apply the discrete version of Thiele's differential equation, that is

$$
{ }_{k} V+\Pi_{k}=v\left[c_{k+1} \cdot q_{x+k}+{ }_{k+1} V \cdot p_{x+k}\right]
$$

to obtain ${ }_{1} V=0.714958{ }_{2} V=1.45596{ }_{3} V=2.21893{ }_{4} V=3=E$.
Problem 3 In the Crámer-Lundberg model the claim number process $N(t)$ is independent of the $i . i . d$ claim sizes $\left(X_{j}\right)_{j \geq 1}$. So

$$
E\left[R_{E x L}(t)\right]=E[N(t)] E\left[\left(X_{1}-D\right)_{+}\right]
$$

for $t=365$ (days) and the deductible $D=3$ (mio DKK). Since $\lambda=0.3$, we get

$$
E[N(t)]=0.3 \cdot 365=109.5
$$

Further we have

$$
\begin{aligned}
E\left[\left(X_{1}-D\right)_{+}\right] & =\sum_{n \geq 0} E\left[\max (n-3,0) \cdot 1_{\left\{X_{1}=n\right\}}\right] \\
& =\sum_{n=4}^{10}(n-3) P\left(X_{1}=n\right)=\frac{7}{100}
\end{aligned}
$$

So

$$
E\left[R_{E x L}(t)\right]=109.5 \cdot \frac{7}{100}=7.665
$$

in mio DKK.

Problem 4 In the Cramér-Lundberg model the inter-arrival times $W_{i}, i \geq 1$ are i.i.d with $W_{1} \sim \operatorname{Exp}(\lambda)$. The likelihood function w.r.t. $\operatorname{Exp}(\lambda)$ is given by

$$
L(\lambda)=\prod_{i=1}^{n} f\left(W_{i}\right)
$$

where

$$
f(x)=\lambda e^{-\lambda x}, x \geq 0
$$

is the density of the exponential distribution.
Then maximization of the likelihood function yields the maximum-likelihood estimator of the jump intensity $\widehat{\lambda}$ of $N(t)$, i.e.

$$
\widehat{\lambda}=\frac{n}{\sum_{i=1}^{n} W_{i}} .
$$

Hence we get for $n=8$ og $T_{8}=\sum_{i=1}^{8} W_{i}=30$ (days)

$$
\widehat{\lambda}=\frac{8}{30},
$$

