Let X_{1}, \ldots, X_{n} be mutually independent random variables with mgfs $M_{X_{i}}(t), i=1, \ldots, n$, and let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be constants. Then the mgf of $Z=\sum_{i=1}^{n}\left(a_{1} X_{1}+b_{i}\right)$ is

$$
M_{Z}(t)=\exp \left(t \sum b_{i}\right) \prod_{i=1}^{n} M_{X_{i}}\left(a_{i} t\right)
$$

This result may be used to prove that if X_{1}, \ldots, X_{n} are independent and $X_{i} \sim n\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
Z=\sum_{i=1}^{n}\left(a_{1} X_{1}+b_{i}\right) \sim n\left(\sum a_{i} \mu_{i}+b_{i}, \sum a_{i}^{2} \sigma_{i}^{2}\right)
$$

