Preliminary material STK4011－f17：Statistical Inference Theory

Random variables

Definition A random variable is a function from a sample space into the real numbers

$$
X: S \rightarrow \mathbb{R}
$$

S is a probability space so
i）$P(A) \geq 0, A \in \mathcal{B}$
ii）$P(S)=1$
iii）If $A_{1}, A_{2}, \ldots \in \mathcal{B}, A_{i} \cap A_{j}=\emptyset, i \neq j$ ，then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

Example Assume S finite. Let

$$
P(A)=\frac{\#\{s: s \in A\}}{\#\{s: s \in S\}}=\frac{" \text { favorable" }}{\text { "possible" }}
$$

$P_{X}(X=x)=P(\{s: X(s)=x\})$ is the distribution of \mathbf{X} defined in terms of S.

Example $S=\{0,1\}^{10}$, so $s=\left(s_{1}, \ldots, s_{10}\right)$ where $s_{i}=0$ or $s_{i}=1, \# S=1024$.
The probabiliy is defined by 1024 non-negative numbers with sum equal to 1 .
Let $X(s)=\sum_{i=1}^{10} s_{i}$. Then $P_{X}(X=x)$ is the sum of those numbers corresponding to the $s=\left(s_{1}, \ldots, s_{10}\right)$ where exactly x s_{i} are 1 and $n-x$ are 0 .
In the special case where all the 1024 mumbers are equal and hence $1 / 1024, X \sim \operatorname{Binomial}(10,0.5)$.

In general, also for countable and infinite range of X, denoted by \mathcal{X} when $A \subset \mathcal{X}$

$$
P_{X}(X \in A)=P(\{s \in S: X(s) \in A)
$$

Distributions can be described by the cumulative distribution function, cdf.

$$
F_{X}(x)=P_{X}(X \leq x)
$$

Remark that $F_{X}(x)$ is right continous.
If $P_{X}(X=x)=0$ for all x, F_{X} is continous and X is a continous random variable.

If X is discrete, i.e. has finite or countable range, F_{X} is a step function.

For X discrete, the probability mass function, pmf, is given by $f_{X}(x)=P_{X}(X=x)$.

If F_{X} is continuous and differentiable, the probability density function, pdf satisfies

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t \text { for all } x
$$

The expectation of the random variable X

$$
E(X)=\left\{\begin{array}{lc}
\sum_{x \in \mathcal{X}} x f_{X}(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x f(x) d x & \text { if } X \text { has pdf } f_{X}
\end{array}\right.
$$

describes the center of the distribution.
The variance $\operatorname{Var}(X)=E\left[X^{2}\right]-[E(X)]^{2}$ describes the spread of the distribution.

Notation:
$X \sim F_{X}, X$ has $\operatorname{cdf} F_{X}$
$X \sim f_{X}, X$ has pmf/pdf f_{X}
$X \sim Y X$ and Y have the same distribution.

Transformations

X random variable implies that $Y=g(X)$ is a random variable where $g: \mathcal{X} \rightarrow \mathcal{Y}$,
$\mathcal{X}=\left\{x: f_{X}(x)>0\right\}, \mathcal{Y}=\{y: Y=g(x)$ some $x\}$

Distribution of \mathbf{Y} ?

$$
P(Y \in A)=P(g(X) \in A)=P\left(X \in g^{-1}(A)\right)
$$

where $g^{-1}(A)=\{x: g(x) \in A\}$.
X discrete:
$f_{Y}(y)=P_{Y}(Y=y)=\Sigma_{x \in g^{-1}(y)} P_{X}(X=x)=\Sigma_{x \in g^{-1}(y)} f_{X}(x)$
X continous:
$F_{Y}(y)=P_{Y}(Y \leq y)=P_{X}(g(X) \leq y)=$
$P_{X}(X \in\{x: g(x) \leq y\})=\int_{\{x: g(x) \leq y\}} f_{X}(x)$

Problem if g is not monotone.

Example
 $X \sim U[0,1] Y=\sin ^{2}(X)$

Then
$\left\{y: \leq y_{0}\right\}=\left\{x: 0 \leq x \leq x_{1}\right\} \cup\left\{x: x_{2} \leq x \leq x_{3}\right\} \cup\left\{x: x \geq x_{4}\right\}$
and
$P_{Y}\left(Y \leq y_{0}\right)=P_{X}\left(X \leq x_{1}\right\}+P_{X}\left(x_{2} \leq X \leq x_{3}\right)+P_{X}\left(X \geq x_{4}\right)$
where
$\sin ^{2}\left(x_{1}\right)=\sin ^{2}\left(x_{2}\right)=\sin ^{2}\left(x_{3}\right)=\sin ^{2}\left(x_{4}\right)=y_{0}$

