
Preliminary material STK4011-f17: Statistical
Inference Theory

Random variables
Definition A random variable is a function from a sample
space into the real numbers

X : S → R

S is a probability space so

i) P(A) ≥ 0,A ∈ B
ii) P(S) = 1

iii) If A1,A2, . . . ∈ B,Ai ∩ Aj = ∅, i 6= j , then
P(∪∞i=1Ai ) = Σ∞i=1P(Ai )



Example Assume S finite. Let

P(A) =
#{s : s ∈ A}
#{s : s ∈ S}

=
”favorable”

”possible”

PX (X = x) = P({s : X (s) = x}) is the distribution of X
defined in terms of S . �

Example S = {0, 1}10, so s = (s1, . . . , s10) where si = 0 or
si = 1, #S = 1024.
The probabiliy is defined by 1024 non-negative numbers with
sum equal to 1.
Let X (s) = Σ10

i=1si . Then PX (X = x) is the sum of those
numbers corresponding to the s = (s1, . . . , s10) where exactly x
si are 1 and n − x are 0.
In the special case where all the 1024 mumbers are equal and
hence 1/1024, X ∼ Binomial(10, 0.5).



In general, also for countable and infinite range of X , denoted
by X when A ⊂ X

PX (X ∈ A) = P({s ∈ S : X (s) ∈ A)

Distributions can be described by the cumulative distribution
function , cdf.

FX (x) = PX (X ≤ x)

Remark that FX (x) is right continous.

If PX (X = x) = 0 for all x, FX is continous and X is a
continous random variable.

If X is discrete, i.e. has finite or countable range, FX is a step
function.



For X discrete, the probability mass function, pmf, is given
by fX (x) = PX (X = x).

If FX is continuous and differentiable, the probability density
function, pdf satisfies

FX (x) =

∫ x

−∞
f (t)dt for all x

The expectation of the random variable X

E (X ) =

{
Σx∈X xfX (x) if X is discrete∫∞
−∞ xf (x)dx if X has pdf fX

describes the center of the distribution.

The variance Var(X ) = E [X 2]− [E (X )]2 describes the spread
of the distribution.



Notation:

X ∼ FX , X has cdf FX

X ∼ fX , X has pmf/pdf fX

X ∼ Y X and Y have the same distribution.



Transformations

X random variable implies that Y = g(X ) is a random variable
where g : X → Y,
X = {x : fX (x) > 0},Y = {y : Y = g(x) some x }

Distribution of Y?

P(Y ∈ A) = P(g(X ) ∈ A) = P(X ∈ g−1(A))

where g−1(A) = {x : g(x) ∈ A}.

X discrete:
fY (y) = PY (Y = y) = Σx∈g−1(y)PX (X = x) = Σx∈g−1(y)fX (x)

X continous:
FY (y) = PY (Y ≤ y) = PX (g(X ) ≤ y) =
PX (X ∈ {x : g(x) ≤ y}) =

∫
{x :g(x)≤y} fX (x)



Problem if g is not monotone.

Example
X ∼ U[0, 1] Y = sin2(X )

Then
{y :≤ y0} = {x : 0 ≤ x ≤ x1}∪{x : x2 ≤ x ≤ x3}∪{x : x ≥ x4}

and

PY (Y ≤ y0) = PX (X ≤ x1}+ PX (x2 ≤ X ≤ x3) + PX (X ≥ x4)

where

sin2(x1) = sin2(x2) = sin2(x3) = sin2(x4) = y0



Consider the case where g is strictly monotone,

i.e. either strictly decreasing or increasing

The support of X is X = {x : fX (x) > 0}

Y = {y : Y = g(x) some x }

Theorem

Let X ∼ fX and Y = g(X ) where g is strictly monotone. If g is
strictly monotone (on the support) and g−1 is continuously
differentiable on Y then

gY (y) =

{
fX (g−1(y))| ∂∂y gY

−1(y)| y ∈ Y
0 else



Proof. For g increasing

GY (y) = P(Y ≤ y) = PX (g(X ) ≤ y)

= P(X ≤ g−1(y)) = FX (g−1(y)).

Differentiating with respect to y

gY (y) =
∂

∂y
G (y) = fX (g−1(y))

∂

∂y
g−1
Y (y)

For g decreasing

GY (y) = P(Y ≤ y) = PX (g(X ) ≤ y)

= P(X ≥ g−1(y)) = 1− FX (g−1(y)).

