## Solutions to exercises - Week 40

Moment and maximum likelihood estimators:

- Exercises 7.9, 7.11 and 7.13

Bayes estimators:

- Exercises 7.22 and 7.24

Best unbiased estimators:

- Exercise 7.40 (solution is given in the lectures for week 40)


## Exercise 7.9

$X_{1}, \ldots, X_{n}$ are iid with pdf

$$
f(x \mid \theta)=1 / \theta \quad \text { for } 0 \leq x \leq \theta
$$

We have that $\mathrm{E} X=\theta / 2$ and $\operatorname{Var} X=\theta^{2} / 12$
The moment estimator is given by the equation $\bar{X}=\theta / 2$ so it is given by $\theta^{*}=2 \bar{X}$
We have

$$
\begin{aligned}
& \mathrm{E} \theta^{*}=2 \mathrm{E} \bar{X}=2(\theta / 2)=\theta \\
& \operatorname{Var} \theta^{*}=4 \operatorname{Var} \bar{X}=4 \frac{1}{n}\left(\frac{\theta^{2}}{12}\right)=\frac{\theta^{2}}{3 n}
\end{aligned}
$$

Since $\theta^{*}$ is unbiased, its MSE equals the variance

The likelihood is given by

$$
\begin{aligned}
& L(\theta \mid \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} I_{[0, \theta]}\left(x_{i}\right) \\
& =\frac{1}{\theta^{n}} \prod_{i=1}^{n} I_{[0, \theta]}\left(x_{i}\right)=\frac{1}{\theta^{n}} I_{[0, \infty)}\left(\min x_{i}\right) I_{(-\infty, \theta]}\left(\max x_{i}\right)
\end{aligned}
$$

We see that the likelihood is zero for $\theta<\max x_{i}$ and that it is decreasing in $\theta$ for $\theta \geq \max x_{i}$

Thus the maximum value of the likelihood is obtained for $\theta=\max x_{i}$

It follows that the ML-estimator is

$$
\hat{\theta}=X_{(n)}=\max X_{i}
$$

We know that the $j$-th order statistic is has pdf
$f_{X_{(j)}}(x \mid \theta)=\frac{n!}{(j-1)!(n-j)!} f(x \mid \theta)[F(x \mid \theta)]^{j-1}[1-F(x \mid \theta)]^{n-j}$
Hence $X_{(n)}=\max X_{i}$ has pdf (for $0 \leq x \leq \theta$ )

$$
f_{X_{(n)}}(x \mid \theta)=n f(x \mid \theta)[F(x \mid \theta)]^{n-1}=n \frac{1}{\theta}\left(\frac{x}{\theta}\right)^{n-1}=\frac{n}{\theta^{n}} x^{n-1}
$$

This gives

$$
\begin{aligned}
E \hat{\theta}^{k} & =\int_{-\infty}^{\infty} x^{k} f_{X_{(n)}}(x \mid \theta) d x=\int_{0}^{\theta} x^{k} \frac{n}{\theta^{n}} x^{n-1} d x \\
& =\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+k-1} d x=\frac{n}{\theta^{n}}\left[\frac{x^{n+k}}{n+k}\right]_{0}^{\theta}=\frac{n}{n+k} \theta^{k}
\end{aligned}
$$

Hence we have

$$
\mathrm{E} \hat{\theta}=\frac{n}{n+1} \theta
$$

$$
\operatorname{Var} \hat{\theta}=\mathrm{E} \hat{\theta}^{2}-(\mathrm{E} \hat{\theta})^{2}=\frac{n}{n+2} \theta^{2}-\left(\frac{n}{n+1} \theta\right)^{2}=\frac{n \theta^{2}}{(n+2)(n+1)^{2}}
$$