Consider the case where g is strictly monotone，
i．e．either strictly decreasing or increasing
The support of X is $\mathcal{X}=\left\{x: f_{X}(x)>0\right\}$
$\mathcal{Y}=\{y: Y=g(x)$ some $x\}$

Theorem

Let $X \sim f_{X}$ and $Y=g(X)$ where g is strictly monotone．If g is strictly monotone（on the support）and g^{-1} is continuously differentiable on \mathcal{Y} then

$$
g_{Y}(y)=\left\{\begin{array}{cc}
f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial}{\partial y} g_{Y}^{-1}(y)\right| & y \in \mathcal{Y} \\
0 & \text { else }
\end{array}\right.
$$

Proof. For g increasing

$$
\begin{aligned}
G_{Y}(y) & =P(Y \leq y)=P_{X}(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

Differentiating with respect to y

$$
g_{Y}(y)=\frac{\partial}{\partial y} G(y)=f_{X}\left(g^{-1}(y)\right) \frac{\partial}{\partial y} g_{Y}^{-1}(y)
$$

For g decreasing

$$
\begin{aligned}
G_{Y}(y) & =P(Y \leq y)=P_{X}(g(X) \leq y) \\
& =P\left(X \geq g^{-1}(y)\right)=1-F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

Differentiating with respect to y

$$
g_{Y}(y)=\frac{\partial}{\partial y} G(y)=-f_{X}\left(g^{-1}(y)\right) \frac{\partial}{\partial y} g_{Y}^{-1}(y)
$$

Example.

Theorem

Let f be a pdf and $\mu \in \mathbb{R} \sigma>0$.
Then $X \sim \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) \Leftrightarrow \exists Z, Z \sim f$ and $X=\sigma Z+\mu$
Proof \Leftarrow : Let $g(x)=\sigma x+\mu$. Then g is monotone, $g^{-1}(x)=\frac{x-\mu}{\sigma}$ and $\frac{\partial}{\partial x} g^{-1}(x)=1 / \sigma$. If $X=g(Z)$ then $f_{X}(x)=f\left(g^{-1}(x)\right) \frac{\partial}{\partial x} g^{-1}(x)=\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$
\Rightarrow : Let $g(x)=\frac{x-\mu}{\sigma}, Z=g(X)$. Then
$g^{-1}(z)=\sigma z+\mu, \frac{\partial}{\partial x} g^{-1}(x)=\sigma$, so

$$
f_{Z}(z)=f_{X}\left(g^{-1}(z)\right) \frac{\partial}{\partial x} g^{-1}(z)=f\left(\frac{\sigma z+\mu-\mu}{\sigma}\right) \frac{1}{\sigma} \sigma=f(z) .
$$

Also $Z=\frac{X-\mu}{\sigma}$ so $X=\sigma Z+\mu$.

Example．$Y=X^{2}$ ．

$$
\begin{aligned}
F_{Y}(y) & \left.=P_{X}\left(X^{2} \leq y\right)=P_{X}(-\sqrt{y} \leq X \leq \sqrt{y})\right) \\
& =P_{X}(X \leq \sqrt{y})-P_{X}(X \leq-\sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
\end{aligned}
$$

so

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})-\left(-\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})\right) \\
& =\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})
\end{aligned}
$$

This procedure can be generalized to more than two intervals．

If F_{X} is not strictly increasing，care is needed in the definition of F_{X}^{-1} ．

Lemma

Let $F_{X}^{-1}(y)=\inf \left\{u: F_{X}(u) \geq y\right\}$ ．
Then $F_{X}^{-1}\left(F_{X}(x)\right)=x$ ．
Proof．By definition

$$
F_{X}^{-1}\left(F_{X}(x)\right)=\inf \left\{u: F_{X}(u) \geq F_{X}(x)\right\}=x
$$

where the last equality follows since F_{X} is right continuous．

Theorem

Let X have a continuous cdf F_{X} and let $Y=F_{X}(X)$ ．
Then $Y \sim U[0,1]$ ．

Proof．

$P_{Y}(Y \leq y)=P_{X}\left(F_{X}(X) \leq y\right)=P_{X}\left(F_{X}^{-1}\left[F_{X}(X)\right] \leq F_{X}^{-1}(y)\right)$
since F_{X}^{-1} is by definition increasing．From previous Lemma
$P_{X}\left(F_{X}^{-1}\left[F_{X}(X)\right] \leq F_{X}^{-1}(y)\right)=P_{X}\left(X \leq F^{-1}(y)\right)=$ $F_{X}\left(F_{X}^{-1}(y)\right)$ ．

But $F_{X}\left(F_{X}^{-1}(y)\right)=y$ since F_{X} is continuous．

Moment generating functions.

