## Solutions to exercises - Week 46

Most powerful tests

- Exercises 8.15, 8.22ac, 8.25bc, 8.31, 8.34b

Likelihood ratio tests

- Exercise 10.34a
- Additional exercise


## Exercise 8.15

Let $X_{1}, \ldots ., X_{n}$ be iid and $n\left(0, \sigma^{2}\right)$
We will derive the most powerful test of $H_{0}: \sigma=\sigma_{0}$ versus $H_{1}: \sigma=\sigma_{1}$ where $\sigma_{0}<\sigma_{1}$

The joint pdf of $\mathbf{X}=\left(X_{1}, \ldots ., X_{n}\right)$ is given by

$$
\begin{aligned}
f(\mathbf{x} \mid \sigma) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{x_{i}^{2}}{2 \sigma^{2}}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\sum_{i=1}^{n} x_{i}^{2} /\left(2 \sigma^{2}\right)\right\}
\end{aligned}
$$

From Neyman-Pearsons Lemma, the most powerful test rejects $H_{0}$ if

$$
\frac{f\left(\mathbf{x} \mid \sigma_{1}\right)}{f\left(\mathbf{x} \mid \sigma_{0}\right)}>k
$$

Now we have

$$
\begin{aligned}
\frac{f\left(\mathbf{x} \mid \sigma_{1}\right)}{f\left(\mathbf{x} \mid \sigma_{0}\right)} & =\frac{\left(2 \pi \sigma_{1}^{2}\right)^{-n / 2} \exp \left\{-\sum_{i=1}^{n} x_{i}^{2} /\left(2 \sigma_{1}^{2}\right)\right\}}{\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left\{-\sum_{i=1}^{n} x_{i}^{2} /\left(2 \sigma_{0}^{2}\right)\right\}} \\
& =\left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{n} \exp \left\{\frac{1}{2}\left(\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right) \sum_{i=1}^{n} x_{i}^{2}\right\}
\end{aligned}
$$

Thus the most powerful test rejects $H_{0}$ if

$$
\left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{n} \exp \left\{\frac{1}{2}\left(\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right) \sum_{i=1}^{n} X_{i}^{2}\right\}>k
$$

i.e. if (since $\sigma_{0}<\sigma_{1}$ )

$$
\sum_{i=1}^{n} X_{i}^{2}>\frac{2 \log \left[k\left(\sigma_{1} / \sigma_{0}\right)^{n}\right]}{1 / \sigma_{0}^{2}-1 / \sigma_{1}^{2}}=c
$$

When $H_{0}$ is true, we have

$$
\sum_{i=1}^{n}\left(X_{i} / \sigma_{0}\right)^{2} \sim \chi_{n}^{2}
$$

## Define $\chi_{n, \alpha}^{2}$ by $P\left(\chi_{n}^{2}>\chi_{n, \alpha}^{2}\right)=\alpha$

Then

$$
\alpha=P\left(\sum_{i=1}^{n}\left(X_{i} / \sigma_{0}\right)^{2}>\chi_{n, \alpha}^{2}\right)=P\left(\sum_{i=1}^{n} X_{i}^{2}>\sigma_{0}^{2} \chi_{n, \alpha}^{2}\right)
$$

So the test has size $\alpha$ if we let $c=\sigma_{0}^{2} \chi_{n, \alpha}^{2}$

## Exercise 8.22

Let $X_{1}, \ldots, X_{10}$ be iid $\operatorname{Bernoulli}(p)$
a) We will find most powerful test with size
$\alpha=0.0547$ for testing $H_{0}: p=1 / 2$ versus $H_{1}: p=1 / 4$
We have the pmf

$$
f(\mathbf{x} \mid p)=\prod_{i=1}^{10} p^{x_{i}}(1-p)^{1-x_{i}}=p^{y}(1-p)^{10-y}
$$

where $y=\sum x_{i}$
The most powerful test rejects $H_{0}$ if

$$
\frac{f(\mathbf{x} \mid p=1 / 4)}{f(\mathbf{x} \mid p=1 / 2)}>k
$$

Now we have

$$
\frac{f(\mathbf{x} \mid p=1 / 4)}{f(\mathbf{x} \mid p=1 / 2)}=\frac{(1 / 4)^{y}(1-1 / 4)^{10-y}}{(1 / 2)^{y}(1-1 / 2)^{10-y}}=\left(\frac{3}{2}\right)^{10}\left(\frac{1}{3}\right)^{y}
$$

