Summary of results for STK4011/9011

Distributions

Beta Distribution
The beta family of distributions is a continuous family on (0,1) indexed by two
parameters. The beta(a, 3) pdf is

(3.3.16) f(z|a,B) = B(;,ﬁ)

where B(a, 3) denotes the beta function,

m“‘l(l—m)ﬁ‘l, O<z<l, a>0, B>0,

1
B(a,ﬁ):/o 711 - z)P 1 dz.

The beta function is related to the gamma function through the following identity:

_ T(xI'(8)
Ma+p)"

(3.3.17) B(a, B)
Cauchy Distribution

The Cauchy distribution is a symmetric, bell-shaped distribution on (—o0, 00) with
pdf

(3319)  falf) = ~—

ﬂ_m, —o<r<o0, —00<0<oo.

Double Exponential Distribution

The double exponential distribution is formed by reflecting the exponential distribution
around its mean. The pdf is given by

1
(3.3.22) flz|p, o) = 2—3—‘1—#|/6, —o<zr<oo, —-oo<p<oo, o>0.
(o)

Transformations

Theorem 2.1.5 Let X have pdf fx(z) and let Y = g(X), where g is a monotone
function. Let X and Y be defined by (2.1.7). Suppose that fx(z) is continuous on X
and that g~ 1(y) has a continuous derivative on Y. Then the pdf of Y is given by

(2.1.10) fr(y) = {fx(g“(y))‘%g‘l(y)‘ yey

0 otherwise.



Bivariate transformations

Let (X, Y) be a bivariate random vector with joint pdf £, ,(x,») and support
A= (x,9): fi,(,)>0 _Let(U,V)begivenby U =g (X,Y) and V =g, (X,Y).
Then the joint pdf f, . (u,v) of (U, V') has support

L= (u,v):u=g/(x,y)and v=g,(x,y) for some (x,y) € .4

We assume that v =g,(x,y) and v=g,(x,y) isa one-to-one transformation of
A onto & andlet x=h (u,v) and y=h,(u,v) be the inverse transformation.

Let é Ox
Juwy=| 2 V| _oxdy oy ox
dy | Oudv  Ou Ov

du av

be the Jacobian of the transformation. Then for (x,v) €4 we have

Jor @)= [y (@), by, v)]J @, v)|

Theorem 5.2.9 If X andY are independent continuous random variables with pdfs
fx(z) and fy(y), then the pdf of Z =X +Y s

(5.2.3) 2= [ " x(w)fy(z - w) duw.

Order statistics

Theorem 5.4.4 Let X,),...,X(n) denote the order statistics of a random sample,
X:,.. .y Xn, from a continuous population with cdf Fx(z) and pdf fx(x). Then the

pdf of X(;y is

n!
(644)  fxo(@) = T o

fx(@)[Fx(z) 71— Fx(z)]* ™.

Theorem 5.4.6 Let X(y),...,Xn) denote the order statistics of a random sample
Xi,...,Xn, from a continuous population with cdf Fx(z) and pdf fx(x). Then th
joint pdf of X(;y and X(;),1<i<j<mn, s

(A7) Froxen (V) = T35~ 71%!_ i /X (W fx @) Fx ()~

x [Fx(v) — Fx(u)]’ ' 7[1 — Fx(v)]"™

for —oo < u < v < oo.



Conditional expectation and variance

Theorem 4.4.3 If X and Y are any two random variables, then
(4.4.1) EX =E(E(X|Y)),

provided that the expectations ezist.

Theorem 4.4.7 (Conditional variance identity) For any two random variables
X andY,

(4.4.4) Var X = E (Var(X|Y)) + Var (E(X|Y)),
provided that the expectations exist.

