STK4011 and STK9011 Autumn 2016

Convergence of random variables

Covers (most of) the following material from chapters 2, 3 and 5:

- Section 2.3: page 66
- Section 3.6.1: page 122
- Sections 5.5.1-3: pages 232-240

Ørnulf Borgan Department of Mathematics University of Oslo

Convergence in probability

We will look at different concepts of convergence for a sequence X_1, X_2, \dots of random variables

Definition 5.5.1

A sequence $X_1, X_2, ...$ of random variables converges in probability to a random variable *X* if for every $\varepsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0$$

or equivalently

 $\lim_{n\to\infty} P(|X_n-X|<\varepsilon)=1$

Chebychev's inequality will be useful:

Theorem 3.6.1 (Chebychev's inequality)

Let *X* be a random variable and let g(x) be a non-negative function. Then, for every r > 0,

 $P(g(X) \ge r) \le \frac{\mathrm{E}g(X)}{r}$

The following is a much used version of the inequality:

$$P(|X - \mathrm{E}X| \ge \varepsilon) \le \frac{\mathrm{Var}X}{\varepsilon^2}$$

Theorem 5.5.2 (weak law of large numbers)

Let X_1, X_2, \dots be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2$

Define

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then for every $\varepsilon > 0$

$$\lim_{n\to\infty} P(|\bar{X}_n-\mu|<\varepsilon)=1$$

That is, \overline{X}_n converges in probability to μ

We say that \overline{X}_n is a consistent estimator of μ

1

2

Example 5.5.3 (consistency of S^2)

Let X_1, X_2, \dots be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2$. We assume that the 4th moment of the X_i 's is finite.

Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$$

We have:

- $ES_n^2 = \sigma^2$ (page 214)
- $\operatorname{Var}S_n^2 \to 0$ (exercise 5.8.b)

Then for every $\varepsilon > 0$

$$P(|S_n^2 - \sigma^2| \ge \varepsilon) \le \frac{\operatorname{Var}S_n^2}{\varepsilon^2} \to 0 \text{ as } n \to \infty$$

Example 5.5.5 (consistency of S)

Let X_1, X_2, \dots be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2$. We assume that the 4th moment of the X_i 's is finite.

Then

 $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$

is a consistent estimator of σ^2

It follows that

$$S_n = \sqrt{S_n^2}$$

is a consistent estimator of $\sqrt{\sigma^2} = \sigma$

7

5

Theorem 5.5.4 (modified)

Assume that X_1, X_2, \dots converges in probability to a constant *a*, and let h(x) be a function that is continuous at x = a. Then $h(X_1), h(X_2), \dots$ converges in probability to h(a).

Proof

Let $\varepsilon > 0$. Since h(x) is continuous at x = a, there exist a $\delta > 0$ such that

$$|x-a| < \delta \implies |h(x)-h(a)| < \varepsilon$$

Thus

$$|h(x) - h(a)| \ge \varepsilon \implies |x - a| \ge \delta$$

It follows that (as $n \to \infty$) $P(|h(X_n) - h(a)| \ge \varepsilon) \le P(|X_n - a| \ge \delta) \to 0$ ⁶

Almost sure convergence

Definition 5.5.6

A sequence X_1, X_2, \dots of random variables converges almost surely (or with probability one) to a random variable X if

$$P(\lim_{n\to\infty}X_n=X)=1$$

Theorem 5.5.9 (strong law of large numbers)

Let X_1, X_2, \dots be iid random variables with $EX_i = \mu$. Then

 $P(\lim_{n\to\infty}\overline{X}_n=\mu)=1$

That is, \overline{X}_n converges almost surely to μ

8

Convergence in distribution

Definition 5.5.10 A sequence $X_1, X_2,...$ of random variables with cdfs $F_{X_1}(x), F_{X_2}(x),...$ converges in distribution to a random variable X if

 $\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$

at all points x where the cdf $F_X(x)$ of X is continuous

Example 5.5.11 (maximum of uniforms)

Let X_1, X_2, \dots be iid uniform(0,1)

Consider $X_{(n)} = \max_{1 \le i \le n} X_i$

Then:

- $X_{(n)}$ converges to 1 in probability
- $n(1-X_{(n)})$ converges in distribution to X, where $X \sim \text{exponential}(1)$

10

Theorem 5.5.13

A sequence $X_1, X_2,...$ of random variables converges in probability to a constant *a* if and only if the sequence converge in distribution to the one-point distribution in *a*

That is, the statement

$$P(|X_n - a| \ge \varepsilon) \rightarrow 0$$
 for every $\varepsilon > 0$

is equivalent to

$$P(X_n \le x) \to \begin{cases} 0 & \text{if } x < a \\ 1 & \text{if } x > a \end{cases}$$

Theorem 2.3.12

Suppose that X_1, X_2, \dots is a sequence of random variables and that X_i has mgf $M_{X_i}(t)$ and cdf $F_{X_i}(x), i = 1, 2, \dots$

Furthermore, suppose that

 $\lim_{n\to\infty}M_{X_n}(t)=M_X(t)$

for all *t* in a neighbourhood of 0, where $M_X(t)$ is the mgf of a random variable *X* with cdf $F_X(x)$ Then

 $\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$

for all x where $F_{X}(x)$ is continuous

That is, X_1, X_2, \dots converges in distribution to X

9

Theorem 5.5.15 (Central limit theorem)

