STK4011 and STK9011 Autumn 2016

Univariate distributions

Covers most of sections 3.2, 3.3 and 3.5 (and parts of sections 1.5, 1.6, 2.2 and 2.3)

Ørnulf Borgan Department of Mathematics University of Oslo

Discrete distributions

A random variable *X* is discrete if its range $\mathcal{X} = \{x_1, x_2, ...\}$ is countable (finite or countably infinite)

Cumulative distribution function (cdf)

 $F_X(x) = P(X \le x)$

is a step function

Probability mass function (pmf)

 $f_X(x) = P(X = x) = F_X(x) - F_X(x-)$ for $x \in \mathcal{X}$

Note that $f_x(x) = 0$ for $x \notin \mathcal{X}$

2

The expected value or mean of g(X) is given by

$$Eg(X) = \sum_{x \in \mathcal{X}} g(x) f_X(x)$$
provided that $\sum_{x \in \mathcal{X}} |g(x)| f_X(x) < \infty$

In particular

$$\mu = \mathbf{E}X = \sum_{x \in \mathcal{X}} x f_x(x)$$

$$\sigma^2 = \operatorname{Var} X = \mathrm{E}\{(X - \mu)^2\} = \mathrm{E}(X^2) - \mu^2$$

Moment generating function (mgf)

$$M_X(t) = \operatorname{E} e^{tX} = \sum_{x \in \mathcal{X}} e^{tx} f_X(x)$$

assuming that the expected value exists for all *t* in an open interval that contains zero

Note that
$$E X^n = M_X^{(n)}(0)$$

3

1

Hypergeometric distribution

We have an urn with *N* balls *M* balls are red and N - M balls are green We select at random *K* balls *X* is the number of red balls we select

Probability mass function (pmf)

$$f_{X}(x) = \frac{\binom{M}{x} \cdot \binom{N-M}{K-x}}{\binom{N}{K}} \qquad \qquad x = 0, 1, \dots, K$$
$$M - (N-K) \le x \le M$$

$$\mathbf{E}X = K\frac{M}{N} \qquad \text{Var } X = K\frac{M}{N} \left(1 - \frac{M}{N}\right) \frac{N - K}{N - 1} \qquad 4$$

Binomial distribution

We have $n\;$ independent and identical Bernoulli trials with success probability $p\;$

X is the number of successes in the n trials

Probability mass function (pmf)

$$f_x(x) = {n \choose x} p^x (1-p)^{n-x}$$
 $x = 0, 1, ..., n$

We have:

EX = np(example 2.2.3)Var X = np(1-p)(example 2.3.5) $M_X(t) = \left[pe^t + (1-p) \right]^n$ (example 2.3.9)

5

7

Poisson distribution

X is Poisson distributed with parameter λ if its pmf takes the form

$$f_X(x) = \frac{\lambda^x}{x!} e^{-\lambda} \qquad x = 0, 1, \dots$$

We have:

$$\mathbf{E}X = \mathbf{Var}\,X = \lambda$$

$$M_{\chi}(t) = e^{\lambda(e^t - 1)}$$

Relation with binomial distribution:

$$\binom{n}{x}p^{x}(1-p)^{n-x} \to \frac{\lambda^{x}}{x!}e^{-\lambda}$$
 when $n \to \infty$, $np \to \lambda$

Negative binomial distribution

We have a sequence of independent Bernoulli trials with success probability \boldsymbol{p}

X is the trial at which the *r*-th success occurs

Probability mass function (pmf)

$$f_{X}(x) = {\binom{x-1}{r-1}} p^{r} (1-p)^{x-r} \qquad x = r, r+1, \dots$$

Alternative formulation: Y=X-r has pmf

$$f_{Y}(y) = {\binom{r+y-1}{y}} p^{r} (1-p)^{y} \qquad y = 0, 1, \dots$$
$$EY = \frac{r(1-p)}{p} = \mu \qquad \text{Var } Y = \frac{r(1-p)}{p^{2}} = \mu + \frac{1}{r} \mu^{2}$$

Geometric distribution

We have a sequence of independent Bernoulli trials with success probability \boldsymbol{p}

X is the trial at which the first success occurs

Probability mass function (pmf)

$$f_{X}(x) = p(1-p)^{x-1} \qquad x = 1, 2, \dots$$
$$EX = \frac{1}{p}$$
$$Var X = \frac{1-p}{p^{2}}$$

Alternatively we may consider Y=X-1

Continuous distributions

If the cdf $F_X(x) = P(X \le x)$ is continuous, then X is a continuous random variable

For a continuous random variable (strictly speaking absolutely continuous random variable) we have

 $F_X(x) = \int_{-\infty}^x f_X(t) dt$

where $f_x(x)$ is the probability density function (pdf)

Further $f_X(x) = F'_X(x)$

Moment generating function (mgf)

 $M_X(t) = \operatorname{E} e^{tX} = \int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx$

assuming that the expected value exists for all *t* in an open interval that contains zero

Note that $E X^n = M_X^{(n)}(0)$

The expected value or mean of g(X) is given by $Eg(X) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ provided that $\int_{-\infty}^{\infty} |g(x)| f_X(x) dx < \infty$ In particular $\mu = EX = \int_{-\infty}^{\infty} x f_X(x) dx$ $\sigma^2 = Var X = E\{(X - \mu)^2\} = E(X^2) - \mu^2$ Note that if $\int_{-\infty}^{\infty} |x|^k f_X(x) dx < \infty$ for a k > 0, then $\int_{-\infty}^{\infty} |x|^m f_X(x) dx < \infty$ for all m with 0 < m < kThus if $E(X^k)$ exists, then $E(X^m)$ exists for 0 < m < k

