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Point estimation

Covers (most of) the following material from chapter 7:

• Section 7.1: pages 311-312
• Section 7.2.1: pages 312-313
• Section 7.2.2: pages 315-320
• Section 7.2.3: pages 324-325
• Section 7.3.1: pages 330-332
• Section 7.3.2: pages 334-339

A point estimator                            is a statistic                                       
that we use to guess the value of the population 
parameter      (or a function          of the parameter) 
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Estimation

θ

1 2( , ,...., )nW X X X

Let                       be a random sample from the 
population             , so are iid and   
their pmf or pdf  is         

1 2, ,...., nX X X

1 2, ,...., nX X X( | )f x θ
( | )f x θ

( )τ θ

When we evaluate the estimator at the observed 
values                     of the random variables we 
obtain an estimate of  

1 2, ,...., nx x x
θ

We will first consider methods for finding 
estimators, and then discuss how the                
estimators may be evaluated
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Method of moments

Assume that 1( ,..., )θ θ= kθ

The moment estimators of               are obtained by 
the equations one obtains by equating the first k
sample moments and population moments  

1,...,θ θk

Sample moments: 
1

1

=

= ∑
n

j
j i

i

m X
n

Population moments: 1( ,..., ) E j
j k Xµ θ θ′ =

The moment estimators solve the equations 

1( ,..., ) 1,....,j k jm j kµ θ θ′ = =
4

Example – gamma distribution

Let                        be iid with pdf 1 2, ,...., nX X X

1 /1
( | , ) for  0

( )
xf x x e xα β

α
α β

β α

− −= >
Γ

We have                                   

X αβ=

1( , ) EXµ α β αβ′ = =
2

2( , ) EXµ α β′ =

The moment estimators are given by the equations

and 2 2 2

1

1
( )αβ αβ

=

= +∑
n

i
i

X
n

This gives
2

2

1

ˆ
1

( )
α

=

=
−∑

n

i
i

X

X X
n

2

1

1
( )

β̂ =
−

=
∑

n

i
i

X X
n

X
and

2Var (E )X X= + 2 2( )αβ αβ= +
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Maximum likelihood

Then the likelihood is given by

Let                        be an  iid sample from a 
population with pmf or pdf 

1 2, ,...., nX X X

1( | ,..., )θ θkf x

1 1 1
1

( | ) ( ,..., | ,..., ) ( | ,..., )
n

k n i k
i

L L x x f xθ θ θ θ
=

= =∏θ x

For each sample point x , let          be the 
parameter value at which              attains its 
maximum as a function of       with x held fixed  

ˆ( )θ x
( | )L θ x
θ

Then            is the maximum likelihood estimator 
(MLE) based on the sample 

ˆ( )θ X

1 2( , ,...., )nX X X=X

Usually one finds the MLE by maximizing the 
log-likelihood log ( | )L θ x 6

Example – gamma distribution

Let                        be iid with pdf 1 2, ,...., nX X X

1 /1
( | , ) for  0

( )
xf x x e xα β

α
α β

β α

− −= >
Γ

The likelihood is given by

1

( , | ) ( | , )
n

i
i

L f xxα β α β
=

=∏ 1
/1

1

1

( )

n
ii

n n x

i
i

x e
β

α

αβ α

=
−−

=

    ∑  =      Γ    ∏

and the log-likelihood becomes

1 1

log ( , | )

1
log log ( ) ( 1) log

α β

α β α α
β= =

= − − Γ + − −∑ ∑
n n

i i
i i

L

n n x x

x

7

Differentiating the log-likelihood we obtain

If we set the partial derivatives equal to zero and 
solve the equations, we find that the MLEs are 
given by 

1

( )
log ( , | ) log log

( )

αα β β
α α =

′∂ Γ= − − +
∂ Γ ∑

n

i
i

L n n xx

2
1

1
log ( , | )

αα β
β β β =

∂ = − +
∂ ∑

n

i
i

n
L xx

ˆ
ˆ

β
α

= X

and 

1

ˆ( )
ˆlog log log 0

ˆ( )

αα
α =

′Γ− − + =
Γ ∑

n

i
i

n n X n X

Assume that the function              is one-to-one    
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An important property of ML-estimators is that they 
are invariant in the following sense:

Theorem 7.2.10 (invariance property of MLEs)
If      is the MLE of    , then          is the MLE of

( )η τ θ=

θ̂ ˆ( )τ θ ( )τ θθ

Let                   be the inverse function 1( )τ η θ− =

Then                                      * 1( | ) ( ( ) | )η τ η−=L Lx x
* 1sup ( | ) sup ( ( ) | ) sup ( | )

