Preliminary material STK4011-f17: Statistical
Inference Theory

Random variables
Definition A random variable is a function from a sample
space into the real numbers

X:S—=R

S is a probability space so
i) P(A)>0,Ae B
i) P(S)=1
i) If A1, As,...€ B,AINA; =0,i # j, then
P(UZ1Ai) = X2, P(A)



Example Assume S finite. Let

_ #{s:se€ A}  "favorable"

P(A) = #{s:s€ S}  "possible”

Px(X = x) = P({s : X(s) = x}) is the distribution of X
defined in terms of S. M

Example S = {0,1}!°, so s = (s1,...,510) where s; = 0 or
si=1, #5 =1024.

The probabiliy is defined by 1024 non-negative numbers with
sum equal to 1.

Let X(s) = 1% s;. Then Px(X = x) is the sum of those
numbers corresponding to the s = (sy, ..., s10) where exactly x
siare 1 and n— x are Q.

In the special case where all the 1024 mumbers are equal and
hence 1/1024, X ~ Binomial(10,0.5).



In general, also for countable and infinite range of X, denoted
by X when AC X

Px(X € A)=P({se€S: X(s) € A)

Distributions can be described by the cumulative distribution

function , cdf.
Fx(x) = Px(X < x)

Remark that Fx(x) is right continous.

If Px(X = x) =0 for all x, Fx is continous and X is a
continous random variable.

If X is discrete, i.e. has finite or countable range, Fx is a step
function.



For X discrete, the probability mass function, pmf, is given
by fx(x) = Px(X = x).

If Fx is continuous and differentiable, the probability density
function, pdf satisfies

FX(X)Z/X f(t)dt for all x

—0o0

The expectation of the random variable X

E(X) — Y exxfx(x) if X is discrete
(%) = [0 xf(x)dx if X has pdf fx

describes the center of the distribution.

The variance Var(X) = E[X?] — [E(X)]? describes the spread
of the distribution.



Notation:
X ~ Fx, X has cdf Fx
X ~ fx, X has pmf/pdf fx

X ~Y X and Y have the same distribution.



Transformations

X random variable implies that Y = g(X) is a random variable
where g : X — ),

X ={x:fx(x) >0}LY={y:Y=g(x) somex }
Distribution of Y?

P(Y € A) = P(g(X) € A) = P(X € g 1(A))
where g71(A) = {x : g(x) € A}.

X discrete:
fY()/) = ’DY(Y = y) = zXeg_l(y)’DX( - X) X€g )fX(X)

X continous:
Fy(y)=Py(Y <y)=Px(g(X)<y) =
Px(X € {x: 8(x) < y}) = fixgimyars F(X)



Problem if g is not monotone.

Example
X ~ U[0,1] Y = sin?(X)

Then
{yi<y}={x:0<x<xi}U{x:x <x<x3}U{x:x>xa}

and
Py(Y < yo) = Px(X < xi} 4 Px(x2 < X < x3) + Px(X > xa)
where

sin(x1) = sin?(x2) = sin?(x3) = sin?(x3) = yo



Consider the case where g is strictly monotone,
i.e. either strictly decreasing or increasing
The support of X is X = {x : fx(x) > 0}

Y={y:Y =g(x)somex}

Theorem

Let X ~ fx and Y = g(X) where g is strictly monotone. If g is
strictly monotone (on the support) and g~ ! is continuously
differentiable on ) then

-1 b . 1
gy(y):{ fx(g (y))loaygv 2] yeelsg?



Proof. For g increasing

Gy(y) = P(Y<y)=Px(g(X)<y)

Differentiating with respect to y

gv(y) = (%G(y) = fx(g‘l(y))g,g?l(y)

For g decreasing

Gy(y) = P(Y <y)=Px(g(X)<y)
= P(X =g 'y)=1-Fx(g ().

Differentiating with respect to y



Example.

Theorem

Let f be a pdf and € R o > 0.
ThenXN%f(XTT“)@EIZ,ZNfandX:aZ—HL

Proof <: Let g(x) = ox + p. Then g is monotone,

g 1(x) =% and %g_l(x) =1/o. If X = g(Z) then
fx(x) = flg (X)) gxg 1 (x) = 2 F(*3H)

=: Let g(x) = £, Z = g(X). Then

g i (2)=0z+p, g ' (x)=0, 50

fo(2) = fxlg () g () = F(ET LT L f()

(o2 g

Also Z =Xt so X =0 Z + pu.



