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Point estimation

Covers (most of) the following material from 
chapters 6 and 7:

• Section 6.2.4: pages 285-286 and 288 
• Section 7.3.2: pages 334-342
• Section 7.3.3: pages 342-348

Best unbiased estimators

Definition 7.3.7 
An estimator        is a best unbiased estimator 
of        if it satisfies                      for all       and, 
for any other estimator W with                  , we 
have                             for all    

*W
( )τ θ θ

*E ( )Wθ τ θ=
E ( )Wθ τ θ=

*Var VarW Wθ θ≤ θ
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We also say that        is a uniform minimum 
variance unbiased estimator (UMVUE) for    

*W
( )τ θ
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Consider a sample                                     with 
joint pdf (or pmf)                       

1 2( , , ...., )nX X XX =
( | )f x θ

E ( ) ( ) ( | )W W f dθ θ= ∫X x x x
X

We assume that expressions of the form

may be differentiated with respect to       by 
changing the order of differentiation and 
integration (summation in the case of pmf) 

θ

Information

Then we have

E log ( | ) 0fθ θ
θ

 ∂  =  ∂
X
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The information number or Fisher information of 
the sample is 

2

( ) E log ( | )I fθθ θ
θ

  ∂ =   ∂  
X

For the special case where                          are iid
with pdf (or pmf)               the information in the 
sample is given by                       , where             is 
the information in one observation 

1( ) ( )I nIθ θ=

1 2, , ...., nX X X
( | )f x θ

1( )I θ

2

1( ) E log ( | )I f Xθθ θ
θ

  ∂ =   ∂  

Var log ( | )fθ θ
θ

 ∂ =   ∂
X

Var log ( | )f Xθ θ
θ

 ∂ =   ∂

and is given by 



If expressions of the form                                 
may be differentiated twice with respect to     by 
changing the order of differentiation and 
integration (summation for pmf), the information 
in the sample may also be given as                            

( ) ( | )W f dx x xθ∫

2

2
( ) E log ( | )I fθθ θ

θ

 ∂  =−   ∂ 
X

θ

while in the case of iid observations, the 
information in one observation may be given as

2

1 2
( ) E log ( | )I f Xθθ θ

θ

 ∂  =−   ∂ 
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The Cramér-Rao inequality (Theorem 7.3.9)
Consider a sample                               with joint pdf 
(or pmf)               and assume that expressions of the 
form       

1 2( , ,...., )nX X XX=
( | )f x θ

E ( ) ( ) ( | )W W f dθ θ= ∫X x x x
X

may be differentiated with respect to      by changing 
the order of differentiation and integration 
(summation in the case of pmf). 

θ

Then for any 
unbiased estimator             of        , we have ( )W X

( )2Var ( ) ( ) ( )W Iθ τ θ θ′≥X

2

( ) E log ( | )I fθθ θ
θ

  ∂ =   ∂  
X

where

( )τ θ
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Example – Binomial UMVUE (exercise 7.40)

Here

( )1log ( | ) log (1 )x xf x p p p −= −

log (1 ) log(1 )x p x p= + − −

1
log ( | )

1

x x
f x p

p p p

∂ −
= −

∂ −

2

2 2 2

1
log ( | )

(1 )

x x
f x

p p p
λ

∂ −
=− −

∂ −

Let                        be iid Bernoulli random 
variables with success probability p

1 2, ,...., nX X X

8

Hence the information in one observation is

1 2 2

1
( ) E

(1 )p

X X
I p

p p

 −  = +   − 

and the information in the sample is [ ]( ) / (1 )I p n p p= −

2 2

1

(1 )

p p

p p

−
= +

−
1

(1 )p p
=

−

By the Cramér-Rao inequality, we have for any 
unbiased estimator W for  p that 

Now       is an unbiased estimator for  p and 
(1 )

Varp

p p
X

n

−
=

1 (1 )
Var

( )p

p p
W

I p n

−
≥ =

X

Hence       is an UMVUE for pX
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Example 7.3.13 – uniform (0, θ) 

Let                        be iid and uniform(0, )θ1 2, ,...., nX X X

For this example the conditions of the Cramér-Rao 
inequality are not fulfilled 

Example 7.3.14 – normal variance bound

Let                        be iid random 
variables, where both parameters are unknown

2( , )n µ σ1 2, ,...., nX X X

Here       is an unbiased estimator for     ,  but it 
does not attain the Cramér-Rao lower bound

2S
2σ
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Proof of the Cramér-Rao inequality 
The proof of the Cramér-Rao inequality is an 
application of the following  well-known result on 
correlation: 

1 corr( , ) 1Z Y− ≤ ≤

For random variables Z and Y we have 

with                            if and only if there exist 
constants             and b such that  

corr( , ) 1Z Y =
0a ≠ Y aZ b= +

[ ]2Cov( , )
Var Z (*)

Var

Z Y

Y
≥

From this result it follows that 

with equality if and only if there exist constants              
and b such that  0a ≠ Y aZ b= +

11

( ) and log ( | )Z W Y f θ
θ

∂
= =

∂
X X

To prove the Cramér-Rao inequality we use (*) with            

We know that

( ) E ( ) Cov ( ) , log ( | )
d

W W f
d θ θτ θ θ
θ θ

 ∂ ′ = =   ∂
X X X

So we only need to prove that

2

Var log ( | ) E log ( | )f fθ θθ θ
θ θ

    ∂ ∂   =        ∂ ∂  
X X

Note that we have equality if and only if Y aZ b= +

This gives the corollary on the next slide
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Corollary 7.3.15
Consider a sample                              with joint pdf 
(or pmf)               and assume that the conditions of 
the Cramér-Rao inequality are fulfilled