Differentiating with respect to y

gY (y) =
∂

∂y
G (y) = −fX (g−1(y))

∂

∂y
gY
−1(y)



Example.

Theorem

Let f be a pdf and µ ∈ R σ > 0.
Then X ∼ 1

σ f ( x−µσ ) ⇔ ∃Z , Z ∼ f and X = σZ + µ

Proof ⇐: Let g(x) = σx + µ. Then g is monotone,
g−1(x) = x−µ

σ and ∂
∂x g

−1(x) = 1/σ. If X = g(Z ) then

fX (x) = f (g−1(x)) ∂
∂x g

−1(x) = 1
σ f ( x−µσ )

⇒: Let g(x) = x−µ
σ , Z = g(X ). Then

g−1(z) = σz + µ, ∂
∂x g

−1(x) = σ, so

fZ (z) = fX (g−1(z))
∂

∂x
g−1(z) = f (

σz + µ− µ
σ

)
1

σ
σ = f (z).

Also Z = X−µ
σ so X = σZ + µ.



Example. Y = X 2.

FY (y) = PX (X 2 ≤ y) = PX (−√y ≤ X ≤ √y))

= PX (X ≤ √y)− PX (X ≤ −√y)

= FX (
√
y)− FX (−√y)

so

fY (y) =
1

2
√
y
fX (
√
y)− (− 1

2
√
y
fX (−√y))

=
1

2
√
y
fX (
√
y) +

1

2
√
y
fX (−√y)

This procedure can be generalized to more than two intervals.



If FX is not strictly increasing, care is needed in the definition
of F−1

X .

Lemma

Let F−1
X (y) = inf{u : FX (u) ≥ y}.

Then F−1
X (FX (x)) = x .

Proof. By definition

F−1
X (FX (x)) = inf{u : FX (u) ≥ FX (x)} = x

where the last equality follows since FX is right continuous.



Important transformation:

Theorem

Let X have a continuous cdf FX and let Y = FX (X ).
Then Y ∼ U[0, 1].

Proof.
PY (Y ≤ y) = PX (FX (X ) ≤ y) = PX (F−1

X [FX (X )] ≤ F−1
X (y))

since F−1
X is by definition increasing. From previous Lemma

PX (F−1
X [FX (X )] ≤ F−1

X (y)) = PX (X ≤ F−1(y)) =
FX (F−1

X (y)).

But FX (F−1
X (y)) = y since FX is continuous.



Moment generating functions.

Definition The moment generating function, mgf, of a random
variable X is the function

MX (t) = E [exp(tX )]

provided the expectation exists in an interval (−h, h).

If differentiation and integration can be interchanged

∂

∂t
MX (t)|t=0 = E [X exp(tX )]|t=0 = E (X )

∂2

∂t2
MX (t)|t=0 = E [X 2 exp(tX )]|t=0 = E (X 2),

etc.



Knowledge of moments is not enough to

deterermine distribution in general.

But, if MX (t) and MY (t) exists,

and MX (t) = MY (t), ∀t ∈ (−h, h) for some h > 0,

then X ∼ Y .



Also, let {Xj} be a sequence of random variables with mgf MXj

Suppose:

i) MXj
(t)→ MX (t) ∀t ∈ (−h, h) for some h > 0

ii) MX (t) is a mgf for a random variable X ,

then FXj
(x)→ FX (x) if FX is continuous at x

and the moments of X is given by MX .



Common discrete distributions
Hypergeometric

Binomial

Poisson

Negative binomial



Common continuous distributions
Uniform:

fX (x |a, b) =

{
1

b−a if x ∈ [a, b]

0 else

Gamma:

The gamma function is defined by the integral
Γ(α) =

∫∞
0 tα−1e−tdt which is finite for α > 0.

fX (x |α, β) = 1
Γ(α)βα x

α−1e−x/β, 0 < x <∞, α > 0, β > 0.

Normal:

fX (x |µ, σ2) = 1√
2π
e−(x−µ)2/(2σ2), −∞ < x <∞.



Beta:

The beta function is defined as

B(α, β) =
∫ 1

0 xα−1(1− x)β−1dx

fX (x |α, β) = 1
B(α,β)x

α−1(1− x)β−1, 0 < x < 1, α > 0, β > 0.

Cauchy:

fX (x |µ, σ) = 1
σπ(1+( x−µ

σ
)2)
, −∞ < x <∞

Lognormal:

logX ∼ n(µ, σ2).

