STK4011 and STK9011 Autumn 2016

Properties of a random sample

Covers (most of) the following material from chapter 5:

- Section 5.1: pages 207-208
- Section 5.2: pages 211-216
- Section 5.3: pages 218-220

Ørnulf Borgan Department of Mathematics University of Oslo

Statistics and sampling distributions

A function $Y = T(X_1, X_2, ..., X_n)$ of $X_1, X_2, ..., X_n$ is called a statistic

A statistic may be real-valued or vector-valued

The probability distribution of a statistic *Y* is called the sampling distribution of *Y*

Two common examples of statistics:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \qquad \text{(sample mean)}$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \qquad \text{(sample variance)}$$

Random sample

The random variables $X_1, X_2, ..., X_n$ are called a random sample from the population f(x) if $X_1, X_2, ..., X_n$ are mutually independent and the marginal pmf or pdf of each X_i is f(x)

Alternatively, we may say that $X_1, X_2, ..., X_n$ are independent and identically distributed (iid) random variables with pmf or pdf f(x)

The joint pmf or pdf is

$$f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$$

Let $X_1, X_2, ..., X_n$ be a random sample from a population with mean μ and variance σ^2

It is well known that (cf. page 214)

$$E\overline{X} = \mu$$
$$Var \,\overline{X} = \frac{\sigma^2}{n}$$
$$ES^2 = \sigma^2$$

Thus \overline{X} is an unbiased estimator of μ and S^2 is an unbiased estimator of σ^2

3

1

4

2

The distribution of the sample mean

We will have a closer look at the sampling distribution of \Vec{X}

The mgf of \overline{X} is given by $M_{\overline{X}}(t) = [M_X(t/n)]^n$ where $M_X(t)$ is the mgf of X_1, X_2, \dots, X_n

If we have a random sample from a $n(\mu, \sigma^2)$ population, we have $M_X(t) = \exp\left\{\mu t + \sigma^2 t^2 / 2\right\}$

Then

 $M_{\bar{X}}(t) = [M_{X}(t/n)]^{n} = \left[\exp\left\{\mu(t/n) + \sigma^{2}(t/n)^{2}/2\right\}\right]^{n}$ = $\exp\left\{n\left[\mu(t/n) + \sigma^{2}(t/n)^{2}/2\right]\right\} = \exp\left\{\mu t + (\sigma^{2}/n)t^{2}/2\right\}$ It follows that $\bar{X} \sim n(\mu, \sigma^{2}/n)$ 5

When one cannot use mgfs to find the distribution of sums and averages, one has to resort to the convolution formula:

If *X* and *Y* are independent continuous random variables with pdfs $f_X(x)$ and $f_Y(x)$, the pdf of Z = X + Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z-w) dw$$

To prove the result, one first finds the joint pdf of Z = X + Y and W. Integrating out w, one then finds the marginal pdf of Z

7

If we have a random sample from a $gamma(\alpha, \beta)$ population, we have $M_X(t) = (1/(1-\beta t))^{\alpha}$

Then

$$M_{\bar{X}}(t) = \left[M_{X}(t/n)\right]^{n} = \left[\left(1/(1-\beta(t/n))\right)^{\alpha}\right]^{n} = \left(1/(1-(\beta/n)t)^{n\alpha}\right)^{\alpha}$$

It follows that $\overline{X} \sim \operatorname{gamma}(n\alpha, \beta / n)$

Example: Sum of Cauchy random variables

Let *U* and *V* be independent Cauchy random variables, $U \sim \text{Cauchy}(0, \sigma)$ and $V \sim \text{Cauchy}(0, \tau)$, i.e.

$$f_U(u) = \frac{1}{\pi\sigma} \frac{1}{1 + (u/\sigma)^2} \qquad -\infty < u < \infty$$

$$f_{v}(u) = \frac{1}{\pi \tau} \frac{1}{1 + (v/\tau)^{2}} \qquad -\infty < v < \infty$$

By the convolution formula we have that

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{U}(w) f_{V}(z-w) dw$$

=
$$\int_{-\infty}^{\infty} \frac{1}{\pi \sigma} \frac{1}{1+(w/\sigma)^{2}} \frac{1}{\pi \tau} \frac{1}{1+((z-w)/\tau)^{2}} dw$$

The integral is quite «tricky», but by using integration by partial fractions one may show that (cf. exercise 5.7)

$$f_{Z}(z) = \frac{1}{\pi(\sigma + \tau)} \frac{1}{1 + (z/(\sigma + \tau))^{2}}$$

Thus $Z \sim \text{Cauchy}(0, \sigma + \tau)$

From this it follows that if $Z_1, ..., Z_n$ are iid Cauchy(0,1), then $\sum Z_i \sim \text{Cauchy}(0,n)$ and $\overline{Z} \sim \text{Cauchy}(0,1)$

The sample mean has the same distribution as the individual observations!

