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Best unbiased estimators

Definition 7.3.7

An estimator W" is a best unbiased estimator
of 7(0) if it satisfies E;W™ = 7(0) forall ¢ and,
for any other estimator W with EW =7(0), we
have Var,W <Var,w forall ¢

We also say that W’ is a uniform minimum
variance unbiased estimator (UMVUE) for 7(6)

Information

Consider a sample X = (X, X,,....,X, ) with
joint pdf (or pmf) f(x|0)

We assume that expressions of the form

EGW(X):fW(x)f(XW)dx

may be differentiated with respectto 6 by
changing the order of differentiation and
integration (summation in the case of pmf)

Then we have

0

E |—Ilogf )= 20
gaegou)]

The information number or Fisher information of
the sample is

0

[(0)=E, [%Iogf X |0)] = Var,

0
ﬁlogf(xm]

For the special case where X, X,,....,X, areiid
with pdf (or pmf) f(x|6) the information in the

sample is given by 1(0) = nl,(0), where 1,(9) is
the information in one observation and is given by

d ’ d
1,(®)=E, [% log f (X |0)] = Var, ﬁlogf (X |0)]




If expressions of the form fW(X) f(x]6)dx

may be differentiated twice with respect to 6 by
changing the order of differentiation and
integration (summation for pmf), the information
in the sample may also be given as

82

10)=—E, | 7log f (X 10)

while in the case of iid observations, the
information in one observation may be given as

82
1,(6) = —E, [@ log f (X |9)]

The Cramér-Rao inequality (Theorem 7.3.9)
Consider a sample X =(X,, X,,....,X,,) with joint pdf
(or pmf) f (x | #) and assume that expressions of the
form
EQW(X):fW(X)f(XW)dx
e

may be differentiated with respect to 6 by changing
the order of differentiation and integration
(summation in the case of pmf). Then for any
unbiased estimator W (X) of 7(f), we have

vaw(x) > (7))’ /1 )
where

8 2
1(0) =E, [%Iogf(XW)]

Example — Binomial UMVUE (exercise 7.40)

Let X, X,,....X, beiid Bernoulli random
variables with success probability p

Here
log f (x| p)= log( p* (- p )
=xlog p+ (1—x)log(l—p)

0 X 1—x

—log f (X|p)=————

op p 1-p

O log f (x|n)= % - X
2109 - p? (1-p)

Hence the information in one observation is
X 1-X ] _p,1p _ 1
p° (1-p)? p* @-p)? pl-p)

and the information in the sample is I (p)=n/[p@1— p)]

|1(p): Ep[

By the Cramér-Rao inequality, we have for any
unbiased estimator W for p that

var,W > I(l ;= (- p)
p n

Now X is an unbiased estimator for p and

Var, X = —p(er P)

Hence X is an UMVUE for p 8




Example 7.3.13 — uniform (0, 6)
Let X,,X,,....X, beiid and uniform(0,0)

For this example the conditions of the Cramér-Rao
inequality are not fulfilled

Example 7.3.14 — normal variance bound

Let X, X,,....X, beiid n(u,0?) random
variables, where both parameters are unknown

Here S? is an unbiased estimator for o, but it
does not attain the Cramér-Rao lower bound

Proof of the Cramér-Rao inequality

The proof of the Cramér-Rao inequality is an
application of the following well-known result on
correlation:

For random variables Z and Y we have
—1<corrZ Y)<1

with |corr(z Y ) = 1 if and only if there exist
constants a=0 andb suchthat Y=aZ +b

From this result it follows that

Cov Y)’

VarZ> [ *
VarY

with equality if and only if there exist constants
a=0 andb suchthat Y=azZ+b 10

To prove the Cramér-Rao inequality we use (*) with
Z=W(X) and Y:% logf X P’

We know that

0 0
55bgf0<wﬂ=:a

[ﬁbwwvj

Var,

So we only need to prove that

d
() = a0 E,W (X)= Coy,

wa»%mm«wﬂ

Note that we have equality ifand only if Y =aZ +b
This gives the corollary on the next slide
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Corollary 7.3.15

Consider a sample X = (X, X,,....,X,, ) with joint pdf
(or pmf) f (x| 6) and assume that the conditions of
the Cramér-Rao inequality are fulfilled