Normal distribution

If the pdf takes the form

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

then X is normally distributed with mean μ and variance σ^2

Short $X \sim n(\mu, \sigma^2)$

We have that

$$EX = \mu$$

$$Var X = \sigma^{2}$$

$$M_{X}(t) = e^{\mu t + \sigma^{2} t^{2}/2}$$
12

The variable

 $Z = \frac{X - \mu}{\sigma}$

is standard normally distributed: $Z \sim n(0,1)$

To prove that the normal pdf integrates to 1, we have to prove that

 $\int_0^\infty e^{-z^2/2} dz = \sqrt{\frac{\pi}{2}}$

or equivalently that

$$\left(\int_{0}^{\infty} e^{-z^2/2} dz\right)^2 = \frac{\pi}{2}$$

13

Location and scale families

Note that if

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

is the standard normal density, then the $n(\mu, \sigma^2)$ density may be written

$$f_X(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

This is an example of a location and scale family of distributions

In general we may obtain a location and scale family of distributions by starting with a standard pdf f(z)

The location and scale family is then given by all pdfs of the form

 $\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$

(one may easily check that these are pdfs)

 μ is the location parameter $(-\infty < \mu < \infty)$ σ is the scale parameter $(\sigma > 0)$ The following result relates the location and scale family to the transformation of random variables (just as for the normal case)

Theorem 3.5.6

Let $f(\cdot)$ be any pdf. Let μ be any real number and let σ be any positive real number. Then X is a random variable with pdf $(1/\sigma)f((x-\mu)/\sigma)$ if and only if there exists a random variable Z with pdf f(z) and $X = \sigma Z + \mu$

Note that if EZ and Var Z exist, then $EX = \sigma EZ + \mu$ and Var $X = \sigma^2 Var Z$

If $\sigma = 1$ we obtain a location family as all pdfs of the form

 $f(x-\mu)$

If $\mu = 0$ we obtain a scale family as all pdfs of the form

 $\frac{1}{\sigma}f\left(\frac{x}{\sigma}\right)$

17

Laplace distribution (double exponential distribution)

The standard Laplace distribution is given by the pdf

$$f(z) = \frac{1}{2}e^{-|z|} \quad \text{for} \quad -\infty < z < \infty$$

If Z has this pdf, then EZ = 0 and Var Z = 2

Now $X = \sigma Z + \mu$ has pdf

$$f_X(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}$$
 for $-\infty < x < \infty$

Note that $EX = \mu$ and $Var X = 2\sigma^2$

18

Cauchy distribution

The standard Cauchy distribution is given by the pdf

$$f(z) = \frac{1}{\pi} \frac{1}{1+z^2} \quad \text{for} \quad -\infty < z < \infty$$

One may show that $E|Z| = \infty$ (example 2.2.4), so for the Cauchy distribution the mean does not exist

Now $X = Z + \theta$ has pdf

$$f_{X}(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^{2}}$$
 for $-\infty < x < \infty$

The mean and variance of X do not exist

19

Exponential distribution

The standard exponential pdf takes the form

 $f(z) = \begin{cases} e^{-z} & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$

If Z has this pdf, then EZ = 1 and Var Z = 1

Then $X = \beta Z$ is exponentially distributed with scale parameter β :

$$f_X(x) = \frac{1}{\beta} e^{-x/\beta} \quad \text{for} \quad x > 0$$

We have $EX = \beta$ and $Var X = \beta^2$

Gamma distribution

The standard gamma pdf with shape parameter $\alpha > 0~$ is given by

$$f(z) = \begin{cases} \frac{1}{\Gamma(\alpha)} z^{\alpha-1} e^{-z} & \text{if } z > 0\\ 0 & \text{otherwise} \end{cases}$$

Here the gamma function $\Gamma(\alpha) = \int_{0}^{\infty} z^{\alpha-1} e^{-z} dz$ has the following properties:
 $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$
 $\Gamma(n+1) = n!$ when *n* is an integer
 $\Gamma(1) = 1$
 $\Gamma(1/2) = \sqrt{\pi}$

Lognormal distribution

If $\log X \sim n(\mu, \sigma^2)$, then X has a lognormal distribution

The pdf takes the form

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{x} e^{-(\log x - \mu)^2/(2\sigma^2)}$$
 for $x > 0$

We have

EX = $e^{\mu + \sigma^2/2}$ Var X = $e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$ Then $X = \beta Z$ is gamma distributed with shape parameter α and scale parameter β :

$$f_X(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} \quad \text{for } x > 0$$

Short $X \sim gamma(\alpha, \beta)$

We have

$$EX = \alpha\beta \qquad \text{Var } X = \alpha\beta^2$$
$$M_X(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha} \qquad \text{for } t < \frac{1}{\beta}$$

If $X \sim gamma(p/2,2)$ we say that X is chi squared distributed with p degrees of freedom (p integer)

Uniform distribution

If the pdf takes the form

$$f_{x}(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

then X is uniformly distributed over [a, b]

We have:

$$EX = \frac{b+a}{2}$$
$$Var X = \frac{(b-a)^2}{12}$$

22

Beta distribution

The beta distribution is a generalization of the uniform distribution on $\left[0\,,\,1\right]$

The *beta*(α , β) - distribution has pdf

$$f_{X}(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1} \quad \text{for } 0 < x < 1$$

Here the beta function is given by

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$$

We have

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

25

If
$$X \sim beta(\alpha,\beta)$$
 we have that

$$EX^{n} = \frac{B(\alpha+n,\beta)}{B(\alpha,\beta)} = \frac{\Gamma(\alpha+n)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n)\Gamma(\alpha)}$$
From this we obtain

$$EX = \frac{\alpha}{\alpha+\beta}$$

$$Var X = \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$