Preliminary material STK4011-f17: Statistical Inference Theory

Random variables

Definition A random variable is a function from a sample space into the real numbers

$$X:S \to \mathbb{R}$$

S is a probability space so

- i) $P(A) \geq 0, A \in \mathcal{B}$
- ii) P(S) = 1
- iii) If $A_1, A_2, \ldots \in \mathcal{B}, A_i \cap A_j = \emptyset, i \neq j$, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Example Assume *S* finite. Let

$$P(A) = \frac{\#\{s : s \in A\}}{\#\{s : s \in S\}} = \frac{\text{"favorable"}}{\text{"possible"}}$$

 $P_X(X = x) = P(\{s : X(s) = x\})$ is the **distribution of X** defined in terms of S.

Example $S = \{0, 1\}^{10}$, so $s = (s_1, ..., s_{10})$ where $s_i = 0$ or $s_i = 1, \#S = 1024$.

The probability is defined by 1024 non-negative numbers with sum equal to 1.

Let $X(s) = \sum_{i=1}^{10} s_i$. Then $P_X(X = x)$ is the sum of those numbers corresponding to the $s = (s_1, \dots, s_{10})$ where exactly x s_i are 1 and n - x are 0.

In the special case where all the 1024 mumbers are equal and hence 1/1024, $X \sim Binomial(10, 0.5)$.

In general, also for countable and infinite range of X, denoted by $\mathcal X$ when $A\subset\mathcal X$

$$P_X(X \in A) = P(\{s \in S : X(s) \in A)$$

Distributions can be described by the **cumulative distribution function** , **cdf**.

$$F_X(x) = P_X(X \le x)$$

Remark that $F_X(x)$ is right continous.

If $P_X(X = x) = 0$ for all x, F_X is continous and X is a continous random variable.

If X is discrete, i.e. has finite or countable range, F_X is a step function.

For X discrete, the **probability mass function, pmf,** is given by $f_X(x) = P_X(X = x)$.

If F_X is continuous and differentiable, the **probability density** function, pdf satisfies

$$F_X(x) = \int_{-\infty}^x f(t)dt$$
 for all x

The expectation of the random variable X

$$E(X) = \begin{cases} \sum_{x \in \mathcal{X}} x f_X(x) & \text{if X is discrete} \\ \int_{-\infty}^{\infty} x f(x) dx & \text{if X has pdf } f_X \end{cases}$$

describes the center of the distribution.

The variance $Var(X) = E[X^2] - [E(X)]^2$ describes the spread of the distribution.

Notation:

 $X \sim F_X$, X has cdf F_X

 $X \sim f_X$, X has pmf/pdf f_X

 $X \sim Y X$ and Y have the same distribution.

Transformations

X random variable implies that Y = g(X) is a random variable where $g: \mathcal{X} \to \mathcal{Y}$,

$$\mathcal{X} = \{x : f_X(x) > 0\}, \mathcal{Y} = \{y : Y = g(x) \text{ some } x \}$$

Distribution of Y?

$$P(Y \in A) = P(g(X) \in A) = P(X \in g^{-1}(A))$$

where
$$g^{-1}(A) = \{x : g(x) \in A\}.$$

X discrete:

$$f_Y(y) = P_Y(Y = y) = \sum_{x \in g^{-1}(y)} P_X(X = x) = \sum_{x \in g^{-1}(y)} f_X(x)$$

X continous:

$$F_Y(y) = P_Y(Y \le y) = P_X(g(X) \le y) = P_X(X \in \{x : g(x) \le y\}) = \int_{\{x : g(x) \le y\}} f_X(x)$$

Problem if g is not monotone.

Example

$$X \sim U[0,1] Y = \sin^2(X)$$

Then

$$\{y:\leq y_0\}=\{x:0\leq x\leq x_1\}\cup \{x:x_2\leq x\leq x_3\}\cup \{x:x\geq x_4\}$$

and

$$P_Y(Y \le y_0) = P_X(X \le x_1) + P_X(x_2 \le X \le x_3) + P_X(X \ge x_4)$$

where

$$\sin^2(x_1) = \sin^2(x_2) = \sin^2(x_3) = \sin^2(x_4) = y_0$$

Consider the case where g is strictly monotone,

i.e. either strictly decreasing or increasing

The support of X is $\mathcal{X} = \{x : f_X(x) > 0\}$

$$\mathcal{Y} = \{ y : Y = g(x) \text{ some } x \}$$

Theorem

Let $X \sim f_X$ and Y = g(X) where g is strictly monotone. If g is strictly monotone (on the support) and g^{-1} is continuously differentiable on $\mathcal Y$ then

$$g_Y(y) = \left\{ egin{array}{ll} f_X(g^{-1}(y)) | rac{\partial}{\partial y} g_Y^{-1}(y) | & y \in \mathcal{Y} \\ 0 & \textit{else} \end{array}
ight.$$

