Solution of assignment in STK4011/STK9011-f18
Problem 1

a) X and Y has probability density fx(z) = I, where I4(-) is the
indicator function of the set A. Also0< X +Y <1. LetU=X+Y.
Then

o) 1
fulu) = / Loy (u — x) g 1) (z)dx :/0 Ijo1)(u — z)dz

_ fof[ouu—a:)da: ifo<u<li1
B fu 1I[01](U—$)d$ ifl<u<2

- U fo<u<l1
- 2—u if1<u<?2

etX] = fol ety —
(¢ =] = (¢* -

b) The moment generating function of X is M X( ) =

El
(et —1). Hence My(t) = Mxyy(t) = [2(e! — 1)][3
2! + 1) /t2.

On the other hand also

My (t) = f2 e fu(u)du = fol uet“du—l—ff 2 —u)etdu
21 tug %_‘_u etu‘u:l foli tudu_ tuu 2+f tudu
= 2e2t _ 20l 4 e——e +t2—%62t+%et+t%et2—t%et
= (e®t —2¢et +1)/t2.

c) Let V=U+Z=X+Y+Z. Then 0 <V <3 and
fr(v) = / folv — 2)f2(2)dz

fglj I[OI]( Z)dZ .
= fyl_l(v—z)f[071}(v—Z)dz—i-fov [2 —
Jool2—(v— 2)(12(v = 2)dz

v —0?/2 =022
— v2-v) =L+ -1+ @v-1)(2-0v)+ 3(v—1)
B-v)2—v)+35—1(v-2
v?—0v?/2=02/2 if0<v<1
= ¢ —v?43v-1-1 ifl1<v<2
l112—3v+4+%

~—

if2a2<v<3

(v —2)[{ (19 (v— 2)dz

fo<ov<l1
Hf1<ov<2
if2a2<v<3

ifo0<ov<1
if1<v<?2
if2<v<3



Problem 2

1 1 o
— BaP — —Blr B
Fx(x) = pa /a yBde—Baﬁ_ﬁy B|y:a—1—(;) for = > a.

oo 4k 1 Bak
R B e A - s
a k—p5 00 else

f(zla, B) =

% fa<zr<oo a,6>0
0 else

= exp(—(8+ 1)logz)Ba’ Iy o) ().

By defining h(z) = Ij4,)(z) which is not involving unknown param-
eters since « is known, ¢(8) = Ba”, t(x) = logx and w(B) = — (B +1)
f(z|B) can be written on the form h(x)c(f) exp[w(z)t(z)] which is the
definition of an exponential family.

If U = log X/a, the inverse transformation is X = aexp(U). Hence
the density of U is gy (u|B) = BaP exp(—(8 + Nu)a P laexp(u) =
Bexp(—pu) for u > 0 since = > a.

d) The likelihood equals
L(Oé,,@‘.’lfl,..., Hﬁa ﬁ+1I[am (xz) = ﬂexp(nlogﬁ_(ﬂ""l)E?:l logxi)l[a,oo)(x(l))

where Ty = min;—1_._, ;. Because Ba I[a,oo)(x(l)) is increasing for
a < z(1) and equal to 0 for a > z (), & = z(;) and

L(a(B), Blz1,...,xn) = exp(nlogf — (B +1)Ei;logz; — [(n(B + 1) — n]logz(y))
= exp(nlog B — (B4 1)ZiL, logzi/x (1) — nlogz())

Hence
log L(&(B), Blz1, - - -, zn) = exp(nlog B—(B+1)X, log x;/x(1)—nlog (1))
S0 5
log L e — =X logx;
85 0og ( ( )7/8|$17 y Ln ) ﬁ =1 OgLE/.’E

and B = n/Ei_ logxi/x (). Also 8%2 log L(&(B), Blz1,...,on) = —n/B% <
0 so the stationary point i 1s a maximum since there is only one station-
ary point.



e) Because U; = log X; — «, i = 1,...,n are independent and exponen-

tially distributed random variables, (log X(1y—a,log X(2y/X(1), .. .,1log X/ X (1))

has the same distribution as (U(1), Uy — Uqy, - - -, Ugmy — Ufq)) where
(X@)s s X)) and (Uny, ..., Ugy,) are the order statistics. Hence
independence of X(;) and ¥, log X;/X (1) = Xy log X3/ X (1) will
follow fram independence of Uy and X7 _o(Uyy — Upyy)-

To show that consider the transformation Vi = U(l),VZ' =(n—1i+
DU — Ui-1)),, @ = 2,...,n with inverse transformation

Uy = N
Ug = WVa/(n-1)+VWi
Us = V3/(n—2)+Upg =V3/(n—2)+Va/(n—1)+ W

U(n) = E?:ZVZ'/(H —i+ 1) + W

Because Y7, U(;) = X7y V; +nVi and the Jacobian is equal to 1/(n —
1)!, the simultanous density of (V1,...,V},) is nlexp(—f(ve+- - -+v,)—
nBv1)/(n — 1)I. Thus the simultanous density factorizes, so V4 = Uy
and (Va,...,Vn) = (n=2)(U)—=Ug)); - - -, Uy —Uqry) are independent
and therefore also U1y and %7, (Ug) — Upyy)-

The cumulative distribution function of a Pareto distributed random
variable is Fx(z) = [7 fﬁoﬁ dy = —aPy Pz =1 (2)5.

