## STK4011 and STK9011 <br> Autumn 2016

## Univariate distributions

Covers most of sections 3.2, 3.3 and 3.5
(and parts of sections 1.5,1.6, 2.2 and 2.3)

Ørnulf Borgan
Department of Mathematics
University of Oslo

## Discrete distributions

A random variable $X$ is discrete if its range $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots.\right\}$ is countable (finite or countably infinite)

Cumulative distribution function (cdf)

$$
F_{X}(x)=P(X \leq x)
$$

is a step function
Probability mass function (pmf)

$$
f_{X}(x)=P(X=x)=F_{X}(x)-F_{X}(x-) \text { for } x \in \mathcal{X}
$$

Note that $f_{X}(x)=0$ for $x \notin \mathcal{X}$

The expected value or mean of $g(X)$ is given by

$$
\operatorname{Eg}(X)=\sum_{x \in \mathcal{X}} g(x) f_{X}(x)
$$

provided that $\sum_{x \in \mathcal{X}}|g(x)| f_{X}(x)<\infty$
In particular

$$
\begin{aligned}
& \mu=\mathrm{E} X=\sum_{x \in \mathcal{X}} x f_{X}(x) \\
& \sigma^{2}=\operatorname{Var} X=\mathrm{E}\left\{(X-\mu)^{2}\right\}=\mathrm{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Moment generating function (mgf)

$$
M_{X}(t)=\mathrm{E} e^{t X}=\sum_{x \in \mathcal{X}} e^{t X} f_{X}(x)
$$

assuming that the expected value exists for all $t$ in an open interval that contains zero
Note that E $X^{n}=M_{X}^{(n)}(0)$

## Hypergeometric distribution

We have an urn with $N$ balls
$M$ balls are red and $N-M$ balls are green
We select at random $K$ balls
$X$ is the number of red balls we select
Probability mass function (pmf)

$$
\begin{aligned}
& f_{X}(x)=\frac{\binom{M}{x} \cdot\binom{N-M}{K-x}}{\binom{N}{K}} \quad \begin{array}{l}
x=0,1, \ldots, K \\
M-(N-K) \leq x \leq M
\end{array} \\
& \mathrm{E} X=K \frac{M}{N} \quad \text { Var } X=K \frac{M}{N}\left(1-\frac{M}{N}\right) \frac{N-K}{N-1}
\end{aligned}
$$

## Binomial distribution

We have $n$ independent and identical Bernoulli trials with success probability $p$
$X$ is the number of successes in the $n$ trials
Probability mass function (pmf)

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n
$$

We have:

$$
\begin{array}{ll}
\mathrm{E} X=n p & (\text { example 2.2.3) } \\
\operatorname{Var} X=n p(1-p) & (\text { example 2.3.5) } \\
M_{X}(t)=\left[p e^{t}+(1-p)\right]^{n} & (\text { example 2.3.9) }
\end{array}
$$

## Poisson distribution

$X$ is Poisson distributed with parameter $\lambda$ if its pmf takes the form

$$
f_{X}(x)=\frac{\lambda^{x}}{x!} e^{-\lambda} \quad x=0,1, \ldots
$$

We have:

$$
\begin{aligned}
& \mathrm{E} X=\operatorname{Var} X=\lambda \\
& M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

Relation with binomial distribution:

$$
\binom{n}{x} p^{x}(1-p)^{n-x} \rightarrow \frac{\lambda^{x}}{x!} e^{-\lambda} \quad \text { when } n \rightarrow \infty, n p \rightarrow \lambda
$$

## Negative binomial distribution

We have a sequence of independent Bernoulli trials with success probability $p$
$X$ is the trial at which the $r$-th success occurs
Probability mass function (pmf)

$$
f_{X}(x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r} \quad x=r, r+1, \ldots
$$

Alternative formulation: $Y=X-r$ has pmf

$$
\begin{aligned}
& f_{Y}(y)=\binom{r+y-1}{y} p^{r}(1-p)^{y} \quad y=0,1, \ldots \\
& \mathrm{E} Y=\frac{r(1-p)}{p}=\mu \quad \operatorname{Var} Y=\frac{r(1-p)}{p^{2}}=\mu+\frac{1}{r} \mu^{2}
\end{aligned}
$$

