Solution of assignment in STK4011/STK9011-f18 Problem 1

a) X and Y has probability density $f_X(x) = I_{[0,1]}$, where $I_A(\cdot)$ is the indicator function of the set A. Also $0 \le X + Y \le 1$. Let U = X + Y. Then

$$f_U(u) = \int_{-\infty}^{\infty} I_{[0,1]}(u-x)I_{[0,1]}(x)dx = \int_{0}^{1} I_{[0,1]}(u-x)dx$$

$$= \begin{cases} \int_{0}^{u} I_{[0,1]}(u-x)dx & \text{if } 0 \le u \le 1\\ \int_{u-1}^{1} I_{[0,1]}(u-x)dx & \text{if } 1 \le u \le 2 \end{cases}$$

$$= \begin{cases} u & \text{if } 0 \le u \le 1\\ 2-u & \text{if } 1 \le u \le 2 \end{cases}$$

b) The moment generating function of X is $M_X(t) = E[e^{tX}] = \int_0^1 e^{tx} dx = \frac{1}{t}(e^t - 1)$. Hence $M_U(t) = M_{X+Y}(t) = [\frac{1}{t}(e^t - 1)][\frac{1}{t}(e^t - 1)] = (e^{2t} - 2e^t + 1)/t^2$.

On the other hand also

$$\begin{split} M_U(t) &= \int_0^2 e^{tu} f_U(u) du = \int_0^1 u e^{tu} du + \int_1^2 (2-u) e^{tu} du \\ &= 2 \frac{1}{t} e^{tu} |_{u=1}^{u=2} + u \frac{1}{t} e^{tu} |_{u=0}^{u=1} - \int_0^1 \frac{1}{t} e^{tu} du - u \frac{1}{t} e^{tu} |_{u=1}^{u=2} + \int_1^2 \frac{1}{t} e^{tu} du \\ &= \frac{2}{t} e^{2t} - \frac{2}{t} e^t + \frac{1}{t} e^t - \frac{1}{t^2} e^t + \frac{1}{t^2} - \frac{2}{t} e^{2t} + \frac{1}{t} e^t + \frac{1}{t^2} e^{t^2} - \frac{1}{t^2} e^t \\ &= (e^{2t} - 2e^t + 1)/t^2. \end{split}$$

c) Let V = U + Z = X + Y + Z. Then $0 \le V \le 3$ and

$$f_{V}(v) = \int_{-\infty}^{\infty} f_{U}(v-z)f_{Z}(z)dz$$

$$= \begin{cases} \int_{0}^{v} (v-z)I_{[0,1]}(v-z)dz & \text{if } 0 \leq v \leq 1\\ \int_{v-1}^{1} (v-z)I_{[0,1]}(v-z)dz + \int_{0}^{v-1} [2-(v-z)]I_{(1,2]}(v-z)dz & \text{if } 1 \leq v \leq 2\\ \int_{v-2}^{1} [2-(v-z)]I_{(1,2]}(v-z)dz & \text{if } 0 \leq v \leq 1 \end{cases}$$

$$= \begin{cases} v^{2}-v^{2}/2 = v^{2}/2 & \text{if } 0 \leq v \leq 1\\ v(2-v) - \frac{1}{2} + \frac{1}{2}(v-1)^{2} + (v-1)(2-v) + \frac{1}{2}(v-1)^{2} & \text{if } 1 \leq v \leq 2\\ (3-v)(2-v) + \frac{1}{2} - \frac{1}{2}(v-2) & \text{if } 2 \leq v \leq 3 \end{cases}$$

$$= \begin{cases} v^{2}-v^{2}/2 = v^{2}/2 & \text{if } 0 \leq v \leq 1\\ -v^{2}+3v-1-\frac{1}{2} & \text{if } 1 \leq v \leq 2\\ \frac{1}{2}v^{2}-3v+4+\frac{1}{2} & \text{if } 2 \leq v \leq 3 \end{cases}$$