Double exponential:

fX (x |µ, σ) = 1
2σ e
|x−µ|/σ,−∞ < x <∞,−∞ < µ <∞, σ > 0.



Bivariate distributions

Bivariate random variable:

(
X
Y

)
: S → R2

S probability space.

Discrete case: P(X = x ,Y = y) = f (x , y) is the joint pmf.
fX (x) = P(X = x) = Σy f (x , y), fY (y) = P(Y = y) =
Σx f (x , y), are the marginal pmf.

Continuous case: f (x , y) is the joint pdf if
P((X ,Y ) ∈ A) =

∫ ∫
A f (x , y)dxdy , A ∈ R2.

fX (x) =
∫∞
−∞ f (x , y)dy , fY (y) =

∫∞
−∞ f (x , y)dx are the

marginal pdf’s.



Example Assume f (x , y) = 6xy2, (x , y) ∈ (0, 1)2.

Then

P(X + Y ≥ 1) =

∫ 1

0

∫ 1

1−y
6xy2dxdy =

∫ 1

0
y2[

∫ 1

1−y
6xdx ]dy

=

∫ 1

0
y2[3(1− (1− y)2]dy = 3

∫ 1

0
(2y3 − y4)dy

=
6

4
− 3

5
=

30− 12

20
=

9

10



Conditional distributions

Discrete case: P(Y = y |X = x) = P(Y=y ,X=x)
P(X=x) = f (x ,y)

fX (x)
is the discrete conditional pmf.

Continuous case: f (y |x) = f (x ,y)
fX (x) when fX (x) > 0 is the

conditional pdf.

Example f (x , y) = e−y , 0 < x < y <∞

fX (x) =
∫∞
−∞ f (x , y)dy =

∫∞
x e−ydy = e−x .

f (y |x) = e−y

e−x = e−(y−x), x < y .



Independence

If f (x , y) = fX (x)fY (y), X and Y are independent.

Theorem

It is sufficient that f (x , y) factorizes, i.e. f (x , y) = g(x)h(y)
for some functions g and h for X and Y to be independent.

Proof From the marginal densities

fX (x) = g(x)

∫ ∞
−∞

h(y)dy = g(x)d so

∫ ∞
−∞

h(y)dy = d

fY (y) = h(y)

∫ ∞
−∞

g(x)dx = h(y)c so

∫ ∞
−∞

g(x)dx = c .

From the simultaneous density 1 =
∫∞
−∞ f (x , y)dxdy

=
∫∞
−∞ g(x)h(y)dxdy = (

∫∞
−∞ g(x)dx)(

∫∞
−∞ h(y)dy) = cd .

Hence f (x , y) = g(x)h(y) · 1 = g(x)h(y)cd = fX (x)fY (y).



Example

f (x , y) = 1
384x

2y4e−y−x/2 factorizes so we do not need to

compute fX (x) = 1
16x

2e−x/2, i .e.X ∼ χ2
6 and

fY (y) = 1
24y

4e−y , i .e.Y ∼ gamma(5, 1) to check independence.

Theorem

If X and Y are independent, E [g(X )h(Y )] = E [g(X )]E [h(Y )]
for all functions g and h for which the expectation exist.



Proof

E [g(X )h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)f (x , y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX (x)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)fX (x)h(y)fY (y)dxdy

= (

∫ ∞
−∞

g(x)fX (x)dx)(

∫ ∞
−∞

h(y)fY (y)dy)

= E [g(X )]E [h(Y )]

Remark that f (x , y) does not have to factorize for all x , y to
establish independence. It is sufficient that

∫ ∫
B f (x , y) = 0 on

the exceptional set B.



Example

(X ,Y ) have pdf f (x , y) =

{
e−x−y x , y > 0

0 else

(X ∗,Y ∗) have pdf f ∗(x , y) =

{
e−x−y x , y > 0, x 6= y

0 else

Then

P((X ,Y ) ∈ A) =

∫ ∫
A
f (x , y)dxdy

=

∫ ∫
A
f ∗(x , y)dxdy = P((X ∗,Y ∗) ∈ A)

so (X ,Y ) ∼ (X ∗,Y ∗).

The point is that the pdf is only unique up to a set with
probability zero.