Example. Y = X2.

Fy(y) = Px(X*<y)=Px(—y <X <))
= Px(X<Vy) - Px(X < =Vy)
= Fx(Vy) = Fx(=v)

SO

Fly) = 2;&(@—(—2%%@)
1 1
= ﬁfx(\fy)-Fﬁfx(—ﬁ)

This procedure can be generalized to more than two intervals.



If Fx is not strictly increasing, care is needed in the definition
~1
of Fy ™.

Lemma

Let F'(y) = inf{u: Fx(u) > y}.
Then Fy ' (Fx(x)) = x.

Proof. By definition
F)?l(Fx(X)) =inf{u: Fx(u) > Fx(x)} = x

where the last equality follows since Fyx is right continuous.



Important transformation:

Theorem

Let X have a continuous cdf Fx and let Y = Fx(X).
Then Y ~ U[0,1].

Proof.
Py(Y <y) = Px(Fx(X) <y) = Px(Fx[Fx(X)] < Fx'(y))

since F)?l is by definition increasing. From previous Lemma

Px(Fx [Fx(X)] < Fx'()) = Px(X < F(y)) =
Fx(Fx ().

But FX(F)?l(y)) = y since Fx is continuous.



Moment generating functions.

Definition The moment generating function, mgf, of a random
variable X is the function

Mx(t) = Elexp(X)]
provided the expectation exists in an interval (—h, h).

If differentiation and integration can be interchanged

aatMX(t)‘t o = E[Xexp(tX)]|t=0 = E(X)
081-22 MX(t)‘t 0 = E[X2 exp(tX)Ht:O — E(X2),

etc.



Knowledge of moments is not enough to

deterermine distribution in general.

But, if Mx(t) and My (t) exists,
and Mx(t) = My(t), Vt € (—h, h) for some h > 0,

then X ~ Y.



Also, let {X;} be a sequence of random variables with mgf My

Suppose:

i) Mx;(t) — Mx(t) Vt € (—h, h) for some h >0
i) Mx(t) is a mgf for a random variable X,

then Fx.(x) — Fx(x) if Fx is continuous at x

and the moments of X is given by Mx.



Common discrete distributions
Hypergeometric

Binomial
Poisson

Negative binomial



Common continuous distributions
Uniform:

2+ ifxelab
wxlan) ={ 77 T

Gamma:

The gamma function is defined by the integral
Ma) = [,° t* te tdt which is finite for a > 0.

fx(x|a, B) = Wxaflefx/ﬁ, 0<x<oo, a>0,6>0.
Normal:

fx (x|, 0?) = \/%e_(x_“)z/(z‘#), —00 < x < 00.



Beta:

The beta function is defined as

B(a, 8) = [y x*71(1 — x)®Ldx

fx(x|a, B) = ﬁxa_l(l —x)? 1 0<x<1, a>03>0.
Cauchy:

fx (x|, o) = m, —00 < X < 00

Lognormal:

log X ~ n(u,o?).

Double exponential:

fx(x|u, o) = %e'x_“‘/", —00 < X < 00, —00 < p < 00,0 > 0.



Bivariate distributions

Bivariate random variable: ( )\i > S 5 R2

S probability space.

Discrete case: P(X = x,Y =y) = f(x,y) is the joint pmf.
fx(x) = P(X =x) =L,f(x,y), fir(y) = P(Y =y) =
Y. f(x,y), are the marginal pmf.

Continuous case: f(x, y) is the joint pdf if

P((X,Y) € A)= [ [,f(x,y)dxdy, AcR2

fx(x) = 75 f(x,y)dy, fy(y) = [~ f(x,y)dx are the
marginal pdf’s.



Example Assume f(x,y) = 6xy?, (x,y) € (0,1)%.

// 6xydxdy = /y[ 6xdx|dy
1-y

1
[ vy =3 [ e
0 0
S 30-12 9
20 10

Then

P(X+Y >1)

6_
4

a1l W



Conditional distributions

Discrete case: P(Y = y|X = x) = P(’;(:){v:i):X) — %((X(){))

is the discrete conditional pmf.

Continuous case: f(y|x) = ';E:E;’)) when fx(x) > 0 is the
conditional pdf.

