Summary of results for STK4011/9011

Distributions

Beta Distribution

The beta family of distributions is a continuous family on (0,1) indexed by two
parameters. The beta(a, 3) pdf is

(3.3.16) f(zla, B) = B(al,ﬁ)

where B(a, 3) denotes the beta function,

z*'1-z)f1, 0<z<l, a>0, B>0,

1
B(a,B) = / (1 - z)P 1 dz.
0
The beta function is related to the gamma function through the following identity:

(3.3.17) B(a, 8) = %.

Cauchy Distribution

The Cauchy distribution is a symmetric, bell-shaped distribution on (—o0, 00) with
pdf

1 1

(3.3.19) f(z|6) = ;m,

—o<r<oo, —00<0<oo.

Double Exponential Distribution

The double exponential distribution is formed by reflecting the exponential distribution
around its mean. The pdf is given by

1
(3.3.22) f(z|u,0) = 2—5“|r—u|/ﬂ, —o<z <00, -—-00<pu<oo, o>0.
a

Transformations

Theorem 2.1.5 Let X have pdf fx(z) and let Y = g(X), where g is a monotone
function. Let X and Y be defined by (2.1.7). Suppose that fx(z) is continuous on X
and that g~1(y) has a continuous derivative on Y. Then the pdf of Y is given by

(2.1.10) fr(y) = {fx(g‘l(y)) d%gl(y)’ yey

0 otherwise.



Bivariate transformations

Let (X, Y) be a bivariate random vector with joint pdf £, ,(x,») and support
A= (x,9): fi,(,)>0 _Let(U,V)begivenby U =g (X,Y) and V =g, (X,Y).
Then the joint pdf f, . (u,v) of (U, V') has support

L= (u,v):u=g(x,y)and v=g,(x,y) for some (x,y) € .4

We assume that v =g,(x,y) and v=g,(x,y) isa one-to-one transformation of
A onto & andlet x=h(u,v) and y=h,(u,v) be the inverse transformation.

Let Ox Ox
J(u,v)= Ou ci)v :gﬂf&@
Oy | Oudv  Ou dv

Ju ov

be the Jacobian of the transformation. Then for (#,v)€.5 we have

Joy @)= oy (@), by, )| @,v)|

Theorem 5.2.9 If X andY are independent continuous random variables with pdfs
fx(z) and fy(y), then the pdf of Z =X +Y is

(5:23) Sz =[x - wyd

Order statistics

Theorem 5.4.4 Let X(y),...,X(n) denote the order statistics of a random sample,
Xi,...yXn, from a continuous population with cdf Fx(z) and pdf fx(x). Then the

pdf of X(j) is

649 fxn(@ = G X @ P = Fx @),

j—DYn—5)!

Theorem 5.4.6 Let X(1y,...,X(n) denote the order statistics of a random sample
Xi,...,Xn, from a continuous population with cdf Fx(z) and pdf fx(z). Then th
Jjoint pdf of X(;y and X(;),1<i<j<mn,is

!
(5.4.7) fx(.-,.x(,-) (v,v) = (i —1)(5 - ?— )X

n— j)pfx(“)fx(v)[FX(u)]z’—l

x [Fx(v) = Fx(w)]’ "' 7"[1 — Fx(v)]"™

for —co < u < v < o0.



Conditional expectation and variance

Theorem 4.4.3 If X and Y are any two random variables, then
(4.4.1) EX = E(E(X]|Y)),

provided that the expectations ezist.

Theorem 4.4.7 (Conditional variance identity) For any two random variables
X andV,

(4.4.4) Var X = E (Var(X|Y)) + Var (E(X|Y)),
provided that the expectations exist.

Inequalities

Theorem 3.6.1 (Chebychev’s Inequality) Let X be a random variable and let
g(z) be a nonnegative function. Then, for any r > 0,

Po(X) > 1) < KD,

Theorem 4.7.7 (Jensen’s Inequality) For any random variable X, if g(z) is a
convez function, then

Eg(X) > g(EX).
Equality holds if and only if, for every line a + bz that is tangent to g(z) atz = EX,
P(g(X)=a+bX)=1.

