
Exam in STK3505/4505: Answers

Problem 1

a
Simulation of Z using the inversion method requires an expression for the
inverse cdf F−1(u):

F (z) = 1− 1(
1 +

(
z
β

)θ)α = u

z = β
(
(1− u)−1/α − 1

)1/θ
= F−1(u).

Simulation algorithm:

1: Input: α, θ, β
2: Draw U∗ ∼ U(0, 1)

3: Return Z∗ = β
(
(1− U∗)−1/α − 1

)1/θ
% or β

(
(U∗)−1/α − 1

)1/θ
b
Simulation algorithm for X :

1: Input: λ, α, β,m
2: for i=1,. . . ,m do
3: Draw N ∗ ∼ Poisson(λ)
4: X ∗i ← 0
5: for j=1,. . . ,N ∗ do
6: Draw Z∗ ∼ Burr(α, θ, β)
7: X ∗i ← X ∗i + Z∗

8: end for
9: end for

10: Return X ∗1 , . . . ,X ∗m.

Estimate of the mean: X̄ ∗ = 1
m

∑m
i=1X ∗i .

Estimate of the standard deviation: s∗X =
√

1
m−1

∑m
i=1

(
X ∗i − X̄ ∗

)2
.

The 100 · ε% reserve qε is given by

P(X ≤ qε) = ε,
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and estimated by q∗ε = X ∗(mε), where X ∗(1) ≤ . . . ≤ X ∗(m).

c
E(X ) = λξ(α, β, θ) = 72.6.
sd(X ) =

√
λ (σ2(α, β, θ) + (ξ(α, β, θ))2) = 17.0.

d
The 95% and 99% reserves are 101.9 and 118.2, respectively.

e
Simulations of cedent net portfolio payoffs X ce,∗

1 , . . . ,X ce,∗
m are obtained by

replacing line 7 by
7 : Zce,∗ ← Z∗ −max(Z∗ − a, 0)
8 : X ce,∗

i ← X ce,∗
i + Zce,∗

to the simulations from b. The corresponding 100 · ε% cedent net reserve is
estimated by qce,∗ε = X ∗(mε).

f
The cedent net 95% and 99% reserves are 74.9 and 83.4, respectively. Obvi-
ously, the reserves become lower when part of the responsibility is transfered
on a reinsurer. Since there is no upper bound on this responsibility, but
merely a retention limit, the reduction in the reserves is quite large, espe-
cially out in the tail.

g
X re =

∑N
i=1 Z

re
i = b

∑N
i=1 Zi = bX

X ce = X − X re = (1− b)X
Pure reinsurance premium: πpu,re = E(X re) = bE(X ) = 16.2.
100 · ε% cedent net reserve:

P(X ce ≤ qceε ) = P(X ≤ qceε
1− b

) = ε = P(X ≤ qε)

qceε = (1− b)qε

The cedent net 95% and 99% reserves are now 79.2 and 91.8, respectively.

h
The pure reinsurance premium is the same for the two contracts, but the stop-
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loss contract from e gives lower risk and lower reserves than the proportional
contract in g, and is therefore preferable.

Problem 2

a

πl0 =

{
s
∑∞

k=lr−l0 d
k
kpl0 , l0 < lr

s
∑∞

k=0 d
k
kpl0 , l0 ≥ lr

.

b)
The longer the time between the start age l0 and the age of retirement lr,
the more the pension is discounted, and the smaller the present value. Thus,
πl0 ia an increasing function of l0, so the order is:

l0 47 57 37
πl0 4.98 7.40 3.46

c)
Present value of payments: ζ

∑lr−l0−1
k=0 dk kpl0 .

d)
Equivalence means that the expected present value of the payments ζ should
be equal to the expected present value of the pension πl0 , so that:

ζ = s

∑∞
k=lr−l0 d

k
kpl0∑lr−l0−1

k=0 dk kpl0

Problem 3

a)

Rk = Sk

Sk−1
− 1 = eYk

eYk−1
− 1 = eYk−Yk−1 − 1 = eXk − 1.

K-step return: R0:K = (1 +R1) · . . . · (1 +RK)− 1.

R0:K = (1 + R1) · . . . · (1 + RK) − 1 = eX1 · . . . · eXK − 1 = e
∑K

j=1Xj − 1 =

eKξ+σ
∑K

j=1 εj .
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Let η = 1√
K

∑K
j=1 εj. Since εj

iid∼ N(0, 1), η is also normally distributed with

E(η) =
1√
K

K∑
j=1

E(εj) = 0

Var(η) =
1

K

K∑
j=1

Var(εj) = 1.

Thus, R0:K = eKξ+σ
√
Kη − 1, with η ∼ N(0, 1).

b)
Simulation algorithm for X:

1: Input: r, σ, v0, rg, K

2:

{
R∗ ← 0

P ∗ ← 1

3: for k=1,. . . ,K do
4: Draw ε∗ ∼ N(0, 1)

5: R∗ ← er−
1
2
σ2+σε∗ − 1

6: P ∗ ← P ∗(1 +R∗)
7: end for
8: R∗0:K ← P ∗ − 1
9: Return X∗ ← max (rg −R∗0:K , 0).

The risk-neutral price is computed as π∗(v0) = e−rK

m

∑m
j=1X

∗
i , whereX∗1 , . . . , X

∗
m

are generated using the above algorithm.
π(v0) can also be computed using Black-Scholes formula:

π(v0) =
(

(1 + rg)e
−rKΦ(a)− Φ(a− σ

√
K)
)
v0,

where a = log(1+rg)−rK+σ2K/2

σ
√
K

.

c

E(R) = ξ

Var(R) =
σ2

J
sd(R)

E(R)
=
σ/ξ√
J
−→
J→∞

0.
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d

E(R|RM) = r + β(RM − r)

Var(R|RM) =
σ2

J
E(R) = E(E(R|RM)) = r + β(ξM − r)

Var(R) = Var(E(R|RM)) + E(Var(R|RM)) = β2σ2
M +

σ2

J

sd(R)

E(R)
=

√
β2σ2

M + σ2/J

r + β(ξM − r)
−→
J→∞

βσM
r + β(ξM − r)

.

When all stocks depend on a common factor RM , the risk cannot be diversi-
fied away, as in c.
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