
1

Solutions to exercises - Week 46

Likelihood ratio tests

• Exercise 10.34a

• Additional exercise

Most powerful tests

• Exercises 8.15, 8.22ac, 8.25bc, 8.31, 8.34b

Exercise 8.15
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Let                 be iid and 1,...., nX X 2(0, )n σ

We will derive the most powerful test of 
versus                    where 0 0:H σ σ= 1 1:H σ σ=

The joint pdf of                           is given by 
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From Neyman-Pearsons Lemma, the most 
powerful test rejects         if 0H
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Thus the most powerful test rejects        if               0H
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Define          by 
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Exercise 8.22
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where iy x=∑
The most powerful test rejects        if 

Let                   be iid Bernoulli(p) 1 10,....,X X

We will find most powerful test with size                             
for testing                     versus0 : 1/ 2H p= 1: 1/ 4H p=

We have the pmf
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Now we have
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Since the ratio is decreasing in y , we reject 
if  0H y c≤

E.g. by using R [command: pbinom(2,10,1/2)]                  
we find that                                          , so the most 
powerful test rejects        if 

( 2 | 1/ 2) 0.0547P Y p≤ = =
2Y ≤0H

The power of the test is 

( 2 | 1/ 4) 0.526P Y p≤ = =
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There exist a most powerful test for all levels α    

that are given by  
c)

( | 1/ 2) for 0,1,....,10P Y c p cα= ≤ = =

Using R we find [command: pbinom(0:10,10,1/2)]  
that α can take the values 

0.00098 0.0107     0.0547     0.1719     0.3770    0.6230       
0.8281       0.9453     0.9893     0.9990     1.0000



Exercise 8.25
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For               we have the likelihood ratio2 1θ θ>

Assume that T is  Poisson(θ)

We have the pmf
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For               we have the likelihood ratio2 1θ θ>

Assume that T is  binomial(n,θ) with n known 

We have the pmf
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which is increasing in t

Exercise 8.31
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Let                        be iid1 2, ,...., nX X X Poisson( )λ

We will find a UMP test of                   vs                  0 0:H λ λ≤ 1 0:H λ λ>

is a sufficient statistic for λPoisson( )iT X nλ=∑ ∼

and by exercise 8.25b it has an increasing 
likelihood ratio  

By theorem 8.3.17 we then have that the UMP 
level α test rejects        if                    where    iX k>∑0H
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We obtain an approximate  5% level test with 
power approximately 90% for λ = 2  if we chose 
n such that
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Exercise 8.34.b
We assume that the family                           of pdfs 
or pmfs for T has a nondecreasing likelihood ratio, 
i.e. that for every             the ratio                         is 
a nondecreasing function of t on the set 
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We will show the result for pdfs (the argument for 
pmfs is similar, but with sums instead of integrals)                                          

Thus          is maximized by its value at 
or       , which is zero.

Then                                                                         

2 1

def

( ) ( ) ( )D c P T c P T cθ θ= ≤ − ≤

[ ]2 1 1( | ) / ( | ) 1 ( | )
c

g t g t g t dtθ θ θ

−∞

= −∫

We consider the function

[ ]2 1 1( ) ( | ) / ( | ) 1 ( | )D c g c g c g cθ θ θ′ = −

Now                            is increasing, so          can 
only change sign from negative to positive showing 
that any interior extremum of           is a minimum.

2 1( | ) / ( | )g c g cθ θ ( )D c′

( )D c

( )D c −∞
∞

Hence               , and the result is proved                                   ( ) 0D c ≤

2 1( | ) ( | )
c c

g t dt g t dtθ θ

−∞ −∞

= −∫ ∫

Exercise 10.34.a
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We will test                  versus0 0:H p p= 1 0:H p p≠

The likelihood is given by   [                     ]1( ,..., )nx x=x
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Let                   be iid Bernoulli(p) 1,...., nX X

The unrestricted MLE for p is  ˆ /p y n=
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The LRT statistic becomes
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Additional exercise

Let                                                 be iid with pmf1 2 3( , , ); 1,2,....,i i i iX X X i n= =X
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The likelihood is given by   [                     ]1( ,..., )n=x x x
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