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Basic concepts

Assume that we have random variables
X =(Xy, X,,....X,, ) with joint pmf or pdf
f(x]0)=f(x,..x, |?) where 60O

We want to test the null hypothesis H,:0€0©,
versus the alternative hypothesis H,: 0 €©j

A hypothesis test is a procedure that specifies:
« for which values of X we reject H,
(accept H,)

» for which values of X do not reject H,
(accept H,)

We may make two types of error:

Decision
Accept Hp | Reject Hy
H Correct Type I
Truth decision Error
H, Type 11 Correct
Error decision

Let R be the rejection region of the test, so we
reject Hy:0€0, if XeR

Probability of Type | error: B, (X€R), €6,
Probability of Type Il error:
P(XeR)=1-R(X€R), 0€6;

Power function: 3(f) =P, (X €R) 3

We distinguish between the size and level of a test:
» atest with power function 3(9) is a size «
test if sup, B80)=a

 atest with power function 3(9) is a level «
test if sup, B0)<a

Let C be a class of tests for testing H,:6€0©,
versus H,:0e€0©;.Atestinthe class C, with
power function 3(0), is a uniformly most powerful
(UMP) class C testif 3(9)>p'(0) for every

0 €©; and every 3'(9) thatis a power function of a
testin class C
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Theorem 8.3.12 (Neyman-Pearson Lemma)
Consider testing H,:0=460, versus H,:0=40,,
where the pdf or pmf corresponding to 6. is

f(x]6,);i= 0,1 using a test with rejection region R
that satisfies

xeR if f(x]6)>kf(x|6,)

R T <kioey 83D
for some k>0, and

a=P, (XER) (8.3.2)
Then

a) Any test that satisfies (8.3.1) and (8.3.2)
is a UMP level o test

b) If there exists a test satisfying (8.3.1) and (8.3.2)
with k >0, then every UMP level « testis a size « test
and every UMP level o test satisfies (8.3.1) except

perhaps on aset A satisfying B, (Xc A)=F,(Xc A =0

Corollary 8.3.13

Suppose that T =T(X) is a sufficient statistic for ¢
and let g(t|6,) be the pdf or pmf of T corresponding
to 6,;i=0,1. Then any test based on T with rejection
region S isa UMP level « testif it satisfies
teS if g(t]6)>ka(t]6,)
teS® if go(t]|6) <ko(t]d,)
for some k>0, where a=F, (T €9)

Example 8.3.15 (UMP normal test)
Let X, X,,....,X, beiid n(0,¢%) with ¢* known
We will find the UMP test for testing test

Hy:0=6, versus H,:0=0, where 6,>0,

The sample mean X is sufficient, and has pdf

o AN e
R

By Corollary 8.3.13, the most powerful test rejects
H, when

Now we have:
g(x160,)  (2n0® /n)‘”/2e*n(7701)2/(202)
9(X16,) (2ro® In)™? g x-00)*1(20%)

n
:w%—;h@—%y+%—%ﬂ
20
So the most powerful test rejects when (since 6, >0, )

2 _n2 2
< < (20°logk) /n—6; +6; ¢
2(‘91 _90)
The test has size o if we choose

o
c=0,—2
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Neyman-Pearsons Lemma considers testing
of the simple null hypothesis H,: =60, versus the
simple alternative hypothesis H,: 0 =6,

We will use the result to obtain a UMP level « test for
the one-sided composite null hypothesis H,: 6 <6,
versus the one-sided composite alternative hypothesis
H,:0>0, (or Hy:0>6, versus H,:0<6,)

We then need to consider a property of the
likelihood ratio called the monotone likelihood
ratio (MLR) property

Definition 8.3.16

A family of pdfs or pmfs {g(t|6): 6O} for a
univariate random variable T with real-valued
parameter ¢ has a monotone likelihood ratio (MLR)
if for every 6,>0, the ratio g(t|6,)/g(t]6,)is a
monotone function of t (nonincreasing or non-
decreasing) on the set {t: g(t|6,)>0orgt [0,)> ¢