Problem 2

a)
$$F_X(x) = \beta \alpha^{\beta} \int_{\alpha}^{x} \frac{1}{y^{\beta+1}} dy = \beta \alpha^{\beta} \frac{1}{-\beta} y^{-\beta} \Big|_{y=\alpha}^{x} = 1 - \left(\frac{\alpha}{x}\right)^{\beta} \text{ for } x > \alpha.$$

b)
$$E[X^k] = \beta \alpha^{\beta} \int_{\alpha}^{\infty} \frac{x^k}{x^{\beta+1}} = \beta \alpha^{\beta} \frac{1}{k-\beta} x^{k-\beta} \Big|_{x=\alpha}^{\infty} = \begin{cases} \frac{\beta \alpha^k}{\beta-k} & \text{if } k < \beta. \\ \infty & \text{else} \end{cases}$$

c) $f(x|\alpha,\beta) = \begin{cases} \frac{\beta\alpha^{\beta}}{x^{\beta+1}} & \text{if } \alpha \leq x < \infty \ \alpha,\beta > 0 \\ 0 & \text{else} \end{cases}$ $= \exp(-(\beta+1)\log x)\beta\alpha^{\beta}I_{[\alpha,\infty)}(x).$

By defining $h(x) = I_{[\alpha,\infty)}(x)$ which is not involving unknown parameters since α is known, $c(\beta) = \beta \alpha^{\beta}$, $t(x) = \log x$ and $w(\beta) = -(\beta + 1)$ $f(x|\beta)$ can be written on the form $h(x)c(\beta)\exp[w(x)t(x)]$ which is the definition of an exponential family.

If $U = \log X/\alpha$, the inverse transformation is $X = \alpha \exp(U)$. Hence the density of U is $g_U(u|\beta) = \beta \alpha^{\beta} \exp(-(\beta + 1)u)\alpha^{-\beta - 1}\alpha \exp(u) = \beta \exp(-\beta u)$ for u > 0 since $x > \alpha$.

d) The likelihood equals

$$L(\alpha, \beta | x_1, \dots, x_n) = \prod_{i=1}^n \beta \alpha^{\beta} \frac{1}{x_i^{\beta+1}} I_{[\alpha, \infty)}(x_i) = \alpha^{n\beta} \exp(n \log \beta - (\beta+1) \sum_{i=1}^n \log x_i) I_{[\alpha, \infty)}(x_{(1)})$$

where $x_{(1)} = \min_{i=1,\dots,n} x_i$. Because $\beta \alpha^{\beta} I_{[\alpha,\infty)}(x_{(1)})$ is increasing for $\alpha \leq x_{(1)}$ and equal to 0 for $\alpha > x_{(1)}$, $\hat{\alpha} = x_{(1)}$ and

$$L(\hat{\alpha}(\beta), \beta | x_1, \dots, x_n) = \exp(n \log \beta - (\beta + 1) \sum_{i=1}^n \log x_i - [(n(\beta + 1) - n) \log x_{(1)})$$

= $\exp(n \log \beta - (\beta + 1) \sum_{i=1}^n \log x_i / x_{(1)} - n \log x_{(1)})$

Hence

$$\log L(\hat{\alpha}(\beta), \beta | x_1, \dots, x_n) = \exp(n \log \beta - (\beta + 1) \sum_{i=1}^n \log x_i / x_{(1)} - n \log x_{(1)})$$

so $\frac{\partial}{\partial \beta} \log L(\hat{\alpha}(\beta), \beta | x_1, \dots, x_n) = \frac{n}{\beta} - \sum_{i=1}^n \log x_i / x_{(1)}$

and $\hat{\beta} = n/\sum_{i=1}^{n} \log x_i/x_{(1)}$. Also $\frac{\partial^2}{\partial \beta^2} \log L(\hat{\alpha}(\beta), \beta | x_1, \dots, x_n) = -n/\beta^2 < 0$ so the stationary point is a maximum since there is only one stationary point.

