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Univariate distributions
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Discrete distributions

A random variable X is discrete if its range                                   
is countable (finite or countably infinite)   1 2{ , ,....}x x=X� 

Probability mass function (pmf)

( ) ( ) ( ) ( ) for = = = − − ∈X X Xf x P X x F x F x x X

Note that ( ) 0 for Xf x x= ∉X

Cumulative distribution function (cdf)

( ) ( )XF x P X x= ≤

is a step function
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E ( ) ( ) ( )X
x

g X g x f x
∈

= ∑
X

provided that ( ) ( )X
x

g x f x
∈

<∞∑
X

In particular 

E ( )X
x

X x f xµ
∈

= =∑
X

The expected value or mean of            is given by ( )g X

2 2 2 2=Var E{( ) } E( )X X Xσ µ µ= − = −

Moment generating function (mgf)
( ) E ( )tX tx

X X
x

M t e e f x
∈

= = ∑
X

Note that ( )E (0)n n
XX M=

assuming that the expected value exists for 
all t in an open interval that contains zero
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Hypergeometric distribution
We have an urn with N balls
M balls are red and N – M  balls are green
We select at random K balls
X is the number of red balls we select 

Probability mass function (pmf)

( ) ( )
( )

( )X

M N M
x K x

f x
N
K

−⋅ −
=

( )M N K x M− − ≤ ≤

0,1,....,x K=

E
M

X K
N

= Var 1
1

M M N K
X K

N N N

  −= −    −
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Binomial distribution
We have n independent and identical Bernoulli trials 
with success probability p
X is the number of successes in the n trials

Probability mass function (pmf)

( )( ) (1 )x n x
X

nf x p px
−= − 0,1,....,x n=

E (example 2.2.3)X np=

Var (1 ) (example 2.3.5)X np p= −

We have:

( ) (1 ) (example 2.3.9)
nt

XM t pe p = + −   6

Poisson distribution
X is Poisson distributed with parameter λ if its pmf
takes the form

( )
!

x

Xf x e
x

λλ −= 0,1,....x=

E VarX X λ= =

Relation with binomial distribution:

( ) (1 )
!

x
x n xn p p ex x

λλ− −− → when  ,n np λ→∞ →

We have:

( 1)( )
te

XM t eλ −=
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Negative binomial distribution
We have a sequence of independent Bernoulli trials 
with success probability p
X is the trial at which the r-th success occurs

Probability mass function (pmf)

( )1( ) (1 )1
r x r

X
xf x p pr

−−= −− , 1,....x r r= +

(1 )
E

r p
Y

p
µ

−
= = 2

2

(1 ) 1
Var

r p
Y

p r
µ µ

−
= = +

Alternative formulation: Y=X – r has pmf

( )1( ) (1 )r y
Y

r yf y p py
+ −= − 0,1,....y=
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Geometric distribution
We have a sequence of independent Bernoulli trials 
with success probability p
X is the trial at which the first success occurs

Probability mass function (pmf)
1( ) (1 )x

Xf x p p −= − 1, 2,....x=

1
EX

p
=

2

1
Var

p
X

p

−
=

Alternatively we may consider Y=X –1
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Continuous distributions

where            is the probability density function (pdf)( )Xf x

If the cdf is continuous, then X
is a continuous random variable

( ) ( )XF x P X x= ≤

For a continuous random variable (strictly speaking 
absolutely continuous random variable) we have

( ) ( )
x

X XF x f t dt
−∞

= ∫

Further ( ) ( )X Xf x F x′=
for all m with 0 < m < k 
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provided that 

In particular 

E ( )XX x f x dxµ
∞

−∞
= = ∫

The expected value or mean of            is given by ( )g X

2 2 2 2=Var E{( ) } E( )X X Xσ µ µ= − = −

E ( ) ( ) ( )Xg X g x f x dx
∞

−∞

= ∫

( ) ( )Xg x f x dx
∞

−∞
< ∞∫

Note that if                                for a k > 0, then | | ( )
∞

−∞
< ∞∫

k
Xx f x dx

| | ( )
∞

−∞
< ∞∫

m
Xx f x dx

Thus if            exists, then             exists               
for 0 < m < k

E( )kX E( )mX
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Moment generating function (mgf)

( ) E ( )tX tx
X XM t e e f x dx

∞

−∞
= = ∫

Note that ( )E (0)n n
XX M=

assuming that the expected value exists for 
all t in an open interval that contains zero
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Normal distribution
If the pdf takes the form

2 2( ) /(2 )1
( )

2
x

Xf x e µ σ

π σ

− −=

then X is normally distributed with mean µ and 
variance σ2

2( , )X n µ σ∼

We have that

EX µ=

Short 

2Var X σ=
2 2 /2( ) t t

XM t eµ σ+=
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To prove that the normal pdf integrates to 1,             
we have to prove that

2 /2

0
2

ze dz
π

∞
− =∫

or equivalently that

2

2

/2

0
2

ze dz
π

∞
−

   =   
∫

The variable
X

Z
µ

σ

−
=

is standard normally distributed: (0,1)Z n∼
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Location and scale families

