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Exponential families 
where               and                      are real-valued 
functions of x and               and                          
are real valued functions of the possibly vector-
valued parameter 
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Many pdfs or pmfs may be expressed on the form

We say that (3.4.1) defines an exponential 
family of distributions
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Example: normal distribution

which is of the form (3.4.1) 

Consider the normal pdf
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Example: exponential distribution

which is of the form (3.4.1) 

Consider the exponential pdf
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Example: binomial distribution

which is of the form (3.4.1) 

Consider the binomial pmf

For all x this may be written
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If X  is a random variable with pdf or pmf ,
and if                      or                   may be 
differentiated twice with respect to      by changing  
the order of integration/summation and differentiation,  
then we have                       
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In chapter 7 we will prove the following result             
(which may also be known from earlier courses):
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Theorem 3.4.2
If X is a random variable with pdf or pmf of 
the form (3.4.1), then 
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If we use this result for the exponential family of 
distributions, we obtain:
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Example: exponential distribution

We have 

We have the pdf
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By Theorem 3.4.2 it follows that
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Example: binomial distribution

Note that

We have the pmf
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By Theorem 3.4.2 we have
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So far we have used the parameter

The parameter space for (3.4.1) is (usually) given as

Sometimes an exponential family is reparametrized as 
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(in the discrete case the integral is replaced by a sum)
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The natural parameter space is given as
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Note that                         and that the pmf becomes                            
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Example: binomial distribution

where                         and 

We have the pmf
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Example: normal distribution

The normal pdf may be written
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In (3.4.1) it is usually the case that the dimension of 
the vector                            is equal to k , i.e. d = k1 2( , ,..., )dθ θ θ=θ

Then we have a full exponential family

If d < k , we have a curved exponential family

In the example on the previous slide, we have a full 
exponential family with parameter space 

If we consider a normal model with               ,  for a 
known constant k , we get a curved exponential 
family with parameter space 
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