Solutions to exercises - Week 45

Likelihood ratio tests

• Exercises 8.3, 8.6 and 8.37.c

The unrestricted MLE for θ is $\hat{\theta} = T/m$

The MLE for θ under $H_0: \theta \leq \theta_0$ is

$$\hat{\theta}_0 = \begin{cases} T/m & \text{if } T/m \le \theta_0 \\ \theta_0 & \text{if } T/m > \theta_0 \end{cases}$$

Thus the LRT statistic becomes

$$\lambda(\mathbf{y}) = \frac{L(\theta_0 \mid \mathbf{y})}{L(\hat{\theta} \mid \mathbf{y})}$$

$$= \begin{cases} 1 & \text{if } T/m \leq \theta_0 \\ \frac{\theta_0^T (1 - \theta_0)^{m-T}}{(T/m)^T (1 - T/m)^{m-T}} & \text{if } T/m > \theta_0 \end{cases}$$

Exercise 8.3

Let $Y_1, ..., Y_m$ be iid Bernoulli variables with pmf

$$f(y_i | \theta) = \theta^{y_i} (1 - \theta)^{1 - y_i}$$
 for $y_i = 0, 1; 0 < \theta < 1$

We will test $H_0: \theta \le \theta_0$ versus $H_1: \theta > \theta_0$

The likelihood is given by $[\mathbf{y} = (y_1, ..., y_m)]$

$$L(\theta \mid \mathbf{y}) = \prod_{i=1}^{m} \theta^{y_i} (1 - \theta)^{1 - y_i} = \theta^{T(\mathbf{y})} (1 - \theta)^{m - T(\mathbf{y})}$$

where

$$T = T(\mathbf{y}) = \sum_{i=1}^{m} y_i$$

The likelihood ratio test rejects the null hypothesis if

$$\lambda(\mathbf{y}) = \frac{\theta_0^T (1 - \theta_0)^{m-T}}{(T/m)^T (1 - T/m)^{m-T}} \le c$$

i.e. if (by taking logarithms and multiplying by -1)

$$g(T) \stackrel{\text{def}}{=} T \log \left(\frac{T/m}{\theta_0} \right) + (m-T) \log \left(\frac{1-T/m}{1-\theta_0} \right) \ge -\log c$$

One may show that g(T) is an increasing function of T when $T/m > \theta_0$

Hence the test rejects H_0 if T > b

4

2

Exercise 8.6

We have independent random variables:

$$X_1,....,X_n \sim \text{exponential}(\theta)$$

$$Y_1,...,Y_m \sim \text{exponential}(\mu)$$

We will test $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$

a) The likelihood takes the form

$$\begin{split} L(\theta, \mu \mid \mathbf{x}, \mathbf{y}) &= \prod_{i=1}^{n} f(x_i \mid \theta) \prod_{j=1}^{m} f(y_i \mid \mu) \\ &= \prod_{i=1}^{n} \left(\frac{1}{\theta} e^{-x_i/\theta} \right) \prod_{j=1}^{m} \left(\frac{1}{\mu} e^{-y_j/\mu} \right) \\ &= \frac{1}{\theta^n \mu^m} \exp \left\{ -\frac{1}{\theta} \sum_{i=1}^{n} x_i - \frac{1}{\mu} \sum_{j=1}^{m} y_j \right\} \end{split}$$

5

The unrestricted MLE for θ and μ are

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{\mu} = \frac{1}{m} \sum_{j=1}^{m} y_j$

The MLE for $\theta = \mu$ under H_0 is

$$\hat{\theta}_0 = \hat{\mu}_0 = \frac{1}{n+m} \left(\sum_{i=1}^n x_i + \sum_{j=1}^m y_j \right)$$

Thus the LRT statistic becomes

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{L(\hat{\theta}_0, \hat{\mu}_0 \mid \mathbf{x}, \mathbf{y})}{L(\hat{\theta}, \hat{\mu} \mid \mathbf{x}, \mathbf{y})} = \frac{\frac{1}{\hat{\theta}_0^n \hat{\mu}_0^m} \exp\left\{-(n+m)\right\}}{\frac{1}{\hat{\theta}^n \hat{\mu}^m} \exp\left\{-n-m\right\}} = \frac{\hat{\theta}^n \hat{\mu}^m}{\hat{\theta}_0^n \hat{\mu}_0^m}$$

6

This gives $\lambda(\mathbf{x}, \mathbf{y}) = \frac{(n+m)^{n+m} \left(\sum_{i=1}^{n} x_{i}\right)^{n} \left(\sum_{j=1}^{m} y_{j}\right)^{m}}{n^{n} m^{m} \left(\sum_{i=1}^{n} x_{i} + \sum_{j=1}^{m} y_{j}\right)^{n+m}}$

The likelihood ratio test rejects the null hypothesis if $\lambda(\mathbf{x}, \mathbf{y}) \leq c$

b) The LRT statistic may be rewritten as

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{(n+m)^{n+m}}{n^n m^m} \left(\frac{\sum_{i=1}^n x_i}{\sum_{i=1}^n x_i + \sum_{j=1}^m y_j} \right)^n \left(\frac{\sum_{j=1}^m y_j}{\sum_{i=1}^n x_i + \sum_{j=1}^m y_j} \right)^m$$