Bivariate transformations

Suppose (X ,Y ) has a known distribution and g1 : R2 → R,
g2 : R2 → R be two specified function. Then(

U
V

)
=

(
g1(X ,Y )
g2(X ,Y )

)
is another bivariate random variable whose distribution is
determined by the distribution of (X ,Y ).

Distribution of (U,V )?

Discrete case: f (u, v) = Σ{(x ,y):g1(x ,y)=u,g2(x ,y)=v}f (x , y).



Continuous case: Let

A = {(x , y) : f (x , y) > 0}
B = {(u, v) : u = g1(x , y), v = g2(x , y) some(x , y) ∈ A}

Consider a generalzation of the treatment of univariate
transformations, i.e. the case where the transformation
(g1, g2) : A → B is 1-1 and onto. Then it can be inverted so
x = h1(u, v), y = h2(u, v) for all (u, v) ∈ B.

The role played by the derivative in the univariate case is now
played by the Jacobian of the transformation, J , defined as the
determinant of the matrix of partial derivatives, i.e.

J = det

( ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= det

(
∂h1(u,v)
∂u

∂h1(u,v)
∂v

∂h2(u,v)
∂u

∂h2(u,v)
∂v

)

so J = ∂x
∂u

∂y
∂v −

∂x
∂v

∂y
∂u .



Theorem

Suppose the transformation (g1, g2) : A → B is 1-1 and onto
and that the Jacobian is not identically zero. Then it can be
inverted so x = h1(u, v), y = h2(u, v) for all (u, v) ∈ B. The
joint pdf of (U,V ) is

fUV (u, v) = fXY (h1(u, v), h2(u, v))|J |

where J is the Jacobian of the transformation.

If the transformation is not 1-1, the theorem can be generalized
by splitting A into sets where the transformation is 1-1.



Example Suppose X ∼ gamma(α1, β) and Y ∼ gamma(α2, β)

Define U = X + Y ,V = X
X+Y , so V = X

U ,X = UV and
Y = U − UV = U(1− V ).

Jacobian: J = ∂x
∂u

∂y
∂v −

∂x
∂v

∂y
∂u = v(−u)− u(1− v) = −u.

fXY (x , y) =
1

Γ(α1)
(
x

β
)α1−1 1

β
e−x/β

1

Γ(α2)
(
y

β
)α2−1 1

β
e−y/β

=
1

Γ(α1)

1

Γ(α2)
xα1−1yα2−1(

1

β
)α1+α2e−(x+y)/β

and

fUV (u, v) =
1

Γ(α1)

1

Γ(α2)
(uv)α1−1(u(1− v))α2−1(

1

β
)α1+α2e−u/βu

=
1

Γ(α1)

1

Γ(α2)
vα1−1(1− v)α2−1(

u

β
)α1+α2−1 1

β
e−u/β



Hence

fUV (u, v) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
vα1−1(1− v)α2−1

× 1

Γ(α1 + α2)
(
u

β
)α1+α2−1 1

β
e−u/β.

so U and V are independent, U ∼ gamma(α1 + α2) and
V ∼ beta(α1, α2).



Example Suppose X ,Y ∼ N(0, 1) and independent. Let

U = X
Y = g1(X ,Y ) and V = X = g2(X ,Y ) so

Y = X
U = V

U = h1(U,V ), X = V = h2(U,V ).

fUV (u, v) =
1

2π
e−v

2(1+ 1
u2 )/2| det

(
0 1
− v

u2
1
u

)
|

=
1

2π
e−v

2(1+ 1
u2 )/2| v

u2
|



Marginal distribution of U:

fU(u) =

∫ ∞
−∞

1

2π
e−v

2(1+ 1
u2 )/2 |v |

u2
dv

=

∫ ∞
0

1

2π
e−v

2(1+ 1
u2 )/2 v

u2
dv

Change of variable y = v
√

1 + 1
u2 so v = y√

1+ 1
u2

,

fU(u) =

∫ ∞
0

1

2π
e−y

2/2 y√
1 + 1

u2

1

u2

1√
1 + 1

u2

dy

=
1

π

1

1 + u2

∫ ∞
0

ye−y
2/2dy =

1

π

1

1 + u2

since
∫∞

0 ye−y
2/2dy = −e−y2/2|y=∞

y=0 = 1, so U ∼ Cauchy(0, 1).



Multivariate distributions

Multivariate random variable: X =

 X1
...
Xn

 : S → Rn

S probability space.