Example f(x,y) =™, 0 < x <y < o0
fx(x) = [Z f(x,y)dy = [T e Ydy =e ™

flylx) = Z%i =e ) x<y.



Independence

If f(x,y) = fx(x)fy(y), X and Y are independent.

Theorem

It is sufficient that f(x,y) factorizes, i.e. f(x,y) = g(x)h(y)
for some functions g and h for X and Y to be independent.

Proof From the marginal densities
o

fx(x) = g(x) /00 h(y)dy = g(x)d so / h(y)dy = d

—00 —00

fy(y) = h(y) /oo g(x)dx = h(y)c so /OO g(x)dx = c.

— 00

From the simultaneous density 1 = ffooo f(x,y)dxdy

= |75 g(x)h(y)dxdy = ([, g x)dx)( [, h(y)dy) = cd.
Hence (x. y) g(x)h(y) -1 = g(x)h(y)ed = fx(x)fv (v).



Example
f(x,y) = g57x°y*e ™~ */2 factorizes so we do not need to
compute fX( ) = 116x2e_x/2 i.e.X ~ x32 and

fy(y) = 2—14y4e*y i.e.Y ~ gamma(5,1) to check independence.

Theorem

If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)]
for all functions g and h for which the expectation exist.



Proof
EC0nM] = [~ [ gGon) Gy
- /_ / g()h(y) fx (x)fy (v )dxdy
- ) / g(x)x(x)h(y)fv (y)dxdy

= ([ g(0fx)d0) / = ) (y)dy)

—00 —0o0

Remark that f(x, y) does not have to factorize for all x, y to
establish independence. It is sufficient that | [5 f(x,y) =0 on
the exceptional set B.



Example

e XY X,y >0

(X,Y) havepdf f(x,y)= { 0 else

e 7Y X7y>0’ X?éy

(X*,Y*) have pdf f(X,Y):{ 0 else

Then
P((X,Y) € A) // (x, y)dxdy
// F*(x,y)dxdy = P((X*,Y*) € A)
o (X, Y)~ (X", Y").

The point is that the pdf is only unique up to a set with
probability zero.



Bivariate transformations

Suppose (X, Y) has a known distribution and g1 : R?> — R,
2>+ R? = R be two specified function. Then

U _ ( gl(X, Y)

v (X, Y)
is another bivariate random variable whose distribution is
determined by the distribution of (X, Y).

Distribution of (U, V)?

Discrete case: f(u,Vv) = X ). (x.y)=u.g(x.y)=v}T (X ¥)-



Continuous case: Let

A={(x,y): f(x,y) >0}
B={(u,v):u=gi(x,y),v=glx,y) some(x,y) € A}

Consider a generalzation of the treatment of univariate
transformations, i.e. the case where the transformation
(g1,82) : A — Bis 1-1 and onto. Then it can be inverted so
x = hi(u,v),y = ha(u,v) for all (u,v) € B.

The role played by the derivative in the univariate case is now
played by the Jacobian of the transformation, J, defined as the
determinant of the matrix of partial derivatives, i.e.

Ox  Ox Ohi(u,v)  Ohi(u,v)
J = det( 9 9 ) =det| 5,000 onloy)
du Jdu ov

ov

s0J = Ox Oy Ox Oy

ou Ov ov ou"



Suppose the transformation (g1, &2) : A — B is 1-1 and onto
and that the Jacobian is not identically zero. Then it can be
inverted so x = hy(u,v),y = ha(u, v) for all (u,v) € B. The
Joint pdf of (U, V) is

fuv(u, V) = ny(hl(u, V)7 h2(u, V))’j’

where J is the Jacobian of the transformation.

If the transformation is not 1-1, the theorem can be generalized
by splitting A into sets where the transformation is 1-1.



Example Suppose X ~ gamma(ag, 8) and Y ~ gamma(az, 3)

Define U=X+Y,V =
Y=U-UV=U(1-V).

Jacobian: J = Ox 0y _ Ox Oy _

~ Ouov ov du

_ b X1l s Yyar-1l /s
fXY(Xay) ( )(ﬂ) =€ r(Oé2)(B) ﬁe
_ L L a1 a1 1 artaz . —(x+y)/B
Ma1) T(a2) " (e
and
o 1 1 ar1—1 - ar—1 1 ar1taz ,—u/B
nuv) = o e () L= ) ) e
_ 1 1 Valfl( )az 1( )a1+a2 llefu/ﬁ

X+Y’

= £,X=UV and

v(—u) —u(l—v)=—u.