Thus the mean squared error of the MLE is

$$
\begin{aligned}
\mathrm{E}(\hat{\boldsymbol{\theta}}-\theta)^{2} & =\operatorname{Var} \hat{\boldsymbol{\theta}}+(\operatorname{Bias} \hat{\boldsymbol{\theta}})^{2}=\frac{n \theta^{2}}{(n+2)(n+1)^{2}}+\left(\frac{n}{n+1} \theta-\theta\right)^{2} \\
& =\frac{n \theta^{2}}{(n+2)(n+1)^{2}}+\frac{\theta^{2}}{(n+1)^{2}}=\frac{2 \theta^{2}}{(n+2)(n+1)}
\end{aligned}
$$

We find that the ML-estimator has smaller MSE than the moment estimator when $n \geq 3$

## Exercise 7.11

$X_{1}, \ldots, X_{n}$ are iid with pdf

$$
f(x \mid \theta)=\theta x^{\theta-1} \quad \text { for } 0 \leq x \leq 1
$$

a) The likelihood is given by (when $0 \leq x_{i} \leq 1$ all $i$ )

$$
L(\theta \mid \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\prod_{i=1}^{n} \theta x_{i}^{\theta-1}=\theta^{n} \prod_{i=1}^{n} x_{i}^{\theta-1}
$$

The log-likelihood becomes

$$
\log L(\theta \mid \mathbf{x})=n \log \theta+(\theta-1) \sum_{i=1}^{n} \log x_{i}
$$

Hence we have

$$
\frac{\partial}{\partial \theta} \log L(\theta \mid \mathbf{x})=\frac{n}{\theta}+\sum_{i=1}^{n} \log x_{i}
$$

We solve $\partial \log L(\theta \mid \mathbf{x}) / \partial \theta=0$ and find that the MLE is given by

$$
\hat{\theta}=\frac{n}{\sum_{i=1}^{n}\left(-\log X_{i}\right)}
$$

In order to find the variance of $\hat{\theta}$, we first find the distribution of $Y_{i}=g\left(X_{i}\right)=-\log X_{i}$
The inverse transformation is $X_{i}=g^{-1}\left(Y_{i}\right)=e^{-Y_{i}}$
Hence $Y_{i}$ has density (for $y>0$ )

$$
f_{Y}(y \mid \theta)=f\left(e^{-y} \mid \theta\right) e^{-y}=\theta\left(e^{-y}\right)^{\theta-1} e^{-y}=\theta e^{-\theta y}
$$

Thus $Y_{i} \sim \operatorname{gamma}(1,1 / \theta)$

It then follows that

$$
T=\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n}\left(-\log X_{i}\right) \sim \operatorname{gamma}(n, 1 / \theta)
$$

Now the MLE is given by

$$
\hat{\theta}=\frac{n}{\sum_{i=1}^{n}\left(-\log X_{i}\right)}=\frac{n}{T}
$$

Now from exercise 3.17 (with $\alpha=n, \beta=1 / \theta$ ) we have that

$$
\mathrm{E} T^{k}=\left(\frac{1}{\theta}\right)^{k} \frac{\Gamma(n+k)}{\Gamma(n)} \quad \text { for } k>-n
$$

Thus we have
$\mathrm{E} \hat{\theta}=\mathrm{E}\left(\frac{n}{T}\right)=n\left(\frac{1}{\theta}\right)^{-1} \frac{\Gamma(n-1)}{\Gamma(n)}=n \theta \frac{\Gamma(n-1)}{(n-1) \Gamma(n-1)}=\frac{n}{n-1} \theta$
$\mathrm{E} \hat{\theta}^{2}=\mathrm{E}\left(\frac{n^{2}}{T^{2}}\right)=n^{2}\left(\frac{1}{\theta}\right)^{-2} \frac{\Gamma(n-2)}{\Gamma(n)}=\frac{n^{2} \theta^{2}}{(n-1)(n-2)}$
$\operatorname{Var} \hat{\theta}=\mathrm{E} \hat{\theta}^{2}-(\mathrm{E} \hat{\theta})=\frac{n^{2} \theta^{2}}{(n-1)(n-2)}-\left(\frac{n}{n-1} \theta\right)^{2}=\frac{n^{2} \theta^{2}}{(n-1)^{2}(n-2)}$

