STK4011 and STK9011

Autumn 2016

Convergence of random variables

Covers (most of) the following material from chapters 2, 3 and 5:

- Section 2.3: page 66
- Section 3.6.1: page 122
- Sections 5.5.1-3: pages 232-240

Ørnulf Borgan
Department of Mathematics
University of Oslo

Convergence in probability

We will look at different concepts of convergence for a sequence X_{1}, X_{2}, \ldots. of random variables

Definition 5.5.1

A sequence X_{1}, X_{2}, \ldots of random variables converges in probability to a random variable X if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \varepsilon\right)=0
$$

or equivalently

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|<\varepsilon\right)=1
$$

Chebychev's inequality will be useful:

Theorem 3.6.1 (Chebychev's inequality)

 Let X be a random variable and let $g(x)$ be a non-negative function. Then, for every $r>0$,$$
P(g(X) \geq r) \leq \frac{\mathrm{E} g(X)}{r}
$$

The following is a much used version of the inequality:

$$
P(|X-\mathrm{E} X| \geq \varepsilon) \leq \frac{\operatorname{Var} X}{\varepsilon^{2}}
$$

Theorem 5.5.2 (weak law of large numbers)

Let X_{1}, X_{2}, \ldots. be iid random variables with
$E X_{i}=\mu$ and $\operatorname{Var} X_{i}=\sigma^{2}$
Define

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Then for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<\varepsilon\right)=1
$$

That is, \bar{X}_{n} converges in probability to μ

We say that \bar{X}_{n} is a consistent estimator of μ

Example 5.5.3 (consistency of \boldsymbol{S}^{2})

Let $X_{1}, X_{2}, \ldots \ldots$ be iid random variables with $\mathrm{E} X_{i}=\mu$ and $\operatorname{Var} X_{i}=\sigma^{2}$. We assume that the 4th moment of the X_{i} 's is finite.
Define

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

We have:

- $E S_{n}^{2}=\sigma^{2} \quad$ (page 214)
- $\operatorname{Var} S_{n}^{2} \rightarrow 0 \quad$ (exercise 5.8.b)

Then for every $\varepsilon>0$

$$
P\left(\left|S_{n}^{2}-\sigma^{2}\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}_{n}^{2}}{\varepsilon^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Example 5.5.5 (consistency of S)

Let $X_{1}, X_{2}, \ldots \ldots$. be iid random variables with $\mathrm{E} X_{i}=\mu$ and $\operatorname{Var} X_{i}=\sigma^{2}$. We assume that the 4th moment of the X_{i} 's is finite.
Then

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

is a consistent estimator of σ^{2}
It follows that

$$
S_{n}=\sqrt{S_{n}^{2}}
$$

is a consistent estimator of $\sqrt{\sigma^{2}}=\sigma$

Theorem 5.5.4 (modified)

Assume that X_{1}, X_{2}, \ldots. converges in probability to a constant a, and let $h(x)$ be a function that is continuous at $x=a$. Then $h\left(X_{1}\right), h\left(X_{2}\right), \ldots$ converges in probability to $h(a)$.

Proof
Let $\varepsilon>0$. Since $h(x)$ is continuous at $x=a$, there exist a $\delta>0$ such that

$$
|x-a|<\delta \Rightarrow|h(x)-h(a)|<\varepsilon
$$

Thus

$$
|h(x)-h(a)| \geq \varepsilon \quad \Rightarrow|x-a| \geq \delta
$$

It follows that (as $n \rightarrow \infty$)

$$
P\left(\left|h\left(X_{n}\right)-h(a)\right| \geq \varepsilon\right) \leq P\left(\left|X_{n}-a\right| \geq \delta\right) \rightarrow 0
$$

Almost sure convergence

Definition 5.5.6

A sequence X_{1}, X_{2}, \ldots. of random variables converges almost surely (or with probability one) to a random variable X if

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

Theorem 5.5.9 (strong law of large numbers)

Let $X_{1}, X_{2}, \ldots .$. be iid random variables with $\mathrm{E} X_{i}=\mu$. Then

$$
P\left(\lim _{n \rightarrow \infty} \bar{X}_{n}=\mu\right)=1
$$

That is, \bar{X}_{n} converges almost surely to μ

Convergence in distribution

Definition 5.5.10

A sequence X_{1}, X_{2}, \ldots of random variables with cdfs $F_{X_{1}}(x), F_{X_{2}}(x), \ldots$ converges in distribution to a random variable X if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

at all points x where the cdf $F_{X}(x)$ of X is continuous

Example 5.5.11 (maximum of uniforms)

