Problem 1

a) $\pi^{pu} = E(X).$

b) $\pi = (1 + \gamma)\pi^{pu}$, where π is the actual premium payed and γ the loading

c) Let $\mathcal{X} = X_1 + \ldots + X_J$ be the total payout from the portfolio. The $100 \cdot \epsilon\%$ reserve q_{ϵ} is given by

$$P(\mathcal{X} \le q_{\epsilon}) = \epsilon,$$

where ϵ is close to 1.

d) $\operatorname{E}(X_1 + \ldots + X_J) = \sum_{j=1}^{J} \operatorname{E}(X_j) = J\xi$ and $\operatorname{Var}(X_1 + \ldots + X_J) \stackrel{indep.}{=} \sum_{j=1}^{J} \operatorname{Var}(X_j) = J\sigma^2$. Hence,

$$\frac{\operatorname{sd}(X_1 + \ldots + X_J)}{\operatorname{E}(X_1 + \ldots + X_J)} = \frac{\sqrt{J}\sigma}{J\xi} = \frac{\sigma/\xi}{\sqrt{J}} \xrightarrow[J \to \infty]{} 0.$$

Problem 2

a) Simulation of Z using the inversion algorithm requires an expression for the inverse cdf $F^{-1}(u)$:

$$F(z) = 1 - \frac{1}{(1 + z/\beta)^{\alpha}} = u$$

(1 + z/\beta)^{\alpha} = (1 - u)^{-1}
$$z = \beta \left((1 - u)^{-1/\alpha} - 1 \right) = F^{-1}(u).$$

Simulation algorithm:

- 1: Input: α, β
- 2: Draw $U^* \sim U(0, 1)$
- 3: Return $Z^* = \beta \left((1 U^*)^{-1/\alpha} 1 \right)$ % or $\beta \left((U^*)^{-1/\alpha} 1 \right)$
- **b**) Simularingsalgoritme for \mathcal{X} :
- 1: Input: $\lambda, \alpha, \beta, m$
- 2: for i=1,...,m do
- 3: Draw $\mathcal{N}^* \sim Poisson(\lambda)$
- 4: $\mathcal{X}_i^* \leftarrow 0$
- 5: for $j=1,\ldots,\mathcal{N}^*$ do

6: Draw $Z^* \sim Pareto(\alpha, \beta)$ 7: $\mathcal{X}_i^* \leftarrow \mathcal{X}_i^* + Z^*$ 8: end for 9: end for 10: Return $\mathcal{X}_1^*, \dots, \mathcal{X}_m^*$. c)

$$E(\mathcal{X}) = E(E(\mathcal{X}|\mathcal{N}))$$

= $E\left(E\left(\sum_{i=1}^{\mathcal{N}} Z_i|\mathcal{N}\right)\right)$
= $E(\mathcal{N}E(Z_i))$
= $E(\mathcal{N})E(Z_i)$
= $\lambda \frac{\beta}{\alpha - 1} = 25.$

d) The 95% and 99% reserves are 48.8 and 64.2 respectively.

e) Simulations of reinsurer portfolio payoffs $\mathcal{X}_1^{re,*}, \ldots, \mathcal{X}_m^{re,*}$ are obtained by applying $\mathcal{X}_i^{re,*} \leftarrow \max(\mathcal{X}_i^* - a, 0)$ to the simulations from b).

f) The pure reinsurance premium is 3.15 and the reinsurance 95% and 99% reserves are 18.76 and 34.25 respectively.

Problem 3

a) Let Y be the number of years an individual is alive.

$$\begin{split} {}_{k}p_{l_{0}} &= \mathrm{P}(Y > l_{0} + k | Y > l_{0}) \\ &= \frac{\mathrm{P}(Y > l_{0} + k)}{\mathrm{P}(Y > l_{0})} \\ &= \frac{\mathrm{P}(Y > l_{0} + k)}{\mathrm{P}(Y > l_{0} + k - 1)} \cdot \frac{\mathrm{P}(Y > l_{0} + k - 1)}{\mathrm{P}(Y > l_{0} + k - 2)} \cdot \dots \cdot \frac{\mathrm{P}(Y > l_{0} + 1)}{\mathrm{P}(Y > l_{0})} \\ &= \mathrm{P}(Y > l_{0} + k | Y > l_{0} + k - 1) \cdot \dots \cdot \mathrm{P}(Y > l_{0} + 1 | Y > l_{0}) \\ &= p_{l_{0+k-1}} p_{l_{0+k-2}} \cdot \dots \cdot p_{l_{0}} \end{split}$$

$$\begin{aligned} \mathbf{b} \ V_0 &= -\pi \sum_{i=0}^{K-1} d^i \ _i p_{l_0} + s \sum_{i=K}^{\infty} d^i \ _i p_{l_0}. \end{aligned}$$
$$\mathbf{c} \ \mathbf{a} &= s \frac{\sum_{i=K}^{\infty} d^i \ _i p_{l_0}}{\sum_{i=0}^{K-1} d^i \ _i p_{l_0}} \end{aligned}$$
$$\mathbf{d} \ V_k &= \begin{cases} -\pi \sum_{i=k}^{K-1} d^{i-k} \ _i p_{l_0} + s \sum_{i=K}^{\infty} d^{i-k} \ _i p_{l_0}, & k < K \\ s \sum_{i=k}^{\infty} d^{i-k} \ _i p_{l_0}, & k \ge K \end{cases}$$

e) The sum to be repaid is V_k .