Inequalities

Theorem 3.6.1 (Chebychev’s Inequality) Let X be a random variable and let
g(z) be a nonnegative function. Then, for any r > 0,
Eg(X)

P(g(X)2r) < o

Convergence of random variables

Definition 5.5.1 A sequence of random variables, X, X»,..., converges in proba-
bility to a random variable X if, for every € > 0,

lim P(|X, — X|>e€)=0 or, equivalently, lixgo P(X,— X|<e€)=1.

n—od

Theorem 5.5.2 (Weak Law of Large Numbers) Let X, Xz,... be iid random
variables with EX; = u and Var X; = 0> < oo. Define X, = (1/n) Y., Xi. Then,
for every € > 0,

lim P(|Xp, —u| <€) =1;
n—oo
that is, X, converges in probability to p.
Theorem 5.5.4 Suppose that X1, Xa,... converges in probability to a random vari-

able X and that h is a continuous function. Then h(X1), h(X32),... converges in prob-
ability to h(X).



Definition 5.5.10 A sequence of random variables, X, X»,..., converges in distri-
bution to a random variable X if

lim Fx_(z) = Fx(z)

n—oo

at all points z where Fx(z) is continuous.

Theorem 2.3.12 (Convergence of mgfs) Suppose {X;,i=1,2,...} is a se-
quence of random variables, each with mgf Mx,(t). Furthermore, suppose that

hm My, (t) = Mx(t), for all t in a neighborhood of 0,
1— 00

and Mx (t) is an mgf. Then there is a unique cdf Fx whose moments are determined
by Mx(t) and, for all z where Fx(z) is continuous, we have

lim Fx, (z) = Fx(z).
1—00

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Theorem 5.5.13 The sequence of random variables, X, X», ..., converges in prob-

ability to a constant u if and only if the sequence also converges in distribution to u.
That is, the statement

P(|X, ~u|l >€) — 0 for everye >0
is equivalent to

0 ifx<u
P(X"Sz)_’{l ifz > p.

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let
X1, X2,... be a sequence of iid random variables with EX; = p and 0 < Var X; =
02 < 00. Define X, = (1/n) Yiy Xi. Let Gp(z) denote the cdf of /n(Xn — p)/o.
Then, for any x, —o0 < T < 00,

T
1 2
i - e~V /2 gy
nll{gocn(x) _/oo \/2_71'e ;

that is, \/n(X, — u)/o has a limiting standard normal distribution.

Theorem 5.5.17 (Slutsky’s Theorem) If X,, — X in distribution and Y, — a, a
constant, in probability, then

a. Y, X, — aX in distribution.

b. X, +Y, - X + a in distribution.



Theorem 5.5.24 (Delta Method) Let Y,, be a sequence of random variables that
satisfies /n(Y, — 6) — n(0,02) in distribution. For a given function g and a specific
value of 6, suppose that g'(0) ezists and is not 0. Then

(5.5.10) Vnlg(Yy) — g(8)] — n(0,0?[g'(6)]?) in distribution.
Theorem 5.5.26 (Second-order Delta Method) Let Y, be a sequence of random

variables that satisfies \/n(Y, — 8) — n(0,0?) in distribution. For a given function g
and a specific value of 8, suppose that g’(8) = 0 and ¢” () exists and is not 0. Then

"
(5.5.13) n[g(Yn) — 9(8)] — azglx% in distribution.

Sufficiency and completeness

Definition 6.2.1 A statistic 7'(X) is a sufficient statistic for 0 if the conditional
distribution of the sample X given the value of T(X) does not depend on 6.

Theorem 6.2.2  If p(x|6) is the joint pdf or pmf of X and q(t|0) is the pdf or pmf
of T(X), then T'(X) is a sufficient statistic for 6 if, for every x in the sample space,
the ratio p(x|60)/q(T(x)|0) is constant as a function of 6.

Theorem 6.2.6 (Factorization Theorem) Let f(x|6) denote the joint pdf or
pmf of a sample X. A statistic T(X) is a sufficient statistic for 6 if and only if there
ezist functions g(t|0@) and h(x) such that, for all sample points x and all parameter
points 0,

(6.2.3) £(x16) = g(T(x)|6)h(x).

