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Point estimation - asymptotics

Covers (most of) the material from 
sections 10.1.1, 10.1.2 and 10.1.3

A typical situation is that we have a sequence                  
of iid random variables with pdf or pmf

and define  
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Consistency
Let                  be sequence of estimators for θ1 2, ,....W W

1 2, ,....X X

( | )f x θ 1( ,..., )n n nW W X X=

For example we may have
1

/
n

n n ii
W X X n

=
= =∑

Definition 10.1.1
A sequence of estimators                 is a  consistent 
sequence of estimators of the parameter θ if, for 
every           and every         , we have

1 2, ,....W W

0ε>

lim (| | ) 1n
n

P Wθ θ ε
→∞

− < =

θ ∈Θ

For short we say that Wn is consistent

We remember that the mean squared error (MSE) 
of an estimator   of      is given asθnW 2E( )nW θ−

Further the bias of       is given by Bias En nW Wθ θ θ= −

We have ( )22E ( ) Var Biasn n nW W Wθ θ θθ− = +

nW

Theorem 10.1.3
If a sequence of estimators                 of the 
parameter θ satisfy

1 2, ,....W W

i) lim Var 0n
n

Wθ→∞
=

ii) lim Bias 0n
n

Wθ→∞
=

for every          , then       is a consistent estimator for θθ ∈Θ nW

Consistency is a very weak property
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Limiting and asymptotic variance
Consider a sequence of estimators                 for θ1 2, ,....W W

We also need to look at how the variance (and the 
bias) behaves as n increases

For all sensible estimators Var 0nW →
so we may instead consider                for a 
normalizing sequence of constants       (often          ) 

Varn nk W

nk

Definition 10.1.7
For a sequence of estimators                 , if

,  then       is called the 

limiting variance

1 2, ,....W W
2lim Varn n

n
k W τ

→∞
= <∞ 2τ

nk n=
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Example 10.1.8
Let                    be iid and distributed
and consider

1 2, ,....X X 2( , )n µ σ
nX

for all n2VarXnn σ=

Now consider 1n nW X=

, so the limiting variance is 2σ

Then                     for all n , so the limiting variance 
does not exist 

Var nW =∞

21 1/ (1/ )( )n n nW X Xµ µ µ= ≈ − −

But by the approximation 

we obtain
1

E nW
µ

≈ and
2

4
Var nW

n

σ

µ
≈

Definition 10.1.9
For a sequence of estimators                 , suppose 
that                                       in distribution, then         
is called the  asymptotic variance or the variance of 
the limiting distribution of 

1 2, ,....W W

( ) 2( ) (0, )n nk W nτ θ σ− → 2σ

nW

The example illustrates that we need another 
concept than the limiting variance

Example 10.1.8 (continued)
For the situation of example 10.1.8, the delta 
method gives that (cf. example 5.5.25):

2

4

1 1
0,

n

n n
X

σ

µ µ

      − →        

Thus                     has asymptotic variance1n nW X= 2 4σ µ
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Asymptotical efficient estimators

Let                   be a sequence of iid random 
variables with pdf or pmf and let        be          
an estimator for         based on                ( )τ θ

1 2, ,....X X

( | )f x θ nW

1,..., nX X

( ) ( | )nW x f x dxθ

∞

−∞
∫

We assume that expressions of the form

may be differentiated with respect to      by 
changing the order of differentiation and 
integration (summation in the case of pmf) 

θ
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Remember that if         is an unbiased estimator for        
, we have by the Cramér-Rao inequality 

(Corollary 7.3.10) that

nW

2

1

( )
Var

( )nW
nIθ

τ θ

θ

 ′ ≥

2

1( ) E log ( | )I f Xθθ θ
θ

  ∂ =   ∂  

where

( )τ θ

is the information in one observation
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Assume now that we have

( )Var ( )nnW v θ≈

( )( ) (0, ( ))nn W n vτ θ θ− →

Then we may use the approximation 

to obtain

2

1( ) ( ) / ( )Iν θ τ θ θ ′=  Therefore if                                , we have 
2

1

( )
Var

( )nW
nI

τ θ

θ

 ′ ≈

and        will asymptotically achieve the                     
Cramér-Rao lower bound

nW

( ) ( )
Var n

v
W

n

θ
≈
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Definition 10.1.11
Let                   be a sequence of iid random 
variables with pdf or pmf and let        be          
an estimator for         based on                 ( )τ θ

1 2, ,....X X
( | )f x θ nW

1,..., nX X

This motivates the following definition:

Then is asymptotically efficient if

in distribution, where
2

1

( )
( )

( )
v

I

τ θ
θ

θ

 ′ =

nW

( )( ) (0, ( ))nn W n vτ θ θ− →

Let                    be a sequence of iid random 
variables with pdf or pmf ,  let be              
the maximum likelihood estimator based on     

, and let          be a differentiable function 
of  θ .  Then under «certain regularity conditions»   
(cf. page 516)   we have that 

where         

Theorem 10.1.13

1 2, ,....X X
( | )f x θ

1,..., nX X

ˆ
n̂θ θ=

( )τ θ

( )ˆ( ) ( ) (0, ( ))n n vτ θ τ θ θ− →

2

1( ) ( ) ( )v Iθ τ θ θ ′=  

The most important regularity condition is that one may 
change the order of differentiation (with respect to θ ) and 
integration/summation (as for the Cramér-Rao inequality) 12

For the maximum likelihood estimator         we have

Hence we may use the approximation 

This may be estimated using expected information

2

1

( )ˆVar ( )
( )nI

τ θ
τ θ

θ

 ′ ≈

( ) 2

1
ˆ( ) ( ) (0, ( ) ( ))n n Iτ θ τ θ τ θ θ ′− →  

ˆ( )τ θ

�
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ˆ

ˆ1

( )
ˆVar ( )

( )nI
θ θ

θ θ

τ θ
τ θ

θ

=

=

 ′ 
=

or observed information

�

( )

2

ˆ

2 2

ˆ1

( )
ˆVar ( )

log ( | )
n

i
i

f X

θ θ

θ θ

τ θ
τ θ

θ θ

=

= =

 ′ 
=
− ∂ ∂∑
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Example 10.1.14 
are iid Bernoulli random variables with 

success probability  p
1 2, ,....X X

Consider estimation of the odds 

( )3
ˆ

0 ,
ˆ1 1 1

p p p
n n

p p p

    − →     − −    − 

We have                             and  [ ]1( ) 1/ (1 )I p p p= −2( ) 1/ (1 )p pτ ′ = −

Therefore:

1
ˆ /

n

ii
p X n

=
=∑ML estimator

Both methods for estimating the variance give

�

( )3
ˆ ˆ

Var
ˆ1 ˆ1

p p

p n p

  =   −  −

( ) / (1 )p p pτ = −
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Definition 10.1.16
If two estimators       and       are satisfying 

in distribution, then the  asymptotic relative 
efficiency (ARE) of       with respect to        is

( ) 2( ) (0, )n Wn W nτ θ σ− →

nW nV

( ) 2( ) (0, )n Vn V nτ θ σ− →

nV nW

( )
2

2
ARE , W

n n
V

V W
σ

σ
=

The following definition is useful for comparing the 
large sample properties of two estimators:
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Example 10.1.17  
are iid Poisson(λ) random variables1 2, ,....X X

We want to estimate

( ) ( 0)P X e λτ λ −= = =

We consider the estimators 
ˆ

1
ˆwhere /

n

ii
e X nλ λ−

=
=∑

1

1
ˆ { 0}

n

ii
I X

n
τ

=
= =∑

We find

( )
2

ˆ
ˆARE( , )
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