We see that the variance goes to zero as $n$ goes to infinity
b) We have that $X_{1}, \ldots, X_{n}$ are iid with pdf

$$
f(x \mid \theta)=\theta x^{\theta-1} \quad \text { for } 0 \leq x \leq 1
$$

We have that $\quad X_{i} \sim \operatorname{beta}(\theta, 1)$
Then $\mathrm{E} X_{i}=\theta /(\theta+1)$ and the moment estimator is given by

$$
\frac{\theta^{*}}{\theta^{*}+1}=\bar{X}
$$

which gives

$$
\theta^{*}=\frac{\bar{X}}{1-\bar{X}}
$$

## Exercise 7.13

$X_{1}, \ldots, X_{n}$ are iid with pdf $f(x \mid \theta)=\frac{1}{2} e^{-|x-\theta|}$
The likelihood is given by

$$
L(\theta \mid \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{2} e^{-\left|x_{i}-\theta\right|}=\frac{1}{2^{n}} e^{-\sum_{i=1}^{n}\left|x_{i}-\theta\right|}
$$

Thus the log-likelihood may be written

$$
\begin{aligned}
\log L(\theta \mid \mathbf{x}) & =-n \log 2-\sum_{i=1}^{n}\left|x_{i}-\theta\right| \\
& =-n \log 2-\sum_{i=1}^{n}\left|x_{(i)}-\theta\right|
\end{aligned}
$$

where $x_{(1)}<\ldots<x_{(n)}$ are the $x_{i}$ written in increasing order

Note that the log-likelihood is continuous for all $\theta$ and differentiable except when $\theta \in\left\{x_{(1)}, \ldots, x_{(n)}\right\}$
In order to find the derivative of the log-likelihood, we note that we for $x_{(j)}<\theta<x_{(j+1)}$ may write

$$
\begin{aligned}
\log L(\theta \mid \mathbf{x}) & =-n \log 2-\sum_{i=1}^{j}\left(\theta-x_{(i)}\right)-\sum_{i=j+1}^{n}\left(x_{(i)}-\theta\right) \\
& =-n \log 2-j \theta+\sum_{i=1}^{j} x_{(i)}-\sum_{i=j+1}^{n} x_{(i)}+(n-j) \theta \\
& =-n \log 2+(n-2 j) \theta+\sum_{i=1}^{j} x_{(i)}-\sum_{i=j+1}^{n} x_{(i)}
\end{aligned}
$$

Thus for $x_{(j)}<\theta<x_{(j+1)}$ we have

$$
\frac{\partial}{\partial \theta} \log L(\theta \mid \mathbf{x})=n-2 j
$$

It follows that the log-likelihood is continuous and piecewise linear, and that its slope is

- positive if $j<n / 2$
- equal to zero if $j=n / 2$
- negative if $j>n / 2$

If $n$ is odd, the log-likelihood is maximized for $\theta=x_{((n+1) / 2)}$
If $n$ is even, the log-likelihood is maximized for $\theta \in\left[x_{(1 / 2)}, x_{(m / 2+1)}\right]$

Thus the MLE is the sample median

$$
M= \begin{cases}X_{((n+1) / 2)} & \text { if } n \text { is odd } \\ \frac{1}{2}\left(X_{(n / 2)}+X_{(n / 2+1)}\right) & \text { if } n \text { is even }\end{cases}
$$

## Exercise 7.22

Given $\theta$ we have $X_{1}, X_{2}, \ldots ., X_{n}$ iid $n\left(\theta, \sigma^{2}\right)$
Further $\theta \sim n\left(\mu, \tau^{2}\right)$
a) Given $\theta$ we have $\bar{X} \sim n\left(\theta, \sigma^{2} / n\right)$, so

$$
f(\bar{x} \mid \theta)=\frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} e^{-n(\bar{x}-\theta)^{2} /\left(2 \sigma^{2}\right)}
$$

The prior distribution is

$$
\pi(\theta)=\frac{1}{\sqrt{2 \pi} \tau} e^{-(\theta-\mu)^{2} /\left(2 \tau^{2}\right)}
$$