Then an unbiased estimator W (X) of 7(6)
attains the Cramér-Rao lower bound if and only if
there exist a functiona(9) such that

a(0) fW(X)—7(6)} = %Iog f(X[0)

Example 7.3.16 — normal variance bound
Let X, X,,....X, beiid n(u,o°)
If 1 is known, one may attain the Cramér-Rao

lower bound when estimating o?, otherwise not




Sufficiency and unbiased estimators

We will now see how sufficiency may help us to
find the best unbiased estimators

We remember that a statistic T=T(X) isa
sufficient statistic for & if the conditional
distribution of the sample X given the value of
T(X) does not depend on 6

We will make use of the following results on
conditional means and variances:

EX =E[EX |Y) (Theorem 4.4.:
VarX = Var[E(X [Y J+ B VarK I ) (Thm 4.4.7
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Theorem 7.3.17 (Rao-Blackwell)
Let W =W (X) be any unbiased estimator of
7(0) and let T=T(X) be sufficient statistic for 6

Then ¢(T)=EW |T) is an unbiased estimator
of 7(#) and Var,¢(T)< VarW forall ¢

The Rao-Blackwell theorem shows that when
looking UMVUES, we may restrict our attention to
estimators that are functions of a sufficient statistic

Theorem 7.3.19
If W is a best unbiased estimator of 7(6) ,
then W is unique
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If W is an unbiased estimator for 7(6) and we
have another estimator U that satisfies E,U = 0
forall @ (i.e. U is an unbiased estimator of 0),
then ¢,=W+aU is an unbiased estimator of 7(0)

Note that
Var, ¢, = Va,W +a* VayU + 2a Coy W U |

If for some =g, we have Cov, WU)=0,
then we may find a value of a such that

Var, ¢, <Vap, W

It follows that an UMVUE has to be uncorrelated
with all unbiased estimators of O
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The converse is also true:

Theorem 7.3.20

Let W be an unbiased estimator of 7(¢), then W
iIs UMVUE if and only is it is uncorrelated with all
unbiased estimators of O

This results makes it interesting to identify situations
where there exists no unbiased estimators of 0
(except O itself)

Definition 6.2.21

Let f(t|#) be the family of pdfs or pmfs of a
statistic T = T (X). The family of distributions is
complete if E,g(T)= 0 for all § implies that

P, (g(T)=0)=1 forall . We also say that

T is a complete statistic 16




Examples 6.2.23 & 7.3.22 — uniform (0, 6)
Let X, X,,....,X, be iid and uniform(0,6)
Then T =maxX, is a sufficient statistic

So when looking for UMVUE for 6 we may restrict
attention to estimators based on T =maxX,

We may show that T =maxX; is a complete statistic

It follows that there exist no unbiased estimators of
0 based on T =maxX; (except O itself)
-~ n+1 . . .
Thus #=——maxX; is an unbiased estimator of ¢
n
that is uncorrelated with all estimators of O

It follows that 6 is the uniqgue UMVUE for ¢
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The argument on the previous slide holds quite
generally, and gives the following result:

Theorem 7.3.23 (Lehmann-Scheffé)

Let T=T(X) be a complete sufficient statistic for
¢ andlet ¢(T) be an estimator based only on T
with E, ¢(T)=7(¢). Then ¢(T) is the unique
UMVUE of 7(0)
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Theorem 6.2.25

Let X,,X,,....,X, be iid observations from an
exponential family with pdf or pmf of the form

f(x]0)= h(X)C(ﬂ)eXP[ZWi 0, (X)]

where 0=(6,,0,,...,6, )and the parameter space ©
contain an open setin R¥. Then

T(X)=

Is a complete sufficient statistic
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Example — UMVUE for the normal distribution

Let X,,X,,....X, beiid n(uo®) random
variables, where both parameters are unknown

The normal pdf may be written

1 %
f(x|w,0?)= exg———
(x| p,0%) oo F{ 272

Hence

H 1 5
exXp—X———=X
[EUZ 20" ]

IS a complete sufficient statistics

It follows that X and S? are UMVUE
for yand o?
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If we combine the result of Lehmann-Scheffé
(thm 7.3.23) with the Rao-Blackwell construction
(thm 7.3.17), we obtain the following result

(cf. example 7.3.24):

Let T=T(X) be acomplete sufficient statistic for &

and let W be an unbiased estimator of 7(6).
Then ¢(T)=EW T) is the unique UMVUE of 7(0).
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