Solutions to exercises - Week 42

Complete sufficient statistics and best unbiased estimators:

- Exercises 7.47, 7.52, 7.59 and 7.60
- Additional exercise

1

We have $\bar{X} \sim n(r, \sigma^2/n)$

Note that

$$A = \pi r^2 = \pi (E\overline{X})^2 = \pi (E\overline{X}^2 - Var\overline{X})$$

Thus an unbiased estimator of A is

$$\hat{A} = \pi \left(\bar{X}^2 - S^2 / n \right)$$

The estimator is based on a complete sufficient statistic, and hence it is the best unbiased estimator

Exercise 7.47

A circle has radius r and area $A=\pi r^2$ We make measurements $X_1,...,X_n$ of the radius We assume that $X_i=r+\varepsilon_i$, where the ε_i 's are iid and $n(0,\sigma^2)$ -distributed

Thus the X_i 's are iid and $n(r, \sigma^2)$ -distributed

The $n(r, \sigma^2)$ -distribution may be written as an exponential family:

$$f(x \mid r, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{r^2}{2\sigma^2}\right) \exp\left(\frac{r}{\sigma^2} x - \frac{1}{2\sigma^2} x^2\right)$$

Hence

$$\left(\sum_{i=1}^n X_i, \sum_{j=1}^n X_i^2\right)$$

is a complete sufficient statistics

2

Exercise 7.52

Let $X_1, X_2, ..., X_n$ be iid Poisson(λ)

The Poisson pmf is given by

$$f(x|\lambda) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & \text{for } x = 0,1,2,.... \\ 0 & \text{otherwise} \end{cases}$$

This may be written as an exponential family:

$$f(x|\lambda) = \underbrace{I_{\{0,1,2,\dots\}}(x) \frac{1}{x!} e^{-\lambda} \exp\{\log(\lambda) x\}}_{h(x) \quad c(\lambda) \quad w_1(\lambda) \quad t_1(x)$$

Hence $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic

- a) $\overline{X} = (1/n) \sum_{i=1}^{n} X_{i}$ is an unbiased estimator for λ that is based on a complete and sufficient statistic Hence \overline{X} is the best unbiased estimator for λ
- **b)** $S^2 = \sum_{i=1}^n (X_i \overline{X})^2 / (n-1)$ is an unbiased estimator for the population variance, which for the Poisson distribution equals λ

Now \overline{X} is a complete sufficient statistic (any one-to-one function of a complete sufficient statistic is itself a complete sufficient statistic)

We have that $\operatorname{E}(S^2 \mid \overline{X})$ is an unbiased estimator for λ that is a function of \overline{X}

5

By the uniqueness this gives $E(S^2 | \bar{X}) = \bar{X}$

Now we have

$$VarS^{2} = Var\left[E(S^{2} | \overline{X})\right] + E\left[Var(S^{2} | \overline{X})\right]$$
$$= Var\overline{X} + E\left[Var(S^{2} | \overline{X})\right] > Var\overline{X}$$

c) A general theorem is as follows:

Let $T = T(\mathbf{X})$ be a complete sufficient statistic, and let $T' = T'(\mathbf{X})$ be another statistic such that ET' = ET. Then E(T'|T) = T and VarT' > VarT

3

Exercise 7.59

Let $X_1, X_2,, X_n$ be iid $n(\mu, \sigma^2)$ random variables, where both parameters are unknown

$$\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{i}^{2}\right)$$
 is a complete sufficient statistic

Then (\overline{X}, S^2) is also a complete sufficient statistic

Now
$$T = (n-1)S^2 / \sigma^2 \sim \chi_{n-1}^2$$

From exercise 3.17 (with $\alpha = (n-1)/2$, $\beta = 2$) we have that

$$ET^{p/2} = 2^{p/2} \frac{\Gamma((n-1)/2 + p/2)}{\Gamma((n-1)/2)} = 2^{p/2} \frac{\Gamma((n+p-1)/2)}{\Gamma((n-1)/2)}$$