Proof. For g increasing

$$G_Y(y) = P(Y \le y) = P_X(g(X) \le y)$$

= $P(X \le g^{-1}(y)) = F_X(g^{-1}(y)).$

Differentiating with respect to y

$$g_Y(y) = \frac{\partial}{\partial y}G(y) = f_X(g^{-1}(y))\frac{\partial}{\partial y}g_Y^{-1}(y)$$

For g decreasing

$$G_Y(y) = P(Y \le y) = P_X(g(X) \le y)$$

= $P(X \ge g^{-1}(y)) = 1 - F_X(g^{-1}(y)).$

Differentiating with respect to y

$$g_Y(y) = \frac{\partial}{\partial y}G(y) = -f_X(g^{-1}(y))\frac{\partial}{\partial y}g_Y^{-1}(y)$$

Example.

Theorem

Let f be a pdf and $\mu \in \mathbb{R} \ \sigma > 0$. Then $X \sim \frac{1}{\sigma} f(\frac{x-\mu}{\sigma}) \Leftrightarrow \exists Z, \ Z \sim f \ \text{and} \ X = \sigma Z + \mu$

Proof
$$\Leftarrow$$
: Let $g(x) = \sigma x + \mu$. Then g is monotone, $g^{-1}(x) = \frac{x-\mu}{\sigma}$ and $\frac{\partial}{\partial x}g^{-1}(x) = 1/\sigma$. If $X = g(Z)$ then $f_X(x) = f(g^{-1}(x))\frac{\partial}{\partial x}g^{-1}(x) = \frac{1}{\sigma}f(\frac{x-\mu}{\sigma})$ \Rightarrow : Let $g(x) = \frac{x-\mu}{\sigma}$, $Z = g(X)$. Then $g^{-1}(z) = \sigma z + \mu$, $\frac{\partial}{\partial x}g^{-1}(x) = \sigma$, so

$$f_Z(z) = f_X(g^{-1}(z)) \frac{\partial}{\partial x} g^{-1}(z) = f(\frac{\sigma z + \mu - \mu}{\sigma}) \frac{1}{\sigma} \sigma = f(z).$$

Also
$$Z = \frac{X - \mu}{\sigma}$$
 so $X = \sigma Z + \mu$.

Example. $Y = X^2$.

$$F_Y(y) = P_X(X^2 \le y) = P_X(-\sqrt{y} \le X \le \sqrt{y})$$

= $P_X(X \le \sqrt{y}) - P_X(X \le -\sqrt{y})$
= $F_X(\sqrt{y}) - F_X(-\sqrt{y})$

SO

$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) - \left(-\frac{1}{2\sqrt{y}} f_X(-\sqrt{y})\right)$$
$$= \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) + \frac{1}{2\sqrt{y}} f_X(-\sqrt{y})$$

This procedure can be generalized to more than two intervals.

If F_X is not strictly increasing, care is needed in the definition of F_X^{-1} .

Lemma

Let
$$F_X^{-1}(y) = \inf\{u : F_X(u) \ge y\}.$$

Then $F_X^{-1}(F_X(x)) = x.$

Proof. By definition

$$F_X^{-1}(F_X(x)) = \inf\{u : F_X(u) \ge F_X(x)\} = x$$

where the last equality follows since F_X is right continuous.

Important transformation:

Theorem

Let X have a continuous cdf F_X and let $Y = F_X(X)$. Then $Y \sim U[0,1]$.

