
1

Solutions to exercises - Week 40

Bayes estimators:

• Exercises 7.22 and 7.24

Moment and maximum likelihood estimators:

• Exercises 7.9, 7.11 and 7.13

Best unbiased estimators:

• Exercise 7.40  (solution is given in the 
lectures for week 40)

We have that                      and 
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Hence we have
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We find that the ML-estimator has smaller 
MSE than the moment estimator when 3n≥

Exercise 7.11
are iid with pdf1,..., nX X
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We solve                                   and find that the MLE 
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We see that the variance goes to zero as n
goes to infinity
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b) We have that                   are iid with pdf1,..., nX X
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Exercise 7.13
are iid with pdf1,..., nX X
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In order to find the derivative of the log-likelihood,  
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It follows that the log-likelihood is continuous 
and piecewise linear, and that its slope is

• positive if              
• equal to zero if 
• negative if 
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Exercise 7.22
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c) Finally we find that the posterior distribution 
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Exercise 7.24

gamma( , )λ α β∼

Given  λ   we have  iid Poisson(λ) 1 2, , ...., nX X X
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Thus the posterior distribution of  λ is given by
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b) The posterior mean is:

1

E( | ) ( )
1

n

i
i

X y y
n

β
λ α

β=

= = +
+∑

1
( )

1 1

n y

n n n

β
αβ

β β
= +

+ +

2

1

Var( | ) ( )
1

n

i
i

X y y
n

β
λ α

β=

 = = +   + ∑

The posterior variance is:


