STK4011 and STK9011 Autumn 2016

Point estimation - asymptotics

Covers (most of) the material from sections 10.1.1, 10.1.2 and 10.1.3

Ørnulf Borgan Department of Mathematics University of Oslo

1

Consistency

Let W_1, W_2, \dots be sequence of estimators for θ

A typical situation is that we have a sequence X_1, X_2, \dots of iid random variables with pdf or pmf $f(x | \theta)$ and define $W_n = W_n(X_1, \dots, X_n)$

For example we may have $W_n = \overline{X}_n = \sum_{i=1}^n X_i / n$

Definition 10.1.1

A sequence of estimators W_1, W_2, \dots is a consistent sequence of estimators of the parameter θ if, for every $\varepsilon > 0$ and every $\theta \in \Theta$, we have

$$\lim_{n\to\infty} P_{\theta}(|W_n-\theta|<\varepsilon)=1$$

For short we say that W_n is consistent

2

We remember that the mean squared error (MSE) of an estimator W_n of θ is given as $E(W_n - \theta)^2$

Further the bias of W_n is given by $\operatorname{Bias}_{\theta} W_n = \operatorname{E}_{\theta} W_n - \theta$

We have $E_{\theta}(W_n - \theta)^2 = Var_{\theta}W_n + (Bias_{\theta}W_n)^2$

Theorem 10.1.3

If a sequence of estimators $W_1, W_2, ...$ of the parameter θ satisfy

i) $\lim_{n\to\infty} \operatorname{Var}_{\theta} W_n = 0$

ii) $\lim_{n\to\infty} \operatorname{Bias}_{\theta} W_n = 0$

for every $\theta \in \Theta$, then W_n is a consistent estimator for θ

Limiting and asymptotic variance

Consider a sequence of estimators $W_1, W_2,$ for θ Consistency is a very weak property

We also need to look at how the variance (and the bias) behaves as n increases

For all sensible estimators $\operatorname{Var} W_n \to 0$ so we may instead consider $k_n \operatorname{Var} W_n$ for a normalizing sequence of constants k_n (often $k_n = n$)

Definition 10.1.7

For a sequence of estimators $W_1, W_2, ...$, if $\lim_{n\to\infty} k_n \operatorname{Var} W_n = \tau^2 < \infty$, then τ^2 is called the limiting variance

Example 10.1.8

Let X_1, X_2, \dots be iid and $n(\mu, \sigma^2)$ distributed and consider \overline{X}_n

 $n \operatorname{Var} \overline{X}_n = \sigma^2$ for all *n*, so the limiting variance is σ^2

Now consider $W_n = 1 / \overline{X}_n$

Then $\operatorname{Var} W_n = \infty$ for all *n*, so the limiting variance does not exist

But by the approximation

$$W_n = 1 / \overline{X}_n \approx 1 / \mu - (1 / \mu^2) (\overline{X}_n - \mu)$$

we obtain

$$EW_n \approx \frac{1}{\mu}$$
 and $VarW_n \approx \frac{\sigma^2}{n\mu^4}$

The example illustrates that we need another concept than the limiting variance

Definition 10.1.9

For a sequence of estimators $W_1, W_2, ...$, suppose that $k_n(W_n - \tau(\theta)) \rightarrow n(0, \sigma^2)$ in distribution, then σ^2 is called the asymptotic variance or the variance of the limiting distribution of W_n

Example 10.1.8 (continued)

For the situation of example 10.1.8, the delta method gives that (cf. example 5.5.25):

$$\sqrt{n} \left(\frac{1}{\overline{X}_n} - \frac{1}{\mu} \right) \to n \left(0, \frac{\sigma^2}{\mu^4} \right)$$

Thus $W_n = 1 / \overline{X}_n$ has asymptotic variance σ^2 / μ^4

Asymptotical efficient estimators

Let X_1, X_2, \dots be a sequence of iid random variables with pdf or pmf $f(x | \theta)$ and let W_n be an estimator for $\tau(\theta)$ based on X_1, \dots, X_n

We assume that expressions of the form

 $\int_{-\infty}^{\infty} W_n(x) f(x \mid \theta) dx$

may be differentiated with respect to θ by changing the order of differentiation and integration (summation in the case of pmf)

Remember that if W_n is an unbiased estimator for $\tau(\theta)$, we have by the Cramér-Rao inequality (Corollary 7.3.10) that

$$\operatorname{Var}_{\theta} W_{n} \geq \frac{\left[\tau'(\theta)\right]^{2}}{nI_{1}(\theta)}$$

where

$$I_{1}(\theta) = \mathbf{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right)^{2} \right]$$

is the information in one observation

7

5

Assume now that we have

$$\sqrt{n} \left(W_n - \tau(\theta) \right) \rightarrow n(0, v(\theta))$$

Then we may use the approximation

$$\operatorname{Var}\left(\sqrt{n}W_{n}\right)\approx v(\theta)$$

to obtain

$$\operatorname{Var}(W_n) \approx \frac{v(\theta)}{n}$$

Therefore if $\nu(\theta) = \left[\tau'(\theta)\right]^2 / I_1(\theta)$, we have

$$\operatorname{Var} W_n \approx \frac{\left[\tau'(\theta)\right]^2}{nI_1(\theta)}$$

and W_n will asymptotically achieve the Cramér-Rao lower bound

9

This motivates the following definition:

Definition 10.1.11

Let $X_1, X_2, ...$ be a sequence of iid random variables with pdf or pmf $f(x | \theta)$ and let W_n be an estimator for $\tau(\theta)$ based on $X_1, ..., X_n$

Then W_n is asymptotically efficient if

$$\sqrt{n} \left(W_n - \tau(\theta) \right) \rightarrow n(0, \nu(\theta))$$

in distribution, where

$$v(\theta) = \frac{\left[\tau'(\theta)\right]^2}{I_1(\theta)}$$

10

Theorem 10.1.13

Let $X_1, X_2, ...$ be a sequence of iid random variables with pdf or pmf $f(x|\theta)$, let $\hat{\theta} = \hat{\theta}_n$ be the maximum likelihood estimator based on $X_1, ..., X_n$, and let $\tau(\theta)$ be a differentiable function of θ . Then under «certain regularity conditions» (cf. page 516) we have that

$$\sqrt{n}\left(\tau(\hat{\theta}) - \tau(\theta)\right) \rightarrow n(0, v(\theta))$$

where

$$v(\theta) = \left[\tau'(\theta)\right]^2 / I_1(\theta)$$

The most important regularity condition is that one may change the order of differentiation (with respect to θ) and integration/summation (as for the Cramér-Rao inequality)

For the maximum likelihood estimator $\tau(\hat{\theta})$ we have

$$\sqrt{n} \left(\tau(\hat{\theta}) - \tau(\theta) \right) \rightarrow n(0, \left[\tau'(\theta) \right]^2 / I_1(\theta))$$

Hence we may use the approximation

$$\operatorname{Var} \tau(\hat{\theta}) \approx \frac{\left[\tau'(\theta)\right]^2}{nI_1(\theta)}$$

This may be estimated using expected information

$$\widehat{\operatorname{Var}} \tau(\hat{\theta}) = \frac{\left[\tau'(\theta)\right]^2\Big|_{\theta=\hat{\theta}}}{nI_1(\theta)\Big|_{\theta=\hat{\theta}}}$$

or observed information

$$\widehat{\operatorname{Var}} \tau(\widehat{\theta}) = \frac{\left[\tau'(\theta)\right]^2}{-\sum_{i=1}^n \left(\frac{\partial^2}{\partial \theta^2}\right) \log f(X_i \mid \theta)} \Big|_{\theta = \widehat{\theta}}$$

12

Example 10.1.14

 X_1, X_2, \dots are iid Bernoulli random variables with success probability p

ML estimator $\hat{p} = \sum_{i=1}^{n} X_i / n$

Consider estimation of the odds $\tau(p) = p/(1-p)$

We have $\tau'(p) = 1/(1-p)^2$ and $I_1(p) = 1/[p(1-p)]$

Therefore: $\sqrt{n} \left(\frac{\hat{p}}{1-\hat{p}} - \frac{p}{1-p} \right) \rightarrow n \left(0, \frac{p}{\left(1-p \right)^3} \right)$

Both methods for estimating the variance give

$$\widehat{\operatorname{Var}}\left(\frac{\hat{p}}{1-\hat{p}}\right) = \frac{\hat{p}}{n\left(1-\hat{p}\right)^3}$$
¹³

The following definition is useful for comparing the large sample properties of two estimators:

Definition 10.1.16

If two estimators W_n and V_n are satisfying

$$\sqrt{n} \left(W_n - \tau(\theta) \right) \to n(0, \sigma_W^2)$$
$$\sqrt{n} \left(V_n - \tau(\theta) \right) \to n(0, \sigma_V^2)$$

in distribution, then the asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$\operatorname{ARE}(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}$$

1	4

Example 10.1.17

 X_1, X_2, \dots are iid Poisson(λ) random variables

We want to estimate

$$\tau(\lambda) = P(X=0) = e^{-\lambda}$$

We consider the estimators

$$e^{-\hat{\lambda}}$$
 where $\hat{\lambda} = \sum_{i=1}^{n} X_i / n$
 $\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} I\{X_i = 0\}$

We find

$$\operatorname{ARE}(\hat{\tau}, e^{-\hat{\lambda}}) = \frac{\lambda e^{-2\lambda}}{e^{-\lambda} \left(1 - e^{-\lambda}\right)} = \frac{\lambda}{e^{\lambda} - 1}$$

15