Proof.

$$P_Y(Y \le y) = P_X(F_X(X) \le y) = P_X(F_X^{-1}[F_X(X)] \le F_X^{-1}(y))$$

since F_X^{-1} is by definition increasing. From previous Lemma

$$P_X(F_X^{-1}[F_X(X)] \le F_X^{-1}(y)) = P_X(X \le F^{-1}(y)) = F_X(F_X^{-1}(y)).$$

But $F_X(F_X^{-1}(y)) = y$ since F_X is continuous.

Moment generating functions.

Definition The moment generating function, mgf, of a random variable X is the function

$$M_X(t) = E[\exp(tX)]$$

provided the expectation exists in an interval (-h, h).

If differentiation and integration can be interchanged

$$\frac{\partial}{\partial t} M_X(t)|_{t=0} = E[X \exp(tX)]|_{t=0} = E(X)$$

$$\frac{\partial^2}{\partial t^2} M_X(t)|_{t=0} = E[X^2 \exp(tX)]|_{t=0} = E(X^2),$$
etc.

Knowledge of moments is not enough to deterermine distribution in general.

But, if $M_X(t)$ and $M_Y(t)$ exists, and $M_X(t)=M_Y(t), \ \forall t\in (-h,h)$ for some h>0, then $X\sim Y$.

Also, let $\{X_j\}$ be a sequence of random variables with mgf M_{X_j} Suppose:

- i) $M_{X_i}(t) \rightarrow M_X(t) \ \forall t \in (-h, h)$ for some h > 0
- ii) $M_X(t)$ is a mgf for a random variable X,

then $F_{X_j}(x) \to F_X(x)$ if F_X is continuous at x and the moments of X is given by M_X .

Common discrete distributions

Hypergeometric

Binomial

Poisson

Negative binomial

Common continuous distributions

Uniform:

$$f_X(x|a,b) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{else} \end{cases}$$

Gamma:

The **gamma** function is defined by the integral $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ which is finite for $\alpha > 0$.

$$f_X(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \ 0 < x < \infty, \ \alpha > 0, \beta > 0.$$

Normal:

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, -\infty < x < \infty.$$

Beta:

The **beta** function is defined as

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$$

$$f_X(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}, \ 0 < x < 1, \ \alpha > 0, \beta > 0.$$

Cauchy:

$$f_X(x|\mu,\sigma) = \frac{1}{\sigma\pi(1+(\frac{x-\mu}{\sigma})^2)}, \ -\infty < x < \infty$$

Lognormal:

$$\log X \sim n(\mu, \sigma^2)$$
.

Double exponential:

$$f_X(x|\mu,\sigma) = \frac{1}{2\sigma}e^{|x-\mu|/\sigma}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0.$$

Bivariate distributions

Bivariate random variable: $\begin{pmatrix} X \\ Y \end{pmatrix} : S \to \mathbb{R}^2$ S probability space.

Discrete case: P(X = x, Y = y) = f(x, y) is **the joint pmf.** $f_X(x) = P(X = x) = \sum_y f(x, y), \ f_Y(y) = P(Y = y) = \sum_x f(x, y), \ \text{are the marginal pmf.}$

Continuous case: f(x,y) is **the joint pdf** if $P((X,Y) \in A) = \int \int_A f(x,y) dx dy$, $A \in \mathbb{R}^2$. $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$, $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$ are **the marginal pdf's**.

Example Assume $f(x, y) = 6xy^2$, $(x, y) \in (0, 1)^2$.

Then

$$P(X + Y \ge 1) = \int_0^1 \int_{1-y}^1 6xy^2 dx dy = \int_0^1 y^2 [\int_{1-y}^1 6x dx] dy$$
$$= \int_0^1 y^2 [3(1 - (1-y)^2] dy = 3 \int_0^1 (2y^3 - y^4) dy$$
$$= \frac{6}{4} - \frac{3}{5} = \frac{30 - 12}{20} = \frac{9}{10}$$

Conditional distributions

Discrete case: $P(Y = y | X = x) = \frac{P(Y = y, X = x)}{P(X = x)} = \frac{f(x, y)}{f_X(x)}$ is **the discrete conditional pmf.**

Continuous case: $f(y|x) = \frac{f(x,y)}{f_X(x)}$ when $f_X(x) > 0$ is **the** conditional pdf.

