STK4011 and STK9011 Autumn 2016

Hypothesis testing

Covers (most of) the following material from chapter 8:

- Section 8.1
- Sections 8.2.1 and 8.2.3
- Section 8.3.1
- Section 8.3.2 (until definition 8.3.16)

Ørnulf Borgan Department of Mathematics University of Oslo

Likelihood ratio tests

Let $X_1, X_2, ..., X_n$ be a random sample from the population $f(x | \theta)$, so $X_1, X_2, ..., X_n$ are iid and their pmf or pdf is $f(x | \theta)$, where θ may be a vector

Then the likelihood is given by

 $L(\theta \mid \mathbf{x}) = L(\theta \mid x_1, ..., x_k) = \prod_{i=1}^n f(x_i \mid \theta)$

The likelihood ratio test statistic for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})}$$

The likelihood ratio test (LRT) has rejection region of the form $\{\mathbf{x}: \lambda(\mathbf{x}) \leq c\}$

Basic concepts

Assume that we have random variables $\mathbf{X} = (X_1, X_2, ..., X_n)$ with joint pmf or pdf $f(\mathbf{x} | \theta) = f(x_1, ..., x_n | \theta)$ where $\theta \in \Theta$

We want to test the null hypothesis $H_0: \theta \in \Theta_0$ versus the alternative hypothesis $H_1: \theta \in \Theta_0^c$

A hypothesis test is a procedure that specifies:

- for which values of X we reject H₀ (accept H₁)
- for which values of **X** we do not reject H_{H_0} (accept H_0)

Usually a test is specified in terms of a test statistic $W = W(\mathbf{X})$

Let $\hat{\theta}$ be the unrestricted maximum likelihood estimator of θ , i.e. the value of θ that maximizes the likelihood when $\theta \in \Theta$

Let $\hat{\theta}_0$ be the maximum likelihood estimator of θ under the null hypothesis, i.e. the value of θ that maximizes the likelihood when $\theta \in \Theta_0$

Then the LRT statistics takes the form

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0 \mid \mathbf{x})}{L(\hat{\theta} \mid \mathbf{x})}$$

Example 8.2.2 (normal LRT)

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, 1)$ We will test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$

4

Example 8.2.3 (exponential LRT)

Let $X_1, X_2, ..., X_n$ be iid with pdf ($-\infty < \theta < \infty$)

 $f(x \mid \theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta \end{cases}$

We will test $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$

Theorem 8.2.4

If $T(\mathbf{X})$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(\mathbf{x})$ are the LRT statistics based on T and \mathbf{X} , respectively, then $\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$ for all \mathbf{x} in the sample space

5

7

Example 8.2.5 (LRT and sufficiency)

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, 1)$ We will test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$

Example 8.2.6 (normal LRT, unknown variance)

Let $X_1, X_2, ..., X_n$ be iid $n(\mu, \sigma^2)$ We will test $H_0: \mu \le \mu_0$ versus $H_1: \mu > \mu_0$

Union-intersection tests

Assume the null hypothesis may be expressed as

 $H_0: \theta \in \bigcap_{\gamma \in \Gamma} \Theta_{\gamma}$

where Γ is an index set (finite or infinite)

Suppose there are tests available for testing

 $H_{0\gamma}: \theta \in \Theta_{\gamma}$ versus $H_{1\gamma}: \theta \in \Theta_{\gamma}^{c}$

The rejection region for the test of $H_{0\gamma}$: $\theta \in \Theta_{\gamma}$ is

$\left\{\mathbf{x}:T_{\gamma}(\mathbf{x})\in R_{\gamma}\right\}$

Then the union-intersection test has rejection region

$$\bigcup_{\gamma\in\Gamma} \left\{ \mathbf{x} \colon T_{\gamma}(\mathbf{x}) \in R_{\gamma} \right\}$$

In particular, if the test for $H_{0\gamma}$: $\theta \in \Theta_{\gamma}$ has rejection region

 $\left\{\mathbf{x}:T_{\gamma}(\mathbf{x})>c\right\}$

then the union-intersection test has rejection region

$$\bigcup_{\gamma \in \Gamma} \left\{ \mathbf{x} \colon T_{\gamma}(\mathbf{x}) > c \right\} = \left\{ \mathbf{x} \colon \sup_{\gamma \in \Gamma} T_{\gamma}(\mathbf{x}) > c \right\}$$

Example 8.2.8 (normal union-intersection test)

Let $X_1, X_2, ..., X_n$ be iid $n(\mu, \sigma^2)$ We will test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$

