STK4011 and STK9011
 Autumn 2016

Multivariate distributions

Covers (most of) the following material from chapter 4:

- Section 4.6: pages 177-178 and 182-186

Ørnulf Borgan
Department of Mathematics
University of Oslo

We consider a continuous multivariate random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$

For any set $A \subset \mathcal{R}^{n}$ we have that

$$
P(\mathbf{X} \in A)=\int \ldots \int_{A} f(\mathbf{x}) d \mathbf{x}=\int \ldots \int_{A} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$
is the joint pdf

The marginal pdf of $\left(X_{1}, \ldots, X_{k}\right)$ is given by

$$
f\left(x_{1}, \ldots, x_{k}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) d x_{k+1} \ldots d x_{n}
$$

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a multivariate random vector with joint pdf $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$ and let $f_{X_{i}}\left(x_{i}\right)$ denote the marginal pdf of $X_{i} ; i=1, \ldots, n$
Then X_{1}, \ldots, X_{n} are mutually independent random variables if for $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n}$ we may write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

Theorem 4.6.11

X_{1}, \ldots, X_{n} are mutually independent if and only if there exist functions $g_{i}\left(x_{i}\right), i=1, \ldots, n$, such that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n}$ we may write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} g_{i}\left(x_{i}\right)
$$

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a multivariate random vector with joint pdf $f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)$ and let $g(\mathbf{x})=g\left(x_{1}, \ldots, x_{n}\right)$ be a real valued function
Then the expected value of $g(\mathbf{X})$ is given by

$$
\begin{aligned}
\mathrm{E} g(\mathbf{X}) & =\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g(\mathbf{x}) f(\mathbf{x}) d \mathbf{x} \\
& =\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

If X_{1}, \ldots, X_{n} are mutually independent random variables and $g_{i}\left(x_{i}\right), i=1, \ldots, n$, are real valued functions such that $g_{i}\left(x_{i}\right)$ is a function only of x_{i}, then

$$
\mathrm{E}\left(\prod_{i=1}^{n} g_{i}\left(X_{i}\right)\right)=\prod_{i=1}^{n} \mathrm{E} g_{i}\left(X_{i}\right)
$$

Let X_{1}, \ldots, X_{n} be mutually independent random variables with mgfs $M_{X_{i}}(t), i=1, \ldots, n$, and let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be constants. Then the mgf of $Z=\sum_{i=1}^{n}\left(a_{i} X_{i}+b_{i}\right)$ is

$$
M_{Z}(t)=\exp \left(t \sum b_{i}\right) \prod_{i=1}^{n} M_{X_{i}}\left(a_{i} t\right)
$$

This result may be used to prove that if X_{1}, \ldots, X_{n} are independent and $X_{i} \sim n\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
Z=\sum_{i=1}^{n}\left(a_{1} X_{1}+b_{i}\right) \sim n\left(\sum a_{i} \mu_{i}+b_{i}, \sum a_{i}^{2} \sigma_{i}^{2}\right)
$$

Multivariate transformations

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a multivariate random vector with joint pdf $f_{\mathbf{X}}(\mathbf{x})=f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)$ and support

$$
\mathcal{A}=\left\{\mathbf{x}: f_{\mathbf{X}}(\mathbf{x})>0\right\}
$$

Consider a new random vector $\mathbf{U}=\left(U_{1}, \ldots, U_{n}\right)$ defined by $U_{i}=g_{i}(\mathbf{X})=g_{i}\left(X_{1}, \ldots, X_{n}\right), i=1, \ldots, n$

The transformation $\left(u_{1}, \ldots, u_{n}\right)=\left(g_{1}(\mathbf{x}), \ldots ., g_{n}(\mathbf{x})\right)$ is a one-to-one transformation from \mathcal{A} onto

$$
\mathcal{B}=\left\{\mathbf{u}: \mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)=\left(g_{1}(\mathbf{x}), \ldots, g_{1}(\mathbf{x})\right) \text { for } \mathbf{x} \in \mathcal{A}\right\}
$$

The inverse transformation is given by

$$
x_{i}=h_{i}(\mathbf{u})=h_{i}\left(u_{1}, \ldots, u_{n}\right), i=1, \ldots, n
$$

Example 4.6.13

We have the joint pdf

$$
f_{\mathbf{X}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{cc}
24 e^{-x_{1}-x_{2}-x_{3}-x_{4}} & 0<x_{1}<x_{2}<x_{3}<x_{4}<\infty \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider the transformation

$$
\begin{array}{ll}
U_{1}=X_{1} & U_{2}=X_{2}-X_{1} \\
U_{3}=X_{3}-X_{2} & U_{4}=X_{4}-X_{3}
\end{array}
$$

The support of the distribution of the $U_{i} \mathrm{~s}$ is

$$
\mathcal{B}=\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right): u_{i}>0, i=1,2,3,4\right\}
$$

The inverse transformation is

$$
\begin{array}{ll}
X_{1}=U_{1} & X_{2}=U_{1}+U_{2} \\
X_{3}=U_{1}+U_{2}+U_{3} & X_{4}=U_{1}+U_{2}+U_{3}+U_{4}
\end{array}
$$

The Jacobian becomes
$J\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\left|\begin{array}{llll}\frac{\partial x_{1}}{\partial u_{1}} & \frac{\partial x_{1}}{\partial u_{2}} & \frac{\partial x_{1}}{\partial u_{3}} & \frac{\partial x_{1}}{\partial u_{4}} \\ \frac{\partial x_{2}}{\partial u_{1}} & \frac{\partial x_{2}}{\partial u_{2}} & \frac{\partial x_{2}}{\partial u_{3}} & \frac{\partial x_{2}}{\partial u_{4}} \\ \frac{\partial x_{3}}{\partial u_{1}} & \frac{\partial x_{3}}{\partial u_{2}} & \frac{\partial x_{3}}{\partial u_{3}} & \frac{\partial x_{3}}{\partial u_{4}} \\ \frac{\partial x_{4}}{\partial u_{1}} & \frac{\partial x_{4}}{\partial u_{2}} & \frac{\partial x_{4}}{\partial u_{3}} & \frac{\partial x_{4}}{\partial u_{4}}\end{array}\right|=\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right|=1$

The joint pdf of the U_{i} s becomes (when all $u_{i}>0$)

$$
\begin{aligned}
f_{\mathbf{V}}\left(u_{1}, u_{2}, u_{3}, u_{4}\right) & =24 e^{-u_{1}-\left(u_{1}+u_{2}\right)-\left(u_{1}+u_{2}+u_{3}\right)-\left(u_{1}+u_{2}+u_{3}+u_{4}\right)} \\
& =24 e^{-4 u_{1}-3 u_{2}-2 u_{3}-u_{4}} \\
& =4 e^{-4 u_{1}} 3 e^{-3 u_{2}} 2 e^{-2 u_{3}} e^{-u_{4}}
\end{aligned}
$$

The $U_{i} \mathrm{~s}$ are independent and

$$
U_{i} \sim \operatorname{exponential}(1 /(5-i)), \quad i=1,2,3,4
$$