Convergence of random variables

Definition 5.5.1 A sequence of random variables, X, Xa,..., converges in proba-
bility to a random variable X if, for every € > 0,

lim P(|X, — X|>¢€)=0 or,equivalently, lim P(|X,— X|<e¢€) =1

Theorem 5.5.2 (Weak Law of Large Numbers) Let X, Xz,... be iid random
variables with EX; = p and Var X; = 0 < oo. Define X, = (1/n) Y., Xi. Then,
for every € > 0,

lim P(|Xn —u|l <€) =1;

n—oo

that is, X, converges in probability to p.



Theorem 5.5.4 Suppose that X1, X3, ... converges in probability to a random vari-

able X and that h is a continuous function. Then h(X1), h(X32),. .. converges in prob-
ability to h(X).

Definition 5.5.10 A sequence of random variables, X, X, ..., converges in distri-
bution to a random variable X if

lim Fx (z) = Fx(z)

n—oo

at all points z where Fx(z) is continuous.

Theorem 2.3.12 (Convergence of mgfs) Suppose {X;,i=1,2,...} is a se-
quence of random variables, each with mgf My, (t). Furthermore, suppose that

Hm My, (t) = Mx(t), for all t in a neighborhood of 0,

and Mx (t) is an mgf. Then there is a unique cdf Fx whose moments are determined
by Mx (t) and, for all x where Fx(z) is continuous, we have

,lim Fx‘. (.’E) = Fx(m).
i—00

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Theorem 5.5.13 The sequence of random variables, X;, Xs, ..., converges in prob-

ability to a constant u if and only if the sequence also converges in distribution to u.
That 1s, the statement

P(| X, ~ | >€) — 0 for everye >0

s equivalent to

0 ifx<u
P(X"Sm)‘*{l ifz > p.

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let
X1, Xa2,... be a sequence of iid random variables with EX; = p and 0 < Var X; =

0? < 00. Define X, = (1/n) Y iy Xi. Let Gp(z) denote the cdf of /n(Xn — p)/o.
Then, for any x, —00 < T < 00,

T
nlim Gn(:c):/ —1—6"”2/2 dy;

—oo V21

that is, \/n(X, — u)/o has a limiting standard normal distribution.



Theorem 5.5.17 (Slutsky’s Theorem) If X,, — X in distribution and Y, — a, a
constant, in probability, then

a. Y, X, — aX in distribution.
b. X, +Y, - X + a in distribution.

Theorem 5.5.24 (Delta Method) Let Y,, be a sequence of random variables that
satisfies \/n(Y, — 6) — n(0,0?) in distribution. For a given function g and a specific
value of 8, suppose that g'(0) ezxists and is not 0. Then

(5.5.10) Vnlg(Yy,) — g(8)] — n(0,02[g'(6)]?) in distribution.

Theorem 5.5.26 (Second-order Delta Method) Let Y, be a sequence of random
variables that satisfies \/n(Y, — 8) — n(0,0?) in distribution. For a given function g
and a specific value of 8, suppose that g’(8) = 0 and ¢”(6) exists and is not 0. Then

(5.5.13) n| 29°0) 2 40 gistributi
.5. g(Yn) —g(0)] — o o Xiin distribution.

Sufficiency and completeness

Definition 6.2.1 A statistic T(X) is a sufficient statistic for 6 if the conditional
distribution of the sample X given the value of T(X) does not depend on 6.

Theorem 6.2.2  If p(x|6) is the joint pdf or pmf of X and q(t|0) is the pdf or pmf
of T(X), then T(X) is a sufficient statistic for 0 if, for every x in the sample space,
the ratio p(x|0)/q(T(x)|0) is constant as a function of 6.

Theorem 6.2.6 (Factorization Theorem) Let f(x|0) denote the joint pdf or
pmf of a sample X. A statistic T(X) is a sufficient statistic for 6 if and only if there

exist functions g(t|6) and h(x) such that, for all sample poinis x and all parameter
points 6,

(6-2.3) f(x6) = g(T(x)|6)h(x).