Definition The moment generating function, mgf, of a random variable X is the function

$$
M_{X}(t)=E[\exp (t X)]
$$

provided the expectation exists in an interval $(-h, h)$.
If differentiation and integration can be interchanged

$$
\begin{aligned}
\left.\frac{\partial}{\partial t} M_{X}(t)\right|_{t=0} & =\left.E[X \exp (t X)]\right|_{t=0}=E(X) \\
\left.\frac{\partial^{2}}{\partial t^{2}} M_{X}(t)\right|_{t=0} & =\left.E\left[X^{2} \exp (t X)\right]\right|_{t=0}=E\left(X^{2}\right) \\
& \text { etc. }
\end{aligned}
$$

Knowledge of moments is not enough to
deterermine distribution in general．

But，if $M_{X}(t)$ and $M_{Y}(t)$ exists，
and $M_{X}(t)=M_{Y}(t), \forall t \in(-h, h)$ for some $h>0$ ， then $X \sim Y$ ．

Also, let $\left\{X_{j}\right\}$ be a sequence of random variables with mgf $M_{X_{j}}$
Suppose:
i) $M_{X_{j}}(t) \rightarrow M_{X}(t) \forall t \in(-h, h)$ for some $h>0$
ii) $M_{X}(t)$ is a mgf for a random variable X,
then $F_{X_{j}}(x) \rightarrow F_{X}(x)$ if F_{X} is continuous at x
and the moments of X is given by M_{X}.

Common discrete distributions

 HypergeometricBinomial

Poisson

Negative binomial

Common continuous distributions

Uniform:
$f_{X}(x \mid a, b)=\left\{\begin{array}{cc}\frac{1}{b-a} & \text { if } x \in[a, b] \\ 0 & \text { else }\end{array}\right.$
Gamma:
The gamma function is defined by the integral $\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$ which is finite for $\alpha>0$.
$f_{X}(x \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}, 0<x<\infty, \alpha>0, \beta>0$.
Normal:
$f_{X}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)},-\infty<x<\infty$.

Beta：

The beta function is defined as
$B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x$
$f_{X}(x \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1, \alpha>0, \beta>0$.
Cauchy：
$f_{X}(x \mid \mu, \sigma)=\frac{1}{\sigma \pi\left(1+\left(\frac{x-\mu}{\sigma}\right)^{2}\right)},-\infty<x<\infty$
Lognormal：
$\log X \sim n\left(\mu, \sigma^{2}\right)$.
Double exponential：
$f_{X}(x \mid \mu, \sigma)=\frac{1}{2 \sigma} e^{|x-\mu| / \sigma},-\infty<x<\infty,-\infty<\mu<\infty, \sigma>0$.

Bivariate distributions
Bivariate random variable: $\binom{X}{Y}: S \rightarrow \mathbb{R}^{2}$
S probability space.
Discrete case: $P(X=x, Y=y)=f(x, y)$ is the joint pmf. $f_{X}(x)=P(X=x)=\Sigma_{y} f(x, y), f_{Y}(y)=P(Y=y)=$ $\Sigma_{x} f(x, y)$, are the marginal pmf.

Continuous case: $f(x, y)$ is the joint pdf if $P((X, Y) \in A)=\iint_{A} f(x, y) d x d y, A \in \mathbb{R}^{2}$. $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y, f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x$ are the marginal pdf's.

Example Assume $f(x, y)=6 x y^{2},(x, y) \in(0,1)^{2}$.
Then

$$
\begin{aligned}
P(X+Y \geq 1) & =\int_{0}^{1} \int_{1-y}^{1} 6 x y^{2} d x d y=\int_{0}^{1} y^{2}\left[\int_{1-y}^{1} 6 x d x\right] d y \\
& =\int_{0}^{1} y^{2}\left[3\left(1-(1-y)^{2}\right] d y=3 \int_{0}^{1}\left(2 y^{3}-y^{4}\right) d y\right. \\
& =\frac{6}{4}-\frac{3}{5}=\frac{30-12}{20}=\frac{9}{10}
\end{aligned}
$$

Conditional distributions

Discrete case: $P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)}=\frac{f(x, y)}{f_{x}(x)}$ is the discrete conditional pmf.

Continuous case: $f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}$ when $f_{X}(x)>0$ is the conditional pdf.

Example $f(x, y)=e^{-y}, 0<x<y<\infty$
$f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{x}^{\infty} e^{-y} d y=e^{-x}$.
$f(y \mid x)=\frac{e^{-y}}{e^{-x}}=e^{-(y-x)}, x<y$.