Example
$$f(x, y) = e^{-y}, \ 0 < x < y < \infty$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_x^{\infty} e^{-y} dy = e^{-x}.$$

$$f(y|x) = \frac{e^{-y}}{e^{-x}} = e^{-(y-x)}, \ x < y.$$

Independence

If $f(x, y) = f_X(x)f_Y(y)$, X and Y are **independent**.

Theorem

It is sufficient that f(x, y) factorizes, i.e. f(x, y) = g(x)h(y) for some functions g and h for X and Y to be independent.

Proof From the marginal densities

$$f_X(x) = g(x) \int_{-\infty}^{\infty} h(y) dy = g(x) d$$
 so $\int_{-\infty}^{\infty} h(y) dy = d$
 $f_Y(y) = h(y) \int_{-\infty}^{\infty} g(x) dx = h(y) c$ so $\int_{-\infty}^{\infty} g(x) dx = c$.

From the simultaneous density $1 = \int_{-\infty}^{\infty} f(x, y) dx dy$

$$= \int_{-\infty}^{\infty} g(x)h(y)dxdy = \left(\int_{-\infty}^{\infty} g(x)dx\right)\left(\int_{-\infty}^{\infty} h(y)dy\right) = cd.$$
 Hence $f(x,y) = g(x)h(y) \cdot 1 = g(x)h(y)cd = f_X(x)f_Y(y).$

Example

 $f(x,y)=rac{1}{384}x^2y^4e^{-y-x/2}$ factorizes so we do not need to compute $f_X(x)=rac{1}{16}x^2e^{-x/2}, i.e.X\sim\chi_6^2$ and $f_Y(y)=rac{1}{24}y^4e^{-y}, i.e.Y\sim gamma(5,1)$ to check independence.

Theorem

If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)] for all functions g and h for which the expectation exist.

Proof

$$E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f(x,y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_X(x)f_Y(y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)f_X(x)h(y)f_Y(y)dxdy$$

$$= (\int_{-\infty}^{\infty} g(x)f_X(x)dx)(\int_{-\infty}^{\infty} h(y)f_Y(y)dy)$$

$$= E[g(X)]E[h(Y)]$$

Remark that f(x,y) does not have to factorize for all x,y to establish independence. It is sufficient that $\int \int_B f(x,y) = 0$ on the exceptional set B.

Example

$$(X,Y) \quad \text{have pdf} \quad f(x,y) = \left\{ \begin{array}{ll} e^{-x-y} & x,y > 0 \\ 0 & \text{else} \end{array} \right.$$

$$(X^*,Y^*) \quad \text{have pdf} \quad f^*(x,y) = \left\{ \begin{array}{ll} e^{-x-y} & x,y > 0, \ x \neq y \\ 0 & \text{else} \end{array} \right.$$

Then

$$P((X,Y) \in A) = \int \int_{A} f(x,y) dx dy$$
$$= \int \int_{A} f^{*}(x,y) dx dy = P((X^{*},Y^{*}) \in A)$$

so
$$(X, Y) \sim (X^*, Y^*)$$
.

The point is that the pdf is only unique up to a set with probability zero.

Bivariate transformations

Suppose (X,Y) has a known distribution and $g_1: \mathbb{R}^2 \to \mathbb{R}$, $g_2: \mathbb{R}^2 \to \mathbb{R}$ be two specified function. Then

$$\left(\begin{array}{c} U\\V\end{array}\right)=\left(\begin{array}{c} g_1(X,Y)\\g_2(X,Y)\end{array}\right)$$

is another bivariate random variable whose distribution is determined by the distribution of (X, Y).

Distribution of (U, V)?

Discrete case:
$$f(u, v) = \sum_{\{(x,y):g_1(x,y)=u,g_2(x,y)=v\}} f(x,y)$$
.

Continuous case: Let

$$A = \{(x, y) : f(x, y) > 0\}$$

$$B = \{(u, v) : u = g_1(x, y), v = g_2(x, y) \text{ some}(x, y) \in A\}$$

Consider a generalization of the treatment of univariate transformations, i.e. the case where the transformation $(g_1,g_2):\mathcal{A}\to\mathcal{B}$ is 1-1 and onto. Then it can be inverted so $x=h_1(u,v),y=h_2(u,v)$ for all $(u,v)\in\mathcal{B}$.