Theorem 6.2.10 Let X,,..., X, be iid observations from a pdf or pmf f(z|@)
belongs to an ezponential family given by

k
f(z|6) = h(z)c(@) exp (Z w; (0)t; (-’L‘)) ,
i=1
where @ = (01,02,...,04), d < k. Then
T(X)= | Y t1(X;),., D te(X;)
7=1 =1
is a sufficient statistic for 0.

Definition 6.2.11 A sufficient statistic T'(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 77(X), T'(x) is a function of T"(x).



Theorem 6.2.13 Let f(x|0) be the pmf or pdf of a sample X. Suppose there ezists a
function T(x) such that, for every two sample points x andy, the ratio f(x|0)/f(y|0)
is constant as a function of 6 if and only if T(x) = T(y). Then T(X) is a minimal
sufficient statistic for 0.

Definition 6.2.21 Let f(t|0) be a family of pdfs or pmfs for a statistic 7(X). The
family of probability distributions is called complete if Egg(T) = 0 for all § implies
Py(g(T) = 0) = 1 for all 6. Equivalently, T'(X) is called a complete statistic.

Theorem 6.2.25 (Complete statistics in the exponential family) Let

Xy,...,X, be 1id observations from an ezponential family with pdf or pmf of the
form

k
(6.2.7) f(z18) = h(z)c(8) exp | D w(f;)t;(=) |

Jj=1

where @ = (01,02, ...,0). Then the statistic

T(X) = (Ztl(x,-),th(Xi),--',Ztk(Xi))
i=1 i=1

i=1

is complete as long as the parameter space © contains an open set in R*.

Point estimation

Definition 7.3.7 An estimator W* is a best unbiased estimator of 7(0) if it satisfies
EgW™* = 7(0) for all § and, for any other estimator W with EgW = 7(6), we have
Varg W* < Varg W for all §. W* is also called a uniform minimum variance unbiased
estimator (UMVUE) of 7(6).

Theorem 7.3.9 (Cramér—Rao Inequality) Let X,,...,X, be a sample with pdf
f(x|6), and let W(X) = W(X,,...,X,) be any estimator satisfying

GEW 0 = [ 2 (W60 xi6)] dx
(7.3.4) and
VargW (X) < o0.
Then
2
(7.3.5) Varg (W(X)) > (@B (X)) .
B (& log /(X[0))")



Corollary 7.3.10 (Cramér—Rao Inequality, iid case) If the assumptions of The-
orem 7.8.9 are satisfied and, additionally, if X,1,...,X, are iid with pdf f(z|0), then

(LEsW (X))
nEg (( 2 log f (X16)) )

Varg W(X)

Lemma 7.3.11 If f(x|0) satisfies

57 (55 1061x0) = [ 5 | (g 10870l0)) 1(a10)] ao

(true for an exponential family), then
) 2 8
Eo ( 2 log f(XIG)) ~ B, ( 2 s 1og f(Xla))

Corollary 7.3.15 (Attainment) Let Xi,...,X, be #d f(z|6), where f(z|6) sat-
isfies the conditions of the Cramér-Rao Theorem. Let L(0|x) = [[;, f(:|f) denote
the likelihood function. If W(X) = W (X, ..., X,) is any unbiased estimator of 7(8),
then W (X) attains the Cramér-Rao Lower Bound if and only if

(7.3.12) a()[W(x) —7(6)] = % log L(6]x)

for some function a(6).

Theorem 7.3.17 (Rao—Blackwell) Let W be any unbiased estimator of 7(6), and
let T be a sufficient statistic for 0. Define ¢(T) = E(W|T'). Then E¢¢(T) = 7(0) and
Varg ¢(T') < Varg W for all 0; that is, ¢(T') is a uniformly better unbiased estimator

of 7(0).
Theorem 7.3.19 If W is a best unbiased estimator of 7(0), then W is unique.

Theorem 7.3.20 If EgW = 7(0), W 1is the best unbiased estimator of 7(6) if and
only if W is uncorrelated with all unbiased estimators of 0.