B B



Hence

_ F(a1 —|—CY2) a1—1 ar—1
fuv(u,v) = WV (1-v)
1 u 041+a2*11 —u/B
arta) 8 B

so U and V are independent, U ~ gamma(a; + az) and
V ~ beta(al, 042).



Example Suppose X, Y ~ N(0,1) and independent. Let

U=Z%=g(X,Y)and V=X =g(X,Y) so

Y
Y=%=¥=mUV), X=V=hU,V).
fuy(u,v) = ie_v2(1+“%)/2|det s |
’ 27 _LTV2 %
_ L ey v
- 27re ’U2’



Marginal distribution of U:

B R T
fulu) = / 5-€ 2(lJ“uIZ)/ZLVJdv

oo u
_ /°° ie’vz(”u%)/z%dv
0 27T u

Change of variable y = v{/1 + % sov=—F+X—,
Vit

& 2 y 1 1
le) = [ 5o E dy
o ™ 1+ R 1+ k

11 [ 1 1
:ﬂ+ﬁ/‘ﬁypwz
0

since [° ye v’ /2dy = —e*y2/2]§28° =1, so U ~ Cauchy(0,1).



Multivariate distributions
X1

Multivariate random variable: X = : :S—=R”

Xn
S probability space.

Results from bivariate case, n = 2, generalize
m pmf/pdf: f(x1, -, xpn)
m expectation: E[g(x)] =
f_oooo"'ffooog(xl,'-- Xn)F (X1, -+, Xn)dxy - - - dxp
m marginal pmf/pdf: obtained by summation/integration
m conditional pmf/pdf:

f
fF(Xkt1, s Xalxt, - xk) = Flx,xn)

T f(xa,e i xk)

m mgf: Mx(ty, -, tn) = E[e=/=15%]



Multivariate transformations

Let A= {(x1,...,xn) : f(x1,...

Suppose that the function

gl(xl, e

g(x) =

gn(x1, ...

is 1-1 and onto

B = {(Ul,. cey u,,)|uj~ = gj(Xl, e

(x1,...,%1) € A}

Then there exist inverses x; = hj(uy,...,un), j=1,...

,Xn)} for some x =



If the Jacobian

det

is not identically 0 on B,

fu(ur, ...

Ox1
ou

Oxn
ouy

Ox1
dup

Oxn
Oup

= det

yup) = fx(h1(ug, ...

s Up)y ...

Ohi(u1,...,un)

oy

8hn(u17---7un)

ouy

Oh1(u1,...,un)
Oun

8hn('—’17---7un)

Oun

s hn(u, .. un))| T



Example Suppose X = (X1, X2, X3, Xs)" has joint pdf

e~ batetxsta) < x <X < x3<xz <X
fx(x1, x2,x3, X4) = { 0 ’ clse

Let Up = X1, U2 = Xo — X1,, U3 = X3 — Xp, Up = Xy — X5.

The transformation is 1-1 and onto from
{(x1,x2,x3,%4)[0 < x1 < x2 < x3 < x4 < 00} to R4,

The inverse is

X1 = U1, Xp = U1+ U, X3 =U1+ U+ U3, X4 = Uy + Up+ U3+ Uy
with Jacobian

det

e
e e )
= = O O
= O O O



SO

24e_(4ul+3U2+2U3+u4), 0 <uj<oo,allj

fu(uy, uz, u3, us) = { 0 else

_ fetn3e e e 0 < uj < 00, all j
= 0 else

Also fy factorizes so Uy, U, UsU, are independent.



Random Samples

Definition: The random variables Xy, ..., X, are called a
random sample from the population f(x) if Xi,..., X, are
mutually independent and identically distributed with pmf/pdf
f(x).

Alternatively:
mXi,...,Xpareiid X;~ f(x), j=1,...,n, or
m Xi,...,X, is a sample from an infinite population.

Finite population: Sampling with replacement yields a random
sample. Sampling without replacement does not yield a
random sample because of dependence.



Sums of r.v. fram a random sample

After sampling there are realizations X1 = x1,..., X, = xp
which can be summarized using various measures
y = T(x1,...,xn), e.g. mean, median.