## Geometric distribution

We have a sequence of independent Bernoulli trials with success probability $p$
$X$ is the trial at which the first success occurs
Probability mass function (pmf)

$$
\begin{aligned}
& f_{X}(x)=p(1-p)^{x-1} \quad x=1,2, \ldots . \\
& \mathrm{E} X=\frac{1}{p} \\
& \operatorname{Var} X=\frac{1-p}{p^{2}}
\end{aligned}
$$

Alternatively we may consider $Y=X-1$

## Continuous distributions

If the cdf $F_{X}(x)=P(X \leq x)$ is continuous, then $X$ is a continuous random variable

For a continuous random variable (strictly speaking absolutely continuous random variable) we have

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

where $f_{X}(x)$ is the probability density function (pdf)

Further $f_{X}(x)=F_{X}^{\prime}(x)$

Moment generating function (mgf)

$$
M_{X}(t)=\mathrm{E} e^{t X}=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x
$$

assuming that the expected value exists for all $t$ in an open interval that contains zero

Note that $E X^{n}=M_{X}^{(n)}(0)$

The expected value or mean of $g(X)$ is given by

$$
\operatorname{Eg}(X)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

provided that $\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x<\infty$
In particular

$$
\begin{aligned}
& \mu=\mathrm{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& \sigma^{2}=\operatorname{Var} X=\mathrm{E}\left\{(X-\mu)^{2}\right\}=\mathrm{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Note that if $\int_{-\infty}^{\infty}|x|^{k} f_{X}(x) d x<\infty$ for a $k>0$, then $\int_{-\infty}^{\infty}|x|^{m} f_{X}(x) d x<\infty$ for all $m$ with $0<m<k$

Thus if $\mathrm{E}\left(X^{k}\right)$ exists, then $\mathrm{E}\left(X^{m}\right)$ exists for $0<m<k$

## Normal distribution

If the pdf takes the form

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

then $X$ is normally distributed with mean $\mu$ and variance $\sigma^{2}$

Short $X \sim n\left(\mu, \sigma^{2}\right)$
We have that

$$
\begin{aligned}
& \mathrm{E} X=\mu \\
& \operatorname{Var} X=\sigma^{2} \\
& M_{X}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}
\end{aligned}
$$

The variable

$$
Z=\frac{X-\mu}{\sigma}
$$

is standard normally distributed: $Z \sim n(0,1)$
To prove that the normal pdf integrates to 1 , we have to prove that

$$
\int_{0}^{\infty} e^{-z^{2} / 2} d z=\sqrt{\frac{\pi}{2}}
$$

or equivalently that

$$
\left(\int_{0}^{\infty} e^{-z^{2} / 2} d z\right)^{2}=\frac{\pi}{2}
$$

## Location and scale families

Note that if

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

is the standard normal density, then the $n\left(\mu, \sigma^{2}\right)$ density may be written

$$
f_{X}(x)=\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)
$$

This is an example of a location and scale family of distributions

The following result relates the location and scale family to the transformation of random variables (just as for the normal case)

## Theorem 3.5.6

Let $f(\cdot)$ be any pdf. Let $\mu$ be any real number and let $\sigma$ be any positive real number. Then $X$ is a random variable with pdf $(1 / \sigma) f((x-\mu) / \sigma)$ if and only if there exists a random variable $Z$ with pdf $f(z)$ and $X=\sigma Z+\mu$

Note that if EZ and $\operatorname{Var} Z$ exist, then $\mathrm{E} X=\sigma \mathrm{E} Z+\mu$ and $\operatorname{Var} X=\sigma^{2} \operatorname{Var} Z$

If $\sigma=1$ we obtain a location family as all pdfs of the form

$$
f(x-\mu)
$$

If $\mu=0$ we obtain a scale family as all pdfs of the form

$$
\frac{1}{\sigma} f\left(\frac{x}{\sigma}\right)
$$

## Cauchy distribution

The standard Cauchy distribution is given by the pdf

$$
f(z)=\frac{1}{\pi} \frac{1}{1+z^{2}} \quad \text { for } \quad-\infty<z<\infty
$$