Theorem 6.2.10 Let X1,...,X, be iid observations from a pdf or pmf f(z|0)
belongs to an exponential family given by

k
f(z|0) = h(z)c(§) exp (Z w;(0)t; (-’L‘)) )

where 8 = (6,,02,...,04), d < k. Then

T(X) = | Y ta(X),-0r ) te(X5)
1=1 7=1

is a sufficient statistic for 6.



Definition 6.2.11 A sufficient statistic T(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 7’(X), T'(x) is a function of T"(x).

Theorem 6.2.13 Let f(x|6) be the pmf or pdf of a sample X. Suppose there ezists a
function T(x) such that, for every two sample points x andy, the ratio f(x|6)/f(y|6)
is constant as a function of 6 if and only if T(x) = T(y). Then T(X) is a minimal
sufficient statistic for 0.

Definition 6.2.21 Let f(t|0) be a family of pdfs or pmfs for a statistic 7'(X). The
family of probability distributions is called complete if Egg(T) = 0 for all § implies
Py(g(T) = 0) =1 for all 6. Equivalently, 7'(X) is called a complete statistic.

Theorem 6.2.25 (Complete statistics in the exponential family) Let

Xy,...,X, be iid observations from an ezponential family with pdf or pmf of the
form

k
(6.2.7) f(218) = h(z)c(8) exp | D w(8;)t;(z) |,

Jj=1

where 8 = (01,02, ...,0;). Then the statistic

T(X) = (Ztl(x,-),th(Xi),-‘-,Ztk(Xi)>
i=1 i=1

i=1

is complete as long as the parameter space © contains an open set in R*.

Point estimation

Definition 7.3.7 An estimator W* is a best unbiased estimator of 7(0) if it satisfies
EgW* = 7(0) for all § and, for any other estimator W with EgW = 7(6), we have
Varg W* < Varg W for all §. W* is also called a uniform minimum variance unbiased
estimator (UMVUE) of 7(6).

Theorem 7.3.9 (Cramér—Rao Inequality) Let Xi,..., X, be a sample with pdf
f(x|6), and let W(X) = W(X,,...,X,) be any estimator satisfying

GEW 0 = [ W0 xi6)] dx

(7.3.4) and
VargW (X) < o0.
Then
4E.W (X))
(7.3.5) Vary (W(X)) 2 (G5B W (X)) -
Eo ( (£ log £(X16))")

6



Corollary 7.3.10 (Cramér—Rao Inequality, iid case) If the assumptions of The-
orem 7.8.9 are satisfied and, additionally, if X1,...,X, are iid with pdf f(z|6), then

(do EsW (X))
nEq ((3% log f(X|)) )

Varg W(X) >

Lemma 7.3.11 If f(x|0) satisfies

70 (g 1o 10x10)) = [ 5 | (G108 1@0)) 1(ale)] ao

(true for an exponential family), then
9 2 82
Ba (55108x16)) | = ~Eo 555108 1(X16) ).

Corollary 7.3.15 (Attainment) Let X;,..., X, be iid f(z|f), where f(x|#) sat-
isfies the conditions of the Cramér-Rao Theorem Let L(0|x) = []i, f(zi|6) denote
the likelihood function. If W (X) = W(X;,...,X,) is any unbiased estimator of 7(8),
then W (X) attains the Cramér—Rao Lower Bound if and only if

(7.3.12) a(@)[W(x) —1(8)] = ;93_0 log L(68|x)

for some function a(8).

Theorem 7.3.17 (Rao—Blackwell) Let W be any unbiased estimator of 7(0), and
let T be a sufficient statistic for 6. Define ¢(T) = E(W|T). Then Egd(T) = 7(6) and
Varg ¢(T) < Varg W for all 8; that is, ¢(T') is a uniformly better unbiased estimator

of 7(0).
Theorem 7.3.19 IfW is a best unbiased estimator of 7(0), then W is unique.