e) Because $U_i = \log X_i - \alpha$, $i = 1, \ldots, n$ are independent and exponentially distributed random variables, $(\log X_{(1)} - \alpha, \log X_{(2)} / X_{(1)}, \ldots, \log X_{(n)} / X_{(1)})$ has the same distribution as $(U_{(1)}, U_{(2)} - U_{(1)}, \ldots, U_{(n)} - U_{(1)})$ where $(X_{(1)}, \ldots, X_{(n)})$ and $(U_{(1)}, \ldots, U_{(n)})$ are the order statistics. Hence independence of $X_{(1)}$ and $\sum_{i=1}^{n} \log X_i / X_{(1)} = \sum_{i=2}^{n} \log X_{(i)} / X_{(1)}$ will follow fram independence of $U_{(1)}$ and $\sum_{i=2}^{n} (U_{(i)} - U_{(1)})$.

To show that consider the transformation $V_1 = U_{(1)}, V_i = (n - i + 1)(U_{(i)} - U_{(i-1)}), i = 2, ..., n$ with inverse transformation

$$\begin{array}{rcl} U_{(1)} & = & V_1 \\ U_{(2)} & = & V_2/(n-1) + V_1 \\ U_{(3)} & = & V_3/(n-2) + U_{(2)} = V_3/(n-2) + V_2/(n-1) + V_1 \\ & \vdots \\ U_{(n)} & = & \sum_{i=2}^n V_i/(n-i+1) + V_1 \end{array}$$

Because $\Sigma_{i=1}^n U_{(i)} = \Sigma_{i=2}^n V_i + nV_1$ and the Jacobian is equal to 1/(n-1)!, the simultaneous density of (V_1, \ldots, V_n) is $n! \exp(-\beta(v_2 + \cdots + v_n) - n\beta v_1)/(n-1)!$. Thus the simultaneous density factorizes, so $V_1 = U_{(1)}$ and $(V_2, \ldots, V_n) = (n-2)(U_{(2)} - U_{(1)}), \ldots, U_{(n)} - U_{(1)})$ are independent and therefore also $U_{(1)}$ and $\Sigma_{i=2}^n (U_{(i)} - U_{(1)})$.

The cumulative distribution function of a Pareto distributed random variable is $F_X(x) = \int_{\alpha}^{x} \frac{\beta \alpha^{\beta}}{y^{\beta+1}} dy = -\alpha^{\beta} y^{-\beta}|_{\alpha}^{x} = 1 - (\frac{\alpha}{x})^{\beta}$.

The cumulative distribution function of $\hat{\alpha}$ is $F_{\hat{\alpha}} = P(\hat{\alpha} \leq x) = P(X_{(1)} \leq x) = 1 - P(X_{(1)} > x) = 1 - P(X_1 > x, \dots, X_n > x) = 1 - [1 - F_X(x)]^n = 1 - (\frac{\alpha}{x})^{n\beta}$, so $\hat{\alpha}$ is Pareto distributed with parameters α and $n\beta$.

From the results above $\Sigma_{i=2}^n \log X_{(i)}/X_{(1)}$ has the same distribution as $\Sigma_{i=2}^n (U_{(i)} - U_{(1)}) = \Sigma_{i=2}^n V_i$. The random variables V_2, \dots, V_n are independent gamma $(1,1/\beta)$ distributed variables, so $2\beta V_1, \dots, 2\beta V_n$ are independently distributed χ_2^2 random variables. Then $2\beta \Sigma_{i=2}^n V_i$ is $\chi_{2(n-1)}^2$ distributed and so is $2n\beta/\hat{\beta} = 2\beta \Sigma_{i=2}^n \log X_{(i)}/X_{(1)}$.

