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Solutions to exercises - Week 41

Maximum likelihood estimators:

• Exercise 7.19

Cramér-Rao inequality:

• Exercise 7.38

Best linear unbiased estimators:

• Exercises 7.41 and 7.42
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The likelihood is given by  
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The log-likelihood becomes
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If we set the derivative equal to zero, we find that 
for any value of      the value of β that maximizes 
the log-likelihood is given by 
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Thus the MLE of β is given by 
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β̂ is a linear combination of normally 
distributed random variables, so it is itself 
normally distributed
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Exercise 7.38.a
are iid with pdf1,..., nX X 1( | ) (0 1)f x x xθθ θ −= < <

The joint pdf of                         is  (when               ) 1( ,..., )nX X=X 0 1ix< <

1 1

1 1 1

( | ) ( | )
n n n

n
i i i

i i i

f f x x xθ θθ θ θ θ− −

= = =

= = =∏ ∏ ∏x

Hence we have

1

log ( | ) log ( 1) log
n

i
i

f n Xθ θ θ
=

= + − ∑X

1

log ( | ) log
n

i
i

n
f Xθ

θ θ =

∂
= +

∂
∑X

It follows that

1

1 1
log

n

i
i

n X
n θ=

 =− − −    
∑

Thus                               is the UMVUE for        

and it attains the Cramér-Rao lower bound  
1

(1/ ) log
n

ii
n X

=
− ∑ 1/θ

6

Exercise 7.38.b
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Exercise 7.41
is a random sample from a population 
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Thus the estimator with minimum variance is
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