(We interpret ¢c/0 as oo when c¢>0)
Example (MLR for a normal mean)

Let X, X,,....,X, beiid n(,o%) with o* known
The likelihood ratio for X is

ST 20 exp{%[ 20, —0, X+ 67 —05]}

Theorem 8.3.17

Consider testing H,: 0 <60, versus H;:0>0,.
Suppose that T =T(X) is a sufficient statistic for ¢
and that the family of pdfs or pmfs {g(t |9) : 96@}

of T has a nondecreasing likelihood ratio. Then

for any t,, the test that rejects H, ifand only if T >t
is a UMP level o test, where a=F, (T >t)

For testing H,:6>6, versus H,:0<6,, the test
that rejects ifand only if T <t, isa UMP level a
test, where a=F, (T <t,)

If the likelihood ratio is nonincreasing, the inequalities
for the rejection regions are reversed
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Example 8.3.18 (UMP normal test)
Let X, X,,....,X, beiid n(8,c%) with ¢* known

Consider testing H,: 0 >0, versus H,:0 <6,

The UMP level o testrejects H, if

o o
X<0,—z —
0 a\/ﬁ
The power function is
> o 6,—0
BO)=P X<9—za—]:P Z<-z 4+ ]
’ ° \/ﬁ J/\/ﬁ

where Z ~n(0,1)
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Example 8.3.19 (two-sided alternative)
Let X, X,,....,X, beiid n(g,0%) with o> known
We will test H,: =0, versus H,: 0 =6,

Consider the three tests:

« Testl: Reject H,if X<0,—z ——

Jn
o Test2: Reject H, if >?>90+Zai
Seste. Jn
» Test 3: Reject H, if
_ o Nz o
X<b0,—2,,— or X>0,+2,,—
0 /2\/5 0 ’2\/5
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Power function of the three tests:

61
8,-20/V 7 8,+20/ 7

No UMP level o test exists

But test 3 is UMP unbiased level a test
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Likelihood ratio tests

Let X, X,,... beiid with pdf or pmf f(x|6),
where & may be a vector

Then the likelihood based on X = (X, X,,.....X,)
Is given by (we supress n in the notation)

LOIX)=LEO[%,..x )=]]f & P’
i=1
The likelihood ratio test statistic for testing
H,:0€©, versus H,:0€0©; is

_sup, L6 x)

A = sup, L@ x)
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Let  be the unrestricted maximum likelihood
estimator of 0, i.e. the value of 6 that maximizes
the likelihood when 6€©

Let 650 be the maximum likelihood estimator of
6 under the null hypothesis, i.e. the value of 6
that maximizes the likelihood when 0¢c0©,

Then the LRT statistics takes the form

_ L, 1%)

M= Tam

The likelihood ratio test (LRT) has rejection region
of the form {x: A\(x) <c}
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To obtain a level o test, the constant ¢ must be
chosen so that

Suph, (A X )<c)<a

00,

We may use asymptotic arguments to obtain an
approximation of the distribution of —2log)\ (X)

Theorem 10.3.1

Consider testing H,: 6 =40, versus H,:0=4,, and
assume «some regularity conditions» (page 516).
Then under H,

—2logA (X)— x;
in distribution as n— o
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Example (normal with known variance)
Let X, X,,....X, beiid n(@,0%) with ¢* known
We will test H,: =0, versus H,: 0 =6,

Here we have (cf. example 8.2.2)
n —
A(X) = EXD{—F X =0, )2}
o

Hence
n — X —0
—2log\(X)=— (X =0, 7 = 0

gA (X) 02( o) [0/\/5

2
2

NXl

So here the result holds also for finite n
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Example 10.3.2 (Poisson)
Let X, X,,....X, beiid Poissonf
We will test H,: A=)\, versus H;: A=\,