Independence

If $f(x, y)=f_{X}(x) f_{Y}(y), X$ and Y are independent.

Theorem

It is sufficient that $f(x, y)$ factorizes, i.e. $f(x, y)=g(x) h(y)$ for some functions g and h for X and Y to be independent.

Proof From the marginal densities

$$
\begin{aligned}
& f_{X}(x)=g(x) \int_{-\infty}^{\infty} h(y) d y=g(x) d \text { so } \int_{-\infty}^{\infty} h(y) d y=d \\
& f_{Y}(y)=h(y) \int_{-\infty}^{\infty} g(x) d x=h(y) c \text { so } \int_{-\infty}^{\infty} g(x) d x=c
\end{aligned}
$$

From the simultaneous density $1=\int_{-\infty}^{\infty} f(x, y) d x d y$
$=\int_{-\infty}^{\infty} g(x) h(y) d x d y=\left(\int_{-\infty}^{\infty} g(x) d x\right)\left(\int_{-\infty}^{\infty} h(y) d y\right)=c d$. Hence $f(x, y)=g(x) h(y) \cdot 1=g(x) h(y) c d=f_{X}(x) f_{Y}(y)$.

Example

$f(x, y)=\frac{1}{384} x^{2} y^{4} e^{-y-x / 2}$ factorizes so we do not need to compute $f_{X}(x)=\frac{1}{16} x^{2} e^{-x / 2}$, i.e. $X \sim \chi_{6}^{2}$ and $f_{Y}(y)=\frac{1}{24} y^{4} e^{-y}$,i.e. $Y \sim \operatorname{gamma}(5,1)$ to check independence.

Theorem

If X and Y are independent, $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$ for all functions g and h for which the expectation exist.

Proof

$$
\begin{aligned}
E[g(X) h(Y)] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) f_{X}(x) h(y) f_{Y}(y) d x d y \\
& =\left(\int_{-\infty}^{\infty} g(x) f_{X}(x) d x\right)\left(\int_{-\infty}^{\infty} h(y) f_{Y}(y) d y\right) \\
& =E[g(X)] E[h(Y)]
\end{aligned}
$$

Remark that $f(x, y)$ does not have to factorize for all x, y to establish independence. It is sufficient that $\iint_{B} f(x, y)=0$ on the exceptional set B.

Example

(X, Y) have pdf $f(x, y)=\left\{\begin{array}{cc}e^{-x-y} & x, y>0 \\ 0 & \text { else }\end{array}\right.$
$\left(X^{*}, Y^{*}\right)$ have pdf $f^{*}(x, y)=\left\{\begin{array}{cc}e^{-x-y} & x, y>0, x \neq y \\ 0 & \text { else }\end{array}\right.$
Then

$$
\begin{aligned}
P((X, Y) \in A) & =\iint_{A} f(x, y) d x d y \\
& =\iint_{A} f^{*}(x, y) d x d y=P\left(\left(X^{*}, Y^{*}\right) \in A\right)
\end{aligned}
$$

so $(X, Y) \sim\left(X^{*}, Y^{*}\right)$.
The point is that the pdf is only unique up to a set with probability zero.

Bivariate transformations

Suppose (X, Y) has a known distribution and $g_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ ， $g_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two specified function．Then

$$
\binom{U}{V}=\binom{g_{1}(X, Y)}{g_{2}(X, Y)}
$$

is another bivariate random variable whose distribution is determined by the distribution of (X, Y) ．

Distribution of (U, V) ？
Discrete case：$f(u, v)=\Sigma_{\left\{(x, y): g_{1}(x, y)=u, g_{2}(x, y)=v\right\}} f(x, y)$ ．

Continuous case: Let
$\mathcal{A}=\{(x, y): f(x, y)>0\}$
$\mathcal{B}=\left\{(u, v): u=g_{1}(x, y), v=g_{2}(x, y)\right.$ some $\left.(x, y) \in \mathcal{A}\right\}$
Consider a generalzation of the treatment of univariate transformations, i.e. the case where the transformation (g_{1}, g_{2}): $\mathcal{A} \rightarrow \mathcal{B}$ is 1-1 and onto. Then it can be inverted so $x=h_{1}(u, v), y=h_{2}(u, v)$ for all $(u, v) \in \mathcal{B}$.

The role played by the derivative in the univariate case is now played by the Jacobian of the transformation, \mathcal{J}, defined as the determinant of the matrix of partial derivatives, i.e.

$$
\mathcal{J}=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial h_{1}(u, v)}{\partial u} & \frac{\partial h_{1}(u, v)}{\partial v} \\
\frac{\partial h_{2}(u, v)}{\partial u} & \frac{\partial h_{2}(u, v)}{\partial v}
\end{array}\right)
$$

so $\mathcal{J}=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$.

