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Order statistics

• Section 5.4: pages 226-231
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Alternatively, we may say that 
are independent and identically distributed (iid) 
random variables with pmf or pdf    
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The joint pmf or pdf is
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The order statistics of a random sample 
are the sample values placed in ascending order

1 2, ,...., nX X X

The order statistics are denoted 
and they satisfy 

Order statistics
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Some statistics defined by the order statistics:
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{b} is b rounded to the nearest integer 

Other definitions of sample percentiles exist
(the command "quantile" in R has 9 options)

Lower quartile: 1 25th percentileQ =

Upper quartile: 3 75th percentileQ =

Interquartile range: 3 1Q Q−



We will look at the distribution of the order statistics 

We start out by considering                       
and   
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Let                be a random sample from a continuous 
distribution with cdf and pdf           
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( )XF x ( )Xf x
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Let                be a random sample from a continuous 
distribution with cdf and pdf           .

Then the j-th order statistic is has cdf

and pdf

1,..., nX X
Theorem 5.4.4
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We then look at the j-th order statistic

( )Xf x
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Let                 be iid and uniform(0,1)

Then                   and                   for   

Hence
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Example: uniform order statistic 
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Let                 be a random sample from a continuous 
distribution with cdf and pdf           .

Then the joint pdf of the i-th and  j-th order statistic is 
given by (                   )

1,..., nX X
Theorem 5.4.6
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A result on the joint pdf of two order statistics:  
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(A formal proof is outlined in exercise 5.26) 10

Range for a uniform distribution (example 5.4.7)
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Let                 be iid and uniform(0,1)

Then                   and                   for   
1,..., nX X

( )XF x x=( ) 1Xf x = 0 1x< <

The joint distribution of         and           is given by               
(for                        )

(1)X ( )nX
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Introduce the range

and the midrange

( ) (1)nR X X= −

( )(1) ( ) / 2nV X X= +
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The inverse transformation is given by

(1) / 2X V R= − ( ) / 2nX V R= +

2
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R Vf r v n n r −= −

The Jacobi equals -1 and the joint pdf of (R,V) 
becomes (for                                          ) 0 1, / 2 1 / 2r r v r< < < < −

The marginal pdf for R is given by
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Let                 be a random sample from a continuous 
distribution with pdf

Then the joint pdf of all the order statistic is given by 

1,..., nX X

We also have a result on the joint pdf of all n order 
statistics:  
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