STK4011 and STK9011
 Autumn 2016

Exponential families

Covers section 3.4

Ørnulf Borgan
Department of Mathematics
University of Oslo

Many pdfs or pmfs may be expressed on the form

$$
\begin{equation*}
f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right) \tag{3.4.1}
\end{equation*}
$$

where $h(x) \geq 0$ and $t_{1}(x), \ldots, t_{k}(x)$ are real-valued functions of x and $c(\boldsymbol{\theta}) \geq 0$ and $w_{1}(\boldsymbol{\theta}), \ldots, w_{k}(\boldsymbol{\theta})$ are real valued functions of the possibly vectorvalued parameter $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right), \quad d \leq k$

We say that (3.4.1) defines an exponential family of distributions

Example: normal distribution

Consider the normal pdf

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

This may be written

$$
f\left(x \mid \mu, \sigma^{2}\right)=\underbrace{1 \cdot \underbrace{\frac{1}{\sqrt{2 \pi} \sigma}}_{c(\mu, \sigma)} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right)}_{h(x)} \exp \{\frac{1}{\sigma^{2}}(\underbrace{\left.-\frac{x^{2}}{2}\right)}_{w_{1}(\mu, \sigma)}+\underbrace{\left.\frac{\mu}{\sigma^{2}} x\right\}}_{t_{1}(x)} \underbrace{}_{w_{2}(\mu, \sigma)}
$$

which is of the form (3.4.1)

Example: exponential distribution
Consider the exponential pdf

$$
f(x \mid \beta)=\left\{\begin{array}{cc}
\frac{1}{\beta} \exp \left(-\frac{x}{\beta}\right) & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

For all x this may be written

$$
f(x \mid \beta)=\underbrace{I_{\{x>0\}}(x)}_{h(x)} \underbrace{\frac{1}{\beta}}_{c(\beta)} \exp (\underbrace{\left.-\frac{1}{\beta} x\right)}_{w_{1}(\beta)} \underbrace{}_{t_{1}(x)}
$$

which is of the form (3.4.1)

Example: binomial distribution

Consider the binomial pmf

$$
f(x \mid p)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n
$$

For all x this may be written

$$
f(x \mid p)=\underbrace{I_{\{0,1, \ldots, n\}}(x)\binom{n}{x}}_{h(x)} \underbrace{(1-p)^{n}}_{c(p)} \exp \{\underbrace{\log \left(\frac{p}{1-p}\right)}_{w_{1}(p)} \underbrace{x\}}_{t_{1}(x)}
$$

which is of the form (3.4.1)

In chapter 7 we will prove the following result (which may also be known from earlier courses):

If X is a random variable with pdf or pmf $f(x \mid \boldsymbol{\theta})$, and if $\int f(x \mid \boldsymbol{\theta}) d x$ or $\sum f(x \mid \boldsymbol{\theta})$ may be differentiated twice with respect to θ_{j} by changing the order of integration/summation and differentiation, then we have

$$
\begin{aligned}
& \mathrm{E}\left(\frac{\partial}{\partial \theta_{j}} \log f(X \mid \boldsymbol{\theta})\right)=0 \\
& \operatorname{Var}\left(\frac{\partial}{\partial \theta_{j}} \log f(X \mid \boldsymbol{\theta})\right)=-\mathrm{E}\left(\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(X \mid \boldsymbol{\theta})\right)
\end{aligned}
$$

If we use this result for the exponential family of distributions, we obtain:

Theorem 3.4.2

If X is a random variable with pdf or pmf of the form (3.4.1), then
$\mathrm{E}\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(X)\right)=-\frac{\partial}{\partial \theta_{j}} \log c(\boldsymbol{\theta})$
$\operatorname{Var}\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(X)\right)=-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log c(\boldsymbol{\theta})-\mathrm{E}\left(\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}^{2}} t_{i}(X)\right)$

Example: exponential distribution

We have the pdf

$$
f(x \mid \beta)=I_{\{x>0\}}(x) \frac{1}{\beta} \exp \left(-\frac{1}{\beta} x\right)
$$

We have $c(\beta)=\frac{1}{\beta}, \quad w_{1}(\beta)=-\frac{1}{\beta}, \quad t_{1}(x)=x$
By Theorem 3.4.2 it follows that
$\mathrm{E}\left(\frac{1}{\beta^{2}} X\right)=\frac{1}{\beta} \quad \operatorname{Var}\left(\frac{1}{\beta^{2}} X\right)=-\frac{1}{\beta^{2}}-\mathrm{E}\left(-\frac{2}{\beta^{3}} X\right)$
This gives

$$
\mathrm{E} X=\beta \quad \operatorname{Var} X=\beta^{2}
$$

Example: binomial distribution

We have the pmf

$$
f(x \mid p)=I_{\{0,1, \ldots, n\}}(x)\binom{n}{x}(1-p)^{n} \exp \left\{\log \left(\frac{p}{1-p}\right) x\right\}
$$