Theorem

Suppose the transformation $\left(g_{1}, g_{2}\right): \mathcal{A} \rightarrow \mathcal{B}$ is 1－1 and onto and that the Jacobian is not identically zero．Then it can be inverted so $x=h_{1}(u, v), y=h_{2}(u, v)$ for all $(u, v) \in \mathcal{B}$ ．The joint pdf of (U, V) is

$$
f_{U V}(u, v)=f_{X Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|\mathcal{J}|
$$

where \mathcal{J} is the Jacobian of the transformation．

If the transformation is not $1-1$ ，the theorem can be generalized by splitting \mathcal{A} into sets where the transformation is $1-1$ ．

Example Suppose $X \sim \operatorname{gamma}\left(\alpha_{1}, \beta\right)$ and $Y \sim \operatorname{gamma}\left(\alpha_{2}, \beta\right)$
Define $U=X+Y, V=\frac{X}{X+Y}$, so $V=\frac{X}{U}, X=U V$ and $Y=U-U V=U(1-V)$.

Jacobian: $\mathcal{J}=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}=v(-u)-u(1-v)=-u$.

$$
\begin{aligned}
f_{X Y}(x, y) & =\frac{1}{\Gamma\left(\alpha_{1}\right)}\left(\frac{x}{\beta}\right)^{\alpha_{1}-1} \frac{1}{\beta} e^{-x / \beta} \frac{1}{\Gamma\left(\alpha_{2}\right)}\left(\frac{y}{\beta}\right)^{\alpha_{2}-1} \frac{1}{\beta} e^{-y / \beta} \\
& =\frac{1}{\Gamma\left(\alpha_{1}\right)} \frac{1}{\Gamma\left(\alpha_{2}\right)} x^{\alpha_{1}-1} y^{\alpha_{2}-1}\left(\frac{1}{\beta}\right)^{\alpha_{1}+\alpha_{2}} e^{-(x+y) / \beta}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{U V}(u, v) & =\frac{1}{\Gamma\left(\alpha_{1}\right)} \frac{1}{\Gamma\left(\alpha_{2}\right)}(u v)^{\alpha_{1}-1}(u(1-v))^{\alpha_{2}-1}\left(\frac{1}{\beta}\right)^{\alpha_{1}+\alpha_{2}} e^{-u / \beta} u \\
& =\frac{1}{\Gamma\left(\alpha_{1}\right)} \frac{1}{\Gamma\left(\alpha_{2}\right)} v^{\alpha_{1}-1}(1-v)^{\alpha_{2}-1}\left(\frac{u}{\beta}\right)^{\alpha_{1}+\alpha_{2}-1} \frac{1}{\beta} e^{-u / \beta}
\end{aligned}
$$

Hence

$$
\begin{aligned}
f_{U V}(u, v) & =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} v^{\alpha_{1}-1}(1-v)^{\alpha_{2}-1} \\
& \times \frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}\left(\frac{u}{\beta}\right)^{\alpha_{1}+\alpha_{2}-1} \frac{1}{\beta} e^{-u / \beta} .
\end{aligned}
$$

so U and V are independent, $U \sim \operatorname{gamma}\left(\alpha_{1}+\alpha_{2}\right)$ and $V \sim \operatorname{beta}\left(\alpha_{1}, \alpha_{2}\right)$.

Example Suppose $X, Y \sim N(0,1)$ and independent. Let

$$
\begin{aligned}
& U=\frac{X}{Y}=g_{1}(X, Y) \text { and } V=X=g_{2}(X, Y) \text { so } \\
& Y=\frac{X}{U}=\frac{V}{U}=h_{1}(U, V), X=V=h_{2}(U, V) \\
& f_{U V}(u, v)=\frac{1}{2 \pi} e^{-v^{2}\left(1+\frac{1}{u^{2}}\right) / 2}\left|\operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
-\frac{v}{u^{2}} & \frac{1}{u}
\end{array}\right)\right| \\
& =\frac{1}{2 \pi} e^{-v^{2}\left(1+\frac{1}{u^{2}}\right) / 2}\left|\frac{v}{u^{2}}\right|
\end{aligned}
$$

Marginal distribution of U :

$$
\begin{aligned}
f_{U}(u) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi} e^{-v^{2}\left(1+\frac{1}{u^{2}}\right) / 2} \frac{|v|}{u^{2}} d v \\
& =\int_{0}^{\infty} \frac{1}{2 \pi} e^{-v^{2}\left(1+\frac{1}{u^{2}}\right) / 2} \frac{v}{u^{2}} d v
\end{aligned}
$$

