STK4011 and STK9011 Autumn 2016

Order statistics

Covers (most of) the following material from chapter 5:

• Section 5.4: pages 226-231

Ørnulf Borgan Department of Mathematics University of Oslo

Random sample

The random variables $X_1, X_2, ..., X_n$ are called a random sample from the population $f_X(x)$ if $X_1, X_2, ..., X_n$ are mutually independent and the marginal pmf or pdf of each X_i is $f_X(x)$

Alternatively, we may say that $X_1, X_2, ..., X_n$ are independent and identically distributed (iid) random variables with pmf or pdf $f_X(x)$

The joint pmf or pdf is

$$f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f_X(x_i)$$

Order statistics

The order statistics of a random sample $X_1, X_2, ..., X_n$ are the sample values placed in ascending order

The order statistics are denoted $X_{(1)}, X_{(2)}, ..., X_{(n)}$ and they satisfy $X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)}$

Some statistics defined by the order statistics:

Sample range:
$$R = X_{(n)} - X_{(1)}$$

Sample median: $M = \begin{cases} X_{((n+1)/2)} & \text{if } n \text{ is odd} \end{cases}$

Ian:
$$M = \begin{cases} \frac{1}{2} (X_{(n/2)} + X_{(n/2+1)}) & \text{if } n \text{ is even} \end{cases}$$

3

1

(100 <i>p</i>)th sample percentile:	(100 <i>p</i>)th	sample	percentile:
--------------------------------------	-------------------	--------	-------------

$$X_{(\{np\})} \quad \text{if} \quad \frac{1}{2n}
$$X_{(n+1-\{n(1-p)\})} \quad \text{if} \quad 0.5$$$$

{b} is b rounded to the nearest integer

Other definitions of sample percentiles exist (the command "quantile" in R has 9 options)

Lower quartile: $Q_1 = 25$ th percentile Upper quartile: $Q_3 = 75$ th percentile Interquartile range: $Q_3 - Q_1$ 2

We will look at the distribution of the order statistics

Let $X_1,...,X_n$ be a random sample from a continuous distribution with cdf $F_X(x)$ and pdf $f_X(x)$

We start out by considering $X_{(n)} = \max X_i$ and $X_{(1)} = \min X_i$

The cumulative distribution of $X_{(n)}$ is given by

$$F_{X_{(n)}}(x) = P\left(\max X_i \le x\right) = P\left(\bigcap_{i=1}^n \{X_i \le x\}\right)$$
$$= \prod_{i=1}^n P\left(X_i \le x\right) = \left[F_X(x)\right]^n$$

Hence the pdf becomes

 $f_{X_{(n)}}(x) = n f_X(x) [F_X(x)]^{n-1}$

5

7

We then look at the *j*-th order statistic

Theorem 5.4.4

Let $X_1,...,X_n$ be a random sample from a continuous distribution with cdf $F_X(x)$ and pdf $f_X(x)$.

Then the *j*-th order statistic is has cdf

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} \binom{n}{k} \left[F_{X}(x) \right]^{k} \left[1 - F_{X}(x) \right]^{n-k}$$

and pdf

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)! (n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}$$

The cumulative distribution of $X_{(1)}$ is given by

$$F_{X_{(1)}}(x) = P\left(\min X_i \le x\right) = 1 - P\left(\min X_i > x\right)$$
$$= 1 - P\left(\bigcap_{i=1}^n \{X_i > x\}\right) = 1 - \prod_{i=1}^n P(X_i > x)$$
$$= 1 - \prod_{i=1}^n [1 - P(X_i \le x)] = 1 - [1 - F_X(x)]^n$$

Hence the pdf becomes

$$f_{X_{(1)}}(x) = n f_X(x) \left[1 - F_X(x) \right]^{n-1}$$

6

Example: uniform order statistic

Let $X_1, ..., X_n$ be iid and uniform(0,1) Then $f_X(x) = 1$ and $F_X(x) = x$ for 0 < x < 1Hence $f_{X_{(j)}}(x) = \frac{n!}{(j-1)! (n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}$ $= \frac{n!}{(j-1)! (n-j)!} 1 \cdot x^{j-1} (1-x)^{n-j}$ $= \frac{\Gamma(n+1)}{\Gamma(j) \Gamma(n-j+1)} x^{j-1} (1-x)^{(n-j+1)-1}$

Thus $X_{(j)} \sim beta(j, n-j+1)$

8

A result on the joint pdf of two order statistics:

Theorem 5.4.6

Let $X_1,...,X_n$ be a random sample from a continuous distribution with cdf $F_X(x)$ and pdf $f_X(x)$.

Then the joint pdf of the *i*-th and *j*-th order statistic is given by $(1 \le i < j \le n)$

$$\begin{split} f_{X_{(i)},X_{(j)}}(u,v) \\ &= \frac{n!}{(i-1)! (j-1-i)! (n-j)!} \\ &\times f_X(u) f_X(v) \big[F_X(u) \big]^{i-1} \big[F_X(v) - F_X(u) \big]^{j-1-i} \big[1 - F_X(v) \big]^{n-j} \end{split}$$

(A formal proof is outlined in exercise 5.26)

The inverse transformation is given by

 $X_{(1)} = V - R / 2$ $X_{(n)} = V + R / 2$

The Jacobi equals -1 and the joint pdf of (R, V) becomes (for 0 < r < 1, r/2 < v < 1 - r/2)

 $f_{R,V}(r,v) = n(n-1)r^{n-2}$

The marginal pdf for *R* is given by

$$f_R(r) = \int_{r/2}^{1-r/2} n(n-1)r^{n-2}dv = n(n-1)r^{n-2}(1-r)$$

Thus $R \sim beta(n-1,2)$

Range for a uniform distribution (example 5.4.7)

Let X_1, \dots, X_n be iid and uniform(0,1)

Then $f_x(x) = 1$ and $F_x(x) = x$ for 0 < x < 1

The joint distribution of $X_{(1)}$ and $X_{(n)}$ is given by (for $0 < x_1 < x_n < 1$)

$$f_{X_{(1)},X_{(n)}}(x_1,x_n) = n(n-1)(x_n-x_1)^{n-2}$$

Introduce the range

$$R = X_{(n)} - X_{(1)}$$

and the midrange

 $V = (X_{(1)} + X_{(n)})/2$

We also have a result on the joint pdf of all *n* order statistics:

Let $X_1,...,X_n$ be a random sample from a continuous distribution with pdf $f_X(x)$

Then the joint pdf of all the order statistic is given by

$$f_{X_{(1)},...,X_{(n)}}(x_1,...,x_n) = \begin{cases} n! f_X(x_1) \cdot ... \cdot f_X(x_n) & \text{if } x_1 < ... < x_n \\ 0 & \text{otherwise} \end{cases}$$

11

9

10