η η θ
η τ η θ−= =L L Lx x x

Thus the maximum of               is attained  at * ( | )ηL x ˆˆ ( )η τ θ=

The result is also valid when               is not            
one-to-one  (cf. page 320)   

( )η τ θ=

and  
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Bayes estimators
In this course we mainly focus on the classical 
frequentist approach to statistics, but we will now 
have a brief look at the Bayesian approach

In the classical approach a population parameter     
is a fixed quantity, but its value is unknown to us 

θ

In the Bayesian approach      is assumed to be a 
quantity whose variation may be described by the 
prior distribution  

θ

( )π θ

When a sample is taken from the population, we 
may update the prior distribution and obtain the  
posterior distribution  ( | )xπ θ 10

The joint pmf or pdf of      and X is θ

( , ) ( | ) ( )f fx xθ θ π θ=

The marginal pmf or pdf of  X is 

( ) ( | ) ( )m f dx x θ π θ θ= ∫

Hence the posterior pmf or pdf of      becomes θ

( | ) ( )
( | )

( )

f

m

x
x

x
θ π θ

π θ =

The posterior is used to make statements about  θ

We may e.g. use the posterior mean as a point 
estimate of θ

(with sum instead of integral if         is a pmf)( )π θ
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Example 7.2.14 – binomial Bayes estimator

Let                             :                       binomial( , )Y n p∼

Assume that the prior distribution of  p is                 :   beta( , )α β

Then the  joint distribution of Y and p is 

( )( | ) (1 )y n ynf y p p py
−= −

1 1( )
( ) (1 )

( ) ( )
p p pα βα β

π
α β

− −Γ +
= −
Γ Γ

( ) 1 1( )
( , ) (1 ) (1 )

( ) ( )
y n ynf y p p p p py

α βα β

α β

− − −Γ +
= − −

Γ Γ

( ) 1 1( )
(1 )

( ) ( )
y n yn p py
α βα β

α β

+ − − + −Γ +
= −

Γ Γ 12

Then marginal distribution of Y is 

( )
1

1 1

0

( )
( ) (1 )

( ) ( )
y n ynm y p p dpy
α βα β

α β

+ − − + −Γ +
= −

Γ Γ∫

( )
1

1 1

0

( )
(1 )

( ) ( )
y n yn p p dpy
α βα β

α β

+ − − + −Γ +
= −

Γ Γ ∫

( ) ( ) ( ) ( )

( ) ( ) ( )

y n yn
y n

α β α β

α β α β

Γ + Γ + Γ − +
=

Γ Γ Γ + +

Then posterior distribution of p becomes

( , )
( | )

( )

f y p
f p y

m y
= 1 1( )

(1 )
( ) ( )

y n yn
p p

y n y
α βα β

α β

+ − − + −Γ + +
= −
Γ + Γ − +

Thus 
| beta( , )p Y y y n yα β= + − +∼
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We may use the posterior mean to estimate p , i.e.

ˆB

y
p

n

α

α β

+
=
+ +

ˆB

n y
p

n n n

α β α

α β α β α β

      +    = +           + + + + +    

Note that we may write the estimator as

In this example both the prior and the posterior 
distributions are beta-distributions 

The reason for this is that the beta distribution is a 
conjugate family for the binomial

Evaluation of estimators
One criterion for evaluating estimators is the    
mean squared error (MSE)

The MSE of an estimator   of       is 
the function of      given by 

θ

θ

1( ,..., )= nW W X X
2E ( )Wθ θ−

The bias of W is given as Bias EW Wθ θ θ= −

The estimator is unbiased if the bias is zero for all θ

Note that the MSE may be written 

( )22E ( ) Var Biasθ θ θθ− = +W W W

For an unbiased estimator, MSE equals its variance 
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Example 7.3.5 – MSE of binomial Bayes estimator
Let                                                    binomial( , )Y n p∼

The MLE of p is    ˆ /p Y n=

Then consider the Bayes estimator 

We know that this is unbiased, so its MSE becomes

2 (1 )
ˆ ˆE ( ) Var

−− = =p p

p p
p p p

n

ˆB

Y
p

n

α

α β

+
=
+ +

The variance of the Bayes estimator is

ˆVar Var
α

α β
 +=  + + 

p B p

Y
p

n ( )2

(1 )

α β
−=

+ +
np p

n

16

Hence the MSE of the Bayes estimator is

( )22ˆ ˆ ˆE ( ) Var Bias− = +p B p B p Bp p p p

( )

2

2

(1 ) α
α βα β

 − += + − + ++ +  

np p np
p

nn

The bias of the Bayes estimator is

ˆBias E
α

α β
 += − + + 

p B p

Y
p p

n
α

α β
+= −

+ +
np

p
n

If we chose 

/ 4α β= = n

the MSE will not depend on p
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Then we obtain 