Change of variable $y=v \sqrt{1+\frac{1}{u^{2}}}$ so $v=\frac{y}{\sqrt{1+\frac{1}{u^{2}}}}$,

$$
\begin{aligned}
f_{U}(u) & =\int_{0}^{\infty} \frac{1}{2 \pi} e^{-y^{2} / 2} \frac{y}{\sqrt{1+\frac{1}{u^{2}}}} \frac{1}{u^{2}} \frac{1}{\sqrt{1+\frac{1}{u^{2}}}} d y \\
& =\frac{1}{\pi} \frac{1}{1+u^{2}} \int_{0}^{\infty} y e^{-y^{2} / 2} d y=\frac{1}{\pi} \frac{1}{1+u^{2}}
\end{aligned}
$$

since $\int_{0}^{\infty} y e^{-y^{2} / 2} d y=-\left.e^{-y^{2} / 2}\right|_{y=0} ^{y=\infty}=1$, so $U \sim \operatorname{Cauchy}(0,1)$.

Multivariate distributions

Multivariate random variable: $X=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right): S \rightarrow \mathbb{R}^{n}$
S probability space.
Results from bivariate case, $n=2$, generalize
■ pmf/pdf: $f\left(x_{1}, \cdots, x_{n}\right)$

- expectation: $E[g(x)]=$ $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}$
- marginal pmf/pdf: obtained by summation/integration
- conditional pmf/pdf:

$$
f\left(x_{k+1}, \cdots, x_{n} \mid x_{1}, \cdots, x_{k}\right)=\frac{f\left(x_{1}, \cdots, x_{n}\right)}{f\left(x_{1}, \cdots, x_{k}\right)}
$$

■ mgf: $M_{X}\left(t_{1}, \cdots, t_{n}\right)=E\left[e^{\sum_{j=1}^{n} t_{j} x_{j}}\right]$

Multivariate transformations

Let $\mathcal{A}=\left\{\left(x_{1}, \ldots, x_{n}\right): f\left(x_{1}, \ldots, x_{n}\right)>0\right\}$
Suppose that the function

$$
g(x)=\left(\begin{array}{c}
g_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
g_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right): \mathcal{A} \rightarrow \mathbb{R}^{n}
$$

is 1－1 and onto
$\mathcal{B}=\left\{\left(u_{1}, \ldots, u_{n}\right) \mid u_{j}=g_{j}\left(x_{1}, \ldots, x_{n}\right)\right\}$ for some $x=$ $\left.\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in \mathcal{A}\right\}$ ．

Then there exist inverses $x_{j}=h_{j}\left(u_{1}, \ldots, u_{n}\right), j=1, \ldots n$ ．

If the Jacobian
$\operatorname{det}\left(\begin{array}{ccc}\frac{\partial x_{1}}{\partial u_{1}} & \cdots & \frac{\partial x_{1}}{\partial u_{n}} \\ \vdots & & \vdots \\ \frac{\partial x_{n}}{\partial u_{1}} & \cdots & \frac{\partial x_{n}}{\partial u_{n}}\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}\frac{\partial h_{1}\left(u_{1}, \ldots, u_{n}\right)}{\partial u_{1}} & \ldots & \frac{\partial h_{1}\left(u_{1}, \ldots, u_{n}\right)}{\partial u_{n}} \\ \vdots & & \vdots \\ \frac{\partial h_{n}\left(u_{1}, \ldots, u_{n}\right)}{\partial u_{1}} & \ldots & \frac{\partial h_{n}\left(u_{1}, \ldots, u_{n}\right)}{\partial u_{n}}\end{array}\right)$
is not identically 0 on \mathcal{B},
$f_{U}\left(u_{1}, \ldots, u_{n}\right)=f_{X}\left(h_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, h_{n}\left(u_{1}, \ldots, u_{n}\right)\right)|\mathcal{J}|$.

Example Suppose $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\prime}$ has joint pdf
$f_{X}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{cc}24 e^{-\left(x_{1}+x_{2}+x_{3}+x_{4}\right)}, & 0<x_{1}<x_{2}<x_{3}<x_{4}<\alpha \\ 0 & \text { else }\end{array}\right.$
Let $U_{1}=X_{1}, U_{2}=X_{2}-X_{1}, U_{3}=X_{3}-X_{2}, U_{4}=X_{4}-X_{3}$.
The transformation is 1-1 and onto from $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid 0<x_{1}<x_{2}<x_{3}<x_{4}<\infty\right\}$ to \mathbb{R}^{+4}.