Thus the joint distribution of $\bar{X}$ and $\theta$ is

$$
f(\bar{x}, \theta)=\frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} e^{-n(\bar{x}-\theta)^{2} /\left(2 \sigma^{2}\right)} \frac{1}{\sqrt{2 \pi} \tau} e^{-(\theta-\mu)^{2} /\left(2 \tau^{2}\right)}
$$

b) The marginal pdf of $\bar{X}$ is given by

$$
m(\bar{x})=\int f(\bar{x}, \theta) d \theta=\int_{-\infty}^{\infty} \frac{\sqrt{n}}{2 \pi \sigma \tau} e^{-\kappa / 2} d \theta
$$

Here we have

$$
\begin{aligned}
K & =\frac{n}{\sigma^{2}}(\bar{x}-\theta)^{2}+\frac{1}{\tau^{2}}(\theta-\mu)^{2} \\
& =\frac{n}{\sigma^{2}}\left(\bar{x}^{2}-2 \bar{x} \theta+\theta^{2}\right)+\frac{1}{\tau^{2}}\left(\theta^{2}-2 \mu \theta+\mu^{2}\right) \\
& =\left(\frac{n}{\sigma^{2}}+\frac{1}{\tau^{2}}\right) \theta^{2}-2\left(\frac{n}{\sigma^{2}} \bar{x}+\frac{1}{\tau^{2}} \mu\right) \theta+\frac{n}{\sigma^{2}} \bar{x}^{2}+\frac{1}{\tau^{2}} \mu^{2} \\
& =\frac{\tau^{2}+\sigma^{2} / n}{\tau^{2} \sigma^{2} / n}\left\{\theta^{2}-2\left(\frac{\bar{x} \tau^{2}+\mu \sigma^{2} / n}{\tau^{2}+\sigma^{2} / n}\right) \theta\right\}+\frac{n}{\sigma^{2}} \bar{x}^{2}+\frac{1}{\tau^{2}} \mu^{2}
\end{aligned}
$$

Thus the marginal distribution of $\bar{X}$ is given by

$$
\begin{aligned}
m(\bar{x}) & =\int_{-\infty}^{\infty} \frac{\sqrt{n}}{2 \pi \sigma \tau} \exp \left\{-\frac{1}{2 \omega^{2}}(\theta-\eta(\bar{x}))^{2}-\frac{1}{2\left(\tau^{2}+\sigma^{2} / n\right)}(\bar{x}-\mu)^{2}\right\} d \theta \\
& =\frac{\omega}{\sqrt{2 \pi}(\sigma \tau / \sqrt{n})} \exp \left\{-\frac{1}{2\left(\tau^{2}+\sigma^{2} / n\right)}(\bar{x}-\mu)^{2}\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \omega} \exp \left\{-\frac{1}{2 \omega^{2}}(\theta-\eta(\bar{x}))^{2}\right\} d \theta \\
& =\frac{1}{\sqrt{2 \pi} \sqrt{\tau^{2}+\sigma^{2} / n}} \exp \left\{-\frac{1}{2\left(\tau^{2}+\sigma^{2} / n\right)}(\bar{x}-\mu)^{2}\right\}
\end{aligned}
$$

This shows that

$$
\bar{X} \sim n\left(\mu, \tau^{2}+\sigma^{2} / n\right)
$$

c) Finally we find that the posterior distribution of $\theta$ given $\bar{X}=\bar{x}$ is given by