Theorem 7.3.283  Let T be a complete sufficient statistic for a parameter 8, and
let ¢(T) be any estimator based only on T. Then ¢(T') is the unique best unbiased
estimator of its expected value.



Point estimation — large sample results

Definition 10.1.1 A sequence of estimators W,, = W,(X;,...,X,) is a consistent
sequence of estimators of the parameter 8 if, for every € > 0 and every 4 € ©,

(10.1.1) limy, o0 Po(|Wy, — 8] < €) = 1.

Theorem 10.1.3 If W, is a sequence of estimators of a parameter 8 satisfying

i, lim, o Vars W, =0,
ii. lim,_...BiassW, =0,
for every 6 € ©, then W, is a consistent sequence of estimators of 6.

Definition 10.1.9 For an estimator T, suppose that k,(T, — 7()) — n(0,0?) in
distribution. The parameter o2 is called the asymptotic variance or variance of the

limit distribution of T,.

Definition 10.1.11 A sequence of estimators W, is asymptotically efficient for a
parameter 7(8) if \/n[W, — 7(8)] — n[0,v(6)] in distribution and
[ (6)]* _
2 1
Eo (% log f(X16))°)

that is, the asymptotic variance of W,, achieves the Cramér-Rao Lower Bound.

v(8) =

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X, Xs,..., be iid
f(z|6), let 8 denote the MLE of 6, and let 7(0) be a continuous function of . Under
the reqularity conditions in Miscellanea 10.6.2 on f(z|6) and, hence, L(6|x),

Valr(8) — 7(8)] — n[0,v(6)],

where v(8) is the Cramér-Rao Lower Bound. That is, 7(8) is a consistent and asymp-
totically efficient estimator of 7(6).

Definition 10.1.16 If two estimators W,, and V,, satisfy
Vn[Wn — 7(8)] — n[0, o]
VnlVa — 7(6)] — n[0, 07|
in distribution, the asymptotic relative efficiency (ARE) of V,, with respect to W, is

o2
ARE(V,, W,) = —‘;V
oy



Hypothesis testing

Definition 8.2.1  The likelihood ratio test statistic for testing Hy: 8 € ©q versus
H,:0¢ 98 is

sup L(6|x)
©¢

209 = SupTEmo
(S]

A likelihood ratio test (LRT) is any test that has a rejection region of the form {x: A\(x)
< ¢}, where ¢ is any number satisfying 0 < ¢ < 1.

Theorem 8.2.4 If T(X) is a sufficient statistic for 8 and A\*(t) and A(x) are the
LRT statistics based on T and X, respectively, then \*(T(x)) = A(x) for every x in
the sample space.

Definition 8.3.1 The power function of a hypothesis test with rejection region R
is the function of 8 defined by (8) = Ps(X € R).

Definition 8.3.5 For 0 < a < 1, a test with power function 3(8) is a size a test
if supyeg, B(0) = a.

Definition 8.3.6 For 0 < a < 1, a test with power function 3(#) is a level « test
if Supaeeo [3(9) S .

Definition 8.3.11 Let C be a class of tests for testing Hy: § € ©g versus H,: 6 ¢
©§. A test in class C, with power function 3(6), is a uniformly most powerful (UMP)
class C test if 3(6) > B'(0) for every 8 € 6 and every 3 () that is a power function
of a test in class C.

Theorem 8.3.12 (Neyman—Pearson Lemma) Consider testing Hy: 8 = 6
versus H,: 6 = 8,, where the pdf or pmf corresponding to 8; is f(x|6;),i = 0,1, using
a test with rejection region R that satisfies
x€ R if f(x|6,) > kf(x|90)
(8.3.1) and
x € R® if f(x|61) < kf(x|60),

for some k > 0, and
(8.3.2) ' a= Py, (X € R).

