Summary of results for STK4011/9011

Distributions

Beta Distribution

The beta family of distributions is a continuous family on (0,1) indexed by two parameters. The $beta(\alpha,\beta)$ pdf is

$$(3.3.16) \ f(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1, \quad \alpha > 0, \quad \beta > 0,$$

where $B(\alpha, \beta)$ denotes the beta function,

$$B(\alpha,\beta)=\int_0^1 x^{\alpha-1}(1-x)^{\beta-1}\,dx.$$

The beta function is related to the gamma function through the following identity:

(3.3.17)
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Cauchy Distribution

The Cauchy distribution is a symmetric, bell-shaped distribution on $(-\infty, \infty)$ with pdf

(3.3.19)
$$f(x|\theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

Double Exponential Distribution

The double exponential distribution is formed by reflecting the exponential distribution around its mean. The pdf is given by

$$(3.3.22) f(x|\mu,\sigma) = \frac{1}{2\sigma}e^{-|x-\mu|/\sigma}, \quad -\infty < x < \infty, \quad -\infty < \mu < \infty, \quad \sigma > 0.$$

Transformations

Theorem 2.1.5 Let X have $pdf f_X(x)$ and let Y = g(X), where g is a monotone function. Let \mathcal{X} and \mathcal{Y} be defined by (2.1.7). Suppose that $f_X(x)$ is continuous on \mathcal{X} and that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} . Then the pdf of Y is given by

$$(2.1.10) f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| & y \in \mathcal{Y} \\ 0 & otherwise. \end{cases}$$

Bivariate transformations

Let (X,Y) be a bivariate random vector with joint pdf $f_{X,Y}(x,y)$ and support $\mathcal{A}=(x,y):f_{X,Y}(x,y)>0$. Let (U,V) be given by $U=g_1(X,Y)$ and $V=g_2(X,Y)$. Then the joint pdf $f_{U,V}(u,v)$ of (U,V) has support

$$\mathcal{B} = (u, v) : u = g_1(x, y)$$
 and $v = g_2(x, y)$ for some $(x, y) \in \mathcal{A}$

We assume that $u = g_1(x, y)$ and $v = g_2(x, y)$ is a one-to-one transformation of \mathcal{A} onto \mathcal{B} and let $x = h_1(u, v)$ and $y = h_2(u, v)$ be the inverse transformation.

Let

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$$

be the Jacobian of the transformation. Then for $(u,v) \in \mathcal{B}$ we have

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |J(u,v)|$$

Theorem 5.2.9 If X and Y are independent continuous random variables with pdfs $f_X(x)$ and $f_Y(y)$, then the pdf of Z = X + Y is

$$(5.2.3) f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z-w) dw.$$

Order statistics

Theorem 5.4.4 Let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics of a random sample, X_1, \ldots, X_n , from a continuous population with cdf $F_X(x)$ and pdf $f_X(x)$. Then the pdf of $X_{(j)}$ is

(5.4.4)
$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}.$$

Theorem 5.4.6 Let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics of a random sample X_1, \ldots, X_n , from a continuous population with cdf $F_X(x)$ and pdf $f_X(x)$. Then the joint pdf of $X_{(i)}$ and $X_{(j)}, 1 \le i < j \le n$, is

(5.4.7)
$$f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f_X(u) f_X(v) [F_X(u)]^{i-1} \times [F_X(v) - F_X(u)]^{j-1-i} [1 - F_X(v)]^{n-j}$$

for $-\infty < u < v < \infty$.

Conditional expectation and variance

Theorem 4.4.3 If X and Y are any two random variables, then

$$(4.4.1) EX = E(E(X|Y)),$$

provided that the expectations exist.

Theorem 4.4.7 (Conditional variance identity) For any two random variables X and Y,

$$(4.4.4) \operatorname{Var} X = \operatorname{E} \left(\operatorname{Var}(X|Y) \right) + \operatorname{Var} \left(\operatorname{E}(X|Y) \right),$$

provided that the expectations exist.