Here we obtain
—2log\(x)= m[(AO—X)—X log(: /Aoj
where A =X

We get an approximate size o testif we
reject when

—2log\ (X)> 17,
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Theorem 10.3.1

Consider testing H,:0€©, versus H,:§ec©;, and
assume «some regularity conditions» (page 516).
Thenif 60€0,

—2logA (X)— x5
in distribution as n— oo, where the degrees of
freedom (df) is the differences between the number

of free parameters specified by 6<c© and the
number of free parameters specified by 0 <06,
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Example (Multinomial)
Let X, =(X,X,,X5);i=12,...n be iid with pmf

f (X1’X2!X3 | p17p2’p3): pil pxz2 pxg
where x+X,+X=1and P+P,+pP;=1
(2 XD Xz > Xig) ~ multinomialq,p, ,p, .ps )
We will test (Hardy-Weinberger)
Ho: p1:€2’ P, = 219(1—9),[33: (1_8)2

fora 0c(0,1) versus the alternative that H,
does not hold

Here —2logA(X)— Xg 11 21

Other large-sample tests

Let X, X,,.... beiid with pdf or pmf that depends
on a real-valued parameter 6 (and possibly on other

parameters as well)

Suppose we have an estimator W, =W(X,, X,,....,X,)
of & with standard deviation ¢, and assume that

W, —60)/o,—n(0,1)

Also assume that we (for each n) has an estimator
S, for g, suchthat o,/S, -1 in probability

By Slutsky's theorem we then have that

W, —0 :V\/n—9&_>n(0,1)
S o, S 2

We will test H,: =6, versus H,:0=0,

An approximate test may be based on the statistic
_ Wn — 90
S

We then reject H, if Z,<-z, or Z >z,

Z

If H, istrue we have that Z, — Z ~n(0,1), so the
Type | error probability becomes

P, (2, <-z,0rZ,>2,)—P(Z<-z,00Z>2 ,)=«

The test is an asymptotically size o test

For an alternative parameter 0 >0, we may write

Wb W0 00,
" S, S, S,

Here we have (W, —0)/S, — n(0,1) in distribution
and (typically) (#—0,)/S, — co in probability

Z

Then Z, — oo in probability (cf. exercise 5.33),

and it follows that
P, (rejectH,)=PR (Z,<-z,, orZ,>z,,)
2'?9( n>za/2) _>1
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Wald test

Assume now that W, =W(X,, X,,....,X, )is the ML
estimator of & and S is its estimated variance
given either as (using expected information)

Example 10.3.5 (Binomial Wald test)

Let X, X,,....X, beiid Bernoulli(p)

We will test H,: p=p, versus H,: p=p,
Here we have the MLE W,=p=> " X /n

= and the variance estimator (both versions
= (1\/\/ ; d the vari | (both versions)
n 1 n
or as (using observed information) 2 — p(lr: P)
1
2
om0 The Wald test statistic takes the form
_Zilaezlogf(x |9)|9w ~
Z — p_ pO
o n ~ 1_ ~
Then z =-—" % is the Wald test statistic P n P)
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Score test Example 10.3.6 (Binomial score test)

The score is given by
0 '\ 0
S() =—logL@|X)=) —logf (X. |0
(0) 8909(I)56909(X.I)

i=1
We have that E,S()=0 and

Var,S(@)=nVar, % logf (X |6 )] =nl,0)

Under H,: 0=46, it follows by the central limit
theorem that the score test statistic

, __ S0
> Jnly6,)

converges in distribution to Z ~ n(0,1)
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Let X, X,,.....X, beiid Bernoulli(p)
We will test H,: p=p, versus H,: p=p,

Here we find that

X X, p
S(p)_z n->.X __p-p

1-p  pl-p)/n

and 1
l,(p)=
' pd—p)
Thus the score test statistic takes the form
7. — S( po) _ f)_ po
o= —
Yl (py) \/po(l— Po) i

n