$$
\begin{aligned}
\pi(\theta \mid \bar{x}) & =\frac{\frac{\sqrt{n}}{2 \pi \sigma \tau} \exp \left\{-\frac{1}{2 \omega^{2}}(\theta-\eta(\bar{x}))^{2}-\frac{1}{2\left(\tau^{2}+\sigma^{2} / n\right)}(\bar{x}-\mu)^{2}\right\}}{\frac{1}{\sqrt{2 \pi} \sqrt{\tau^{2}+\sigma^{2} / n}} \exp \left\{-\frac{1}{2\left(\tau^{2}+\sigma^{2} / n\right)}(\bar{x}-\mu)^{2}\right\}} \\
& =\frac{\sqrt{\tau^{2}+\sigma^{2} / n}}{\sqrt{2 \pi}(\sigma \tau / \sqrt{n})} \exp \left\{-\frac{1}{2 \omega^{2}}(\theta-\eta(\bar{x}))^{2}\right\} \\
& =\frac{1}{\sqrt{2 \pi} \omega} \exp \left\{-\frac{1}{2 \omega^{2}}(\theta-\eta(\bar{x}))^{2}\right\}
\end{aligned}
$$

So

$$
\theta \mid \bar{X}=\bar{x} \sim n\left(\eta(\bar{x}), \omega^{2}\right)
$$

If we let $y=\sum_{i=1}^{n} x_{i}$ we may write

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}, \lambda\right)=\prod_{i=1}^{n}\left(\frac{1}{x_{i}!}\right) \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \lambda^{y+\alpha-1} e^{-n \lambda-\lambda / \beta} \\
=\prod_{i=1}^{n}\left(\frac{1}{x_{i}!}\right) \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \lambda^{y+\alpha-1} e^{-\frac{\lambda}{\beta /(n \beta+1)}}
\end{gathered}
$$

The marginal distribution of $X_{1}, X_{2}, \ldots ., X_{n}$ becomes

$$
\begin{aligned}
m\left(x_{1}, \ldots, x_{n}\right) & =\int f\left(x_{1}, \ldots, x_{n}, \lambda\right) d \lambda \\
= & \prod_{i=1}^{n}\left(\frac{1}{x_{i}!}\right) \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} \lambda^{y+\alpha-1} e^{-\frac{\lambda}{\beta /(n \beta+1)}} d \lambda \\
& =\prod_{i=1}^{n}\left(\frac{1}{x_{i}!}\right) \frac{1}{\beta^{\alpha} \Gamma(\alpha)}\left(\frac{\beta}{n \beta+1}\right)^{y+\alpha} \Gamma(y+\alpha)
\end{aligned}
$$

Thus the posterior distribution of $\lambda$ is given by

$$
\begin{aligned}
f\left(\lambda \mid x_{1}, \ldots, x_{n}\right) & =\frac{f\left(x_{1}, \ldots, x_{n}, \lambda\right)}{m\left(x_{1}, \ldots, x_{n}\right)} \\
& =\frac{\prod_{i=1}^{n}\left(\frac{1}{x_{i}!}\right) \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \lambda^{y+\alpha-1} e^{-\frac{\lambda}{\beta /(n \beta+1)}}}{\prod_{i=1}^{n}\left(\frac{1}{x_{i}!}\right) \frac{1}{\beta^{\alpha} \Gamma(\alpha)}\left(\frac{\beta}{n \beta+1}\right)^{y+\alpha} \Gamma(y+\alpha)} \\
& =\frac{1}{\left(\frac{\beta}{n \beta+1}\right)^{y+\alpha} \Gamma(y+\alpha)} \lambda^{y+\alpha-1} e^{-\frac{\lambda}{\beta /(n \beta+1)}}
\end{aligned}
$$

Thus

$$
\lambda \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n} \sim \operatorname{gamma}(y+\alpha, \beta /(n \beta+1))
$$

b) The posterior mean is:

$$
\begin{aligned}
\mathrm{E}\left(\lambda \mid \sum_{i=1}^{n} X_{i}=y\right) & =(y+\alpha) \frac{\beta}{n \beta+1} \\
& =\frac{n \beta}{n \beta+1} \frac{y}{n}+\frac{1}{n \beta+1}(\alpha \beta)
\end{aligned}
$$

The posterior variance is:

$$
\operatorname{Var}\left(\lambda \mid \sum_{i=1}^{n} X_{i}=y\right)=(y+\alpha)\left(\frac{\beta}{n \beta+1}\right)^{2}
$$