Inequalities

Theorem 3.6.1 (Chebychev's Inequality) Let X be a random variable and let g(x) be a nonnegative function. Then, for any r > 0,

$$P(g(X) \ge r) \le \frac{\mathrm{E}g(X)}{r}.$$

Convergence of random variables

Definition 5.5.1 A sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0 \quad \text{or, equivalently,} \quad \lim_{n\to\infty} P(|X_n-X|<\epsilon)=1.$$

Theorem 5.5.2 (Weak Law of Large Numbers) Let $X_1, X_2, ...$ be iid random variables with $EX_i = \mu$ and $Var X_i = \sigma^2 < \infty$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Then, for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1;$$

that is, \bar{X}_n converges in probability to μ .

Theorem 5.5.4 Suppose that X_1, X_2, \ldots converges in probability to a random variable X and that h is a continuous function. Then $h(X_1), h(X_2), \ldots$ converges in probability to h(X).

Definition 5.5.10 A sequence of random variables, X_1, X_2, \ldots , converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

Theorem 2.3.12 (Convergence of mgfs) Suppose $\{X_i, i = 1, 2, ...\}$ is a sequence of random variables, each with mgf $M_{X_i}(t)$. Furthermore, suppose that

$$\lim_{t\to\infty} M_{X_i}(t) = M_X(t), \quad \text{for all } t \text{ in a neighborhood of } 0,$$

and $M_X(t)$ is an mgf. Then there is a unique cdf F_X whose moments are determined by $M_X(t)$ and, for all x where $F_X(x)$ is continuous, we have

$$\lim_{i\to\infty}F_{X_i}(x)=F_X(x).$$

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Theorem 5.5.13 The sequence of random variables, X_1, X_2, \ldots , converges in probability to a constant μ if and only if the sequence also converges in distribution to μ . That is, the statement

$$P(|X_n - \mu| > \varepsilon) \to 0 \text{ for every } \varepsilon > 0$$

is equivalent to

$$P(X_n \le x) \to \begin{cases} 0 & \text{if } x < \mu \\ 1 & \text{if } x > \mu. \end{cases}$$

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let X_1, X_2, \ldots be a sequence of iid random variables with $EX_i = \mu$ and $0 < Var X_i = \sigma^2 < \infty$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Let $G_n(x)$ denote the cdf of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$. Then, for any $x, -\infty < x < \infty$,

$$\lim_{n\to\infty}G_n(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-y^2/2}\,dy;$$

that is, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting standard normal distribution.

Theorem 5.5.17 (Slutsky's Theorem) If $X_n \to X$ in distribution and $Y_n \to a$, a constant, in probability, then

a. $Y_n X_n \to aX$ in distribution.

b. $X_n + Y_n \rightarrow X + a$ in distribution.

Theorem 5.5.24 (Delta Method) Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to n(0, \sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that $g'(\theta)$ exists and is not θ . Then

(5.5.10)
$$\sqrt{n}[g(Y_n) - g(\theta)] \to n(0, \sigma^2[g'(\theta)]^2) \text{ in distribution.}$$

Theorem 5.5.26 (Second-order Delta Method) Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to n(0, \sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that $g'(\theta) = 0$ and $g''(\theta)$ exists and is not 0. Then

(5.5.13)
$$n[g(Y_n) - g(\theta)] \to \sigma^2 \frac{g''(\theta)}{2} \chi_1^2 \text{ in distribution.}$$

Sufficiency and completeness

Definition 6.2.1 A statistic $T(\mathbf{X})$ is a *sufficient statistic for* θ if the conditional distribution of the sample \mathbf{X} given the value of $T(\mathbf{X})$ does not depend on θ .

Theorem 6.2.2 If $p(\mathbf{x}|\theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t|\theta)$ is the pdf or pmf of $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} in the sample space, the ratio $p(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)$ is constant as a function of θ .