Problem 4

a) $R_k = \frac{S_k}{S_{k-1}} - 1 = \frac{e^{Y_k}}{e^{Y_{k-1}}} - 1 = e^{Y_k - Y_{k-1}} - 1 = e^{X_k} - 1.$ b) $Y_k = Y_{k-1} + X_k = Y_{k-2} + X_{k-1} + X_k = \ldots = Y_0 + \sum_{j=1}^k X_j = \log(s_0) + \sum_{j=1}^k X_j.$ Since $X_j \stackrel{iid}{\sim} N(\xi, \sigma)$, Y_k is also normally distributed with

$$\begin{split} \mathbf{E}(Y_k) &= \log(s_0) + \mathbf{E}\left(\sum_{j=1}^k X_j\right) = \log(s_0) + \sum_{j=1}^k \mathbf{E}(X_j) = \log(s_0) + k\xi\\ \mathrm{sd}(Y_k) &= \mathrm{sd}\left(\sum_{j=1}^k X_j\right) \stackrel{indep.}{=} \sqrt{\sum_{j=1}^k Var(X_j)} = \sqrt{k}\sigma. \end{split}$$

Then, $S_k = e^{Y_k}$ must follow a log-normal distribution with

$$E(S_k) = e^{\log(s_0) + k\xi + \frac{1}{2}k\sigma^2} = s_0 e^{k\xi + \frac{1}{2}k\sigma^2}.$$

c) Simulation algorithm for S_1, \ldots, S_K :

1: Input: ξ, σ, s_0, K 2: $Y^* \leftarrow \log(s_0)$ 3: for k=1,...,K do 4: Draw $X^* \sim N(\xi, \sigma)$ 5: $Y^* \leftarrow Y^* + X^*$ 6: $S^* \leftarrow e^{Y^*}$ 7: end for 8: Return S_1^*, \ldots, S_K^* . **d)** $E(S_k) = s_0 e^{k\xi + \frac{1}{2}k\sigma^2} \approx 2.01.$

e) $R_{0:K} = (1+R_1) \cdot \ldots \cdot (1+R_K) - 1 = e^{X_1} \cdot \ldots \cdot e^{X_K} - 1 = e^{\sum_{j=1}^K X_j} - 1 = e^{Y_K - \log(s_0)} - 1 = \frac{S_K}{s_0} - 1$. Hence, $P(R_{0:K} \le r) = P\left(\frac{S_K}{s_0} - 1 \le r\right) = P(S_K \le s_0(r+1))$.

- Probability of losing on the investment: $P(R_{0:K} < 0) = P(S_K < s_0) = P(S_K < 1)$, which is a little smaller than 0.25.
- Probability of doubling the investment: $P(R_{0:K} \ge 1) = P(S_K \ge 2s_0) = 1 P(S_K < 2)$, which is between 0.25 and 0.5.
- Probability of quadruplicating the investmeent: $P(R_{0:K} \ge 3) = P(S_K \ge 4s_0) = 1 P(S_K < 4)$, which is between 0.05 and and 0.25, but closer to 0.05.

Problem 5

a) Simulation algorithm for B_1, \ldots, B_K :

1: Input:
$$\xi, a, \tau, b_0, r_0, K$$

2:
$$\begin{cases} B_0^* \leftarrow b_0 \\ Z^* \leftarrow \log\left(\frac{r_0}{\xi}\right) \end{cases}$$
3: for k=1,...,K do
4: Draw $\varepsilon^* \sim N(0,1)$
5:
$$\begin{cases} Z^* \leftarrow aZ^* + \tau \varepsilon^* \\ r^* \leftarrow \xi e^{Z^*} \end{cases}$$
6: $B_k^* \leftarrow (1+r^*)B_{k-1}^*$
7: end for
8: Return B_1^*, \ldots, B_K^* .

b) Since S_k and B_k are independent, they can be simulated independently from the algorithms in 4 c) and 5 a), respectively, resulting in S_1^*, \ldots, S_m^* and B_1^*, \ldots, B_m^* , with $S_j^* = (S_{1j}^*, \ldots, S_{Kj}^*)^T$ and $B_j^* = (B_{1j}^*, \ldots, B_{Kj}^*)^T$. Then, we obtain V_1^*, \ldots, V_m^* , with $V_j^* = (V_{1j}^*, \ldots, V_{Kj}^*)^T$, from $V_j^* = S_j^* + B_j^*$.

c) When half of the investment is placed in a cash account instead of stocks, the risk becomes lower, which is seen in the higher values for left tail quantiles

and $\frac{\mathrm{sd}(V_K)}{\mathrm{E}(V_K)} \approx 0.41 < \frac{\mathrm{sd}(S_K)}{\mathrm{E}(S_K)} \approx 0.7$. On the other hand, the upside is also lower, which is seen in the lower expectation and right tail quantiles.