Let X_1, X_2, \dots be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2$ Let $G_n(x)$ be the cdf of $\sqrt{n} (\overline{X}_n - \mu) / \sigma$

Then, for any $x \, (-\infty < x < \infty)$,

$$\lim_{n\to\infty}G_n(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-y^2/2}dy$$

That is, $\sqrt{n} (\overline{X}_n - \mu) / \sigma$ has a limiting standard normal distribution

Proof of Slutsky's theorem

We will first prove b) It is sufficient to consider the case where a = 0

We have to prove that

 $\lim_{n \to \infty} F_{X_n + Y_n}(x) = F_X(x) \qquad (*)$ when *x* is a continuity point of $F_X(x)$

For all $\varepsilon > 0$ we have

$$F_{X_n+Y_n}(x) = P(X_n + Y_n \le x) = P(X_n \le x - Y_n)$$

$$= P((X_n \le x - Y_n) \cap (|Y_n| \ge \varepsilon)) + P((X_n \le x - Y_n) \cap (|Y_n| < \varepsilon)) = Q_{n1} + Q_{n2}$$

15

13

Definition 5.5.17 (Slutsky's theorem)

If $X_n \rightarrow X$ in distribution and $Y_n \rightarrow a$ in probability, where *a* is a constant, then

- a) $Y_n X_n \rightarrow aX$ in distribution
- b) $X_n + Y_n \rightarrow X + a$ in distribution

Example 5.5.18 Let X_1, X_2, \dots be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2$. Then $\sqrt{n} (\overline{X}_n - \mu) / \sigma \rightarrow n(0,1)$ in distribution $\sigma / S_n \rightarrow 1$ in probability It follows that $\sqrt{n} (\overline{X}_n - \mu) / S_n \rightarrow n(0,1)$ in distribution

14

Now $0 \le Q_{n1} \le P(|Y_n| \ge \varepsilon) \to 0$, SO $Q_{n1} \to 0$ Furthermore $Q_{n2} \le P((X_n \le x + \varepsilon) \cap (|Y_n| < \varepsilon))$ $\le P(X_n \le x + \varepsilon) = F_{X_n}(x + \varepsilon)$ and $Q_{n2} \ge P((X_n \le x - \varepsilon) \cap (|Y_n| < \varepsilon))$ $= 1 - P((X_n \le x - \varepsilon)^c \cup (|Y_n| < \varepsilon)^c)$ $\ge 1 - P(X_n > x - \varepsilon) - P(|Y_n| \ge \varepsilon)$ $= F_{X_n}(x - \varepsilon) - P(|Y_n| \ge \varepsilon)$ Thus $F_{Y_n}(x - \varepsilon) - P(|Y_n| \ge \varepsilon) \le Q_{n2} \le F_{Y_n}(x + \varepsilon)$

We will then prove a) We may assume that $x \pm \varepsilon$ are continuity points We first consider the case when a = 0of $F_{x}(x)$ (since one may show that the number of discontinuity points is countable) By Theorem 5.5.13 we then have to prove that $Y_n X_n \rightarrow 0$ in probability Then we obtain Note first that $P(|X| \ge K)$ can be made $F_{\rm x}(x-\varepsilon) \leq \liminf Q_{\rm y2} \leq \limsup Q_{\rm y2} \leq F_{\rm x}(x+\varepsilon)$ arbitrarily small by choosing K large enough Since we may choose ε arbitrary small Now we have for all $\delta_{\epsilon} \geq 0$ that and x is a continuity point of $F_x(x)$, this $P(|Y_nX_n| \ge \varepsilon) = P((|Y_nX_n| \ge \varepsilon) \cap (|Y_n| \ge \delta))$ shows that $Q_{n2} \rightarrow F_{x}(x)$, and hence (*) $+ P((|Y_nX_n| \ge \varepsilon) \cap (|Y_n| < \delta))$ is proved $< P(|Y_n| > \delta) + P(|X_n| > \varepsilon / \delta)$ 17 18 We may assume that $\pm \varepsilon / \delta$ are continuity If a > 0 we have when x/a is a continuity point points of $F_x(x)$ of $F_{x}(x)$ Then we obtain $P(aX_n \le x) = P(X_n \le x/a) \rightarrow P(X \le x/a) = P(aX \le x)$ $0 \le \liminf P(|Y_nX_n| \ge \varepsilon) \le \limsup P(|Y_nX_n| \ge \varepsilon) \le P(|X| \ge \varepsilon / \delta)$ and it follows that $aX_n \rightarrow aX$ in distribution Here the right-hand side can be made arbitrary small by choosing d small enough, and it follows Similarly, if a < 0 we have when x/a is a that $\lim P(|Y_nX_n| \ge \varepsilon) = 0$, i.e. $Y_nX_n \to 0$ in probability continuity point of $F_{y}(x)$ If $a \neq 0$ we may write $X_n Y_n = a X_n + X_n (Y_n - a)$ $P(aX_n \le x) = 1 - P(aX_n > x) = 1 - P(X_n < x/a)$ By what has just been proved, we have that $\rightarrow 1 - P(X < x/a) = 1 - P(aX > x) = P(aX < x)$ $X_{\mu}(Y_{\mu}-a) \rightarrow 0$ in probability and it follows that $aX_n \rightarrow aX$ in distribution By result b) of the theorem, it then only remains to prove that $aX_n \rightarrow aX$ in distribution 19 20