Results from bivariate case, n = 2, generalize

pmf/pdf: f (x1, · · · , xn)

expectation: E [g(x)] =∫∞
−∞ · · ·

∫∞
−∞ g(x1, · · · , xn)f (x1, · · · , xn)dx1 · · · dxn

marginal pmf/pdf: obtained by summation/integration

conditional pmf/pdf:

f (xk+1, · · · , xn|x1, · · · , xk) = f (x1,··· ,xn)
f (x1,··· ,xk )

mgf: MX (t1, · · · , tn) = E [eΣn
j=1tjXj ]



Multivariate transformations

Let A = {(x1, . . . , xn) : f (x1, . . . , xn) > 0}
Suppose that the function

g(x) =

 g1(x1, . . . , xn)
...

gn(x1, . . . , xn)

 : A → Rn

is 1-1 and onto
B = {(u1, . . . , un)|uj = gj(x1, . . . , xn)} for some x =
(x1, . . . , xn)′ ∈ A}.

Then there exist inverses xj = hj(u1, . . . , un), j = 1, . . . n.



If the Jacobian

det


∂x1
∂u1

. . . ∂x1
∂un

...
...

∂xn
∂u1

. . . ∂xn
∂un

 = det


∂h1(u1,...,un)

∂u1
. . . ∂h1(u1,...,un)

∂un
...

...
∂hn(u1,...,un)

∂u1
. . . ∂hn(u1,...,un)

∂un


is not identically 0 on B,

fU(u1, . . . , un) = fX (h1(u1, . . . , un), . . . , hn(u1, . . . , un))|J |.



Example Suppose X = (X1,X2,X3,X4)′ has joint pdf

fX (x1, x2, x3, x4) =

{
24e−(x1+x2+x3+x4), 0 < x1 < x2 < x3 < x4 <∞

0 else

Let U1 = X1,U2 = X2 − X1, ,U3 = X3 − X2,U4 = X4 − X3.

The transformation is 1-1 and onto from
{(x1, x2, x3, x4)|0 < x1 < x2 < x3 < x4 <∞} to R+4.

The inverse is
x1 = u1, x2 = u1 + u2, x3 = u1 + u2 + u3, x4 = u1 + u2 + u3 + u4

with Jacobian

det


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 = 1



so

fu(u1, u2, u3, u4) =

{
24e−(4u1+3u2+2u3+u4), 0 < uj <∞, all j

0 else

=

{
4e−4u13e−u22e−u3e−u4 , 0 < uj <∞, all j

0 else

Also fU factorizes so U1,U2,U3U4 are independent.



Random Samples

Definition: The random variables X1, . . . ,Xn are called a
random sample from the population f (x) if X1, . . . ,Xn are
mutually independent and identically distributed with pmf/pdf
f(x).

Alternatively:

X1, . . . ,Xn are i.i.d Xj ∼ f (x), j = 1, . . . , n, or

X1, . . . ,Xn is a sample from an infinite population.

Finite population: Sampling with replacement yields a random
sample. Sampling without replacement does not yield a
random sample because of dependence.



Sums of r.v. fram a random sample

After sampling there are realizations X1 = x1, . . . ,Xn = xn
which can be summarized using various measures
y = T (x1, . . . , xn), e.g. mean, median.

Regarded as a random variable Y = T (X1, . . . ,Xn) is called a
statistic. The proability distribution of Y is called the
sampling distribution.



Two important statistics:

Mean: X̄ = 1
nΣn

j=1Xj

Sample variance: S2 = 1
n−1 Σn

j=1(Xj − X̄ )2

Then

* E (X̄ ) = µ = (
∫∞
−∞ xf (x)dx)

* Var(X̄ ) = σ2

n = ( 1
n

∫∞
−∞(x − µ)2f (x)dx)

* E (S2) = σ2

so X̄ and S2 are unbiased.



Sample distribution of X̄?
Two approaches:
(i) mgf: If X1, . . . ,Xn is a random sample and
MX (t) = E (etXj ), j = 1, . . . , n, then MX̄ (t) = [MX (t/n)]n.

Problems are that MX (t) does not always exist and also the
density can be difficult to recognize.

(ii) convolution:

Theorem

If X and Y are independent, X ∼ fX (x) and Y ∼ fY (y) and
Z = X + Y , then fZ (z) =

∫∞
−∞ fX (u)fY (z − u)du.



Proof
Let U = X , Z = X + Y .

