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Properties of a random sample

• Section 5.1: pages 207-208
• Section 5.2: pages 211-216
• Section 5.3: pages 218-220

The random variables                        are called a 
random sample from the population          if 

are mutually independent and the 
marginal pmf or pdf of each       is        
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Alternatively, we may say that 
are independent and identically distributed (iid) 
random variables with pmf or pdf    
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The joint pmf or pdf is
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A function                                 of                                      
is called a statistic
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Statistics and sampling distributions
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The probability distribution of a statistic Y is called 
the sampling distribution of Y
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Two common examples of statistics:

A statistic may be real-valued or vector-valued
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Let                       be a random sample from a 
population with mean     and variance                   

1 2, ,...., nX X X
µ 2σ

It is well known that (cf. page 214)
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Thus        is an unbiased estimator of      
and       is an unbiased estimator of  

X µ
2S 2σ
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We will have a closer look at the sampling 
distribution of X

The mgf of       is given byX

where              is the mgf of  

[ ]( ) ( / )
n

XXM t M t n=

( )XM t 1 2, ,...., nX X X

If we have a random sample from a                
population, we have 

2( , )n µ σ
{ }2 2( ) exp / 2XM t t tµ σ= +

Then

[ ]( ) ( / )
n

XXM t M t n= { }2 2exp ( / ) ( / ) / 2
n

t n t nµ σ = +  

{ }2 2exp ( / ) ( / ) / 2n t n t nµ σ = +   { }2 2exp ( / ) / 2t n tµ σ= +

2( , / )X n nµ σ∼It follows that 

The distribution of the sample mean
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If we have a random sample from a                
population, we have 

gamma( , )α β

Then
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gamma( , / )X n nα β∼It follows that 
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When one cannot use mgfs to find the distribution 
of sums and averages, one has to resort to the 
convolution formula: 

If X and Y are independent continuous random 
variables with pdfs            and           , the pdf of 

is  
( )Xf x ( )Yf x

Z X Y= +

( ) ( ) ( )Z X Yf z f w f z w dw
∞

−∞

= −∫

To prove the result, one first finds the joint pdf of 
and     . Integrating out w, one then 

finds the marginal pdf of Z
Z X Y= + W

Let U and V be independent Cauchy random 
variables,                             and                          , i.e.   
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Example: Sum of Cauchy random variables

Cauchy(0, )U σ∼ Cauchy(0, )V τ∼
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By the convolution formula we have that

( ) ( ) ( )Z U Vf z f w f z w dw
∞

−∞

= −∫
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The integral is quite «tricky», but by using 
integration by partial fractions one may show that 
(cf. exercise 5.7)
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( ) 1 ( / ( ))Zf z
zπ σ τ σ τ
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Thus Cauchy(0, )Z σ τ+∼

From this it follows that if                 are iid ,
then                                     

1,...., nZ Z Cauchy(0,1)
Cauchy(0, )iZ n∑ ∼ Cauchy(0,1)Z ∼and

The sample mean has the same distribution as the 
individual observations!
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Let                       be a random sample from a 
distribution

1 2, ,...., nX X X

Then

We will show a) 

Sampling from the normal distribution

2( , )n µ σ

a)         and       are independent X 2S

b)    2( , / )X n nµ σ∼

c)    2 2 2
1( 1) / nn S σ χ −− ∼

It is sufficient to prove the result for           and            0µ= 1σ=
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Proof of a):
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Thus        is a function of                                2S 2( , .... , )nX X X X− −

Note that we may write

It is therefore sufficient to show that       and                 
the random vector                                   are 
independent  
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The joint pdf of                        is given by                    
(when            and          )  
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We now make the transformation:

1 2 2, , .... , n nY X Y X X Y X X= = − = −
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The inverse transformation is given by
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1 for  2,....,n iX Y Y i n= + =
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The Jacobian becomes
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We may show that the Jacbobian equals  n

Now        is a function of        and       is a function 
of                  , so       and        are independent  
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Hence the joint pdf of                is given by1,...., nY Y
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Since the joint pdf factors, it follows that      and                   
are independent  

1Y

( )2 ,...., nY Y
X 1Y 2S

X 2S

( )2 ,...., nY Y
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t-distribution

Then

Let                       be a random sample from the 
distribution

1 2, ,...., nX X X
2( , )n µ σ
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and the two variables are independent

Note that
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T is t-distributed with df = n - 1 16

is t-distributed with df = p . The pdf is given by

If and               are independent, then(0,1)U n∼ 2
pV χ∼

U
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V p
=
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    Γ  +     

For p = 1  we have the Cauchy distribution

To prove the result, one first finds the joint pdf of 
and           . Integrating out w, one 

then finds the marginal pdf of T
/ /T U V p= W V=