Then
a. (Sufficiency) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level a test.

b. (Necessity) If there exists a test satisfying (8.3.1) and (8.8.2) with k > 0, then
every UMP level o test is a size « test (satisfies (8.8.2)) and every UMP level a test
satisfies (8.3.1) except perhaps on a set A satisfying Py, (X € A) = Py, (X € A) =
0.



Corollary 8.3.13 Consider the hypothesis problem posed in Theorem 8.3.12. Sup-
pose T'(X) is a sufficient statistic for 6 and g(t|6;) is the pdf or pmf of T corresponding
to0;, t = 0,1. Then any test based on T with rejection region S (a subset of the sample
space of T ) is a UMP level a test if it satisfies

te S if g(t|61) > kg(t|6o)
(8.3.4) and

te 8¢ if g(tlh1) < kg(t|6o),
for some k > 0, where

(8.3.5) a= Py (T € S).

Definition 8.3.16 A family of pdfs or pmfs {g(|0): § € ©} for a univariate random
variable T' with real-valued parameter § has a monotone likelihood ratio (MLR) if,
for every 62 > 6., g(t|62)/g(t|61) is a monotone ( - nondecreasing)
function of t on {t: g(t|61) > 0 or g(t[f2) > 0}. Note that ¢/0 is defined as o0 if 0 < ¢.

Theorem 8.3.17 (Karlin—Rubin)  Consider testing Hy : 8 < 6y versus H; :
6 > 8y. Suppose that T is a sufficient statistic for 8 and the family of pdfs or pmfs
{9(t|6): 8 € ©} of T has an MLR. Then for any to, the test that rejects Hy if and
only if T > ty is a UMP level o test, where a = Py (T > tp).

Hypothesis testing — large sample results

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple Hy) For test-
ing Hy : 8 = 6y versus Hy : 0 # 6o, suppose X1,..., X, are iid f(z|9), 6 is the MLE
of 8, and f(z|0) satisfies the regularity conditions in Miscellanea 10.6.2. Then under
Hy, asn — oo,

—2log A(X) — x? in distribution,

where x? is a X% random variable with 1 degree of freedom.

Theorem 10.3.3 Let X,,..., X, be a random sample from a pdf or pmf f(x|0).
Under the regularity conditions in Miscellanea 10.6.2, if 6 € ©q, then the distribution
of the statistic —2log A\(X) converges to a chi squared distribution as the sample size
n — oo. The degrees of freedom of the limiting distribution is the difference between
the number of free parameters specified by 8 € ©¢ and the number of free parameters
specified by 6 € ©.

10



Confidence intervals (interval estimators)

Definition 9.1.1 An interval estimate of a real-valued parameter 6 is any pair of
functions, L(z,,...,z,) and U(z,,...,Z,), of a sample that satisfy L(x) < U(x) for
all x € X. If X = x is observed, the inference L(x) < 8 < U(x) is made. The random
interval [L(X),U(X)] is called an interval estimator.

Definition 9.1.4 For an interval estimator [L(X), U(X)] of a parameter 8, the cover-
age probability of [L(X),U(X)] is the probability that the random interval
[L(X), U(X)] covers the true parameter, 6. In symbols, it is denoted by either Py(68 €
[L(X), U(X)]) or P(6 € [L(X),U(X)]6).

Definition 9.1.5 For an interval estimator [L(X),U(X)] of a parameter 6, the
confidence coefficient of [L(X),U(X)] is the infimum of the coverage probabilities,
infy Py(6 € [L(X), U(X)).

Theorem 9.2.2 For each 6y € ©, let A(6y) be the acceptance region of a level a
test of Hy: 8 = 6. For each x € X, define a set C(x) }in the parameter space by

(9.2.1) C(x) = {6o: x € A(6o)}.

Then the random set C(X) is a 1 — o confidence set. Conversely, let C(X) beal~a
confidence set. For any 6y € ©, define

A(bo) = {x: 0y € C(x)}.

Then A(6p) is the acceptance region of a level o test of Hy: 8 = 6.

11