Let $X_{1}, X_{2}, \ldots \ldots$ be iid uniform $(0,1)$
Consider $X_{(n)}=\max _{1 \leq i \leq n} X_{i}$

Then:

- $\quad X_{(n)}$ converges to 1 in probability
- $n\left(1-X_{(n)}\right)$ converges in distribution to X, where $X \sim$ exponential(1)

Theorem 5.5.13

A sequence X_{1}, X_{2}, \ldots. of random variables converges in probability to a constant a if and only if the sequence converge in distribution to the one-point distribution in a
That is, the statement

$$
P\left(\left|X_{n}-a\right| \geq \varepsilon\right) \rightarrow 0 \text { for every } \varepsilon>0
$$

is equivalent to

$$
P\left(X_{n} \leq x\right) \rightarrow \begin{cases}0 & \text { if } x<a \\ 1 & \text { if } x>a\end{cases}
$$

Theorem 2.3.12

Suppose that $X_{1}, X_{2}, \ldots \ldots$. is a sequence of random variables and that X_{i} has mgf $M_{X_{i}}(t)$ and $\operatorname{cdf} F_{X_{i}}(x), i=1,2, \ldots$.
Furthermore, suppose that

$$
\lim _{n \rightarrow \infty} M_{X_{n}}(t)=M_{X}(t)
$$

for all t in a neighbourhood of 0 , where $M_{X}(t)$ is the mgf of a random variable X with $\operatorname{cdf} F_{X}(x)$
Then

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

for all x where $F_{X}(x)$ is continuous
That is, $X_{1}, X_{2}, \ldots \ldots$ converges in distribution to X

Theorem 5.5.15 (Central limit theorem)

Let $X_{1}, X_{2}, \ldots .$. be iid random variables with
$E X_{i}=\mu$ and $\operatorname{Var} X_{i}=\sigma^{2}$
Let $G_{n}(x)$ be the cdf of $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$
Then, for any $x \quad(-\infty<x<\infty)$,

$$
\lim _{n \rightarrow \infty} G_{n}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

That is, $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$ has a limiting standard normal distribution

Definition 5.5.17 (Slutsky's theorem)

If $X_{n} \rightarrow X$ in distribution and $Y_{n} \rightarrow a$ in probability, where a is a constant, then
a) $Y_{n} X_{n} \rightarrow a X \quad$ in distribution
b) $X_{n}+Y_{n} \rightarrow X+a$ in distribution

Example 5.5.18

Let $X_{1}, X_{2}, \ldots \ldots$ be iid random variables with
$\mathrm{E} X_{i}=\mu$ and $\operatorname{Var} X_{i}=\sigma^{2}$. Then
$\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \rightarrow n(0,1)$ in distribution $\sigma / S_{n} \rightarrow 1$ in probability
It follows that

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n} \rightarrow n(0,1) \text { in distribution }
$$

Proof of Slutsky's theorem

We will first prove b)
It is sufficient to consider the case where $a=0$
We have to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{X_{n}+Y_{n}}(x)=F_{X}(x) \tag{*}
\end{equation*}
$$

when x is a continuity point of $F_{X}(x)$
For all $\varepsilon>0$ we have

$$
\begin{aligned}
F_{X_{n}+Y_{n}}(x)= & P\left(X_{n}+Y_{n} \leq x\right)=P\left(X_{n} \leq x-Y_{n}\right) \\
= & P\left(\left(X_{n} \leq x-Y_{n}\right) \cap\left(\left|Y_{n}\right| \geq \varepsilon\right)\right) \\
& +P\left(\left(X_{n} \leq x-Y_{n}\right) \cap\left(\left|Y_{n}\right|<\varepsilon\right)\right) \\
= & Q_{n 1}+Q_{n 2}
\end{aligned}
$$