Note that

$$
\begin{aligned}
& c(p)=(1-p)^{n}, \quad w_{1}(p)=\log \left(\frac{p}{1-p}\right), \quad t_{1}(x)=x \\
& \frac{d}{d p} \log c(p)=\frac{-n}{1-p}, \quad \frac{d}{d p} w_{1}(p)=\frac{1}{p(1-p)} \\
& \frac{d^{2}}{d p^{2}} \log c(p)=\frac{-n}{(1-p)^{2}}, \quad \frac{d^{2}}{d p^{2}} w_{1}(p)=\frac{-(1-2 p)}{p^{2}(1-p)^{2}}
\end{aligned}
$$

By Theorem 3.4.2 we have

$$
\begin{aligned}
& \mathrm{E}\left(\frac{1}{p(1-p)} X\right)=\frac{n}{1-p} \\
& \operatorname{Var}\left(\frac{1}{p(1-p)} X\right)=\frac{n}{(1-p)^{2}}-\mathrm{E}\left(\frac{-(1-2 p)}{p^{2}(1-p)^{2}} X\right)
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \mathrm{E} X=n p \\
& \operatorname{Var} X=n p(1-p)
\end{aligned}
$$

So far we have used the parameter $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)$
The parameter space for (3.4.1) is (usually) given as $\Theta=\left\{\boldsymbol{\theta}: \int_{-\infty}^{\infty} h(x) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right) d x<\infty\right\}=\{\boldsymbol{\theta}: c(\boldsymbol{\theta})>0\}$
(in the discrete case the integral is replaced by a sum)
Sometimes an exponential family is reparametrized as

$$
f(x \mid \boldsymbol{\eta})=h(x) c^{*}(\boldsymbol{\eta}) \exp \left(\sum_{i=1}^{k} \eta_{i} t_{i}(x)\right)
$$

Here the $h(x)$ and $t_{i}(x)$ functions are as before, and $\boldsymbol{\eta}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{k}\right)$ is the natural parameter

Example: binomial distribution

We have the pmf

$$
\begin{aligned}
f(x \mid p) & =I_{\{0,1, \ldots, n\}}(x)\binom{n}{x}(1-p)^{n} \exp \left\{\log \left(\frac{p}{1-p}\right) x\right\} \\
& =I_{\{0,1, \ldots, n\}}(x)\binom{n}{x} c(p) \exp \left\{w_{1}(p) x\right\}
\end{aligned}
$$

where $c(p)=(1-p)^{n}$ and $w_{1}(p)=\log (p /(1-p))$
The original parameter space is $\{p: 0<p<1\}=(0,1)$
The natural parameter is $\eta=\log (p /(1-p)) \in(-\infty, \infty)$
Note that $p=e^{\eta} /\left(1+e^{\eta}\right)$ and that the pmf becomes

$$
f(x \mid \eta)=I_{[0,1, \ldots n)}(x)\binom{n}{x}\left(\frac{1}{1+e^{\eta}}\right)^{n} \exp \{\eta x\}
$$

Example: normal distribution

The normal pdf may be written

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{1}{\sigma^{2}}\left(-\frac{x^{2}}{2}\right)+\frac{\mu}{\sigma^{2}} x\right)
$$

Usually the original parameter space is given by $\left\{\left(\mu, \sigma^{2}\right):-\infty<\mu<\infty, \sigma^{2}>0\right\}$

The natural parameters are $\eta_{1}=1 / \sigma^{2}$ and $\eta_{2}=\mu / \sigma^{2}$
The natural parameter space is
$\left\{\left(\eta_{1}, \eta_{2}\right): \eta_{1}>0,-\infty<\eta_{2}<\infty\right\}$
The pdf may be written

$$
f\left(x \mid \eta_{1}, \eta_{2}\right)=\frac{\sqrt{\eta_{1}}}{\sqrt{2 \pi}} \exp \left(-\frac{\eta_{2}^{2}}{2 \eta_{1}}\right) \exp \left(\eta_{1}\left(-\frac{x^{2}}{2}\right)+\eta_{2} x\right)
$$

In (3.4.1) it is usually the case that the dimension of the vector $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right) \quad$ is equal to k, i.e. $d=k$
Then we have a full exponential family
If $d<k$, we have a curved exponential family
In the example on the previous slide, we have a full exponential family with parameter space
$\left\{\left(\mu, \sigma^{2}\right):-\infty<\mu<\infty, \sigma^{2}>0\right\}$
If we consider a normal model with $\sigma^{2}=k \mu^{2}$, for a known constant k, we get a curved exponential family with parameter space $\left\{\left(\mu, k \mu^{2}\right):-\infty<\mu<\infty\right\}$