Sampling from the normal distribution

Let $X_1, X_2, ..., X_n$ be a random sample from a $n(\mu, \sigma^2)$ distribution

Then a) \overline{X} and S^2 are independent b) $\overline{X} \sim n(\mu, \sigma^2 / n)$ c) $(n-1)S^2 / \sigma^2 \sim \chi^2_{n-1}$ We will show a) It is sufficient to prove the result for $\mu = 0$ and $\sigma = 1$

Proof of a):

Note that we may write

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$= \frac{1}{n-1} \left\{ (X_{1} - \overline{X})^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2} \right\}$$
$$= \frac{1}{n-1} \left\{ \left[\sum_{i=2}^{n} (X_{i} - \overline{X}) \right]^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2} \right\}$$

Thus S^2 is a function of $(X_2 - \overline{X}, \dots, X_n - \overline{X})$

It is therefore sufficient to show that \overline{X} and the random vector $(X_2 - \overline{X}, \dots, X_n - \overline{X})$ are independent

The joint pdf of $X_1, X_2, ..., X_n$ is given by (when $\mu = 0$ and $\sigma = 1$)

$$f(x_1, ..., x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_i^2}{2}\right)$$
$$= \frac{1}{\left(2\pi\right)^{n/2}} \exp\left(-\frac{1}{2}\sum_{i=1}^n x_i^2\right)$$

We now make the transformation:

 $Y_1 = \overline{X}, \ Y_2 = X_2 - \overline{X}, \ \dots, \ Y_n = X_n - \overline{X}$

9

10

The inverse transformation is given by

$$X_{1} = Y_{1} - \sum_{i=2}^{n} Y_{i}$$

$$X_{n} = Y_{i} + Y_{1} \text{ for } i = 2, ..., n$$

The Jacobian becomes

$$H(y_1,\dots,y_n) = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \cdots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix} = \begin{vmatrix} 1 & -1 & -1 & -1 & \cdots & -1 \\ 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 1 \end{vmatrix}$$

We may show that the Jacbobian equals n

t-distribution

Let $X_1, X_2, ..., X_n$ be a random sample from the $n(\mu, \sigma^2)$ distribution

Then
$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim n(0, 1)$$
 and $V = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

and the two variables are independent

Note that

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} = \frac{\frac{X - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{U}{\sqrt{V / (n-1)}}$$

17

T is t-distributed with df = n - 1

13

Hence the joint pdf of Y_1, \dots, Y_n is given by

$$f(y_1, \dots, y_n) = \frac{1}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2} \left(y_1 - \sum_{i=2}^n y_i\right)^2 - \frac{1}{2} \sum_{i=2}^n (y_i + y_1)^2\right\} \cdot n$$
$$= \left(\frac{n}{2\pi}\right)^{1/2} \exp\left\{-\frac{n}{2} y_1^2\right) \frac{n^{1/2}}{(2\pi)^{(n-1)/2}} \exp\left\{-\frac{1}{2} \sum_{i=2}^n y_i^2 - \frac{1}{2} \left(\sum_{i=2}^n y_i\right)^2\right\}$$

Since the joint pdf factors, it follows that Y_1 and $(Y_2,...,Y_n)$ are independent

Now \overline{X} is a function of Y_1 and S^2 is a function of $(Y_2,...,Y_n)$, so \overline{X} and S^2 are independent

If $U \sim n(0,1)$ and $V \sim \chi_p^2$ are independent, then $T = \frac{U}{\sqrt{V/p}}$

is t-distributed with df = p. The pdf is given by

$$f_T(t) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\left(p\pi\right)^{1/2}} \frac{1}{\left(1 + \frac{t^2}{p}\right)^{(p+1)/2}} \qquad -\infty < t < \infty$$

To prove the result, one first finds the joint pdf of $T = U / \sqrt{V / p}$ and W = V. Integrating out *w*, one then finds the marginal pdf of *T*

For p = 1 we have the Cauchy distribution ¹⁶