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Convergence of random variables

Covers (most of) the following material from
chapters 2, 3 and 5:

» Section 2.3: page 66
» Section 3.6.1: page 122
» Sections 5.5.1-3: pages 232-240
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Convergence in probability

We will look at different concepts of convergence
for a sequence X, X,,.... of random variables

Definition 5.5.1

Asequence X, X,,.... of random variables
converges in probability to a random variable X if
for every £>0

lim P(|X,— X|>¢)=0

or equivalently
lim P(] X, — X|<e)=1

ChebychevV's inequality will be useful:

Theorem 3.6.1 (Chebychev's inequality)
Let X be a random variable and let g(x) be a
non-negative function. Then, for every r >0,

P(g(X) > r)s@

The following is a much used version of the
inequality:
VarX
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P(X-EX[>¢)<

Theorem 5.5.2 (weak law of large numbers)

Let X, X,,..... be iid random variables with
EX,=p and VarX, =o?
Define 1

X ==X

n niz; i

Then for every £>0
lim P(| X, —p|<e)=1

Thatis, X, converges in probability to s

We say that X, is a consistent estimator of




Example 5.5.3 (consistency of S?)

Let X, X,,..... be iid random variables with
EX, = and VarX; =c® We assume that the
4th moment of the X's is finite.

Define .

S=—1 5 (X -X,)

n—-1%=
We have:
« ES=0° (page 214)
e VarS’ - 0 (exercise 5.8.b)

Then for every €>0

Var

2
P(ISE—0?]>2)< Y 0 asn—oo
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Theorem 5.5.4 (modified)

Assume that X, X,,.... converges in probability
to a constant a, and let h(x) be a function that is
continuous at x=a . Then h(X,), h(X,),...
converges in probability to h(a).

Proof

Let £>0. Since h(x) is continuous at x=a,
there exista J>0 such that

|x-al<xd = |hx)-h@)|<e
Thus
|lh(xX)-h@)|z¢e = [x—-al|=d

It follows that (as n— o)
P(lh(X,)—h@)|>¢)<P(|X,—a|>§)— C

Example 5.5.5 ( consistency of S)

Let X, X,,..... be iid random variables with
EX, =p and VarX,=o°. We assume that the
4th moment of the X's is finite.

Then

n 2

S =3 (% - X,)

n—14=
is a consistent estimator of ¢
It follows that
SENES

is a consistent estimator of \Vo? =¢

Almost sure convergence

Definition 5.5.6

Asequence X, X,,.... of random variables
converges almost surely (or with probability one)
to a random variable X if

P(lim X_ = X) =1

n—oo

Theorem 5.5.9 (strong law of large numbers)
Let X, X,,..... be iid random variables with
EX,=u . Then

P(lim X =p) =1

n—oo

Thatis, X, converges almost surely to p




Convergence in distribution

Definition 5.5.10

Asequence X, X,,.... of random variables with
cdfs Fy, (X),Fy, (X),.... converges in distribution
to a random variable X if

lim F, (%) = F (3

at all points x where the cdf F,(x) of X is
continuous

Example 5.5.11 (maximum of uniforms)
Let X, X,,..... be iid uniform(0,1)

Consider X, =max_;, X;

Then:

« X, converges to 1 in probability

. n(l— X(n)) converges in distribution to X,
where X ~ exponential(l
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Theorem 5.5.13

Asequence X, X,,.... of random variables
converges in probability to a constant a if and
only if the sequence converge in distribution to
the one-point distribution in a

That is, the statement
P(|X,—a|>¢e)— 0 foreverye> (

IS equivalent to

0 if x<a
1 if x>a

P(X,<X) - {
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Theorem 2.3.12
Suppose that X, X,,..... is a sequence of
random variables and that X; has mgf M, (t)
and cdf F, (x),i=12,....
Furthermore, suppose that

lim M, (t) =M, (1)
for all t in a neighbourhood of 0, where M, (t) is
the mgf of a random variable X with cdf F, (x)