Theorem 7.3.20 If EgW = 7(6), W s the best unbiased estimator of 7(6) if and
only if W is uncorrelated with all unbiased estimators of 0.

Theorem 7.3.283  Let T be a complete sufficient statistic for a parameter 8, and
let ¢(T') be any estimator based only on T. Then ¢(T) is the unique best unbiased
estimator of its expected value.



Point estimation — large sample results

Definition 10.1.1 A sequence of estimators W,, = W, (X,,...,Xy) is a consistent
sequence of estimators of the parameter 8 if, for every ¢ > 0 and every 4 € ©,

(10.1.1) limy, o0 Py (|W, — 8] < €) = 1.

Theorem 10.1.3 If W, is a sequence of estimators of a parameter 8 satisfying

i, lim,, o Varg W, =0,
ii. lim,_, o BiasgW, =0,
for every 6 € O, then W, is a consistent sequence of estimators of 6.

Definition 10.1.9 For an estimator T,,, suppose that k,(T, — 7(8)) — n(0,0?) in
distribution. The parameter ¢2 is called the asymptotic variance or variance of the

limit distribution of T,.

Definition 10.1.11 A sequence of estimators W,, is asymptotically efficient for a
parameter 7(8) if \/n[W, — 7(8)] — n[0,v()] in distribution and

)
By ((log 1(X19))°)

that is, the asymptotic variance of W, achieves the Cramér-Rao Lower Bound.

v(0) =

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X;,X,,..., be iid
f(z]6), let 8 denote the MLE of 6, and let 7(8) be a continuous function of 8. Under
the regqularity conditions in Miscellanea 10.6.2 on f(z|0) and, hence, L(6|x),

Va[r(8) — 7(6)] — n[0,2(6)],

where v(8) is the Cramér-Rao Lower Bound. That is, 7(8) is a consistent and asymp-
totically efficient estimator of 7(6).

Definition 10.1.16 If two estimators W, and V,, satisfy
Vn[Wn, — 7(6)] — n[0, o]
VnlVa — 7(6)] — [0, 09|
in distribution, the asymptotic relative efficiency (ARE) of V,, with respect to W, is

Ty
ARE(VN, Wn) = —
Oy



Hypothesis testing

Definition 8.2.1  The likelihood ratio test statistic for testing Hy: 6 € ©¢ versus
H,:6¢ @8 is

sup L(6|x)
©¢

M) = IR
e

A likelihood ratio test (LRT) is any test that has a rejection region of the form {x: A(x)
< ¢}, where ¢ is any number satisfying 0 < ¢ < 1.

Theorem 8.2.4 If T'(X) is a sufficient statistic for 8 and A\*(t) and A(x) are the
LRT statistics based on T and X, respectively, then A\*(T'(x)) = A(x) for every x in
the sample space.

Definition 8.3.1 The power function of a hypothesis test with rejection region R
is the function of 6 defined by 3(0) = Py(X € R).

Definition 8.3.5 For 0 < a < 1, a test with power function 3(f) is a size « test
if supycg, 8(0) = a.

Definition 8.3.6 For 0 < a < 1, a test with power function 3(#) is a level o test
if S'llpaeeo ,6(9) S Q.

Definition 8.3.11 Let C be a class of tests for testing Hy: 8 € ©p versus H;: 8
©§. A test in class C, with power function 3(6), is a uniformly most powerful (UMP)
class C test if 3(6) > 3'(8) for every 6 € OF and every 3'(8) that is a power function
of a test in class C.

Theorem 8.3.12 (Neyman—Pearson Lemma) Consider testing Hy: 6 = 6
versus H,: 6 = 6,, where the pdf or pmf corresponding to 6; is f(x|6;),i = 0,1, using
a test with rejection region R that satisfies
x € R if f(x|0) > kf(x|6o)
(8.3.1) and
x € R if f(x|61) < kf(x|fo),

for some k > 0, and
(8.3.2) ' a = Py (X € R).