f) The joint probability density is

$$f(x_{1},...,x_{n}|\alpha,\beta)$$

$$= \prod_{i=1}^{n} \beta \alpha^{\beta} \frac{1}{x_{i}^{\beta+1}} I_{[\alpha,\infty)}(x_{i})$$

$$= \exp(n\beta \log \alpha + n \log \beta - (\beta+1) \sum_{i=1}^{n} \log x_{i}) I_{[\alpha,\infty)}(x_{(1)})$$

$$= \exp(-(\beta+1) \sum_{i=1}^{n} \log x_{i} / x_{(1)} - n(\beta+1) \log x_{(1)} / \alpha + n \log \beta \alpha + n \log x_{(1)}) I_{[\alpha,\infty)}(x_{(1)}).$$

The density can therefore be expressed as a function of the parameters α and β and the functions $\sum_{i=1}^{n} \log x_i/x_{(1)}$ and $x_{(1)}$. From the factorization theorem, it then follows that the statistic $(X_{(1)}, \sum_{i=1}^{n} \log X_i/X_{(1)})$ is sufficient for the parameters α and β .

- g) From part d) $2n\beta/\hat{\beta}$ is $\chi^2_{2(n-1)}$ distributed so $E[\frac{1}{2n\beta/\hat{\beta}}] = 1/2(n-2)$ since E[X] = 1/(k-2) when $X \sim \chi^2_k$, k > 2, see Casella and Berger p.130. Thus $E[\hat{\beta}] = 2n\beta/2(n-2) = n\beta/(n-2)$. Therefore $(n-2)\hat{\beta}/n$ is an unbiased estimator of β . Since it is a function of the complete and sufficient statistic $(X_{(1)}, \Sigma^n_{i=1} \log X_i/X_{(1)})$ it is UMVUE or the best unbiased estimator.
- h) For $\hat{\alpha}$, write

$$X_{(1)}[1 - \frac{1}{(n-1)}\frac{1}{\hat{\beta}}] = X_{(1)}[1 - \frac{1}{(n-1)}\frac{2n\beta}{\hat{\beta}}\frac{1}{2n\beta}].$$

Using that $2n\beta/\hat{\beta}$ is $\chi^2_{2(n-1)}$ distributed and that $X_{(1)}$ and $\hat{\beta}$ are independent it follows that

$$E\{X_{(1)}[1-\frac{1}{(n-1)}\frac{1}{\hat{\beta}}]\} = \frac{n\beta\alpha}{n\beta-1}[1-\frac{1}{(n-1)}\frac{2(n-1)}{2n\beta}] = \frac{n\beta\alpha}{n\beta-1}\frac{n\beta-1}{n\beta} = \alpha.$$

Hence, $X_{(1)}[1-\frac{1}{(n-1)}\frac{1}{\hat{\beta}}]$ is an unbiased estimator of α . It is also a function of the complete and sufficient statistic $(X_{(1)}, \Sigma_{i=1}^n \log X_i/X_{(1)})$ and is therefore UMVUE or the best unbiased estimator for α .

Problem 3

a) If $X \sim f_X(x|p)$, $\sum_{x=1}^{\infty} p(1-p)^{x-1} = 1$ means that $\sum_{x=1}^{\infty} (1-p)^{x-1} = 1/p$. Multiplying with 1-p yields $\sum_{x=1}^{\infty} (1-p)^x = (1-p)/p$, so after differentiating with respect to p and multiplying with p $E(X) = \sum_{x=1}^{\infty} xp(1-p)^{x-1} = 1/p$. Similarly, multiplying the last identity with (1-p) and differentiating with respect to p, yields $E(X^2) = \sum_{x=1}^{\infty} x^2p(1-p)^{x-1} = (2-p)/p$, so $Var(X) = (1-p)/p^2$. Thus $E(\bar{X}) = 1/p$ and $Var(\bar{X}) = (1-p)/np^2$.

b)

$$\log \prod_{i=1}^{n} f_X(x_i|p) = \log \prod_{i=1}^{n} p(1-p)^{x_i-1} = n \log p + (\sum x_i - n) \log(1-p)$$

so

$$\frac{\partial}{\partial p}\log\prod_{i=1}^{n} f_X(x_i|p) = n/p - (\sum x_i - n)/(1-p) = \frac{n - np - np\bar{x} + np}{p(1-p)} = \frac{n - np\bar{x}}{p(1-p)}$$