1 2( , ,...., )nX X XX=
( | )f x θ

Then an unbiased estimator              of              
attains the Cramér-Rao lower bound if and only if 
there exist a function       such that 

( )τ θ( )W X

{ }( ) ( ) ( ) log ( | )a W fθ τ θ θ
θ

∂
− =

∂
X X

( )a θ

Example 7.3.16 – normal variance bound

Let                        be iid 2( , )n µ σ1 2, ,...., nX X X

If  µ is known, one may attain the Cramér-Rao 
lower bound when estimating      , otherwise not2σ



Sufficiency and unbiased estimators
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We will now see how sufficiency may help us to 
find the best unbiased estimators

We will make use of the following results on 
conditional means and variances:

[ ]E E E( | ) (Theorem 4.4.3)X X Y=

We remember that a statistic                 is a 
sufficient statistic for       if the conditional 
distribution of the sample       given the value of                    

does not depend on    ( )T X

θ
( )T T= X

θ

X

[ ] [ ]Var Var E( | ) E Var( | ) (Thm 4.4.7)X X Y X Y= +
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Theorem 7.3.17  (Rao-Blackwell)
Let                      be any unbiased estimator of             

and let be sufficient statistic for 

( )τ θ

( )W W= X

Then                          is an unbiased estimator 
of           and                              for all  

( ) E( | )T W Tφ =

θ( )T T= X( )τ θ

Var ( ) VarT Wθ θφ ≤ θ

The Rao-Blackwell theorem shows that when 
looking UMVUEs, we may restrict our attention to 
estimators that are functions of a sufficient statistic

Theorem 7.3.19 
If      is a best unbiased estimator of         ,             
then      is unique

W ( )τ θ

W
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If W is an unbiased estimator for           and we 
have another estimator U that satisfies                  
for all      (i.e. U is an unbiased estimator of 0), 
then                       is an unbiased estimator of  ( )τ θ

E 0Uθ =
θ
a W aUφ = +

( )τ θ

Note that
2Var Var Var 2 Cov ( , )a W a U a W Uθ θ θ θφ = + +

If for some            we have                           , 
then we may find a value of a such that   

0
Cov ( , ) 0W Uθ ≠0θ θ=

0 0
Var < Vara Wθ θφ

It follows that an UMVUE has to be uncorrelated 
with all unbiased estimators of 0
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The converse is also true:

Theorem 7.3.20 
Let      be an unbiased estimator of         , then W
is UMVUE if and only is it is uncorrelated with all 
unbiased estimators of 0

W ( )τ θ

This results makes it interesting to identify situations 
where there exists no unbiased estimators of 0
(except 0 itself)

Definition 6.2.21 
Let               be the family of pdfs or pmfs of a 
statistic                 . The family of distributions is 
complete if                      for all θ implies that                           

for all θ . We also say that 
is a complete statistic 

( | )f t θ
( )T T= X

E ( ) 0g Tθ =
( ( ) 0) 1P g Tθ = =

T



Thus                           is an unbiased estimator of                           

that is uncorrelated with all estimators of 0 
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Examples 6.2.23 & 7.3.22 – uniform (0, θ) 

Let                        be iid and uniform(0, )θ1 2, ,...., nX X X

Then                     is a sufficient statistic max iT X=

It follows that      is the unique UMVUE for 

1ˆ max i

n
X

n
θ

+
= θ

We may show that is a complete statistic 

It follows that there exist no unbiased estimators of 
0 based on                    (except 0 itself)max iT X=

θ̂ θ

So when looking for UMVUE for     we may restrict 
attention to estimators based on      

max iT X=

θ

max iT X=
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Theorem 7.3.23  (Lehmann-Scheffé)
Let                  be a complete sufficient statistic for

and let be an estimator based only on  T
with                      . Then            is the unique 
UMVUE of  ( )τ θ

( )Tφθ
( )T T= X

E ( ) ( )Tθ φ τ θ= ( )Tφ

The argument on the previous slide holds quite 
generally, and gives the following result:

where                         and the parameter space         
contain an open set in     
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Let                       be iid observations from an 
exponential family with pdf or pmf of the form                  

1

( | ) ( ) ( )exp ( ) ( )
k

i i
i

f x h x c w t x
=

 =    ∑θ θ θ

1 2( , ,..., )kθ θ θ=θ

Theorem 6.2.25 

1 2, ,...., nX X X

Θ
k
R .  Then

is a complete sufficient statistic 

1
1 1

( ) ( ) ,..., ( )
n n

j k j
j j

T t X t X
= =

  =   
∑ ∑X
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Example – UMVUE for the normal distribution

Let                        be iid random 
variables, where both parameters are unknown

2( , )n µ σ1 2, ,...., nX X X

The normal pdf may be written
2

2 2
2 2 2

1 1
( | , ) exp exp

2 22
f x x x

µ µ
µ σ

σ σ σπ σ

    = − −      

Hence                                  

is a complete sufficient statistics 

2

1 1

( ) ,
n n

i i
i j

T X X
= =

  =   
∑ ∑X

It follows that      and       are UMVUE 
for µ and   

X 2S
2σ
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If we combine the result of Lehmann-Scheffé
(thm 7.3.23) with the Rao-Blackwell construction 
(thm 7.3.17), we obtain the following result             
(cf. example 7.3.24):

Let                  be a complete sufficient statistic for
and let be an unbiased estimator of         .                 
Then                          is the unique UMVUE of         .  

( )τ θW
θ( )T T= X

( )τ θ( ) E( | )T W Tφ =