Then

a. (Sufficiency) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level a test.

b. (Necessity) If there exists a test satisfying (8.3.1) and (8.3.2) with k > 0, then
every UMP level o test is a size o test (satisfies (8.8.2)) and every UMP level o test
satisfies (8.3.1) except perhaps on a set A satisfying Pp,(X € A) = Py, (X € A) =
0.



Corollary 8.3.13 Consider the hypothesis problem posed in Theorem 8.3.12. Sup-
pose T'(X) is a sufficient statistic for @ and g(t|6;) is the pdf or pmf of T corresponding
to0;, ¢ = 0,1. Then any test based on T' with rejection region S (a subset of the sample
space of T ) is a UMP level a test if it satisfies

te S if g(t|61) > kg(t|6o)
(8.3.4) and

te S if g(t|61) < kg(t|6o),

for some k > 0, where

(8.3.5) a= Py (T € S).

Definition 8.3.16 A family of pdfs or pmfs {g(¢|#): 8 € ©} for a univariate random
variable T" with real-valued parameter 6 has a monotone likelihood ratio (MLR) if,
for every 62 > 8, g(t|02)/g(t|61) is a monotone (nonincreasing or nondecreasing)
function of t on {t: g(t|61) > 0 or g(t|f2) > 0}. Note that ¢/0 is defined as oo if 0 < c.

Theorem 8.3.17 (Karlin—Rubin)  Consider testing Hy : 6§ < 6y versus H; :
6 > 8y. Suppose that T is a sufficient statistic for 8 and the family of pdfs or pmfs
{9(t|6): 8 € ©} of T has an MLR. Then for any tgy, the test that rejects Hy if and
only if T > tp is a UMP level o test, where a = Py (T > tp).

(For this result to be valid, the likelihood ratio should be nondecreasing.)

Hypothesis testing — large sample results

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple Hy) For test-
ing Hy : 0 = 6y versus H, : 0 # 6y, suppose X1,..., X, are iid f(z|0), 6 is the MLE
of 8, and f(z|@) satisfies the regularity conditions in Miscellanea 10.6.2. Then under
Hy, asn — oc,

—2log A\(X) — x? in distribution,

where x? is a x? random variable with 1 degree of freedom.

Theorem 10.3.3 Let X,,...,X, be a random sample from a pdf or pmf f(z|6).
Under the regularity conditions in Miscellanea 10.6.2, if 6 € ©¢, then the distribution
of the statistic —2log A(X) converges to a chi squared distribution as the sample size
n — o0o. The degrees of freedom of the limiting distribution is the difference between
the number of free parameters specified by 8 € ©¢ and the number of free parameters
specified by 6 € O©.

10



Confidence intervals (interval estimators)

Definition 9.1.1 An interval estimate of a real-valued parameter 6 is any pair of
functions, L(z,...,z,) and U(z,,...,Z,), of a sample that satisfy L(x) < U(x) for
all x € X. If X = x is observed, the inference L(x) < # < U(x) is made. The random
interval [L(X),U(X)] is called an interval estimator.

Definition 9.1.4 For an interval estimator [L(X), U(X)] of a parameter 8, the cover-
age probability of [L(X),U(X)] is the probability that the random interval
[L(X), U(X)] covers the true parameter, 6. In symbols, it is denoted by either Py(8 €
[L(X), U(X)]) or P(6 € [L(X),U(X)]|6).

Definition 9.1.5 For an interval estimator [L(X),U(X)] of a parameter 6, the
confidence coefficient of [L(X),U(X)] is the infimum of the coverage probabilities,
infg Py(8 € [L(X), U(X)]).

Theorem 9.2.2 For each 6y € ©, let A(fg) be the acceptance region of a level a
test of Hy: 8 = 8. For each x € X, define a set C(x) }in the parameter space by

(9.2.1) C(x) = {6o: x € A(6o)}.

Then the random set C(X) is a 1 — a confidence set. Conversely, let C(X) beal—~a
confidence set. For any 6y € ©, define

A(eo) = {x: 0y € C’(x)}

Then A(fp) is the acceptance region of a level o test of Hy: 8 = 6.

11