Hence

$$E\left[\frac{\partial}{\partial p}\log\prod_{i=1}^{n}f_{X}(X_{i}|p)\right]^{2} = n^{2}E\left[\frac{(1-p\bar{X})^{2}}{p^{2}(1-p)^{2}}\right] = n^{2}E\left[\frac{(1-2p\bar{X}+p^{2}\bar{X}^{2})}{p^{2}(1-p)^{2}}\right]$$

But
$$E(\bar{X}^2) = Var(\bar{X}) + (E(\bar{X})^2) = \frac{1-p}{np^2} + \frac{1}{p^2} = \frac{1+(1-p)/n}{p^2}$$
 so

$$E\left[\frac{\partial}{\partial p}\log\prod_{i=1}^{n}f_{X}(X_{i}|p)\right]^{2} = \frac{n^{2}(1-2+1+(1-p)/n)}{p^{2}(1-p)^{2}} = \frac{n}{p^{2}(1-p)}.$$

By the Cramer Rao inequality

$$Var(\bar{X}) \geq \frac{(\frac{\partial}{\partial p}E(\bar{X}))^2}{E[\frac{\partial}{\partial p}\log\prod_{i=1}^n f_X(X_i|p)]^2} = \frac{\frac{1}{p^4}}{\frac{n}{p^2(1-p)}} = \frac{1}{np^2(1-p)}$$

The lower bound is equal to $Var(\bar{X})$ so \bar{X} is a best unbiased estimator for 1/p.

c) The likelihood function is

$$L(p|x_1,...,x_n) = \prod_{i=1}^n p(1-p)^{x_i-1} = p^n (1-p)^{\sum x_i - n}$$

SO

$$\log L(p|x_1,\ldots,x_n) = n\log p + (\sum x_i - n)\log(1-p).$$

Differentiating with respect to p yields first order conditions

$$\frac{n}{p} - \frac{(\sum x_i - n)}{1 - p} = \frac{n - p\bar{x}}{p(1 - p)} = 0$$

with solution $\hat{p} = \frac{n}{\sum x_i} = \frac{1}{\bar{x}}$ which is the maximum likelihood estimator for p. Also remark that the derivative changes from positive to negative, which means that the stationary point is a maximum

d) $E[I_{[x=1]}(X_1)] = P(X_1 = 1) = p$ so the estimator is unbiased. Using the factorization theorem we see that $\sum X_i$ is a sufficient statistic. From the description of the negative binominal distribution in Casella and Berger, p.95, l. 10-14 one can see that the sum of n geometric variables are negative binominally distributed with parameters n and p.

$$P(\sum X_i = x) = {x-1 \choose n-1} p^n (1-p)^{x-n}, \ x = n, n+1, \dots$$

Then

$$\tilde{p} = P(X_1 = 1 | \sum_{i=1}^{n} X_i = x) = \frac{P(X_1 = 1 \text{ and } \sum_{i=2}^{n} X_i = x - 1)}{P(\sum X_i = x)}$$

$$= \frac{p\binom{x-2}{n-2}p^{n-2}(1-p)^{x-2-n+2}}{\binom{x-1}{n-1}p^{n-1}(1-p)^{x-1-n+1}} = \frac{\frac{(x-2)!}{(n-2)!(x-n)!}}{\frac{(x-1)!}{(n-1)!(x-n)!}} = \frac{n-1}{x-1}.$$

e) Notice that

$$\tilde{p} = \frac{n-1}{n\bar{X} - 1} = \frac{n-1}{n\frac{1}{\hat{n}} - 1} = \hat{p}\frac{n-1}{n-\hat{p}}.$$

Thus $\hat{p} < \hat{p} \frac{n-1}{n-\hat{p}} = \tilde{p}$. Since \tilde{p} is unbiased, $E(\hat{p}) < p$, so \hat{p} is negatively biased.