Since the ratio is decreasing in $y$, we reject

$$
H_{0} \text { if } y \leq c
$$

E.g. by using R [command: pbinom ( $2,10,1 / 2$ )] we find that $P(Y \leq 2 \mid p=1 / 2)=0.0547$, so the most powerful test rejects $H_{0}$ if $Y \leq 2$

The power of the test is

$$
P(Y \leq 2 \mid p=1 / 4)=0.526
$$

C) There exist a most powerful test for all levels $\alpha$ that are given by

$$
\alpha=P(Y \leq c \mid p=1 / 2) \text { for } c=0,1, \ldots ., 10
$$

Using $R$ we find [command: pbinom ( $0: 10,10,1 / 2$ )] that $\alpha$ can take the values

| 0.00098 | 0.0107 | 0.0547 | 0.1719 | 0.3770 | 0.6230 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.8281 | 0.9453 | 0.9893 | 0.9990 | 1.0000 |  |

## Exercise 8.25

b) Assume that $T$ is Poisson( $\theta$ )

We have the pmf

$$
g(t \mid \theta)=\frac{\theta^{t}}{t!} e^{-\theta}
$$

For $\theta_{2}>\theta_{1}$ we have the likelihood ratio

$$
\frac{g\left(t \mid \theta_{2}\right)}{g\left(t \mid \theta_{1}\right)}=\frac{\theta_{2}^{t} e^{-\theta_{2}} / t!}{\theta_{1}^{t} e^{-\theta_{1}} / t!}=\left(\frac{\theta_{2}}{\theta_{1}}\right)^{t} e^{\theta_{1}-\theta_{2}}
$$

which is increasing in $t$
C) Assume that $T$ is binomial $(n, \theta)$ with $n$ known We have the pmf

$$
g(t \mid \theta)=\binom{n}{t} \theta^{\prime}(1-\theta)^{n-t}
$$

For $\theta_{2}>\theta_{1}$ we have the likelihood ratio

$$
\frac{g\left(t \mid \theta_{2}\right)}{g\left(t \mid \theta_{1}\right)}=\frac{\binom{n}{t} \theta_{2}^{\prime}\left(1-\theta_{2}\right)^{n-t}}{\left(\begin{array}{l}
n \\
t
\end{array} \theta_{1}^{\prime}\left(1-\theta_{1}\right)^{n-t}\right.}=\left(\frac{\theta_{2}\left(1-\theta_{1}\right)}{\theta_{1}\left(1-\theta_{2}\right)}\right)^{t}\left(\frac{1-\theta_{2}}{1-\theta_{1}}\right)^{n}
$$

which is increasing in $t$

## Exercise 8.31

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid Poisson( $\lambda$ )
a) We will find a UMP test of $H_{0}: \lambda \leq \lambda_{0}$ vs $H_{1}: \lambda>\lambda_{0}$ $T=\sum X_{i} \sim \operatorname{Poisson}(n \lambda)$ is a sufficient statistic for $\lambda$ and by exercise 8.25 b it has an increasing likelihood ratio

By theorem 8.3.17 we then have that the UMP level $\alpha$ test rejects $H_{0}$ if $\sum X_{i}>k$ where $\alpha=P_{\lambda_{0}}\left(\sum X_{i}>k\right)$
b) We consider the case when $\lambda_{0}=1$