If we introduce

$$T = T(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i + \sum_{j=1}^{m} y_j}$$

we may write

$$\lambda(\mathbf{x}, \mathbf{y}) = \frac{(n+m)^{n+m}}{n^n m^m} T^n \left(1 - T\right)^m$$

Rejection for $\lambda(\mathbf{x}, \mathbf{y}) \le c$ is equivalent to rejection for $T \le a$ or $T \ge b$, where 0 < a < b are constants that satisfy $a^n (1-a)^m = b^n (1-b)^m$

c) When H_0 is true we have:

$$\sum_{i=1}^{n} X_{i} \sim \operatorname{gamma}(n, \theta) \qquad \sum_{j=1}^{m} Y_{j} \sim \operatorname{gamma}(m, \theta)$$

By the example on slides 19-20 for the lectures of week 35 (August 31st), we then have that

$$T = \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} X_{i} + \sum_{j=1}^{m} Y_{j}}$$

is beta(n,m) distributed

9

11

Thus the test given by (*) has size α

We will show that the test corresponds to the LRT

The likelihood takes the form

$$L(\mu, \sigma^2 \mid \mathbf{x}) = (2\pi\sigma^2)^{-n/2} \exp\{-(1/2)\sum_i (x_i - \theta)^2 / \sigma^2\}$$

The unrestricted MLEs are given by

$$\hat{\theta} = \overline{x}$$

and

$$\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$

Exercise 8.37.c

Let $X_1, X_2, ..., X_n$ be iid $n(\theta, \sigma^2)$

We will test $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$

Consider the test that rejects H_0 when

$$\overline{X} > \theta_0 + t_{n-1,\alpha} S / \sqrt{n} \tag{*}$$

The power function of this test is

$$\beta(\theta, \sigma^2) = P_{\theta, \sigma^2} \left(\overline{X} > \theta_0 + t_{n-1, \alpha} S / \sqrt{n} \right)$$

When $\theta \le \theta_0$ we have (with $T \sim t_{n-1}$ -distributed)

$$\beta(\theta, \sigma^{2}) \leq P_{\theta_{0}, \sigma^{2}} \left(\overline{X} > \theta_{0} + t_{n-1, \alpha} S / \sqrt{n} \right)$$

$$= P_{\theta_{0}, \sigma^{2}} \left(\frac{\overline{X} - \theta}{S / \sqrt{n}} > t_{n-1, \alpha} \right) = P \left(T > t_{n-1, \alpha} \right) = \alpha$$

If $\hat{\theta} = \overline{x} \leq \theta_0$, the restricted MLEs (i.e. under H_0) are the same as the unrestricted MLEs, while if $\hat{\theta} > \theta_0$ the restricted MLEs are

$$\hat{\theta}_0 = \theta_0$$

and

$$\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i} (x_i - \theta_0)^2$$

Thus the LRT statistic becomes

$$\lambda(\mathbf{x}) = \begin{cases} 1 & \text{if } \overline{x} \leq \theta_0 \\ \frac{L(\theta_0, \hat{\sigma}_0^2 \mid \mathbf{x})}{L(\hat{\theta}, \hat{\sigma}^2 \mid \mathbf{x})} & \text{if } \overline{x} > \theta_0 \end{cases}$$

Now we have

$$\frac{L(\theta_0, \hat{\sigma}_0^2 \mid \mathbf{x})}{L(\hat{\theta}, \hat{\sigma}^2 \mid \mathbf{x})} = \frac{(2\pi\hat{\sigma}_0^2)^{-n/2} \exp\left\{-(1/2)\sum (x_i - \theta_0)^2 / \hat{\sigma}_0^2\right\}}{(2\pi\hat{\sigma}^2)^{-n/2} \exp\left\{-(1/2)\sum (x_i - \overline{x})^2 / \hat{\sigma}^2\right\}}$$

$$= \frac{(2\pi\hat{\sigma}_0^2)^{-n/2} \exp\left\{-(n/2)\right\}}{(2\pi\hat{\sigma}^2)^{-n/2} \exp\left\{-(n/2)\right\}}$$

$$= \left(\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2}\right)^{n/2}$$

$$= \left(\frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \theta_0)^2}\right)^{n/2}$$

The likelihood ratio test rejects H_0 if (assuming $\bar{x} > \theta_0$)

$$\lambda(\mathbf{x}) = \left(\frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \theta_0)^2}\right)^{n/2} \le c$$

 \Leftrightarrow

$$\frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \theta_0)^2} \le c^{2/n}$$

 \Leftrightarrow

$$\frac{\sum (x_i - \overline{x})^2 + n(\overline{x} - \theta_0)^2}{\sum (x_i - \overline{x})^2} \ge c^{-2/n}$$

 \leftarrow

$$1 + \frac{n(\overline{x} - \theta_0)^2}{\sum (x_i - \overline{x})^2} \ge c^{-2/n}$$

14

Thus (assuming $\bar{x} > \theta_0$)

$$\lambda(\mathbf{x}) \le c \quad \Leftrightarrow \quad \frac{n(\overline{x} - \theta_0)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \ge c^{-2/n} - 1 = k$$

Thus the LRT rejects H_0 if

$$\frac{\overline{x} - \theta_0}{\sqrt{\sum (x_i - \overline{x})^2 / n}} \ge \sqrt{k}$$

which is equivalent to

$$\frac{\overline{x} - \theta_0}{s / \sqrt{n}} > K$$

for a suitably chosen constant *K*

Thus the test (*) corresponds to the LRT