The role played by the derivative in the univariate case is now played by the *Jacobian of the transformation*, \mathcal{J} , defined as the determinant of the matrix of partial derivatives, i.e.

$$\mathcal{J} = \text{det} \left(\begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right) = \text{det} \left(\begin{array}{cc} \frac{\partial h_1(u,v)}{\partial u} & \frac{\partial h_1(u,v)}{\partial v} \\ \frac{\partial h_2(u,v)}{\partial u} & \frac{\partial h_2(u,v)}{\partial v} \end{array} \right)$$

so
$$\mathcal{J} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$
.

Theorem

Suppose the transformation $(g_1,g_2): \mathcal{A} \to \mathcal{B}$ is 1-1 and onto and that the Jacobian is not identically zero. Then it can be inverted so $x = h_1(u,v), y = h_2(u,v)$ for all $(u,v) \in \mathcal{B}$. The joint pdf of (U,V) is

$$f_{UV}(u,v) = f_{XY}(h_1(u,v),h_2(u,v))|\mathcal{J}|$$

where \mathcal{J} is the Jacobian of the transformation.

If the transformation is not 1-1, the theorem can be generalized by splitting ${\cal A}$ into sets where the transformation is 1-1.

Example Suppose $X \sim gamma(\alpha_1, \beta)$ and $Y \sim gamma(\alpha_2, \beta)$

Define
$$U = X + Y$$
, $V = \frac{X}{X+Y}$, so $V = \frac{X}{U}$, $X = UV$ and $Y = U - UV = U(1 - V)$.

Jacobian:
$$\mathcal{J} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = v(-u) - u(1-v) = -u$$
.

$$f_{XY}(x,y) = \frac{1}{\Gamma(\alpha_1)} \left(\frac{x}{\beta}\right)^{\alpha_1 - 1} \frac{1}{\beta} e^{-x/\beta} \frac{1}{\Gamma(\alpha_2)} \left(\frac{y}{\beta}\right)^{\alpha_2 - 1} \frac{1}{\beta} e^{-y/\beta}$$
$$= \frac{1}{\Gamma(\alpha_1)} \frac{1}{\Gamma(\alpha_2)} x^{\alpha_1 - 1} y^{\alpha_2 - 1} \left(\frac{1}{\beta}\right)^{\alpha_1 + \alpha_2} e^{-(x+y)/\beta}$$

and

$$f_{UV}(u,v) = \frac{1}{\Gamma(\alpha_1)} \frac{1}{\Gamma(\alpha_2)} (uv)^{\alpha_1-1} (u(1-v))^{\alpha_2-1} (\frac{1}{\beta})^{\alpha_1+\alpha_2} e^{-u/\beta} u$$

$$= \frac{1}{\Gamma(\alpha_1)} \frac{1}{\Gamma(\alpha_2)} v^{\alpha_1-1} (1-v)^{\alpha_2-1} (\frac{u}{\beta})^{\alpha_1+\alpha_2-1} \frac{1}{\beta} e^{-u/\beta}$$

Hence

$$f_{UV}(u,v) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1}$$

$$\times \frac{1}{\Gamma(\alpha_1 + \alpha_2)} (\frac{u}{\beta})^{\alpha_1 + \alpha_2 - 1} \frac{1}{\beta} e^{-u/\beta}.$$

so U and V are independent, $U \sim gamma(\alpha_1 + \alpha_2)$ and $V \sim beta(\alpha_1, \alpha_2)$.

Example Suppose $X, Y \sim N(0,1)$ and independent. Let

$$U=rac{X}{Y}=g_1(X,Y)$$
 and $V=X=g_2(X,Y)$ so

$$Y = \frac{X}{U} = \frac{V}{U} = h_1(U, V), \ X = V = h_2(U, V).$$

$$f_{UV}(u,v) = \frac{1}{2\pi} e^{-v^2(1+\frac{1}{u^2})/2} |\det\begin{pmatrix} 0 & 1 \\ -\frac{v}{u^2} & \frac{1}{u} \end{pmatrix}|$$
$$= \frac{1}{2\pi} e^{-v^2(1+\frac{1}{u^2})/2} |\frac{v}{u^2}|$$

Marginal distribution of U:

$$f_U(u) = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-v^2(1+\frac{1}{u^2})/2} \frac{|v|}{u^2} dv$$
$$= \int_{0}^{\infty} \frac{1}{2\pi} e^{-v^2(1+\frac{1}{u^2})/2} \frac{v}{u^2} dv$$