By the central limit theorem we have that

$$
\frac{\sum X_{i}-n \lambda}{\sqrt{n \lambda}} \rightarrow Z \sim n(0,1)
$$

Therefore

$$
P\left(\sum X_{i}>k \mid \lambda=1\right)=P\left(\left.\frac{\sum X_{i}-n}{\sqrt{n}}>\frac{k-n}{\sqrt{n}} \right\rvert\, \lambda=1\right) \approx P\left(Z>\frac{k-n}{\sqrt{n}}\right)
$$

and

$$
\begin{aligned}
P\left(\sum X_{i}>k \mid \lambda=2\right) & =P\left(\left.\frac{\sum X_{i}-2 n}{\sqrt{2 n}}>\frac{k-2 n}{\sqrt{2 n}} \right\rvert\, \lambda=2\right) \\
& \approx P\left(Z>\frac{k-2 n}{\sqrt{2 n}}\right)
\end{aligned}
$$

We obtain an approximate $5 \%$ level test with power approximately $90 \%$ for $\lambda=2$ if we chose $n$ such that

$$
P\left(Z>\frac{k-n}{\sqrt{n}}\right)=0.05 \quad \text { and } \quad P\left(Z>\frac{k-2 n}{\sqrt{2 n}}\right)=0.90
$$

This gives

$$
\frac{k-n}{\sqrt{n}}=1.645 \quad \frac{k-2 n}{\sqrt{2 n}}=-1.28
$$

and we obtain

$$
n=12 \quad \text { and } \quad k=17.7
$$

## Exercise 8.34.b

We assume that the family $\{g(t \mid \theta): \theta \in \Theta\}$ of pdfs or pmfs for $T$ has a nondecreasing likelihood ratio, i.e. that for every $\theta_{2}>\theta_{1}$ the ratio $g\left(t \mid \theta_{2}\right) / g\left(t \mid \theta_{1}\right)$ is a nondecreasing function of $t$ on the set
$\left\{t: g\left(t \mid \theta_{1}\right)>0\right.$ or $\left.g\left(t \mid \theta_{2}\right)>0\right\}$
We will show that for $\theta_{2}>\theta_{1}$ we have

$$
P_{\theta_{1}}(T>c) \leq P_{\theta_{2}}(T>c)
$$

or equivalently

$$
P_{\theta_{2}}(T \leq c) \leq P_{\theta_{1}}(T \leq c)
$$

We will show the result for pdfs (the argument for pmfs is similar, but with sums instead of integrals)

We consider the function

$$
\begin{aligned}
D(c) & =P_{\theta_{2}}(T \leq c)-P_{\theta_{1}}(T \leq c)=\int_{-\infty}^{c} g\left(t \mid \theta_{2}\right) d t-\int_{-\infty}^{c} g\left(t \mid \theta_{1}\right) d t \\
& =\int_{-\infty}^{c}\left[g\left(t \mid \theta_{2}\right) / g\left(t \mid \theta_{1}\right)-1\right] g\left(t \mid \theta_{1}\right) d t
\end{aligned}
$$

Then $\quad D^{\prime}(c)=\left[g\left(c \mid \theta_{2}\right) / g\left(c \mid \theta_{1}\right)-1\right] g\left(c \mid \theta_{1}\right)$
Now $g\left(c \mid \theta_{2}\right) / g\left(c \mid \theta_{1}\right)$ is increasing, so $D^{\prime}(c)$ can only change sign from negative to positive showing that any interior extremum of $D(c)$ is a minimum.
Thus $D(c)$ is maximized by its value at $-\infty$ or $\infty$, which is zero.
Hence $D(c) \leq 0$, and the result is proved

## Exercise 10.34.a

Let $X_{1}, \ldots, X_{n}$ be iid Bernoulli $(p)$
We will test $H_{0}: p=p_{0}$ versus $H_{1}: p \neq p_{0}$
The likelihood is given by $\quad\left[\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)\right]$
$L(p \mid \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{y}(1-p)^{n-y}$
where $y=\sum_{i=1}^{n} x_{i}$
The unrestricted MLE for $p$ is $\hat{p}=y / n$