The inverse is
$x_{1}=u_{1}, x_{2}=u_{1}+u_{2}, x_{3}=u_{1}+u_{2}+u_{3}, x_{4}=u_{1}+u_{2}+u_{3}+u_{4}$ with Jacobian

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)=1
$$

$$
\begin{aligned}
f_{u}\left(u_{1}, u_{2}, u_{3}, u_{4}\right) & =\left\{\begin{array}{cc}
24 e^{-\left(4 u_{1}+3 u_{2}+2 u_{3}+u_{4}\right)}, & 0<u_{j}<\infty, \text { all } j \\
0 & \text { else }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
4 e^{-4 u_{1}} 3 e^{-u_{2}} 2 e^{-u 3} e^{-u_{4}}, & 0<u_{j}<\infty, \text { all } j \\
0 & \text { else }
\end{array}\right.
\end{aligned}
$$

Also f_{U} factorizes so $U_{1}, U_{2}, U_{3} U_{4}$ are independent.

Random Samples

Definition: The random variables X_{1}, \ldots, X_{n} are called a random sample from the population $f(x)$ if X_{1}, \ldots, X_{n} are mutually independent and identically distributed with pmf/pdf $f(x)$.

Alternatively:
■ X_{1}, \ldots, X_{n} are i.i.d $X_{j} \sim f(x), j=1, \ldots, n$, or
■ X_{1}, \ldots, X_{n} is a sample from an infinite population.

Finite population: Sampling with replacement yields a random sample. Sampling without replacement does not yield a random sample because of dependence.

Sums of r．v．fram a random sample

After sampling there are realizations $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ which can be summarized using various measures $y=T\left(x_{1}, \ldots, x_{n}\right)$ ，e．g．mean，median．

Regarded as a random variable $Y=T\left(X_{1}, \ldots, X_{n}\right)$ is called a statistic．The proability distribution of Y is called the sampling distribution．

Two important statistics：
－Mean： $\bar{X}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$
■ Sample variance：$S^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}$
Then

$$
\begin{aligned}
& \text { * } E(\bar{X})=\mu=\left(\int_{-\infty}^{\infty} x f(x) d x\right) \\
& * \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=\left(\frac{1}{n} \int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x\right) \\
& * E\left(S^{2}\right)=\sigma^{2}
\end{aligned}
$$

so \bar{X} and S^{2} are unbiased．

Sample distribution of \bar{X} ？

Two approaches：
（i）mgf：If X_{1}, \ldots, X_{n} is a random sample and $M_{X}(t)=E\left(e^{t X_{j}}\right), j=1, \ldots, n$ ，then $M_{\bar{X}}(t)=\left[M_{X}(t / n)\right]^{n}$ ．

Problems are that $M_{X}(t)$ does not always exist and also the density can be difficult to recognize．
（ii）convolution：

Theorem

If X and Y are independent，$X \sim f_{X}(x)$ and $Y \sim f_{Y}(y)$ and
$Z=X+Y$ ，then $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(z-u) d u$.

Proof
Let $U=X, Z=X+Y$ ．
The inverse transformation is $X=U, Y=Z-U$ ．The Jacobian is

$$
\mathcal{J}=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

so

$$
f_{U Z}(u, z)=f_{X}(u) f_{Y}(z-u)
$$

and

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(z-u) d u
$$

Example

$U \sim \operatorname{Cauchy}(0, \sigma), V \sim \operatorname{Cauchy}(0, \tau), U, V$ independent.
$U+V \sim \operatorname{Cauchy}(\sigma+\tau)$ (after some calculations) If Z_{1}, \ldots, Z_{n} random sample Cauchy (0, 1), $\bar{Z} \sim \operatorname{Cauchy}(0,1)$
\bar{X} in location/scale families: If X_{1}, \ldots, X_{n} random sample,
$X_{j} \sim \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right), j=1, \ldots, n$.
Then $X_{j}=\sigma Z_{j}+\mu$ and $\bar{X}=\sigma \bar{Z}+\mu$.
Hence, if $\bar{Z} \sim g(z)$,

$$
\bar{X} \sim \frac{1}{\sigma} g\left(\frac{x-\mu}{\sigma}\right)
$$

$\sum_{j=1}^{n} X_{j}$ in exponential families：

If X_{1}, \ldots, X_{n} random sample，$X_{j} \sim f(x \mid \theta), j=1, \ldots, n$ ，
$f(x \mid \theta)=h(x) c(\theta) \exp \left(\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right)$.
Let $T_{i}\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{n} t_{i}\left(X_{j}\right), i=1, \ldots, k$.
If $\left\{\left(w_{1}(\theta), \ldots, w_{k}(\theta)\right) \mid \theta \in \Theta\right\}$ contains an open subset of \mathbb{R}^{k} ， $\left(T_{1}, \ldots, T_{k}\right) \sim f\left(u_{1}, \ldots, u_{k} \mid \theta\right)$ where
$f\left(u_{1}, \ldots, u_{k} \mid \theta\right)=H\left(u_{1}, \ldots, u_{k}\right) c(\theta)^{n} \exp \left(\sum_{i=1}^{k} w_{i}(\theta) u_{i}\right)$.