Theorem 6.2.6 (Factorization Theorem) Let $f(\mathbf{x}|\theta)$ denote the joint pdf or pmf of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ ,

(6.2.3)
$$f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}).$$

Theorem 6.2.10 Let X_1, \ldots, X_n be iid observations from a pdf or pmf $f(x|\theta)$ belongs to an exponential family given by

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^k w_i(\boldsymbol{\theta})t_i(x)\right),$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d), d \leq k$. Then

$$T(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \ldots, \sum_{j=1}^n t_k(X_j)\right)$$

is a sufficient statistic for θ .

Definition 6.2.11 A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X}), T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.

Theorem 6.2.13 Let $f(\mathbf{x}|\theta)$ be the pmf or pdf of a sample \mathbf{X} . Suppose there exists a function $T(\mathbf{x})$ such that, for every two sample points \mathbf{x} and \mathbf{y} , the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

Definition 6.2.21 Let $f(t|\theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability distributions is called *complete* if $E_{\theta}g(T) = 0$ for all θ implies $P_{\theta}(g(T) = 0) = 1$ for all θ . Equivalently, $T(\mathbf{X})$ is called a *complete statistic*.

Theorem 6.2.25 (Complete statistics in the exponential family) Let X_1, \ldots, X_n be iid observations from an exponential family with pdf or pmf of the form

(6.2.7)
$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{j=1}^{k} w(\theta_j)t_j(x)\right),$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$. Then the statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is complete as long as the parameter space Θ contains an open set in \Re^k .

Point estimation

Definition 7.3.7 An estimator W^* is a best unbiased estimator of $\tau(\theta)$ if it satisfies $E_{\theta}W^* = \tau(\theta)$ for all θ and, for any other estimator W with $E_{\theta}W = \tau(\theta)$, we have $\operatorname{Var}_{\theta}W^* \leq \operatorname{Var}_{\theta}W$ for all θ . W^* is also called a uniform minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$.

Theorem 7.3.9 (Cramér-Rao Inequality) Let X_1, \ldots, X_n be a sample with pdf $f(\mathbf{x}|\theta)$, and let $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} \mathbf{E}_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} \left[W(\mathbf{x}) f(\mathbf{x}|\theta) \right] d\mathbf{x}$$

(7.3.4) and

$$\operatorname{Var}_{\theta}W(\mathbf{X})<\infty.$$

Then

(7.3.5)
$$\operatorname{Var}_{\theta} (W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta} \operatorname{E}_{\theta} W(\mathbf{X})\right)^{2}}{\operatorname{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)\right)^{2}\right)}.$$

Corollary 7.3.10 (Cramér-Rao Inequality, iid case) If the assumptions of Theorem 7.3.9 are satisfied and, additionally, if X_1, \ldots, X_n are iid with pdf $f(x|\theta)$, then

$$\operatorname{Var}_{\theta} W(\mathbf{X}) \geq \frac{\left(\frac{d}{d\theta} \operatorname{E}_{\theta} W(\mathbf{X})\right)^{2}}{n \operatorname{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(X|\theta)\right)^{2}\right)}.$$

Lemma 7.3.11 If $f(x|\theta)$ satisfies

$$rac{d}{d heta} \mathrm{E}_{ heta} igg(rac{\partial}{\partial heta} \log f(X| heta) igg) = \int rac{\partial}{\partial heta} \left[\left(rac{\partial}{\partial heta} \log f(x| heta)
ight) f(x| heta)
ight] \, dx$$

(true for an exponential family), then

$$\mathrm{E}_{ heta} \Bigg(igg(rac{\partial}{\partial heta} \log f(X| heta) igg)^2 \Bigg) = - \mathrm{E}_{ heta} igg(rac{\partial^2}{\partial heta^2} \log f(X| heta) igg) \,.$$

Corollary 7.3.15 (Attainment) Let X_1, \ldots, X_n be iid $f(x|\theta)$, where $f(x|\theta)$ satisfies the conditions of the Cramér-Rao Theorem. Let $L(\theta|\mathbf{x}) = \prod_{i=1}^n f(x_i|\theta)$ denote the likelihood function. If $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ is any unbiased estimator of $\tau(\theta)$, then $W(\mathbf{X})$ attains the Cramér-Rao Lower Bound if and only if

(7.3.12)
$$a(\theta)[W(\mathbf{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x})$$

for some function $a(\theta)$.