The LRT statistic becomes

$$
\lambda(\mathbf{x})=\frac{L\left(p_{0} \mid \mathbf{x}\right)}{L(\hat{p} \mid \mathbf{x})}=\frac{p_{0}^{y}\left(1-p_{0}\right)^{n-y}}{\hat{p}^{y}(1-\hat{p})^{n-y}}
$$

Hence we have

$$
\begin{aligned}
-2 \log \lambda(\mathbf{x}) & =2 \log \left(\frac{\hat{p}^{y}(1-\hat{p})^{n-y}}{p_{0}^{y}\left(1-p_{0}\right)^{n-y}}\right) \\
& =2 y \log \left(\frac{\hat{p}}{p_{0}}\right)+2(n-y) \log \left(\frac{1-\hat{p}}{1-p_{0}}\right)
\end{aligned}
$$

## Additional exercise

Let $\mathbf{X}_{i}=\left(X_{i 1}, X_{i 2}, X_{i 3}\right) ; i=1,2, \ldots ., n$ be iid with pmf

$$
f\left(x_{1}, x_{2}, x_{3} \mid p_{1}, p_{2}, p_{3}\right)=p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}}
$$

where $x_{i} \in\{0,1\}$ with $x_{1}+x_{2}+x_{3}=1$
and $p_{i} \geq 0$ with $p_{1}+p_{2}+p_{3}=1$
We will test (Hardy-Weinberger)

$$
H_{0}: p_{1}=\theta^{2}, p_{2}=2 \theta(1-\theta), p_{3}=(1-\theta)^{2}
$$

for a $\theta \in(0,1)$ versus the alternative that $H_{0}$ does not hold

The likelihood is given by $\quad\left[\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)\right]$
$L\left(p_{1}, p_{2}, p_{3} \mid \mathbf{x}\right)=\prod_{i=1}^{n} p_{1}^{x_{i 1}} p_{2}^{x_{i 2}} p_{3}^{x_{i_{3}}}=p_{1}^{y_{1}} p_{2}^{y_{2}} p_{3}^{y_{3}}$
where $y_{j}=\sum_{i=1}^{n} x_{i j}$ for $j=1,2,3$
Using the facts that $p_{3}=1-p_{1}-p_{2}$ and
$y_{3}=n-y_{1}-y_{2}$ one may show that the MLE of the $p_{j}$ 's are $\hat{p}_{j}=y_{j} / n$

Under $H_{0}$ we may write the likelihood as

$$
\begin{aligned}
L(\theta \mid \mathbf{x}) & =\left[\theta^{2}\right]^{y_{1}}[2 \theta(1-\theta)]^{y_{2}}\left[(1-\theta)^{2}\right]^{y_{3}} \\
& =2^{y_{2}} \theta^{2 y_{1}+y_{2}}(1-\theta)^{2 y_{3}+y_{2}} \\
& =2^{y_{2}} \theta^{2 y_{1}+y_{2}}(1-\theta)^{2 n-\left(2 y_{1}+y_{2}\right)}
\end{aligned}
$$

One may then show that the MLE of $\theta$ is

$$
\theta^{*}=\frac{2 y_{1}+y_{2}}{2 n}
$$

and hence that the MLEs of the $p_{j}$ 's under $H_{0}$ are

$$
p_{1}^{*}=\left(\theta^{*}\right)^{2}, \quad p_{2}^{*}=2 \theta^{*}\left(1-\theta^{*}\right) \quad \text { and } \quad p_{2}^{*}=\left(1-\theta^{*}\right)^{2}
$$

Then we find

$$
\begin{aligned}
-2 \log \lambda(\mathbf{x})= & -2 \log \left(\frac{\left(p_{1}^{*}\right)^{y_{1}}\left(p_{2}^{*}\right)^{y_{2}}\left(p_{3}^{*}\right)^{y_{3}}}{\hat{p}_{1}^{y_{1}} \hat{p}_{2}^{y_{2}} \hat{p}_{3}^{y_{3}}}\right) \\
& =2 \sum_{j=1}^{3} y_{j} \log \left(\frac{\hat{p}_{j}}{p_{j}^{*}}\right)
\end{aligned}
$$