Now $0 \leq Q_{n 1} \leq P\left(\left|Y_{n}\right| \geq \varepsilon\right) \rightarrow 0$, so $Q_{n 1} \rightarrow 0$
Furthermore

$$
Q_{n 2} \leq P\left(\left(X_{n} \leq x+\varepsilon\right) \cap\left(\left|Y_{n}\right|<\varepsilon\right)\right)
$$

and

$$
\leq P\left(X_{n} \leq x+\varepsilon\right)=F_{X_{n}}(x+\varepsilon)
$$

$$
\begin{aligned}
Q_{n 2} & \geq P\left(\left(X_{n} \leq x-\varepsilon\right) \cap\left(\left|Y_{n}\right|<\varepsilon\right)\right) \\
& =1-P\left(\left(X_{n} \leq x-\varepsilon\right)^{c} \cup\left(\left|Y_{n}\right|<\varepsilon\right)^{c}\right) \\
& \geq 1-P\left(X_{n}>x-\varepsilon\right)-P\left(\left|Y_{n}\right| \geq \varepsilon\right) \\
& =F_{X_{n}}(x-\varepsilon)-P\left(\left|Y_{n}\right| \geq \varepsilon\right)
\end{aligned}
$$

Thus

$$
F_{X_{n}}(x-\varepsilon)-P\left(\left|Y_{n}\right| \geq \varepsilon\right) \leq Q_{n 2} \leq F_{X_{n}}(x+\varepsilon)
$$

We may assume that $x \pm \varepsilon$ are continuity points of $F_{X}(x)$ (since one may show that the number of discontinuity points is countable)

Then we obtain

$$
F_{X}(x-\varepsilon) \leq \liminf Q_{n 2} \leq \limsup Q_{n 2} \leq F_{X}(x+\varepsilon)
$$

Since we may choose ε arbitrary small and x is a continuity point of $F_{X}(x)$, this shows that $Q_{n 2} \rightarrow F_{X}(x)$, and hence (*) is proved

We may assume that $\pm \varepsilon / \delta$ are continuity points of $F_{X}(x)$

Then we obtain
$0 \leq \liminf P\left(\left|Y_{n} X_{n}\right| \geq \varepsilon\right) \leq \lim \sup P\left(\left|Y_{n} X_{n}\right| \geq \varepsilon\right) \leq P(|X| \geq \varepsilon / \delta)$
Here the right-hand side can be made arbitrary small by choosing d small enough, and it follows that $\lim P\left(\left|Y_{n} X_{n}\right| \geq \varepsilon\right)=0$, i.e. $Y_{n} X_{n} \rightarrow 0$ in probability

If $a \neq 0$ we may write $\quad X_{n} Y_{n}=a X_{n}+X_{n}\left(Y_{n}-a\right)$
By what has just been proved, we have that $X_{n}\left(Y_{n}-a\right) \rightarrow 0$ in probability

By result b) of the theorem, it then only remains to prove that $a X_{n} \rightarrow a X$ in distribution

If $a>0$ we have when x / a is a continuity point of $F_{X}(x)$

$$
P\left(a X_{n} \leq x\right)=P\left(X_{n} \leq x / a\right) \rightarrow P(X \leq x / a)=P(a X \leq x)
$$

and it follows that $a X_{n} \rightarrow a X$ in distribution
Similarly, if $a<0$ we have when x / a is a continuity point of $F_{X}(x)$

$$
\begin{aligned}
& P\left(a X_{n} \leq x\right)=1-P\left(a X_{n}>x\right)=1-P\left(X_{n}<x / a\right) \\
& \quad \rightarrow 1-P(X<x / a)=1-P(a X>x)=P(a X \leq x)
\end{aligned}
$$

and it follows that $a X_{n} \rightarrow a X$ in distribution

$$
\begin{aligned}
& \text { Now we have for all } \delta, \varepsilon>0 \text { that } \\
& \begin{aligned}
P\left(\left|Y_{n} X_{n}\right| \geq \varepsilon\right)= & P\left(\left(\left|Y_{n} X_{n}\right| \geq \varepsilon\right) \cap\left(\left|Y_{n}\right| \geq \delta\right)\right) \\
& +P\left(\left(\left|Y_{n} X_{n}\right| \geq \varepsilon\right) \cap\left(\left|Y_{n}\right|<\delta\right)\right) \\
\leq & P\left(\left|Y_{n}\right| \geq \delta\right)+P\left(\left|X_{n}\right| \geq \varepsilon / \delta\right)
\end{aligned}
\end{aligned}
$$