The inverse transformation is X = U, Y = Z − U. The
Jacobian is

J = det

(
1 0
−1 1

)
so

fUZ (u, z) = fX (u)fY (z − u)

and

fZ (z) =

∫ ∞
−∞

fX (u)fY (z − u)du.



Example
U ∼ Cauchy(0, σ), V ∼ Cauchy(0, τ), U, V independent.

U + V ∼ Cauchy(σ + τ) (after some calculations) If Z1, . . . ,Zn

random sample Cauchy(0, 1), Z̄ ∼ Cauchy(0, 1)



X̄ in location/scale families: If X1, . . . ,Xn random sample,

Xj ∼ 1
σ f ( x−µσ ), j = 1, . . . , n.

Then Xj = σZj + µ and X̄ = σZ̄ + µ.

Hence, if Z̄ ∼ g(z),

X̄ ∼ 1

σ
g(

x − µ
σ

).



Σn
j=1Xj in exponential families:

If X1, . . . ,Xn random sample, Xj ∼ f (x |θ), j = 1, . . . , n,

f (x |θ) = h(x)c(θ) exp(Σk
i=1wi (θ)ti (x)).

Let Ti (X1, . . . ,Xn) = Σn
j=1ti (Xj), i = 1, . . . , k.

If {(w1(θ), . . . ,wk(θ))|θ ∈ Θ} contains an open subset of Rk ,
(T1, . . . ,Tk) ∼ f (u1, . . . , uk |θ) where

f (u1, . . . , uk |θ) = H(u1, . . . , uk)c(θ)n exp(Σk
i=1wi (θ)ui ).



Example
X1, . . . ,Xn i.i.d Bernoulli.

c(p) = 1− p, w(p) = log p
1−p , t1(x) = x .

Hence T1 = T1(X1, . . . ,Xn) = Σn
j=1Xj . This is compatible with

what we know: Σn
j=1Xj ∼ binomial(n, p) which belongs to the

exponential family of distributions.



Sampling from the normal distribution

One sample:

Theorem

If X1, . . . ,Xn is a random sample, Xj ∼ n(µ, σ), j = 1, . . . , n

i) X̄ ∼ n(µ, σ2/n)

ii) (n − 1)S2/σ2 ∼ χ2
n−1

iii) X̄ and S2 are independent

Student t:t = X̄−µ
S/
√
n

=
X̄−µ
σ
√
n√

(n−1)S2

σ2
1√
n−1

= U√
V /p

where

U ∼ n(0, 1), V ∼ χ2
p, U and V independent and p = n − 1.

Thus t is a tp distributed variable.



Density:

Let U ∼ n(0, 1), V ∼ χ2
p.

fUV (u, v) = 1√
2π
e−u

2/2 1
Γ( p

2
)

1
2p/2 v

p
2
−1e−v/2, u, v > 0.

Then t = U√
V /p

, W = V , with inverses U = t
√

W
p , V = W ,

has density ftW (t,w) = 1√
2π
e−( t2

p
+1)w/2 1

Γ( p
2

)
1

2p/2w
p+1

2
−1 1√

p .

Hence, t has marginal density

ft(t) =

∫ ∞
0

1√
2π

e−( t2

p
+1)w/2 1

Γ(p2 )

1

2p/2
w

p+1
2
−1 1
√
p
dw

=

∫ ∞
0

1√
2π

1
√
p
e−s

1

Γ(p2 )

1

2p/2
[

2s
t2

p + 1
]
p+1

2
−1[

2
t2

p + 1
]ds

=
Γ(p+1

2 )

Γ(p2 )

1
√
pπ

[
1

t2

p + 1
]
p+1

2



Not moments of all orders.

p = 1, (i .e.n = 1) Cauchy(0,1).

Two (independent) samples:

X1, . . . ,Xn is a random sample, Xj ∼ n(µX , σ
2
X ), j = 1, . . . , n

Y1, . . . ,Ym is a random sample, Yj ∼ n(µY , σ
2
Y ), j = 1, . . . ,m

Let F =
S2
X

σ2
X
/
S2
Y

σ2
Y

.

F is Fisher distributed with n-1 and m-1 degrees of freedom

since F =
S2
X

σ2
X
/
S2
Y

σ2
Y

=
[(n−1)

S2
X
σ2
X

]/(n−1)

[(m−1)
S2
X
σ2
X

]/(m−1)
∼ χ2

n−1/(n−1)

χ2
m−1/(m−1)

.