Then
lim F, (%) =F(x)

for all x where F, (x) is continuous

Thatis, X, X,,..... converges in distribution to X




Theorem 5.5.15 (Central limit theorem)
Let X, X,,..... be iid random variables with
EX,=p and VarX, =o°

Let G,(x) be the cdf of Vn(X,—p)/c

Then, forany x (—oo<X<o0),
lim G (x) = jieyz’zdy
n—oo n 700\/5

Thatis, n(X,—u)/c has a limiting standard
normal distribution
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Definition 5.5.17 (Slutsky's theorem)
If X,— X indistribution and Y, —a in probability,
where a is a constant, then

a) Y, X, - axX indistributior
b) X,+Y, - X+a indistributior

Example 5.5.18
Let X, X,,..... be iid random variables with
EX, = and VarX, =c¢° Then

In (X, — )l — n(0,1) in distributior
olS, - 1 in probability
It follows that

Jn(X —u) /S, — n(0,1) in distributior y

Proof of Slutsky's theorem

We will first prove b)
It is sufficient to consider the case where a=0

We have to prove that
r!mc Fy v, () =Fx(X) *)
when x is a continuity point of F, (x)

For all £>0 we have
Fy, i, (0 =P(X, +Y, <X) = P(X, <x-Y,)

=P((X, <x=Y)N(Y, [>¢))
+P((X, <x=Y,)N(|Y, |<¢))

=Qu+Q, 15

Now 0<Q,<P(|Y,[>¢)— 0, SO Q, -0
Furthermore
QnZ S P((Xn S X—’_E)m(lYn |<€))

<P(X,<x+¢e)=F, (x+¢&)
and '

Q.. > P((X, <x—2)N(lY, [<¢))
=1-P((X, <x—e)l U(Y, k)
>1-P(X,>x-£)-P(|Y, k)
=F, (x=&)=P(Y, [z €)

Thus
Fy (x—€)—P(|Y, [>£)<Q, <F, (x+¢)
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We may assume that x*& are continuity points

of F,(x) (since one may show that the number
of discontinuity points is countable)

Then we obtain
F (x—¢) <liminf Q,, <limsupQ,, < F, (X+¢)

Since we may choose e arbitrary small
and x is a continuity point of F, (x) , this

shows that Q,, — F,(x) , and hence (¥)
is proved
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We will then prove a)
We first consider the case when a=0

By Theorem 5.5.13 we then have to prove
that Y X - O in probability

Note first that P(] X |=2K) can be made
arbitrarily small by choosing K large enough

Now we have for all J,6>0 that
P(Y, X, 12€)=P((IY,X, [2&)n (I, £J)
+P((IY, X, |=&)n (Y, KI)
<P(Y, [>8)+P(IX, [>¢c /)
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We may assume that &/ are continuity

points of F, (X)

Then we obtain

0<Iliminf P(|Y, X, |>¢)<limsupP (V. X, e XP (X pe b

Here the right-hand side can be made arbitrary
small by choosing d small enough, and it follows
that IImP(Y X |2&£)=0,i.e. Y, X, - 0 in probability

If" a==0 we may write X.Y, =aX,+X,(Y,-a)

By what has just been proved, we have that
X, (Y,—a) » 0 in probability

By result b) of the theorem, it then only
remains to prove that ax, - aX in distribution
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If a>0 we have when x/a is a continuity point
of F,(X)

P(@X,<x)=P(X,<x/a) - P(X<x/a)=P(axX <x)
and it follows that aX, - aX in distribution

Similarly, if a<0 we have when x/a is a
continuity point of F, (x)

P(@X, <x)=1-P(@X,>x)=1-P(X, < x/a)
—1-P(X<x/a)=1-P@X >x)=P@X <x)

and it follows that aX, — aX in distribution
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