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Convergence of random variables

Covers (most of) the following material from 
chapters 2, 3 and 5:

• Section 2.3: page 66 
• Section 3.6.1: page 122
• Sections 5.5.1-3: pages 232-240
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Convergence in probability

lim (| | ) 0n
n

P X X ε
→∞

− ≥ =

Definition 5.5.1
A sequence                  of random variables 
converges in probability to a random variable X if 
for every         

1 2, ,....X X

0ε >

or equivalently

lim (| | ) 1n
n

P X X ε
→∞

− < =

We will look at different concepts of convergence 
for a sequence                  of random variables 1 2, ,....X X
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Chebychev's inequality will be useful:

( ) E ( )
( )

g X
P g X r

r
≥ ≤

Theorem 3.6.1 (Chebychev's inequality)
Let X be a random variable and let         be a         
non-negative function. Then, for every         , 

( )g x
0r >

The following is a much used version of the 
inequality: 
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Var
(| E | )

X
P X X ε

ε
− ≥ ≤
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Theorem 5.5.2 (weak law of large numbers) 
Let                    be iid random variables with        

and                                                         
1 2, ,.....X X

E iX µ= 2Var iX σ=

1

1 n

n i
i

X X
n =

= ∑
0ε >

lim (| | ) 1n
n

P X µ ε
→∞

− < =

That is,       converges in probability to µnX

Then for every                   

Define

We say that       is a consistent estimator of µnX



Then for every                     

• (page 214) 

• (exercise 5.8.b)

We have: 
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Example 5.5.3  ( consistency of S2 ) 
Let                    be iid random variables with        

and                 .  We assume that the 
4th moment of the        is finite.          

1 2, ,.....X X

E iX µ= 2Var iX σ=

( )22

1

1

1

n

n i n
i

S X X
n =

= −
− ∑

2 2E nS σ=

Define

2Var 0nS →

'siX

0ε >
2

2 2
2

Var
(| | ) n

n

S
P S σ ε

ε
− ≥ ≤ 0 as n→ →∞
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Theorem 5.5.4 (modified)
Assume that                   converges in probability 
to a constant a, and let          be a function that is 
continuous at           . Then                           
converges in probability to        . 

1 2, ,....X X
( )h x
( ) ( )1 2, ,....h X h X

( )h a

Proof
Let          .  Since          is continuous at          ,                  
there exist a            such that 

x a=

0ε > ( )h x x a=
0δ >

| | | ( ) ( ) |x a h x h aδ ε− < ⇒ − <

Thus

| ( ) ( ) | | |h x h a x aε δ− ≥ ⇒ − ≥

It follows that  (as            ) 

( ) ( )| ( ) ( ) | | | 0n nP h X h a P X aε δ− ≥ ≤ − ≥ →

n→∞

It follows that 

is a consistent estimator of 
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Example 5.5.5  ( consistency of S) 
Let                    be iid random variables with        

and                  . We assume that the 
4th moment of the         is finite.           

1 2, ,.....X X

E iX µ= 2Var iX σ=

( )
2

2

1

1

1

n

n i n
i

S X X
n =

= −
− ∑

2
n nS S=

Then

'siX

2σ

is a consistent estimator of 2σ σ=

Theorem 5.5.9 (strong law of large numbers) 
Let                    be iid random variables with        

.           Then                      
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Almost sure convergence

Definition 5.5.6
A sequence                  of random variables 
converges almost surely (or with probability one) 
to a random variable X if          

1 2, ,....X X

( lim ) 1n
n

P X X
→∞

= =

1 2, ,.....X X
E iX µ=

( lim ) 1n
n

P X µ
→∞

= =

That is,       converges almost surely to µnX
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Convergence in distribution

Definition 5.5.10
A sequence                  of random variables with 
cdfs converges in distribution             
to a random variable X if

1 2, ,....X X

lim ( ) ( )
nX X

n
F x F x

→∞
=

1 2
( ), ( ),....X XF x F x

at all points  x where the cdf of X is 
continuous

( )XF x • converges in distribution to X ,

where

• converges to 1 in probability

Then:
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Example 5.5.11  (maximum of uniforms) 
Let                    be iid uniform(0,1)1 2, ,.....X X

( ) 1maxn i n iX X≤ ≤=Consider

( )nX

( )( )1 nn X−

exponential(1)X ∼

11

(| | ) 0 for every 0nP X a ε ε− ≥ → >

Theorem 5.5.13
A sequence                  of random variables 
converges in probability to a constant  a if and 
only if the sequence converge in distribution to 
the one-point distribution in  a

1 2, ,....X X

That is, the statement

is equivalent to

0 if
( )

1 ifn

x a
P X x

x a

<
≤ →  >

Then 

for all x where            is continuous

That is,                   converges in distribution to  X

Theorem 2.3.12 
Suppose that                   is a sequence of 
random variables and that       has mgf
and cdf

1 2, ,.....X X
( )

iXM t

lim ( ) ( )
nX X

n
M t M t

→∞
=

iX

Furthermore, suppose that 

for all t in a neighbourhood of 0, where            is 
the mgf of a random variable X with cdf

