STK4011 / STK9011 Fall 2013 – Exam project

Deadline Friday November 15th

You are not allowed to collaborate with other students on the exam project.

The exam project consists of 4 Problems over 3 pages. Make sure you have the complete exam set.

The answer to the exam project can be handed in on email to osamuels@math.uio.no or on paper to my mailbox on the 7th floor in NHA. You may deliver a handwritten or Latex/Word-processed answer to the project in English, Norwegian or any other Scandinavian language

Problem 1

Assume that $Y_i \sim n(\mu_i, 1), i = 1, ..., n$, are independent with $\mu_i = \alpha + \beta x_i$. The x_i are given numbers, i.e. we have a simple linear regression model.

- a) Write down the joint distribution of (Y_1, \ldots, Y_n) on the form of an exponential family. In particular find the minimal sufficient statistics for this family.
- b) The least squares estimators for (α, β) can be written as

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
$$\widehat{\alpha} = \bar{Y} - \widehat{\beta}\bar{x}$$

where $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ (You are not asked to show this).

Explain why $\hat{\alpha}$ and $\hat{\beta}$ are UMVUE (Uniformly minimum variance among unbiased estimators).

c) Assume now that $Y_i \sim n(\mu_i, \sigma^2)$ are independent and $\mu_i = \alpha + \beta x_i$ as above, but where σ is a third unknown parameter. Discuss the representation of the joint distribution of (Y_1, \ldots, Y_n) as an exponential family and find minimal sufficient statistics.

Are $\hat{\alpha}$ and $\hat{\beta}$ still UMVUE?

Can you find an UMVUE for σ^2 ?

d) Now assume that Y_i are independent binary random variables with

$$P(Y_i = y_i) = \frac{\exp(y_i(\alpha + \beta x_i))}{1 + \exp(\alpha + \beta x_i)}$$

for $y_i = 0$ and $y_i = 1$. Also here the x_i are given numbers and so we have a logistic regression model.

Show that also here the joint distribution of the (Y_1, \ldots, Y_n) is an exponential family and show that minimal sufficient statistics are given by $T_1 = \sum_{i=1}^n Y_i$ and $T_2 = \sum_{i=1}^n x_i Y_i$.

- e) Find $E[T_1]$ and $E[T_2]$ using a general result for exponential families. Verify the results using standard methods for expectations.
- f) Argue that the joint distribution of (T_1, T_2) can be written

$$P(T_1 = t_1, T_2 = t_2) = \frac{\exp(\alpha t_1 + \beta t_2)}{\prod_{i=1}^n [1 + \exp(\alpha + \beta x_i)]} K(t_1, t_2)$$

where $K(t_1, t_2) = \#\{(y_1, \ldots, y_n) : \sum_{i=1}^n y_i = t_1, \sum_{i=1}^n x_i y_i = t_2\}$. (This is a number that may require a fair deal of combinatorics to calculate).

Furthermore argue that the marginal distribution of T_1 can be written

$$P(T_1 = t_1) = \frac{\exp(\alpha t_1)}{\prod_{i=1}^n [1 + \exp(\alpha + \beta x_i)]} H(\beta)$$

where $H(\beta) = \sum \exp(\beta \sum_{i=1}^{n} y_i x_i)$ and the sum is taken over all (y_1, \ldots, y_n) such that $\sum_{i=1}^{n} y_i = t_1$ (the explicit expression for $H(\beta)$ is usually not nice). Show that the conditional distribution of T_2 given $T_1 = t_1$ (i) depends on β , but not on α and (ii) is a one-parameter exponential family.

Problem 2

Assume that $X_i, i = 1, ..., n$, are independent with density

$$f(x|\mu) = \exp(x-\mu)/(1+\exp(x-\mu))^2, \quad x \in \Re$$

and μ is an unknown parameter in the parameter space \Re .

a) Find the derivative of the log-likelihood for X_1, \ldots, X_n .

Show explicitly that this derivative has expectation zero (i.e. not as a consequence of a general result).

Hint: You can use $\int_{-\infty}^{\infty} F(x)f(x)dx = \int_{0}^{1} u du = \frac{1}{2}$ when F(x) is a continuous cumulative distribution function and f(x) = F'(x).

- b) Show that the Cramér-Rao lower bound in this situation equals $\frac{3}{n}$.
- c) Explain why $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an unbiased estimator for μ and show that its variance is larger than the Cramér-Rao lower bound. You can use that $\operatorname{Var}(X_i) = \frac{\pi^2}{3}$.

Another unbiased estimator of μ is the sample median. Explain why.

In a large sample the variance of the sample median is approximately equal to $1/(4nf(m|\mu)^2)$ where m is the theoretical median. Compare this variance to the Cramér-Rao lower bound.

Problem 3

Assume that $X_i | \lambda, i = 1, ..., n$ are iid and exponentially distributed with mean $1/\lambda$ given λ . Assume furthermore that λ has prior distribution $gamma(\alpha, \beta)$.

- a) Find the posterior distribution of λ given X_1, \ldots, X_n .
- b) Show that the posterior mean is given by

$$\lambda^{\star} = \mathbf{E}[\lambda | X_1, \dots, X_n] = \frac{\alpha + n}{1/\beta + \sum_{i=1}^n X_i}$$

(using the parametrization in Casella & Bergers book).

c) Find the limit distribution of $\sqrt{n}(\lambda^* - \lambda)$. Compare with the limit distribution of $\sqrt{n}(\hat{\lambda} - \lambda)$ where $\hat{\lambda} = 1/\bar{X}$ is the MLE of the X_i .

Problem 4

Assume that $X_i, i = 1, ..., n$ are iid $U[0, \theta]$ where θ is an unknown parameter.

- a) Show that both $\hat{\theta} = 2\bar{X}$ and $\theta^* = M\frac{n+1}{n}$ are unbiased estimators of θ where $M = \max(X_1, \ldots, X_n)$. Find the variances of $\hat{\theta}$ and θ^* .
- b) Show that M is sufficient for θ . Argue that $\tilde{\theta} = \mathbb{E}[\hat{\theta}|M]$ is an unbiased estimator with $\operatorname{Var}(\tilde{\theta}) \leq \operatorname{Var}(\hat{\theta})$.
- c) Derive an explicit expression for $\hat{\theta}$. Discuss whether it is UMVUE.