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Solutions to exercises - Week 42

Complete sufficient statistics and best 
unbiased estimators:

• Exercises 7.47, 7.52, 7.59 and 7.60

• Additional exercise

We assume that                  , where the       
are iid and 

Exercise 7.47
A circle has radius r and area 

i iX r ε= +

2

2(0, )-distributedn σ

Thus the          are iid and   2( , )-distributedn r σ

We make measurements                of the radius 1,..., nX X

'siε

'siX

The             -distribution may be written as an 
exponential family:  

2( , )n r σ
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    = − −      

Hence                                  

is a complete sufficient statistics 
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i j

X X
= =

     
∑ ∑

2A rπ=
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We have

2 2(E )A r Xπ π= =

Thus an unbiased estimator of A is

( )2 2ˆ /A X S nπ= −

2( , / )X n r nσ∼

Note that

( )2E VarX Xπ= −

The estimator is based on a complete sufficient 
statistic, and hence it is the best unbiased 
estimator
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Let                          be iid Poisson(λ) 1 2, , ...., nX X X

Exercise 7.52

The Poisson pmf is given by

{ }{0,1,2,....}
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λλ λ−=

for  0,1,2,....
!( | )

0 otherwise
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

This may be written as an exponential family:

( )h x
1( )w λ( )c λ

1( )t x

Hence                   is a complete sufficient statistic 
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a) is an unbiased estimator for λ 

that is based on a complete and sufficient statistic  
1

(1/ )
n

ii
X n X

=
= ∑

Hence        is the best unbiased estimator for λX

b) is an unbiased 
estimator for the population variance, which for   
the Poisson distribution equals λ 
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1
( ) / ( 1)

n

ii
S X X n

=
= − −∑

Now        is a complete sufficient statistic                      
(any one-to-one function of a complete sufficient 
statistic is itself a complete sufficient statistic)

X

We have that                  is an unbiased estimator 
for λ that is a function of 

2E( | )S X
X

By the uniqueness this gives 2E( | )S X X= 6

Now we have

2 2 2Var =Var E( | ) E Var( | )S S X S X   +      

2=Var E Var( | )X S X +    >VarX

c) A general theorem is as follows:

Let                 be a complete sufficient statistic,      
and let                   be another statistic such that             

.  Then                      and    

( )T T= X

( )T T′ ′= X

E ET T′ = E( | )T T T′ = Var VarT T′ >

Let                        be iid random 
variables, where both parameters are unknown

2( , )n µ σ1 2, ,...., nX X X

Exercise 7.59

is a complete sufficient statistic 2
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∑ ∑

Then           is also a complete sufficient statistic 2( , )X S

Now           2 2 2
1( 1) / nT n S σ χ −= − ∼

From exercise 3.17 (with                                  )                 
we have that

( 1) / 2 , 2nα β= − =
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Thus we have
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 − Γ + −  =   Γ − 

It follows that
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is an unbiased estimator of  pσ

The estimator is based on a complete sufficient 
statistic, and hence it is UMVUE 



iid distributed, α knowngamma( , )α β1 2, ,...., nX X X

Exercise 7.60

The gamma pdf is given by

1 /1
if  0

( )( | )

0 otherwise

xx e x
f x

α β

αβ αβ

− − > Γ=


This may be written as an exponential family:
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Thus             is a complete sufficient statistics 
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By the result in exercise 3.17 we obtain 
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Thus                         is an unbiased estimator for 1/β1
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The estimator is based on a complete sufficient 
statistic, and hence it is UMVUE 

Assume that                       are iid and Poisson 
distributed with mean λ

1 2, ,...., nX X X

Additional exercise

a) Find a sufficient and complete statistic for λ

By exercise 7.52 we have that                 is a 
complete sufficient statistics 1

n

i
j

T X
=

=∑

Solution:

b) Find an unbiased estimator for                based on   ( ) e λτ λ −= 1X

Solution:
Let                            { }1 0W I X= =

Then                                                1E ( 0) ( )W P X e λ τ λ−= = = = 11

c) Find the best unbiased estimator for    ( ) e λτ λ −=

Solution:
The best unbiased estimator is given as                            

( ) E( | )T W Tφ =
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 = −   

Thus the best unbiased estimator is given as                            
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   = −     