Note that if 

1
( )X

x
f x f

µ

σ σ

 − =   

is the standard normal density, then the                
density may be written 2( , )n µ σ

This is an example of a location and scale family                
of distributions

2 /21
( )

2
zf z e

π

−=
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In general we may obtain a location and scale family 
of distributions by starting with a standard pdf  

The location and scale family is then given by all                    
pdfs of the form 

( )f z

1 x
f

µ

σ σ

 −    

(one may easily check that these are pdfs)

µ is the location parameter  

σ is the scale parameter

( )µ−∞< <∞

( 0)σ>
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The following result relates the location and scale 
family to the transformation of random variables            
(just as for the normal case)

Theorem 3.5.6
Let         be any pdf. Let µ be any real number and 
let σ be any positive real number. Then X is a 
random variable with pdf                             if and 
only if there exists a random variable Z with pdf             

and 

Note that if          and           exist, then
and   

( )f ⋅

(1/ ) (( ) / )f xσ µ σ−

( )f z X Zσ µ= +

EZ Var Z
E EX Zσ µ= + 2Var VarX Zσ=
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If            we obtain a location family as all pdfs            
of the form 

( )f x µ−

1σ=

If            we obtain a scale family as all pdfs 
of the form 

0µ=

1 x
f

σ σ
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Laplace distribution
(double exponential distribution)

The standard Laplace distribution is given by the pdf 

1
( ) for

2
zf z e z−= −∞< <∞

If Z has this pdf, then               and   E 0Z= Var 2Z=

Now                      has pdfX Zσ µ= +

| | /1
( ) for

2
x

Xf x e xµ σ

σ

− −= −∞< <∞

Note that                andEX µ= 2Var 2X σ=
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Cauchy distribution
The standard Cauchy distribution is given by the pdf 

2

1 1
( ) for

1
f z z

zπ
= −∞< <∞

+

One may show that                 (example 2.2.4), so for 
the Cauchy distribution the mean does not exist  

E Z =∞

Now                      has pdfX Z θ= +

2

1 1
( ) for

1 ( )Xf x x
xπ θ

= −∞< <∞
+ −

The mean and variance of X do not exist
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Exponential distribution
The standard exponential pdf takes the form

if  0
( )

0 otherwise

ze z
f z

− >=

If Z has this pdf, then               and   E 1Z = Var 1Z=

Then               is exponentially distributed with             
scale parameter β :

X Zβ=

/1
( ) for 0x

Xf x e xβ

β

−= >

We have                 andEX β= 2Var X β=
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Gamma distribution
The standard gamma pdf with shape parameter              

is given by

11
if  0

( )( )

0 otherwise

zz e z
f z

α

α

− − > Γ=

0α>

Here the gamma function                               has            
the following properties:    

1

0

( ) zz e dzαα

∞
− −Γ = ∫

( 1) ( )α α αΓ + = Γ
( 1) ! when   is an integern n nΓ + =

(1) 1Γ =

(1/ 2) πΓ = 22

Then               is gamma distributed with shape 
parameter  α and scale parameter β :

X Zβ=

We have                
EX αβ= 2Var X αβ=

1 /1
( ) for  0

( )
x

Xf x x e xα β

αβ α

− −= >
Γ

( , )X gammaα β∼Short 

( / 2,2)X gamma p∼If                                  we say that X  is 
chi squared distributed with  p degrees of 
freedom (p integer)

1 1
( ) for

1XM t t
t

α

β β

  = <   − 
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Lognormal distribution

If                         , then X has a lognormal distribution

2 2(log ) /(2 )1 1
( ) for  0

2
x

Xf x e x
x

µ σ

π σ

− −= >

2log ( , )X n µ σ∼

We have                

2 /2EX eµ σ+=
2 22Var ( 1)X e eµ σ σ+= −

The pdf takes the form
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Uniform distribution
If the pdf takes the form

1
if  [ , ]

( )

0 otherwise
X

x a b
b af x

 ∈ −=

E
2

b a
X

+
=

2( )
Var

12

b a
X

−
=

then X is uniformly distributed over [a , b]

We have:
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Beta distribution
The beta distribution is a generalization of the 
uniform distribution on [0 , 1]

1 11
( ) (1 ) for 0 1

( , )Xf x x x x
B

α β

α β

− −= − < <

The - distribution has pdf( , )betaα β

Here the beta function is given by
1

1 1

0

( , ) (1 )B x x dxα βα β − −= −∫
We have 

( ) ( )
( , )

( )
B

α β
α β

α β

Γ Γ
=
Γ + 26

If                           we have that  

( , ) ( ) ( )
E

( , ) ( ) ( )
n B n n

X
B n

α β α α β

α β α β α

+ Γ + Γ +
= =

Γ + + Γ

( , )X betaα β∼

From this we obtain 

EX
α

α β
=
+

( ) ( )2Var
1

X
αβ

α β α β
=

+ + +