Example

X_{1}, \ldots, X_{n} i．i．d Bernoulli．
$c(p)=1-p, w(p)=\log \frac{p}{1-p}, t_{1}(x)=x$.
Hence $T_{1}=T_{1}\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{n} X_{j}$ ．This is compatible with
what we know：$\sum_{j=1}^{n} X_{j} \sim \operatorname{binomial}(n, p)$ which belongs to the exponential family of distributions．

Sampling from the normal distribution

One sample：

Theorem

If X_{1}, \ldots, X_{n} is a random sample，$X_{j} \sim n(\mu, \sigma), j=1, \ldots, n$
i） $\bar{X} \sim n\left(\mu, \sigma^{2} / n\right)$
ii）$(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$
iii） \bar{X} and S^{2} are independent
Student $\mathrm{t}: t=\frac{\bar{X}-\mu}{S / \sqrt{n}}=\frac{\frac{\bar{x}-\mu}{\sigma \sqrt{n}}}{\frac{\sqrt{(n-1) S^{2}}}{\sigma^{2}} \frac{1}{\sqrt{n-1}}}=\frac{U}{\sqrt{V / p}}$ where $U \sim n(0,1), V \sim \chi_{p}^{2}, U$ and V independent and $p=n-1$ ．
Thus t is a t_{p} distributed variable．

Density:

Let $U \sim n(0,1), V \sim \chi_{p}^{2}$.
$f_{U V}(u, v)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \frac{1}{\Gamma\left(\frac{\rho}{2}\right)} \frac{1}{2^{p / 2}} v^{\frac{p}{2}-1} e^{-v / 2}, u, v>0$.
Then $t=\frac{U}{\sqrt{V / p}}, W=V$, with inverses $U=t \sqrt{\frac{W}{p}}, V=W$, has density $f_{t W}(t, w)=\frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{t^{2}}{p}+1\right) w / 2} \frac{1}{\Gamma\left(\frac{\rho}{2}\right)} \frac{1}{2^{p / 2}} w^{\frac{p+1}{2}-1} \frac{1}{\sqrt{p}}$.

Hence, t has marginal density

$$
\begin{aligned}
f_{t}(t) & =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{t^{2}}{p}+1\right) w / 2} \frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{2^{p / 2}} w^{\frac{p+1}{2}-1} \frac{1}{\sqrt{p}} d w \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{p}} e^{-s} \frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{2^{p / 2}}\left[\frac{2 s}{\frac{t^{2}}{p}+1}\right]^{\frac{p+1}{2}-1}\left[\frac{2}{\frac{t^{2}}{p}+1}\right] d s \\
& =\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\sqrt{p \pi}}\left[\frac{1}{\frac{t^{2}}{p}+1}\right]^{\frac{p+1}{2}}
\end{aligned}
$$

Not moments of all orders.
$p=1$, (i.e.n $=1$) Cauchy (0,1).
Two (independent) samples:
X_{1}, \ldots, X_{n} is a random sample, $X_{j} \sim n\left(\mu_{X}, \sigma_{X}^{2}\right), j=1, \ldots, n$
Y_{1}, \ldots, Y_{m} is a random sample, $Y_{j} \sim n\left(\mu_{Y}, \sigma_{Y}^{2}\right), j=1, \ldots, m$
Let $F=\frac{S_{X}^{2}}{\sigma_{X}^{2}} / \frac{S_{Y}^{2}}{\sigma_{Y}^{2}}$.
F is Fisher distributed with $\mathrm{n}-1$ and $\mathrm{m}-1$ degrees of freedom
since $F=\frac{S_{X}^{2}}{\sigma_{X}^{2}} / \frac{S_{Y}^{2}}{\sigma_{Y}^{2}}=\frac{\left[(n-1) \frac{S_{X}^{2}}{\sigma_{X}^{2}}\right] /(n-1)}{\left[(m-1) \frac{S_{X}^{2}}{\sigma_{X}^{2}}\right] /(m-1)} \sim \frac{\chi_{n-1}^{2} /(n-1)}{\chi_{m-1}^{2} /(m-1)}$.