( )XM t

( ) , 1,2,.....
iXF x i=

( )XF x

lim ( ) ( )
nX X

n
F x F x

→∞
=

( )XF x

1 2, ,.....X X



Then, for any x  (                     ),           
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Theorem 5.5.15 (Central limit theorem) 
Let                    be iid random variables with        

and                                                        
1 2, ,.....X X

E iX µ= 2Var iX σ=

( )nG x

x−∞< <∞

( ) /nn X µ σ−

That is,                          has a limiting standard 
normal distribution

Let           be the cdf of 

2 /21
lim ( )

2

x
y

n
n

G x e dy
π

−

→∞
−∞

= ∫

( ) /nn X µ σ−
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Definition 5.5.17 (Slutsky's theorem)
If                in distribution and             in probability, 
where a is a constant, then

nX X→

a)    in distributionn nY X aX→

nY a→

b)    in distributionn nX Y X a+ → +

Example 5.5.18  
Let                    be iid random variables with        

and                  .
1 2, ,.....X X

E iX µ= 2Var iX σ=

( ) / (0,1) in distributionnn X nµ σ− →

/ 1 in probabilitynSσ →

It follows that 

( ) / (0,1) in distributionn nn X S nµ− →

Then 
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Proof of Slutsky's theorem

We will first prove b) 
It is sufficient to consider the case where 0a =

We have to prove that                                 

when x is a continuity point of  

lim ( ) ( ) (*)
n nX Y X

n
F x F x+→∞

=

( )XF x

For all           we have

( ) ( )
n nX Y n nF x P X Y x+ = + ≤

0ε >

( )
( )

( ) (| | )

( ) (| | )

n n n

n n n

P X x Y Y

P X x Y Y

ε

ε

= ≤ − ∩ ≥

+ ≤ − ∩ <

1 2n nQ Q= +

( )n nP X x Y= ≤ −
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Now ( )10 | | 0n nQ P Y ε≤ ≤ ≥ → ,  so 1 0nQ →

Furthermore

( )2 ( ) (| | )n n nQ P X x Yε ε≤ ≤ + ∩ <

( )2 ( ) (| | )n n nQ P X x Yε ε≥ ≤ − ∩ <

( )nP X x ε≤ ≤ + ( )
nXF x ε= +

and 

( )1 ( ) (| | )c c
n nP X x Yε ε= − ≤ − ∪ <

1 ( ) (| | )n nP X x P Yε ε≥ − > − − ≥

( ) (| | )
nX nF x P Yε ε= − − ≥

Thus 

2( ) (| | ) ( )
n nX n n XF x P Y Q F xε ε ε− − ≥ ≤ ≤ +
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We may assume that           are continuity points 
of            (since one may show that the number 
of discontinuity points is countable)

x ε±
( )XF x

Then we obtain

2 2( ) liminf limsup ( )X n n XF x Q Q F xε ε− ≤ ≤ ≤ +

Since we may choose  ε arbitrary small 
and x is a continuity point of           , this 
shows that                        ,  and hence (*) 
is proved

( )XF x

2 ( )n XQ F x→
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We will then prove a) 

We first consider the case when 0a =

By Theorem 5.5.13 we then have to prove 
that                   in probability0n nY X →

Note first that                     can be made 
arbitrarily small by choosing K large enough 

(| | )P X K≥

Now we have for all               that  , 0δ ε >

( )
( )

(| | ) (| | ) (| | )

(| | ) (| | )

n n n n n

n n n

P Y X P Y X Y

P Y X Y

ε ε δ
ε δ

≥ = ≥ ∩ ≥

+ ≥ ∩ <

(| | ) (| | / )n nP Y P Xδ ε δ≤ ≥ + ≥
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We may assume that            are continuity 
points of            

/ε δ±
( )XF x

0 liminf (| | ) limsup (| | ) (| | / )n n n nP Y X P Y X P Xε ε ε δ≤ ≥ ≤ ≥ ≤ ≥

Here the right-hand side can be made arbitrary 
small by choosing d small enough, and it follows 
that                                 , i.e.                 in probability                  lim (| | ) 0n nP Y X ε≥ =

Then we obtain

0n nY X →

If`           we may write  0a≠ ( )n n n n nX Y aX X Y a= + −

By what has just been proved, we have that 
in probability( ) 0n nX Y a− →

By result b)  of the theorem, it then only 
remains to prove that                   in distribution naX aX→

Similarly, if           we have when x/a is a 
continuity point  of  
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If           we have when x/a is a continuity point  
of  

0a >

( ) ( / ) ( / ) ( )n nP aX x P X x a P X x a P aX x≤ = ≤ → ≤ = ≤

( )XF x

and it follows that                   in distribution naX aX→

0a <

( ) 1 ( ) 1 ( / )

1 ( / ) 1 ( ) ( )
n n nP aX x P aX x P X x a

P X x a P aX x P aX x

≤ = − > = − <

→ − < = − > = ≤

( )XF x

and it follows that                   in distribution naX aX→


