Solutions to exercises - Week 43

Convergence to infinity in probability:

- Exercise 5.33

Central limit theorem:

- Exercise 5.35

Relation between convergence in probability and convergence in distribution:

- Exercise 5.41

Convergence in distribution:

- Exercise 5.42

Delta method:

- Exercise 5.44

Exercise 5.33

Let X_{1}, X_{2}, \ldots. be a sequence of random variables that converges in distribution to X, and let Y_{1}, Y_{2}, \ldots be a sequence of random variables that converges in probability to infinity, i.e. for any $c>0$ we have that $\lim _{n \rightarrow \infty} P\left(Y_{n}>c\right)=1$

We want to prove that $X_{1}+Y_{1}, X_{2}+Y_{2}, \ldots$. converges in probability to infinity

To this end we have to prove that for any $C>0$ and $\varepsilon>0$ there exists an N such that for all $n \geq N$ we have

$$
P\left(X_{n}+Y_{n}>C\right)>1-\varepsilon
$$

There exist a $k>0$, which is a point of continuity of $F_{X}(x)$, such that

$$
P(X \leq-k)=F_{X}(-k) \leq \varepsilon / 3
$$

Now $P\left(X_{n} \leq-k\right) \rightarrow P(X \leq-k)$
so there exists an N_{1} such that

$$
\left|P\left(X_{n} \leq-k\right)-P(X \leq-k)\right|<\varepsilon / 3
$$

for $n \geq N_{1}$
Hence for $n \geq N_{1}$ we have

$$
\begin{aligned}
P\left(X_{n} \leq-k\right) \leq & P(X \leq-k)+\left|P\left(X_{n} \leq-k\right)-P(X \leq-k)\right| \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\frac{2 \varepsilon}{3}
\end{aligned}
$$

Further, since Y_{1}, Y_{2}, \ldots. converges to infinity in probability, there exists an N_{2} such that $P\left(Y_{n}>C+k\right)>1-\varepsilon / 3$ for $n \geq N_{2}$
Then we have for $n \geq N=\max \left(N_{1}, N_{2}\right)$

$$
\begin{aligned}
& P\left(X_{n}+Y_{n}>C\right) \geq P\left(\left(X_{n}>-k\right) \cap\left(Y_{n}>C+k\right)\right) \\
& \quad=1-P\left(\left(X_{n}>-k\right)^{c} \cup\left(Y_{n}>C+k\right)^{c}\right) \\
& \quad \geq 1-P\left(\left(X_{n}>-k\right)^{c}\right)-P\left(\left(Y_{n}>C+k\right)^{c}\right) \\
& \quad=1-P\left(X_{n} \leq-k\right)-\left[1-P\left(Y_{n}>C+k\right)\right] \\
& \quad=P\left(Y_{n}>C+k\right)-P\left(X_{n} \leq-k\right) \\
& \quad>1-\frac{\varepsilon}{3}-\frac{2 \varepsilon}{3}=1-\varepsilon
\end{aligned}
$$

which proves the result

Exercise 5.35

Let $\quad X_{1}, X_{2}, \ldots$ be iid and exponential(1)
a) We have $\mathrm{E} X_{i}=1$ and $\operatorname{Var} X_{i}=1$

By the central limit theorem (CLT) we then have

$$
\sqrt{n}\left(\bar{X}_{n}-1\right) \rightarrow n(0,1) \text { in distribution }
$$

Thus we have

$$
P\left(\frac{\bar{X}_{n}-1}{1 / \sqrt{n}} \leq x\right) \rightarrow P(Z \leq x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

b) Now we have that

$$
\frac{d}{d x} P(Z \leq x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Further $W=\sum_{i=1}^{n} X_{i} \sim \operatorname{gamma}(n, 1)$

Hence we obtain

$$
\begin{aligned}
\frac{d}{d x} P\left(\frac{\bar{X}_{n}-1}{1 / \sqrt{n}} \leq x\right) & =\frac{d}{d x} P\left(\bar{X}_{n} \leq \frac{x}{\sqrt{n}}+1\right)=\frac{d}{d x} P\left(\sum_{i=1}^{n} X_{i} \leq x \sqrt{n}+n\right) \\
& =\frac{d}{d x} F_{W}(x \sqrt{n}+n)=f_{W}(x \sqrt{n}+n) \sqrt{n} \\
& =\frac{1}{\Gamma(n)}(x \sqrt{n}+n)^{n-1} e^{-(x \sqrt{n}+n)} \sqrt{n}
\end{aligned}
$$

