Let $X_1, ..., X_n$ be mutually independent random variables with mgfs $M_{X_i}(t)$, i = 1, ..., n, and let $a_1, ..., a_n$ and $b_1, ..., b_n$ be constants. Then the mgf of $Z = \sum_{i=1}^n (a_i X_1 + b_i)$ is $M_Z(t) = \exp(t \sum b_i) \prod_{i=1}^n M_{X_i}(a_i t)$

This result may be used to prove that if $X_1, ..., X_n$ are independent and $X_i \sim n(\mu_i, \sigma_i^2)$, then

$$Z = \sum_{i=1}^{n} (a_1 X_1 + b_i) \sim n \left(\sum a_i \mu_i + b_i , \sum a_i^2 \sigma_i^2 \right)$$