Solutions to exercises - Week 43

Convergence to infinity in probability:
* Exercise 5.33

Central limit theorem:
 Exercise 5.35

Relation between convergence in probability and
convergence in distribution:

» Exercise 5.41
Convergence in distribution:

« Exercise 5.42

Delta method:
« Exercise 5.44

Exercise 5.33

Let X, X,,... be asequence of random
variables that converges in distribution to X,
and let V,Y,,... be asequence of random
variables that converges in probability to infinity,
i.e. for any ¢ > 0 we have that limP(Y, >c)=1

n—oo

We want to prove that X, +Y, X, +Y,,....
converges in probability to infinity

To this end we have to prove that for any C>0
and >0 there exists an N such that for all n> N
we have

P(X,+Y,>C)>1—-¢

There exist a k> 0, which is a point of continuity
of F.(X), such that

P(X <—K)=F, (-k)<¢/3

Now P(X,<—-k)— P(X <—k)
so there exists an N, such that
IP(X, <—k)—P(X <—K)|<e/3

for n>N,;

Hence for n> N, we have
P(X, <—K) < P(X < —K) +|P(X, < —k)— P(X <—K)|
2e
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Further, since YV,,Y,,... converges to infinity in
probability, there exists an N, such that

P(Y,>C+k)>1-¢/3 for n>N,
Then we have for n>N=max(N,,N,)
P(X,+Y,>C)>P((X,>-k)n(Y,>C+k))
=1-P((X,>—k)°U(Y, > C+k)°)
>1-P((X, > —k)°)=P((Y, > C+Kk)°)
—1—P(X, <—k)—[1— P(Y, > C+K)]
=P(Y,>C+k)—P(X, <—k)
>1-S-2= 1 ¢
3

which proves the result




Exercise 5.35
Let X, X,,... beiid and exponential(1)

a) We have EX,=1and VarX =1
By the central limit theorem (CLT) we then have

Jn(X, —1)—n(0,3) indistribution

Thus we have

b) Now we have that

d
—P(z<
dx (Z=x)

1
— ex/2

NP

Further W=>"X; ~gamma(n,1)

i=1

Hence we obtain

EP[M‘S X]:ip
dx

X, < % ] [Zx <x\/_+n]

dx (1/+/n
X 1 d
Pz 1 vy =—Fy(x/n+n) =, (x/n+n)/n
[lle <X (Z<x) = jo;\/ge y ( ) W( )
:_X\/_+nnl(xf+n\/ﬁ
o )( ) 6
From the approximation Exercise 5.41
£p[>z -1 ] ip(z<x) Assume that
o |1/3n P(|X, —pu|>c)—0 forevery e>0
we obtain . Then we have for x> u
n—1 —(xs/n+n) —x%/2
m(x\/_‘i‘n) e 'nx ~ on P(X,<X)=1-P(X,>X) =1-P(X, —pu>X—pu)
Substituting x = 0 we get >1-P(|X, — | >x—p) —1
Jn 1 Similarly for x<pu
nn 1e n.
(n—1! \/Z

From this we obtain Stirling's formula:
n'=(n-Y'n

N( ,27T ) n-n™le 1.-n \/gnn+(lj2) g

P(X, <X)=P(p—X, > u—x)
<P(X,—4>p—x) =0
Thus we have proved that
0 if x<
P(X,<X) - _I X<H o
1 if x>u




Then we assume that
0 if x<
P(X. <x) 1. | *SH
1 if x>u
Let ¢>0. Then
P(lxn_:u|>€):P(Xn_:u<_€)+P(Xn_:u>5)
<P(X, < p—e)+P(X,> p+e)
<P(X, <p—e)+[1-P(X,< p+e)]
—0+(1-1)=0

which proves the result

Exercise 5.42.a
Let X, X,,... beiid beta(l,3)

We have (for 0 <x<1)

fy (X) = BA—x)""
and

Fe(¥) = fﬂ(l— u)”"du
=[a-w,

=1-(1-x)’

Consider X, =max,_, X
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Then we have
P(n"(1— X ) < X)=1-P(n"(1- X)) > X)
X X .
=1- P[X(n) <1_?] :1—P[Xi <1-—fori :L...,n]
n

~1-J] P[xi <1—n—>f,] =1-[F (1-x/)

i=1

¢

:1—[1—(X/n”) r =1—[1—<x“’/n"’”)]n
For v =1/ we then obtain
P(nw 1- X(n)) < x) =1- {1—()(93 / n)]" ~1-e¥

It follows that n”’(1—X,,)—T in distribution, where
T ~ Weibull(3,)) ; cf. page 102 and exercise 3.26
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Exercise 5.42.b
Let X, X,,... beiid exponential(l)

We have f,(x)=e™ (for x>0) and
F(X) = f el'du =1-e*

Then we have
P(Xgy—8, <X)=P(X, <x+a,)
=P(X, <x+a, fori=1..n)=(1-e®»)
For a,=logn we then obtain
P(Xy —logn < x)=(1—e*/n) —1-ep(e)

It follows that X, —logn—Y in distribution,
where Y has the extreme value distribution
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Exercise 5.44

Let X, X,,... beiid Bernoulli random
variables with success probability p

a) We have
EXi=p and VaX =pl—p)
By the central limit theorem (CLT) we then have

\/E<Yn — p)
VP p)

and hence (formally by Slutsky's theorem)

—n(0,1) indistribution

JIn(Y,— p)—n(0, p@- p)) indistribution
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b) We now consider
Vn(Y,(@-Y,)— p—p))=~n(g(Y,) - 9(p))
where g(x) = x(1—X)=x—x°
Note that
g’'(x) =1—2x
Now by the delta method (when p=1/2)

Jn(g(v) - g(m)— n(0, [g'(P]" P~ p)

Hence we have
Jn(Y,@d-Y,)— p— p) - n(0, (1-2p)* p(L- p))
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C) Note that
g'(1/2) =1-2(1/2) =0

and that
g'(x)=-2

Then by the second order delta method we have

n(g(Y,)— g/ 2))%% 1_%] g (;/2) N

Hence we have

n

1 1,
Y1-Y)——|——=
o ( ") 4] 4 X1

15