From the approximation

$$
\frac{d}{d x} P\left(\frac{\bar{X}_{n}-1}{1 / \sqrt{n}} \leq x\right) \approx \frac{d}{d x} P(Z \leq x)
$$

we obtain

$$
\frac{1}{\Gamma(n)}(x \sqrt{n}+n)^{n-1} e^{-(x \sqrt{n}+n)} \sqrt{n} \approx \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Substituting $x=0$ we get

$$
\frac{\sqrt{n}}{(n-1)!} n^{n-1} e^{-n} \approx \frac{1}{\sqrt{2 \pi}}
$$

From this we obtain Stirling's formula:

$$
\begin{aligned}
n! & =(n-1)!n \\
& \approx(\sqrt{2 \pi n}) \cdot n \cdot n^{n-1} e^{-n}=\sqrt{2 \pi} n^{n+(1 / 2)} e^{-n}
\end{aligned}
$$

Exercise 5.41

Assume that

$$
P\left(\left|X_{n}-\mu\right|>\varepsilon\right) \rightarrow 0 \quad \text { for every } \varepsilon>0
$$

Then we have for $x>\mu$

$$
\begin{aligned}
P\left(X_{n} \leq x\right) & =1-P\left(X_{n}>x\right)=1-P\left(X_{n}-\mu>x-\mu\right) \\
& \geq 1-P\left(\left|X_{n}-\mu\right|>x-\mu\right) \rightarrow 1
\end{aligned}
$$

Similarly for $x<\mu$

$$
\begin{aligned}
P\left(X_{n} \leq x\right) & =P\left(\mu-X_{n} \geq \mu-x\right) \\
& \leq P\left(\left|X_{n}-\mu\right| \geq \mu-x\right) \rightarrow 0
\end{aligned}
$$

Thus we have proved that

$$
P\left(X_{n} \leq x\right) \rightarrow \begin{cases}0 & \text { if } x<\mu \tag{8}\\ 1 & \text { if } x>\mu\end{cases}
$$

Then we assume that

$$
P\left(X_{n} \leq x\right) \rightarrow \begin{cases}0 & \text { if } x<\mu \\ 1 & \text { if } x>\mu\end{cases}
$$

Let $\varepsilon>0$. Then

$$
\begin{aligned}
P\left(\mid X_{n}\right. & -\mu \mid>\varepsilon)=P\left(X_{n}-\mu<-\varepsilon\right)+P\left(X_{n}-\mu>\varepsilon\right) \\
& \leq P\left(X_{n} \leq \mu-\varepsilon\right)+P\left(X_{n}>\mu+\varepsilon\right) \\
& \leq P\left(X_{n} \leq \mu-\varepsilon\right)+\left[1-P\left(X_{n} \leq \mu+\varepsilon\right)\right] \\
& \rightarrow 0+(1-1)=0
\end{aligned}
$$

which proves the result

Exercise 5.42.a

Let X_{1}, X_{2}, \ldots. be iid beta $(1, \beta)$
We have (for $0<x<1$)

$$
f_{X}(x)=\beta(1-x)^{\beta-1}
$$

and

$$
\begin{aligned}
F_{X}(x) & =\int_{0}^{x} \beta(1-u)^{\beta-1} d u \\
& =\left[-(1-u)^{\beta}\right]_{0}^{x} \\
& =1-(1-x)^{\beta}
\end{aligned}
$$