Regarded as a random variable Y = T(X,...,X,) is called a
statistic. The proability distribution of Y is called the
sampling distribution.



Two important statistics:

m Mean: X = %ZJ’-’ZIXJ-

m Sample variance: S? = ﬁzyzl(xj — X)?
Then

* E(X) = = (7 xF(x)d)

* Var(X) = 2 = (L [2(x — 1) (x)dx)

* E(52) — g2

so X and S? are unbiased.



Sample distribution of X?

Two approaches:

(i) mgf: If Xi,..., X, is a random sample and

Mx(t) = E(e®), j=1,...,n, then Mg(t) = [Mx(t/n)]".

Problems are that Mx(t) does not always exist and also the
density can be difficult to recognize.

(i) convolution:

Theorem

If X and Y are independent, X ~ fx(x) and Y ~ fy(y) and
Z=X+Y, then fz(z) = [%_fx(u)fy(z — u)du.



Proof
Let U=X,Z=X+Y.

The inverse transformationis X = U, Y =27 — U. The

Jacobian is
1 0
J = det< 11 >
o)
fuz(u, z) = fx(u)fy(z — u)
and

fz(Z) = /OO fx(u)fy(z — u)du.

—00



Example
U ~ Cauchy(0,0), V ~ Cauchy(0,7), U, V independent.

U+ V ~ Cauchy(c + 1) (after some calculations) If Z1,...,Z,

random sample Cauchy(0,1), Z ~ Cauchy(0,1)



X in location/scale families: If Xi,..., X, random sample,
X~ Lf(=t), j=1,...,n
Then X; = 0Zj+pand X =0Z + p.

Hence, if Z ~ g(z2),




Y, Xj in exponential families:

If X1,...,X, random sample, X; ~ f(x]0), j=1,...,n,
F(x10) = h(x)c(6) exp(ZE_ wi(0)5(x)).

Let T;(X1,....Xp) =X 1t:(X;), i=1,... k.

If {(w1(6), ..., wk(0))|6 € O} contains an open subset of R¥,
(Tl, ey Tk) ~ f(ul, ey uk|0) where

f(ut,...,ukl0) = H(ui, ..., uk)c(0)" exp(ZE_ w;(0)u;).



Example
Xi,..., X, i.i.d Bernoulli.

c(p) =1—p, w(p) = log &5, t1(x) = x.
Hence T1 = T1(X1,...,Xn) = ZJ’-’ZIXJ-. This is compatible with

what we know: 7, Xj ~ binomial(n, p) which belongs to the
exponential family of distributions.



Sampling from the normal distribution

One sample:
If X1,...,Xn is a random sample, X; ~ n(p,0), j=1,...,n
) X ~ n{y, 0%/n)
i) (n—1)5%/0% ~ 2.
i) X and S? are /ndependent
X—p
o/ — = \/l\ji/p where

Student t:t = 5/\[ N
T2 Va1
U~ n(0,1), V~ xp, U and V independent and p=n—1

) 1
Thus t is a t, distributed variable



Density:

Let U~ n(0,1), V ~ x3.

fuv(u,v) = ﬁe‘“zﬂ r(lg)zp—l/zvg_le_"/z, u,v>0.
_ u _ oG _ w _
Then t = N W =V, with inverses U = t,/ o V=W,

(2 1
has density fyw (t, w) = \/%e (5 1w/ (1 )2‘71/2W%—1 1

NI

9

Hence, t has marginal density

1 (2 1 1 esl 1
fr(t) = e w2~ 1 gy
t( ) /O /727_‘_ r(g) 2p/2 \/’

1 1 2s

1 1 _ prl_
= —_— e 2
/0 V2m /P r(§)2"/2[f—,f+1] L+1
F(LH) 1 1 p+1

r(%) \/ﬁ[%ﬂ] 2

N




Not moments of all orders.
p=1,(i.e.n=1) Cauchy(0,1).

Two (independent) samples:

X1,...,Xn is a random sample, X; ~ n(,ux,ai) Jj= 1,...,n
Y1,..., Ym is a random sample, Y ~n(py,0%), j=1,.
52

Let F = —);/—{
Ox" Ty

F is Fisher distributed with n 1 and m-1 degrees of freedom
[(n— 1) ]/(” 1) N Xf,fl/(”*l)
TR SRt YT

7X

: s2 S
since F = =%/ =
g
X Y