/ 4
ˆB

Y n
p

n n

+
=

+
and

2

2
ˆE( )

4( )
− =

+B

n
p p

n n

ˆ( )MSE p ˆ( )MSE p

Best unbiased estimators
We are not able to find an estimator that minimizes 
the MSE for all values of θ
If we want to find «the best» estimator, we need to 
restrict the class of estimators we consider

If we restrict ourselves to the unbiased estimators,  
the best estimator is the one with smallest variance

Definition 7.3.7 
An estimator        is a best unbiased estimator of        
if it satisfies                      for all       and, for any other 
estimator W with                  , we have                             
for all    .   We also say that        is a uniform minimum 
variance unbiased estimator (UMVUE) for    

*W ( )τ θ

θ
*E ( )Wθ τ θ=
E ( )Wθ τ θ= *Var VarW Wθ θ≤

θ
*W

( )τ θ
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Example 7.3.12 – Poisson unbiased estimation

Further let        and         be the sample mean and 
the sample variance 

X

Then               and  E λ=X

Let                          be iid Poisson(λ) 1 2, , ...., nX X X

2S

2E λ=S

Thus      ,        and                         are all unbiased 
estimators of λ

X 2S 2(1 )aX a S+ −

Which one is best, and are there better unbiased 
estimators?
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Consider a sample                                     with 
joint pdf (or pmf)                       

1 2( , , ...., )nX X XX =
( | )f x θ

Note that we do not assume that the        are iidiX

( ) ( | )W f dx x xθ∫
X

We assume that expressions of the form

may be differentiated with respect to      by 
changing the order of differentiation and 
integration (summation in the case of pmf) 

θ

Information
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Then the information number or Fisher information 
of the sample is 

2

( ) E log ( | )I fθθ θ
θ

  ∂ =   ∂  
X

2

log ( | ) ( | )f f dx x xθ θ
θ

 ∂ =   ∂∫
X

For the special case where                          are iid
with pdf (or pmf)               the information in the 
sample is given by                        , where             is 
the information in one observation and is given by 

1( ) ( )I nIθ θ=

1 2, , ...., nX X X
( | )f x θ

1( )I θ

2

1( ) E log ( | )I f Xθθ θ
θ

  ∂ =   ∂  

2

log ( | ) ( | )f x f x dxθ θ
θ

∞

−∞

 ∂ =   ∂∫

If expressions of the form                                 
may be differentiated twice with respect to      by 
changing the order of differentiation and 
integration (summation for pmf), the information 
in the sample may also be given as                            

( ) ( | )W f dx x xθ∫

2

2
( ) E log ( | )I f Xθ θ

θ

 ∂  =−   ∂ 

2

2
log ( | ) ( | )f f dx x xθ θ

θ

 ∂  =−   ∂ ∫
X

θ

while in the case of iid observations, the 
information in one observation may be given as

2

1 2
( ) E log ( | )I f Xθ θ

θ

 ∂  =−   ∂ 

2

2
log ( | ) ( | )f x f x dxθ θ

θ

∞

−∞

 ∂  =−   ∂ ∫
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The Cramér-Rao inequality
Consider a sample                                     with 
joint pdf (or pmf)               and assume that 
expressions of the form       

1 2( , , ...., )nX X XX =
( | )f x θ

( ) ( | )W f dx x xθ∫
may be integrated with respect to      by changing 
the order of differentiation and integration 
(summation in the case of pmf). Then for any 
estimator             with finite variance we have 

θ

( )W X
2

2

E ( )
Var ( )

E log ( | )

d
W

d
W

f

X
X

X

θ

θ

θ

θ

θ
θ

    
≥

  ∂    ∂  
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Example 7.3.8 – Poisson UMVUE

Let                          be iid Poisson(λ) 1 2, , ...., nX X X

Here

log ( | ) log
!

x

f x e
x

λλ
λ −

  =    
log log !x xλ λ= − −

Hence the information in one observation is

log ( | ) 1
x

f x λ
λ λ

∂
= −

∂

2

2 2
log ( | )

x
f x λ

λ λ

∂
=−

∂

1 2 2

1
( ) E

X
I

λ
λ

λ λ λ

 = = =  

and the information in the sample is ( ) /I nλ λ=
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By the Cramér-Rao inequality, we have for 
any unbiased estimator W for λ that 

Now       is an unbiased estimator for λ , and 

Var X
nλ

λ
=

Hence       is an UMVUE for λ

1 1
Var

( ) /
W

I n nλ

λ

λ λ
≥ = =

X

X