Thus we have

$$E\left(\frac{(n-1)S^{2}}{\sigma^{2}}\right)^{p/2} = 2^{p/2} \frac{\Gamma((n+p-1)/2)}{\Gamma((n-1)/2)}$$

It follows that

$$ES^{p} = E\left(\frac{\sigma^{2}}{n-1} \frac{(n-1)S^{2}}{\sigma^{2}}\right)^{p/2} = \frac{\sigma^{p}}{(n-1)^{p/2}} 2^{p/2} \frac{\Gamma((n+p-1)/2)}{\Gamma((n-1)/2)}$$

Thus

$$\frac{(n-1)^{p/2}}{2^{p/2}} \frac{\Gamma((n-1)/2)}{\Gamma((n+p-1)/2)} S^{p}$$

is an unbiased estimator of σ^p

The estimator is based on a complete sufficient statistic, and hence it is UMVUE

8

Exercise 7.60

 $X_1, X_2,, X_n$ iid gamma (α, β) distributed, α known

The gamma pdf is given by

$$f(x \mid \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

This may be written as an exponential family:

$$f(x \mid \beta) = I_{\{x>0\}}(x) \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \underbrace{\frac{1}{\beta^{\alpha}}}_{c(\beta)} \exp\left\{-\frac{1}{\beta} x\right\}$$

Thus $\sum_{j=1}^{n} X_{i}$ is a complete sufficient statistics

Now
$$\sum_{i=1}^{n} X_i \sim \operatorname{gamma}(n\alpha, \beta)$$

By the result in exercise 3.17 we obtain

$$E\left[\left(\sum_{j=1}^{n} X_{i}\right)^{-1}\right] = \beta^{-1} \frac{\Gamma(n\alpha - 1)}{\Gamma(n\alpha)} = \beta^{-1} \frac{\Gamma(n\alpha - 1)}{(n\alpha - 1)\Gamma(n\alpha - 1)} = \frac{1}{\beta(n\alpha - 1)}$$

Thus $(n\alpha-1)/\sum_{i=1}^{n} X_i$ is an unbiased estimator for $1/\beta$

The estimator is based on a complete sufficient statistic, and hence it is UMVUE

10

Additional exercise

Assume that $X_1, X_2,, X_n$ are iid and Poisson distributed with mean λ

a) Find a sufficient and complete statistic for λ

Solution:

By exercise 7.52 we have that $T = \sum_{j=1}^{n} X_{i}$ is a complete sufficient statistics

b) Find an unbiased estimator for $\tau(\lambda) = e^{-\lambda}$ based on X_1

11

Solution:

Let
$$W = I\{X_1 = 0\}$$

Then $EW = P(X_1 = 0) = e^{-\lambda} = \tau(\lambda)$

c) Find the best unbiased estimator for $\tau(\lambda) = e^{-\lambda}$

Solution:

The best unbiased estimator is given as

$$\phi(T) = E(W \mid T) = P(X_1 = 0 \mid \sum_{i=1}^{n} X_i)$$

Now we have that

$$P\left(X_1 = 0 \mid \sum_{i=1}^n X_i = t\right)$$

$$= \frac{P\left(X_1 = 0, \sum_{i=1}^n X_i = t\right)}{P\left(\sum_{i=1}^n X_i = t\right)}$$

$$= \frac{P\bigg(X_1 = 0, \sum_{i=2}^n X_i = t\bigg)}{P\bigg(\sum_{i=1}^n X_i = t\bigg)} = \frac{P(X_1 = 0) \cdot P\bigg(\sum_{i=2}^n X_i = t\bigg)}{P\bigg(\sum_{i=1}^n X_i = t\bigg)}$$

$$=\frac{e^{-\lambda} \cdot \frac{[(n-1)\lambda]^t}{t!} e^{-(n-1)\lambda}}{\frac{(n\lambda)^t}{t!} e^{-n\lambda}} = \left(1 - \frac{1}{n}\right)^t$$

Thus the best unbiased estimator is given as

$$\hat{\tau} = \left(1 - \frac{1}{n}\right)^{\sum_{i=1}^{n} X_i} = \left[\left(1 - \frac{1}{n}\right)^n\right]^{\overline{X}}$$

13