STK4011 and STK9011
 Autumn 2016

Properties of a random sample

Covers (most of) the following material from chapter 5:

- Section 5.1: pages 207-208
- Section 5.2: pages 211-216
- Section 5.3: pages 218-220

Ørnulf Borgan
Department of Mathematics
University of Oslo

Random sample

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are called a random sample from the population $f(x)$ if $X_{1}, X_{2}, \ldots ., X_{n}$ are mutually independent and the marginal pmf or pdf of each X_{i} is $f(x)$

Alternatively, we may say that $X_{1}, X_{2}, \ldots ., X_{n}$ are independent and identically distributed (iid) random variables with pmf or pdf $f(x)$

The joint pmf or pdf is

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)
$$

Statistics and sampling distributions

A function $Y=T\left(X_{1}, X_{2}, \ldots ., X_{n}\right)$ of $X_{1}, X_{2}, \ldots ., X_{n}$ is called a statistic

A statistic may be real-valued or vector-valued
The probability distribution of a statistic Y is called the sampling distribution of Y

Two common examples of statistics:

$$
\begin{aligned}
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { (sample mean) } \\
& S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad \text { (sample variance) }
\end{aligned}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with mean μ and variance σ^{2}

It is well known that (cf. page 214)

$$
\begin{aligned}
& \mathrm{E} \bar{X}=\mu \\
& \operatorname{Var} \bar{X}=\frac{\sigma^{2}}{n} \\
& \mathrm{ES}^{2}=\sigma^{2}
\end{aligned}
$$

Thus \bar{X} is an unbiased estimator of μ and S^{2} is an unbiased estimator of σ^{2}

The distribution of the sample mean

We will have a closer look at the sampling distribution of \bar{X}
The mgf of \bar{X} is given by $M_{\bar{X}}(t)=\left[M_{X}(t / n)\right]^{n}$ where $M_{X}(t)$ is the mgf of $X_{1}, X_{2}, \ldots, X_{n}$
If we have a random sample from a $n\left(\mu, \sigma^{2}\right)$
population, we have $M_{X}(t)=\exp \left\{\mu t+\sigma^{2} t^{2} / 2\right\}$
Then
$M_{\bar{X}}(t)=\left[M_{X}(t / n)\right]^{n}=\left[\exp \left\{\mu(t / n)+\sigma^{2}(t / n)^{2} / 2\right\}\right]^{n}$
$=\exp \left\{n\left[\mu(t / n)+\sigma^{2}(t / n)^{2} / 2\right]\right\}=\exp \left\{\mu t+\left(\sigma^{2} / n\right) t^{2} / 2\right\}$
It follows that $\bar{X} \sim n\left(\mu, \sigma^{2} / n\right)$
5

If we have a random sample from a $\operatorname{gamma}(\alpha, \beta)$ population, we have $M_{X}(t)=(1 /(1-\beta t))^{\alpha}$

Then
$M_{\bar{X}}(t)=\left[M_{X}(t / n)\right]^{n}=\left[(1 /(1-\beta(t / n)))^{\alpha}\right]^{n}=\left(1 /(1-(\beta / n) t)^{n \alpha}\right.$
It follows that $\quad \bar{X} \sim \operatorname{gamma}(n \alpha, \beta / n)$

When one cannot use mgfs to find the distribution of sums and averages, one has to resort to the convolution formula:

If X and Y are independent continuous random variables with pdfs $f_{X}(x)$ and $f_{Y}(x)$, the pdf of $Z=X+Y$ is

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(w) f_{Y}(z-w) d w
$$

To prove the result, one first finds the joint pdf of $Z=X+Y$ and W. Integrating out w, one then finds the marginal pdf of Z

Example: Sum of Cauchy random variables

Let U and V be independent Cauchy random variables, $U \sim \operatorname{Cauchy}(0, \sigma)$ and $V \sim \operatorname{Cauchy}(0, \tau)$, i.e.

$$
\begin{aligned}
f_{U}(u)=\frac{1}{\pi \sigma} \frac{1}{1+(u / \sigma)^{2}} & -\infty<u<\infty \\
f_{V}(u)=\frac{1}{\pi \tau} \frac{1}{1+(v / \tau)^{2}} & -\infty<v<\infty
\end{aligned}
$$

By the convolution formula we have that

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{U}(w) f_{V}(z-w) d w \\
& =\int_{-\infty}^{\infty} \frac{1}{\pi \sigma} \frac{1}{1+(w / \sigma)^{2}} \frac{1}{\pi \tau} \frac{1}{1+((z-w) / \tau)^{2}} d w
\end{aligned}
$$

The integral is quite «tricky», but by using integration by partial fractions one may show that (cf. exercise 5.7)

$$
f_{Z}(z)=\frac{1}{\pi(\sigma+\tau)} \frac{1}{1+(z /(\sigma+\tau))^{2}}
$$

Thus $Z \sim \operatorname{Cauchy}(0, \sigma+\tau)$
From this it follows that if Z_{1}, \ldots, Z_{n} are iid Cauchy $(0,1)$, then $\sum Z_{i} \sim \operatorname{Cauchy}(0, n)$ and $\bar{Z} \sim \operatorname{Cauchy}(0,1)$

The sample mean has the same distribution as the individual observations!