One may show that $\mathrm{E}|Z|=\infty$ (example 2.2.4), so for the Cauchy distribution the mean does not exist

Now $\quad X=Z+\theta$ has pdf

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{1+(x-\theta)^{2}} \quad \text { for } \quad-\infty<x<\infty
$$

The mean and variance of $X$ do not exist

## Laplace distribution

## (double exponential distribution)

The standard Laplace distribution is given by the pdf

$$
f(z)=\frac{1}{2} e^{-|z|} \quad \text { for } \quad-\infty<z<\infty
$$

If $Z$ has this pdf, then $\mathrm{E} Z=0$ and $\operatorname{Var} Z=2$

Now $\quad X=\sigma Z+\mu$ has pdf

$$
f_{X}(x)=\frac{1}{2 \sigma} e^{-|x-\mu| / \sigma} \quad \text { for } \quad-\infty<x<\infty
$$

Note that $\mathrm{E} X=\mu$ and $\operatorname{Var} X=2 \sigma^{2}$

## Exponential distribution

The standard exponential pdf takes the form

$$
f(z)=\left\{\begin{array}{cc}
e^{-z} & \text { if } z>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

If $Z$ has this pdf, then $\mathrm{E} Z=1$ and $\operatorname{Var} Z=1$

Then $X=\beta Z$ is exponentially distributed with scale parameter $\beta$ :

$$
f_{X}(x)=\frac{1}{\beta} e^{-x / \beta} \quad \text { for } \quad x>0
$$

We have $\mathrm{E} X=\beta$ and $\operatorname{Var} X=\beta^{2}$

## Gamma distribution

The standard gamma pdf with shape parameter $\alpha>0$ is given by

$$
f(z)=\left\{\begin{array}{cc}
\frac{1}{\Gamma(\alpha)} z^{\alpha-1} e^{-z} & \text { if } z>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Here the gamma function $\Gamma(\alpha)=\int_{0}^{\infty} z^{\alpha-1} e^{-z} d z$ has
the following properties:

$$
\begin{aligned}
& \Gamma(\alpha+1)=\alpha \Gamma(\alpha) \\
& \Gamma(n+1)=n!\text { when } n \text { is an integer } \\
& \Gamma(1)=1 \\
& \Gamma(1 / 2)=\sqrt{\pi}
\end{aligned}
$$

Then $X=\beta Z$ is gamma distributed with shape parameter $\alpha$ and scale parameter $\beta$ :

$$
f_{X}(x)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta} \quad \text { for } x>0
$$

Short $X \sim \operatorname{gamma}(\alpha, \beta)$
We have

$$
\begin{array}{lr}
\mathrm{E} X=\alpha \beta & \text { Var } X=\alpha \beta^{2} \\
M_{X}(t)=\left(\frac{1}{1-\beta t}\right)^{\alpha} & \text { for } t<\frac{1}{\beta}
\end{array}
$$

If $X \sim \operatorname{gamma}(p / 2,2)$ we say that $X$ is chi squared distributed with $p$ degrees of freedom ( $p$ integer)

## Lognormal distribution

If $\log X \sim n\left(\mu, \sigma^{2}\right)$, then $X$ has a lognormal distribution
The pdf takes the form

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \frac{1}{x} e^{-(\log x-\mu)^{2} /\left(2 \sigma^{2}\right)} \quad \text { for } x>0
$$

We have

$$
\begin{aligned}
& \mathrm{E} X=e^{\mu+\sigma^{2} / 2} \\
& \operatorname{Var} X=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
\end{aligned}
$$

## Uniform distribution

If the pdf takes the form

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { if } x \in[a, b] \\
0 & \text { otherwise }
\end{array}\right.
$$

then $X$ is uniformly distributed over $[a, b]$
We have:

$$
\begin{aligned}
& \mathrm{E} X=\frac{b+a}{2} \\
& \operatorname{Var} X=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

## Beta distribution

The beta distribution is a generalization of the uniform distribution on $[0,1]$

The beta $(\alpha, \beta)$-distribution has pdf

$$
f_{X}(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} \quad \text { for } 0<x<1
$$

Here the beta function is given by

$$
B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x
$$

We have

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

