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Consistency
Let W,W,,.... be sequence of estimators for 6

A typical situation is that we have a sequence
X, X,,.... of iid random variables with pdf or pmf
f(x|9) and define W, =W, (X,,...,X,)

For example we may have W, =X, =>"" X /n

Definition 10.1.1

A sequence of estimators W, W,,.... is a consistent
sequence of estimators of the parameter 6 if, for

every ¢>0 and every 6 € ©, we have
lim P,(JW, —0| <e)=1

For short we say that W, is consistent 2

We remember that the mean squared error (MSE)
of an estimator W, of ¢ is given as EW, —6)°

Further the bias of W, is given by Bias, W, = EW, —¢

We have E,W, -8)* = VapW, +(Biag W, )’

Theorem 10.1.3

If a sequence of estimators W,,W,,.... of the
parameter ¢ satisfy

i) limVarW, =0

n—oo

i) lim Bias,W, =0

n—oo

for every 6 €O, then W, is a consistent estimator for 6

Limiting and asymptotic variance
Consider a sequence of estimators W,,\W,,.... for 8
Consistency is a very weak property

We also need to look at how the variance (and the
bias) behaves as n increases

For all sensible estimators VarW, — 0

so we may instead consider k Varw, for a
normalizing sequence of constants k, (often k, =n)

Definition 10.1.7
For a sequence of estimators W, W,,...., if
lim k VarW, = 7> <oco , then 72 is called the

n—oo

limiting variance




Example 10.1.8

Let X, X,,.... beiidand n(u,o?) distributed
and consider X,

nvarX =¢° for all n, so the limiting variance is o?
Now consider W, =1/ X,

Then VaW, =oco for all n, so the limiting variance
does not exist

But by the approximation
W, =1/ X, ~ 1/ pu— Up? )X, —p)
we obtain
EW ~

n

2
g

and Varw, ~

= |k

4 5

The example illustrates that we need another
concept than the limiting variance

Definition 10.1.9

For a sequence of estimators W,,W,,...., suppose
that k, (W, —7(6))— n(0,0%) in distribution, then o®
Is called the asymptotic variance or the variance of
the limiting distribution of W,

Example 10.1.8 (continued)
For the situation of example 10.1.8, the delta
method gives that (cf. example 5.5.25):

\/ﬁ[} —E]—H’] 0,0—2]

X, n p'

Thus W, =1/ X, has asymptotic variance o?/u*

Asymptotical efficient estimators

Let X, X,,.... be asequence of iid random
variables with pdf or pmf f(x|0) and let W, be
an estimator for 7(¢) based on X,,....,X,

We assume that expressions of the form
an(x) f(x]0)dx

may be differentiated with respectto ¢ by
changing the order of differentiation and
integration (summation in the case of pmf)

Remember that if W, is an unbiased estimator for
7(0), we have by the Cramér-Rao inequality
(Corollary 7.3.10) that

7o)
i, (6)

Var,W, >

where

1,(0)=E, [ 9 1ogt (X |9)]

a0

is the information in one observation




Assume now that we have
In (W, —7(9)) — n(0,v(6))

Then we may use the approximation
Var(\/ﬁvvn) ~V(0)

to obtain

Var(Wn)z@

=)

Therefore if v(6) =[7'(0)] /1,(6), we have
Q]
nly(9)

and W, will asymptotically achieve the
Cramér-Rao lower bound

Varw, ~

This motivates the following definition:

Definition 10.1.11
Let X,,X,,.... be asequence of iid random

variables with pdf or pmf f(x|6) and let W, be
an estimator for 7(¢) based on X,,...,X

Then W, is asymptotically efficient if
JIn(W, —7(8)) — n(0,v(9))
in distribution, where

ol
1,(0)

2

v(0) =

10

Theorem 10.1.13

Let X, X,,.... be asequence of iid random
variables with pdf or pmf f(x[0), let ézén be
the maximum likelihood estimator based on

X, X, ,and let 7() be a differentiable function

of 6. Then under «certain regularity conditions»
(cf. page 516) we have that

Jn (T(é) —T(e)) — n(0,v(9))

where

V() =[7 O] /1,0)

The most important regularity condition is that one may
change the order of differentiation (with respect to 6 ) and

integration/summation (as for the Cramér-Rao inequality)

For the maximum likelihood estimator r(é) we have
Jn(7(6)~ () - n©.[+' O) 1,0))

Hence we may use the approximation

WOl

nl,(6)

This may be estimated using expected information

') i,

nl,(6)],_;

or observed information

ror

_Z”:<82/802)|0g f (X, |9>{ A b

i=1

VaI'T(é)%

Varr (@)=

Varr(0)=




Example 10.1.14

X,, X,,.... are iid Bernoulli random variables with
success probability p

ML estimator p=>" X, /n
Consider estimation of the odds 7(p)= p/ (11— p)
We have /(p)=1/(1—p} and 1,(p)=1/[p@- p)|

Therefore: /n ﬁA ~ P | njo,—P
1-p 1I-p (1-p)’
Both methods for estimating the variance give
Var IOA _ Y -
1-P) n(1-p) 1

The following definition is useful for comparing the

large sample properties of two estimators:

Definition 10.1.16
If two estimators W, and V, are satisfying
Vn(W, —7(6)) = n(0,0,)
In(V, =7(6)) = n(0,07)
in distribution, then the asymptotic relative
efficiency (ARE) of V, with respectto W, is
0_2
ARE(V, W,)=—%

2
Oy

14

Example 10.1.17
X1, X,,.... areiid Poisson()\) random variables

We want to estimate
T(\)=P(X=0)=¢"
We consider the estimators

e’ whereA=Y"" X /n
~ 1 X —0
T—Ezi:l {X; =0}

We find

N, e A
ARE(7,e")=— =

e (l— e’A) e —1 15