«

The cumulative distribution function of & is Fy = P(a < z) =
P(X(l) < .T) = 1—P(X(1) > x) = 1—P(X1 >z, Xy > a:) =
1—[1-Fx(z)]"=1—(2)"%, so & is Pareto distributed with param-
eters a and ng.

From the results above X' ,log X(;)/X(1) has the same distribution
as X o(Uyy — Uny) = Bi_,Vie The random variables Va,--- |V, are
independent gamma(1,1/43) distributed variables, so 25V1,--- ,28V,
are independently distributed 3 random variables. Then 2B%7 4V is
X%(n—l) distributed and so is 2n3/8 = 28¥7_, log X(;y/ X (1).

The joint probability density is

f(mla cee ,l'n|04, B)
= H?:l ﬁaﬁﬁl[a,m) (mz)

= exp(nfloga +nlog B — (8 + 1)X7 log z;) |4 o) (7(1))

= exp(—(B+ 1)ZL logzi/x) — n(B + 1) logz(1) /o + nlog Ba + nlog z(1)) I [a,c00) (T (1))-

The density can therefore be expressed as a function of the parameters
a and 3 and the functions ¥}, log ¥;/x(1) and x(;). From the factor-
ization theorem, it then follows that the statistic (X (), ¥i; log X;/ X (1))
is sufficient for the parameters o and S.



g) From part d) 2n8/8 is X%(n—l) distributed so E[Qn;/ﬁ’] =1/2(n—2)
since E[X] = 1/(k — 2) when X ~ X3, k > 2, see Casella and Berger
p.130. Thus E[8] = 2n3/2(n—2) = nB/(n—2). Therefore (n—2)5/n
is an unbiased estimator of 5. Since it is a function of the complete
and sufficient statistic (X(;), %, log X;/X(q)) it is UMVUE or the
best unbiased estimator.

h) For &, write
I 1 2B 1
(n—l)é] =Xl - (n—1) B 2n/3

Using that 2ng/ 5 is X%(n—l) distributed and that X(;) and ﬁ are inde-
pendent it follows that

1 l}} _ npa - 1 2(n-1)
(n—1)3" nB-1

Hence, X(1)[1— ﬁé]

tion of the complete and sufficient statistic (X (), X7 log X;/X(1)) and
is therefore UMVUE or the best unbiased estimator for o.

Xyl - .

nfa nﬁ—lz

E{X - (n—1) 2np I= nf—1 np

is an unbiased estimator of a.. It is also a func-

Problem 3

a) If X ~ fx(z[p), >00, p(1 — p)* ! =1 means that > o0 (1 —p)* ! =
1/p. Multiplying with 1 — p yields > >2 (1 —p)* = (1 —p)/p , so
after differentiating with respect to p and multiplying with p E(X) =
> ap(l — p)® ! = 1/p. Similarly, multiplying the last identity
with (1 — p) and differentiating with respect to p, yields E(X?) =
Sasya?p(l = p)* = (2—p)/p, so Var(X) = (1 - p)/p*.

Thus E(X) = 1/p and Var(X) = (1 — p)/np>.

log H fx(zilp) = log Hp(l —p)%~!l =nlogp+ (Z x; —n)log(l—p)
i=1 i=1

SO

n—np—npTr+np N —npr
p(1—p) p(l—p)

(;;longx(UCz‘!p) = n/p—(z zi=—n)/(1-p) =

Hence
(1-pX)?
p*(1 —p)?

(1-— 2pX + pQX'Q)
p*(1 —p)?

Bl tos [ Ax(Xilp) = w2l | =B |



But E(X?) = Var(X) + (B(X)? = Lp 4 & = HLpin

n*(1-2+1+(1-p)/n)  n
p*(1—p)? -~ pP(1-p)

m;mﬂn%w%

By the Cramer Rao inequality
9 I ¥))2 1
_ = EB(X = 1
VGT(X) Z 9 (ap n( )) 2 = Ii = 3
Elg; log [[izy fx (Xilp)] P2-p P (1-p)
The lower bound is equal to Var(X) so X is a best unbiased estimator
for 1/p.

The likelihood function is
n
L(pler,....an) = [[p(0 —p)" =t = p*(1 —p)=="
i=1
SO
log L(plz1, ..., xn) = nlogp+ (D zi —n)log(1 — p).
Differentiating with respect to p yields first order conditions

n_ (Qw—n) _ n—pzT _0
p 1-p p(l —p)

n

with solution p = S = % which is the maximum likelihood estima-
tor for p. Also remark that the derivative changes from positive to

negative, which means that the stationary point is a maximum

Ell,—1)(X1)] = P(X1 = 1) = p so the estimator is unbiased. Using
the factorization theorem we see that )  X; is a sufficient statistic.
From the description of the negative binominal distribution in Casella
and Berger, p.95, 1. 10-14 one can see that the sum of n geometric
variables are negative binominally distributed with parameters n and

—1
P(ZXi:m):(:i )p"(l—p)xn,a}:n,n—i—l,...
Then
(Xi=1land >, X;=2—1)

= P
p o= PX1=1> X;=2)=
=1

_ _ 9 (z—2)!
e e e e )1 ey B
-1 _ 11— - —1)! T o1
Y e I e = A
Notice that
N n—1 n—1 n—1
p= = =p—r:.

nX—l_n%—l n—p

Thus p < ]52%}5 = p. Since p is unbiased, E(p) < p, so p is negatively
biased.