8

Intersection-union tests

Assume the null hypothesis may be expressed as

 $H_0: \theta \in \bigcup_{\gamma \in \Gamma} \Theta_{\gamma}$

where Γ is an index set (finite or infinite) Suppose that $\{\mathbf{x}: T_{\gamma}(\mathbf{x}) \in R_{\gamma}\}$ is the rejection region for a test of $H_{0\gamma}: \theta \in \Theta_{\gamma}$ versus $H_{1\gamma}: \theta \in \Theta_{\gamma}^{c}$

Then the intersection-union test has rejection region

 $\bigcap_{\gamma\in\Gamma} \left\{ \mathbf{x} \colon T_{\gamma}(\mathbf{x}) \in R_{\gamma} \right\}$

If the test of $H_{0\gamma}: \theta \in \Theta_{\gamma}$ has rejection region $\{\mathbf{x}: T_{\gamma}(\mathbf{x}) \ge c\}$ the rejection region of the intersectionunion test becomes $\{\mathbf{x}: \inf_{\gamma \in \Gamma} T_{\gamma}(\mathbf{x}) \ge c\}$

Let *R* be the rejection region of the test, so we reject $H_0: \theta \in \Theta_0$ if $\mathbf{X} \in R$

Probability of Type I error: $P_{\theta}(\mathbf{X} \in R), \ \theta \in \Theta_0$

Probability of Type II error:

 $P_{\theta}\left(\mathbf{X} \in R^{c}\right) = 1 - P_{\theta}\left(\mathbf{X} \in R\right), \quad \theta \in \Theta_{0}^{c}$

Power function: $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$

Example 8.3.3 (normal power function)

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, \sigma^2)$ with σ^2 known We will test $H_0: \theta \le \theta_0$ versus $H_1: \theta > \theta_0$

11

Error probabilities and power

We will test $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$

We may make two types of error:

		Decision	
		Accept H_0	Reject H_0
	H_0	Correct	Type I
Truth		decision	Error
	H_1	Type II	Correct
		Error	decision

10

12

Casella & Berger distinguish between the size and level of a test:

- a test with power function $\beta(\theta)$ is a size α test if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$
- a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$

Example 8.3.7 (size of normal LRT, modified)

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, \sigma^2)$ with σ^2 known We will test $H_0: \theta \le \theta_0$ versus $H_1: \theta > \theta_0$

A test with power function $\beta(\theta)$ is unbiased if $\beta(\theta') \ge \beta(\theta'')$ for all $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$

Most powerful tests

Definition 8.3.11

Let *C* be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in the class *C*, with power function $\beta(\theta)$, is a uniformly most powerful (UMP) class *C* test if $\beta(\theta) \ge \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class *C*

We will use this definition when *C* is the class of all level α tests

13

Theorem 8.3.12 (Neyman-Pearson Lemma)

Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_i is $f(\mathbf{x} | \theta_i); i = 0,1$, using a test with rejection region *R* that satisfies

$$\mathbf{x} \in R \quad \text{if} \quad f(\mathbf{x} \mid \theta_1) > k \ f(\mathbf{x} \mid \theta_0)$$

$$\mathbf{x} \in R^c \quad \text{if} \quad f(\mathbf{x} \mid \theta_1) < k \ f(\mathbf{x} \mid \theta_0)$$
(8.3.1)

for some $k \ge 0$, and

$$\alpha = P_{\theta_0}(\mathbf{X} \in R) \tag{8.3.2}$$

Then

a) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level $\alpha\,$ test

b) If there exists a test satisfying (8.3.1) and (8.3.2) with k > 0, then every UMP level α test is a size α test [i.e. satisfies (8.3.2)] and every UMP level α test satisfies (8.3.1) except perhaps on a set A satisfying $P_{\theta_0}(\mathbf{X} \in A) = P_{\theta_1}(\mathbf{X} \in A) = 0$

Corollary 8.3.13

Consider the hypothesis testing problem of Theorem 8.3.12. Suppose that $T = T(\mathbf{X})$ is a sufficient statistic for θ and let $g(t | \theta_i)$ be the pdf or pmf of T corresponding to θ_i ; i = 0,1. Then any test based on T with rejection region S is a UMP level α test if it satisfies

 $t \in S$ if $g(t \mid \theta_1) > k g(t \mid \theta_0)$

 $t \in S^c$ if $g(t \mid \theta_1) < k g(t \mid \theta_0)$

for some $k \ge 0$, where

 $\alpha = P_{\theta_0} (T \in S)$

Example 8.3.15 (UMP normal test)

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, \sigma^2)$ with σ^2 known We will find the UMP test for testing test $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$ where $\theta_0 > \theta_1$