Change of variable $y = v\sqrt{1 + \frac{1}{u^2}}$ so $v = \frac{y}{\sqrt{1 + \frac{1}{u^2}}}$,

$$f_U(u) = \int_0^\infty \frac{1}{2\pi} e^{-y^2/2} \frac{y}{\sqrt{1 + \frac{1}{u^2}}} \frac{1}{u^2} \frac{1}{\sqrt{1 + \frac{1}{u^2}}} dy$$
$$= \frac{1}{\pi} \frac{1}{1 + u^2} \int_0^\infty y e^{-y^2/2} dy = \frac{1}{\pi} \frac{1}{1 + u^2}$$

since $\int_0^\infty y e^{-y^2/2} dy = -e^{-y^2/2}|_{y=0}^{y=\infty} = 1$, so $U \sim \text{Cauchy}(0,1)$.

Multivariate distributions

Multivariate random variable:
$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} : S \to \mathbb{R}^n$$

S probability space.

Results from bivariate case, n = 2, generalize

- pmf/pdf: $f(x_1, \dots, x_n)$
- expectation: $E[g(x)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \cdots, x_n) f(x_1, \cdots, x_n) dx_1 \cdots dx_n$
- marginal pmf/pdf: obtained by summation/integration
- conditional pmf/pdf:

$$f(x_{k+1},\cdots,x_n|x_1,\cdots,x_k)=\frac{f(x_1,\cdots,x_n)}{f(x_1,\cdots,x_k)}$$

• mgf: $M_X(t_1, \dots, t_n) = E[e^{\sum_{j=1}^n t_j X_j}]$

Multivariate transformations

Let $\mathcal{A} = \{(x_1, \dots, x_n) : f(x_1, \dots, x_n) > 0\}$ Suppose that the function

$$g(x) = \begin{pmatrix} g_1(x_1, \dots, x_n) \\ \vdots \\ g_n(x_1, \dots, x_n) \end{pmatrix} : \mathcal{A} \to \mathbb{R}^n$$

is 1-1 and onto $\mathcal{B}=\{(u_1,\ldots,u_n)|u_j=g_j(x_1,\ldots,x_n)\}$ for some $x=(x_1,\ldots,x_n)'\in\mathcal{A}\}.$

Then there exist inverses $x_j = h_j(u_1, \dots, u_n), j = 1, \dots n$.

If the Jacobian

$$\det \left(\begin{array}{ccc} \frac{\partial x_1}{\partial u_1} & \cdots & \frac{\partial x_1}{\partial u_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial u_1} & \cdots & \frac{\partial x_n}{\partial u_n} \end{array} \right) = \det \left(\begin{array}{ccc} \frac{\partial h_1(u_1, \dots, u_n)}{\partial u_1} & \cdots & \frac{\partial h_1(u_1, \dots, u_n)}{\partial u_n} \\ \vdots & & \vdots \\ \frac{\partial h_n(u_1, \dots, u_n)}{\partial u_1} & \cdots & \frac{\partial h_n(u_1, \dots, u_n)}{\partial u_n} \end{array} \right)$$

is not identically 0 on \mathcal{B} ,

$$f_U(u_1,\ldots,u_n)=f_X(h_1(u_1,\ldots,u_n),\ldots,h_n(u_1,\ldots,u_n))|\mathcal{J}|.$$

Example Suppose $X = (X_1, X_2, X_3, X_4)'$ has joint pdf

$$f_X(x_1, x_2, x_3, x_4) = \begin{cases} 24e^{-(x_1 + x_2 + x_3 + x_4)}, & 0 < x_1 < x_2 < x_3 < x_4 < \infty \\ 0 & \text{else} \end{cases}$$

Let
$$U_1 = X_1, U_2 = X_2 - X_1, U_3 = X_3 - X_2, U_4 = X_4 - X_3.$$

The transformation is 1-1 and onto from $\{(x_1, x_2, x_3, x_4) | 0 < x_1 < x_2 < x_3 < x_4 < \infty\}$ to \mathbb{R}^{+4} .