Theorem 7.3.17 (Rao–Blackwell) Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathrm{E}(W|T)$. Then $\mathrm{E}_{\theta}\phi(T) = \tau(\theta)$ and $\mathrm{Var}_{\theta} \phi(T) \leq \mathrm{Var}_{\theta} W$ for all θ ; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Theorem 7.3.19 If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Theorem 7.3.20 If $E_{\theta}W = \tau(\theta)$, W is the best unbiased estimator of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of 0.

Theorem 7.3.23 Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

<u>Point estimation – large sample results</u>

Definition 10.1.1 A sequence of estimators $W_n = W_n(X_1, ..., X_n)$ is a consistent sequence of estimators of the parameter θ if, for every $\epsilon > 0$ and every $\theta \in \Theta$,

(10.1.1)
$$\lim_{n\to\infty} P_{\theta}(|W_n - \theta| < \epsilon) = 1.$$

Theorem 10.1.3 If W_n is a sequence of estimators of a parameter θ satisfying

- i. $\lim_{n\to\infty} \operatorname{Var}_{\theta} W_n = 0$,
- ii. $\lim_{n\to\infty} \operatorname{Bias}_{\theta} W_n = 0$,

for every $\theta \in \Theta$, then W_n is a consistent sequence of estimators of θ .

Definition 10.1.9 For an estimator T_n , suppose that $k_n(T_n - \tau(\theta)) \to n(0, \sigma^2)$ in distribution. The parameter σ^2 is called the *asymptotic variance* or *variance of the limit distribution* of T_n .

Definition 10.1.11 A sequence of estimators W_n is asymptotically efficient for a parameter $\tau(\theta)$ if $\sqrt{n}[W_n - \tau(\theta)] \to n[0, v(\theta)]$ in distribution and

$$v(\theta) = \frac{[\tau'(\theta)]^2}{\mathrm{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 \right)};$$

that is, the asymptotic variance of W_n achieves the Cramér-Rao Lower Bound.

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X_1, X_2, \ldots , be iid $f(x|\theta)$, let $\hat{\theta}$ denote the MLE of θ , and let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions in Miscellanea 10.6.2 on $f(x|\theta)$ and, hence, $L(\theta|\mathbf{x})$,

$$\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \to n[0, v(\theta)],$$

where $v(\theta)$ is the Cramér-Rao Lower Bound. That is, $\tau(\hat{\theta})$ is a consistent and asymptotically efficient estimator of $\tau(\theta)$.

Definition 10.1.16 If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \to \mathbf{n}[0, \sigma_W^2]$$
$$\sqrt{n}[V_n - \tau(\theta)] \to \mathbf{n}[0, \sigma_V^2]$$

in distribution, the asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}.$$

Hypothesis testing

Definition 8.2.1 The *likelihood ratio test statistic* for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup\limits_{\Theta_0} L(\theta|\mathbf{x})}{\sup\limits_{\Theta} L(\theta|\mathbf{x})}.$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{\mathbf{x} : \lambda(\mathbf{x}) \leq c\}$, where c is any number satisfying $0 \leq c \leq 1$.

Theorem 8.2.4 If $T(\mathbf{X})$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(\mathbf{x})$ are the LRT statistics based on T and \mathbf{X} , respectively, then $\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$ for every \mathbf{x} in the sample space.

Definition 8.3.1 The power function of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$.

Definition 8.3.5 For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a *size* α *test* if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$.

Definition 8.3.6 For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$.

Definition 8.3.11 Let \mathcal{C} be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in class \mathcal{C} , with power function $\beta(\theta)$, is a uniformly most powerful (UMP) class \mathcal{C} test if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .

Theorem 8.3.12 (Neyman-Pearson Lemma) Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_i is $f(\mathbf{x}|\theta_i), i = 0, 1$, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$

 $(8.3.1) \qquad and$

$$\mathbf{x} \in R^{c}$$
 if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$,

for some $k \geq 0$, and

$$(8.3.2) \alpha = P_{\theta_0}(\mathbf{X} \in R).$$

Then

- **a.** (Sufficiency) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level α test.
- **b.** (Necessity) If there exists a test satisfying (8.3.1) and (8.3.2) with k > 0, then every UMP level α test is a size α test (satisfies (8.3.2)) and every UMP level α test satisfies (8.3.1) except perhaps on a set A satisfying $P_{\theta_0}(\mathbf{X} \in A) = P_{\theta_1}(\mathbf{X} \in A) = 0$.

Corollary 8.3.13 Consider the hypothesis problem posed in Theorem 8.3.12. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T corresponding to θ_i , i = 0, 1. Then any test based on T with rejection region S (a subset of the sample space of T) is a UMP level α test if it satisfies

$$t \in S$$
 if $g(t|\theta_1) > kg(t|\theta_0)$

(8.3.4) and

$$t \in S^{c}$$
 if $g(t|\theta_1) < kg(t|\theta_0)$,

for some $k \geq 0$, where

$$(8.3.5) \alpha = P_{\theta_0}(T \in S).$$

Definition 8.3.16 A family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_2 > \theta_1$, $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (nondecreasing) function of t on $\{t: g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\}$. Note that c/0 is defined as ∞ if 0 < c.

Theorem 8.3.17 (Karlin–Rubin) Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ of T has an MLR. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

Hypothesis testing – large sample results

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple H_0) For testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, suppose X_1, \ldots, X_n are iid $f(x|\theta)$, $\hat{\theta}$ is the MLE of θ , and $f(x|\theta)$ satisfies the regularity conditions in Miscellanea 10.6.2. Then under H_0 , as $n \to \infty$,

$$-2\log\lambda(\mathbf{X}) \to \chi_1^2$$
 in distribution,

where χ_1^2 is a χ^2 random variable with 1 degree of freedom.

Theorem 10.3.3 Let X_1, \ldots, X_n be a random sample from a pdf or pmf $f(x|\theta)$. Under the regularity conditions in Miscellanea 10.6.2, if $\theta \in \Theta_0$, then the distribution of the statistic $-2 \log \lambda(\mathbf{X})$ converges to a chi squared distribution as the sample size $n \to \infty$. The degrees of freedom of the limiting distribution is the difference between the number of free parameters specified by $\theta \in \Theta_0$ and the number of free parameters specified by $\theta \in \Theta$.

Confidence intervals (interval estimators)

Definition 9.1.1 An interval estimate of a real-valued parameter θ is any pair of functions, $L(x_1, \ldots, x_n)$ and $U(x_1, \ldots, x_n)$, of a sample that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X} = \mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called an interval estimator.

Definition 9.1.4 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the *coverage probability* of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the true parameter, θ . In symbols, it is denoted by either $P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$ or $P(\theta \in [L(\mathbf{X}), U(\mathbf{X})]|\theta)$.

Definition 9.1.5 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the confidence coefficient of $[L(\mathbf{X}), U(\mathbf{X})]$ is the infimum of the coverage probabilities, $\inf_{\theta} P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$.

Theorem 9.2.2 For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each $\mathbf{x} \in \mathcal{X}$, define a set $C(\mathbf{x})$ in the parameter space by

$$(9.2.1) C(\mathbf{x}) = \{\theta_0 \colon \mathbf{x} \in A(\theta_0)\}.$$

Then the random set $C(\mathbf{X})$ is a $1-\alpha$ confidence set. Conversely, let $C(\mathbf{X})$ be a $1-\alpha$ confidence set. For any $\theta_0 \in \Theta$, define

$$A(\theta_0) = \{ \mathbf{x} \colon \theta_0 \in C(\mathbf{x}) \}.$$

Then $A(\theta_0)$ is the acceptance region of a level α test of $H_0: \theta = \theta_0$.