Consider $X_{(n)}=\max _{1 \leq i \leq n} X_{i}$

Then we have

$$
\begin{aligned}
& P\left(n^{\nu}\left(1-X_{(n)}\right) \leq x\right)=1-P\left(n^{\nu}\left(1-X_{(n)}\right)>x\right) \\
& \quad=1-P\left(X_{(n)}<1-\frac{x}{n^{\nu}}\right)=1-P\left(X_{i}<1-\frac{x}{n^{\nu}} \text { for } i=1, \ldots, n\right) \\
& \quad=1-\prod_{i=1}^{n} P\left(X_{i}<1-\frac{x}{n^{\nu}}\right)=1-\left[F_{X}\left(1-x / n^{\nu}\right)\right]^{n} \\
& \quad=1-\left[1-\left(x / n^{\nu}\right)^{\beta}\right]^{n}=1-\left[1-\left(x^{\beta} / n^{\beta \nu}\right)\right]^{n}
\end{aligned}
$$

For $\nu=1 / \beta$ we then obtain

$$
P\left(n^{1 / \beta}\left(1-X_{(n)}\right) \leq x\right)=1-\left[1-\left(x^{\beta} / n\right)\right]^{n} \rightarrow 1-e^{-x^{\beta}}
$$

It follows that $n^{1 / \beta}\left(1-X_{(n)}\right) \rightarrow T$ in distribution, where $T \sim \operatorname{Weibull}(\beta, 1) ;$ cf. page 102 and exercise 3.26

Exercise 5.42.b

Let X_{1}, X_{2}, \ldots be iid exponential(1)
We have $f_{X}(x)=e^{-x}$ (for $x>0$) and

$$
F_{X}(x)=\int_{0}^{x} e^{-u} d u=1-e^{-x}
$$

Then we have

$$
\begin{aligned}
P\left(X_{(n)}\right. & \left.-a_{n} \leq x\right)=P\left(X_{(n)} \leq x+a_{n}\right) \\
& =P\left(X_{i} \leq x+a_{n} \text { for } i=1, \ldots, n\right)=\left(1-e^{-\left(x+a_{n}\right)}\right)^{n}
\end{aligned}
$$

For $a_{n}=\log n$ we then obtain

$$
P\left(X_{(n)}-\log n \leq x\right)=\left(1-e^{-x} / n\right)^{n} \rightarrow 1-\exp \left(e^{-x}\right)
$$

It follows that $X_{(n)}-\log n \rightarrow Y$ in distribution,
where Y has the extreme value distribution

Exercise 5.44

Let X_{1}, X_{2}, \ldots be iid Bernoulli random variables with success probability p
a) We have

$$
\mathrm{E} X_{i}=p \quad \text { and } \quad \operatorname{Var} X_{i}=p(1-p)
$$

By the central limit theorem (CLT) we then have

$$
\frac{\sqrt{n}\left(Y_{n}-p\right)}{\sqrt{p(1-p)}} \rightarrow n(0,1) \text { in distribution }
$$

and hence (formally by Slutsky's theorem)

$$
\sqrt{n}\left(Y_{n}-p\right) \rightarrow n(0, p(1-p)) \text { in distribution }
$$

b) We now consider

$$
\sqrt{n}\left(Y_{n}\left(1-Y_{n}\right)-p(1-p)\right)=\sqrt{n}\left(g\left(Y_{n}\right)-g(p)\right)
$$

where $g(x)=x(1-x)=x-x^{2}$
Note that

$$
g^{\prime}(x)=1-2 x
$$

Now by the delta method (when $p \neq 1 / 2$)

$$
\sqrt{n}\left(g\left(Y_{n}\right)-g(p)\right) \rightarrow n\left(0,\left[g^{\prime}(p)\right]^{2} p(1-p)\right)
$$

Hence we have

$$
\sqrt{n}\left(Y_{n}\left(1-Y_{n}\right)-p(1-p)\right) \rightarrow n\left(0,(1-2 p)^{2} p(1-p)\right)
$$

c) Note that

$$
g^{\prime}(1 / 2)=1-2(1 / 2)=0
$$

and that

$$
g^{\prime \prime}(x)=-2
$$

Then by the second order delta method we have

$$
n\left(g\left(Y_{n}\right)-g(1 / 2)\right) \rightarrow \frac{1}{2}\left(1-\frac{1}{2}\right) \frac{g^{\prime \prime}(1 / 2)}{2} \chi_{1}^{2}
$$

Hence we have

$$
n\left(Y_{n}\left(1-Y_{n}\right)-\frac{1}{4}\right) \rightarrow-\frac{1}{4} \chi_{1}^{2}
$$