The inverse is

 $x_1 = u_1, x_2 = u_1 + u_2, x_3 = u_1 + u_2 + u_3, x_4 = u_1 + u_2 + u_3 + u_4$ with Jacobian

$$\det \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 \end{array}
ight) = 1$$

$$\begin{array}{lll} f_u(u_1,u_2,u_3,u_4) & = & \left\{ \begin{array}{ll} 24e^{-(4u_1+3u_2+2u_3+u_4)}, & 0 < u_j < \infty, \textit{all } j \\ 0 & \text{else} \end{array} \right. \\ & = & \left\{ \begin{array}{ll} 4e^{-4u_1}3e^{-u_2}2e^{-u^3}e^{-u_4}, & 0 < u_j < \infty, \textit{all } j \\ 0 & \text{else} \end{array} \right. \end{array}$$

Also f_U factorizes so U_1 , U_2 , U_3U_4 are independent.

Random Samples

Definition: The random variables X_1, \ldots, X_n are called a **random sample** from the population f(x) if X_1, \ldots, X_n are mutually independent and identically distributed with pmf/pdf f(x).

Alternatively:

- X_1, \ldots, X_n are i.i.d $X_j \sim f(x), j = 1, \ldots, n$, or
- $X_1, ..., X_n$ is a sample from an infinite population.

Finite population: Sampling with replacement yields a random sample. Sampling without replacement does not yield a random sample because of dependence.

Sums of r.v. fram a random sample

After sampling there are realizations $X_1 = x_1, \dots, X_n = x_n$ which can be summarized using various measures $y = T(x_1, \dots, x_n)$, e.g. mean, median.

Regarded as a random variable $Y = T(X_1, ..., X_n)$ is called a **statistic**. The proability distribution of Y is called the **sampling distribution**.

Two important statistics:

- Mean: $\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$
- Sample variance: $S^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j \bar{X})^2$

Then

*
$$E(\bar{X}) = \mu = (\int_{-\infty}^{\infty} x f(x) dx)$$

*
$$Var(\bar{X}) = \frac{\sigma^2}{n} = (\frac{1}{n} \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx)$$

*
$$E(S^2) = \sigma^2$$

so \bar{X} and S^2 are unbiased.

Sample distribution of \bar{X} ?

Two approaches:

(i) mgf: If X_1, \ldots, X_n is a random sample and $M_X(t) = E(e^{tX_j}), j = 1, \ldots, n$, then $M_{\bar{X}}(t) = [M_X(t/n)]^n$.

Problems are that $M_X(t)$ does not always exist and also the density can be difficult to recognize.

(ii) convolution:

Theorem

If X and Y are independent, $X \sim f_X(x)$ and $Y \sim f_Y(y)$ and Z = X + Y, then $f_Z(z) = \int_{-\infty}^{\infty} f_X(u) f_Y(z - u) du$.

Proof

Let U = X, Z = X + Y.

The inverse transformation is X = U, Y = Z - U. The Jacobian is

$$\mathcal{J}=\det\left(egin{array}{cc} 1 & 0 \ -1 & 1 \end{array}
ight)$$

SO

$$f_{UZ}(u,z) = f_X(u)f_Y(z-u)$$

and

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(u) f_Y(z-u) du.$$

Example

 $U \sim Cauchy(0, \sigma)$, $V \sim Cauchy(0, \tau)$, U, V independent.

 $U+V \sim \textit{Cauchy}(\sigma+\tau)$ (after some calculations) If Z_1,\ldots,Z_n random sample $\textit{Cauchy}(0,1),\ \bar{Z} \sim \textit{Cauchy}(0,1)$

 \bar{X} in location/scale families: If X_1, \ldots, X_n random sample,

$$X_j \sim \frac{1}{\sigma} f(\frac{x-\mu}{\sigma}), j = 1, \ldots, n.$$

Then
$$X_j = \sigma Z_j + \mu$$
 and $\bar{X} = \sigma \bar{Z} + \mu$.