Sampling from the normal distribution

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $n\left(\mu, \sigma^{2}\right)$ distribution

Then

a) \bar{X} and S^{2} are independent
b) $\bar{X} \sim n\left(\mu, \sigma^{2} / n\right)$
c) $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$

We will show a)
It is sufficient to prove the result for $\mu=0$ and $\sigma=1$

Proof of a):

Note that we may write

$$
\begin{aligned}
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& =\frac{1}{n-1}\left\{\left(X_{1}-\bar{X}\right)^{2}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2}\right\} \\
& =\frac{1}{n-1}\left\{\left[\left\{\left[\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)\right]^{2}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2}\right\}\right.\right.
\end{aligned}
$$

Thus S^{2} is a function of ($\left.X_{2}-\bar{X}, \ldots ., X_{n}-\bar{X}\right)$

It is therefore sufficient to show that \bar{X} and the random vector ($\left.X_{2}-\bar{X}, \ldots ., X_{n}-\bar{X}\right)$ are independent

The joint pdf of $X_{1}, X_{2}, \ldots ., X_{n}$ is given by (when $\mu=0$ and $\sigma=1$)

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{i}^{2}}{2}\right) \\
& =\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right)
\end{aligned}
$$

We now make the transformation:

$$
Y_{1}=\bar{X}, Y_{2}=X_{2}-\bar{X}, \ldots ., Y_{n}=X_{n}-\bar{X}
$$

The inverse transformation is given by

$$
\begin{aligned}
& X_{1}=Y_{1}-\sum_{i=2}^{n} Y_{i} \\
& X_{n}=Y_{i}+Y_{1} \quad \text { for } i=2, \ldots ., n
\end{aligned}
$$

The Jacobian becomes
$J\left(y_{1}, \ldots, y_{n}\right)=\left|\begin{array}{cccc}\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\ \frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_{n}}{\partial y_{1}} & \frac{\partial x_{n}}{\partial y_{2}} & \cdots & \frac{\partial x_{n}}{\partial y_{n}}\end{array}\right|=\left|\begin{array}{cccccc}1 & -1 & -1 & -1 & \cdots & -1 \\ 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & \vdots\end{array}\right|$
We may show that the Jacbobian equals n

Hence the joint pdf of Y_{1}, \ldots, Y_{n} is given by

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}\left(y_{1}-\sum_{i=2}^{n} y_{i}\right)^{2}-\frac{1}{2} \sum_{i=2}^{n}\left(y_{i}+y_{1}\right)^{2}\right\} \cdot n \\
& \quad=\left(\frac{n}{2 \pi}\right)^{1 / 2} \exp \left(-\frac{n}{2} y_{1}^{2}\right) \frac{n^{1 / 2}}{(2 \pi)^{(n-1) / 2}} \exp \left\{-\frac{1}{2} \sum_{i=2}^{n} y_{i}^{2}-\frac{1}{2}\left(\sum_{i=2}^{n} y_{i}\right)^{2}\right\}
\end{aligned}
$$

Since the joint pdf factors, it follows that Y_{1} and $\left(Y_{2}, \ldots, Y_{n}\right)$ are independent

Now \bar{X} is a function of Y_{1} and S^{2} is a function of (Y_{2}, \ldots, Y_{n}), so \bar{X} and S^{2} are independent

14

t-distribution

Let $X_{1}, X_{2}, \ldots ., X_{n}$ be a random sample from the $n\left(\mu, \sigma^{2}\right)$ distribution

Then $U=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim n(0,1)$ and $\quad V=\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$ and the two variables are independent

$$
\begin{aligned}
& \text { Note that } \\
& \qquad T=\frac{\bar{X}-\mu}{S / \sqrt{n}}=\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{U}{\sqrt{V /(n-1)}}
\end{aligned}
$$

T is t-distributed with $d f=n-1$

If $U \sim n(0,1)$ and $V \sim \chi_{p}^{2}$ are independent, then

$$
T=\frac{U}{\sqrt{V / p}}
$$

is t -distributed with $d f=p$. The pdf is given by

$$
f_{T}(t)=\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+\frac{t^{2}}{p}\right)^{(p+1) / 2}} \quad-\infty<t<\infty
$$

To prove the result, one first finds the joint pdf of $T=U / \sqrt{V / p}$ and $W=V$. Integrating out w, one then finds the marginal pdf of T

For $p=1$ we have the Cauchy distribution