Hence, if $\bar{Z} \sim g(z)$,

$$\bar{X} \sim \frac{1}{\sigma} g(\frac{x-\mu}{\sigma}).$$

 $\sum_{j=1}^{n} X_j$ in exponential families:

If
$$X_1, \ldots, X_n$$
 random sample, $X_j \sim f(x|\theta), j = 1, \ldots, n$,

$$f(x|\theta) = h(x)c(\theta) \exp(\sum_{i=1}^k w_i(\theta)t_i(x)).$$

Let
$$T_i(X_1,...,X_n) = \sum_{j=1}^n t_i(X_j), i = 1,...,k.$$

If
$$\{(w_1(\theta), \dots, w_k(\theta)) | \theta \in \Theta\}$$
 contains an open subset of \mathbb{R}^k , $(T_1, \dots, T_k) \sim f(u_1, \dots, u_k | \theta)$ where

$$f(u_1,\ldots,u_k|\theta)=H(u_1,\ldots,u_k)c(\theta)^n\exp(\sum_{i=1}^k w_i(\theta)u_i).$$

Example

 X_1, \ldots, X_n i.i.d Bernoulli.

$$c(p) = 1 - p$$
, $w(p) = \log \frac{p}{1-p}$, $t_1(x) = x$.

Hence $T_1 = T_1(X_1, \dots, X_n) = \sum_{i=1}^n X_i$. This is compatible with

what we know: $\sum_{j=1}^{n} X_j \sim binomial(n, p)$ which belongs to the exponential family of distributions.

Sampling from the normal distribution

One sample:

Theorem

If X_1, \ldots, X_n is a random sample, $X_j \sim n(\mu, \sigma), j = 1, \ldots, n$

- i) $\bar{X} \sim n(\mu, \sigma^2/n)$
- ii) $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$
- iii) \bar{X} and S^2 are independent

Student t:
$$t = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{\frac{\bar{X} - \mu}{\sigma\sqrt{n}}}{\frac{\sqrt{(n-1)S^2}}{\sigma^2} \frac{1}{\sqrt{n-1}}} = \frac{U}{\sqrt{V/p}}$$
 where

 $U \sim n(0,1)$, $V \sim \chi_p^2$, U and V independent and p = n - 1. Thus t is a t_p distributed variable.

Density:

Let $U \sim n(0,1)$, $V \sim \chi_p^2$.

$$f_{UV}(u,v) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}\frac{1}{\Gamma(\frac{p}{2})}\frac{1}{2^{p/2}}v^{\frac{p}{2}-1}e^{-v/2}, \ u,v>0.$$

Then $t = \frac{U}{\sqrt{V/p}}$, W = V, with inverses $U = t\sqrt{\frac{W}{p}}$, V = W, has density $f_{tW}(t, w) = \frac{1}{\sqrt{2\pi}} e^{-(\frac{t^2}{p} + 1)w/2} \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{2^{p/2}} w^{\frac{p+1}{2} - 1} \frac{1}{\sqrt{p}}$.

Hence, t has marginal density

$$f_{t}(t) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-(\frac{t^{2}}{p}+1)w/2} \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{2^{p/2}} w^{\frac{p+1}{2}-1} \frac{1}{\sqrt{p}} dw$$

$$= \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{p}} e^{-s} \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{2^{p/2}} \left[\frac{2s}{\frac{t^{2}}{p}+1} \right]^{\frac{p+1}{2}-1} \left[\frac{2}{\frac{t^{2}}{p}+1} \right] ds$$

$$= \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{\sqrt{p\pi}} \left[\frac{1}{\frac{t^{2}}{p}+1} \right]^{\frac{p+1}{2}}$$

Not moments of all orders.

$$p = 1, (i.e.n = 1)$$
 Cauchy(0,1).

Two (independent) samples:

$$X_1,\ldots,X_n$$
 is a random sample, $X_j\sim n(\mu_X,\sigma_X^2),\ j=1,\ldots,n$
 Y_1,\ldots,Y_m is a random sample, $Y_j\sim n(\mu_Y,\sigma_Y^2),\ j=1,\ldots,m$

Let
$$F = \frac{S_X^2}{\sigma_X^2} / \frac{S_Y^2}{\sigma_Y^2}$$
.

F is Fisher distributed with n-1 and m-1 degrees of freedom

since
$$F = \frac{S_X^2}{\sigma_X^2} / \frac{S_Y^2}{\sigma_Y^2} = \frac{[(n-1)\frac{S_X^2}{\sigma_X^2}]/(n-1)}{[(m-1)\frac{S_X^2}{\sigma_X^2}]/(m-1)} \sim \frac{\chi_{n-1}^2/(n-1)}{\chi_{m-1}^2/(m-1)}.$$