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1. Coin tossing

Exercise 1.1. A fair coin is tossed two times. At least one of the tosses came up heads. What is the

probability that both came up heads?

Exercise 1.2. In the morning I roll two dice to determine at what time of the day I’ll toss my fair

coin the first and the second time. Die showing 1 meaning coin flip in the time interval 13:00-13:01,

die showing 2 meaning coin flip at 14:00-14:01, and so on. The one minute interval is there in the case

that the two dice are equal, giving me time to flip the coin two times. Sometime after 18:01 you’re told

that at least one of the coins, flipped sometime between 16:00 and 16:01, came up heads. What is the

probability that both came up heads?

Exercise 1.3. Helsesøster or bror (school nurse) wants to know the fraction of teenagers who have

experienced E, where E is something embarrassing, in fact so embarrassing that the teenagers might

not be honest in their ‘yes’ or ‘no’ answer when questioned about having experienced E. The school

nurse therefore sets up the following anonymisation scheme: Each teenager the school nurse samples

are to toss a coin, the outcome of which they keep to themselves. If their coin shows heads, they must

answer truthfully. If the coin shows tails, they toss the coin once more. If this second toss shows heads,

they answer ‘yes’, if it shows tails they answer ‘no’. Of 17 teenagers 4 answered yes, the remaining ones

answered no. The school nurse wants to know the true proportion of ‘yes I’ve experienced E’-teenagers

in the population.

(a) State any additional assumptions you feel you need, and provide an unbiased estimator of the true

proportion of ‘yes’-teenagers. Based on the data given to you by the school nurse, what’s your estimate

of this proportion?

(b) Explain why the school nurse ought to question more teenagers if (s)he wants a good estimate. That

is, explain why, with high probability, it is worthwhile questioning some more teenagers.

(c) Suppose that the school nurse is out of touch with the youth of today, and that the teeneagers

are, contrary to the beliefs of the school nurse, fully willing to provide her/him with an honest answer.

How much does the school nurse lose by introducing the anonymisation scheme in this situation. Hint:

Compare the variance of the estimator you found above, with the variance of the estimator you think the

school nurse would have used had (s)he known that (s)he were dealing with honest and upright youth.

Exercise 1.4. A natural way to compare estimators is to look at the loss they incur. By ‘loss’ we

mean a non-negative function L(θ, δ), where θ is the parameter of the model, and δ is your estimator

(or more generally, you chosen action). We are interested in the performance of an estimator δ when it

is repeatedly applied. The long-term average loss of using δ is the risk function R(θ, δ), defined by

R(θ, δ) = Eθ L(δ, θ).

The problem of comparing estimators is now cast as the problem of comparing their associated risk

functions, and we ought to use the estimator that minimises the risk. As this exercise will indicate, this

latter statement is not sufficiently precise to be operational.

Suppose X1, . . . , Xn are independent Bernoulli random variables with expectation θ. We are to estimate

θ under the squared error loss function

L(δ, θ) = (δ − θ)2.

(a) Find the maximum likelihood estimator of θ and, for n = 10, sketch its risk function.
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(b) Suppose we have some intuition about where on the unit interval the expectation θ might be located,

close to a value 0 < θ0 < 1, say. Consider the estimator

δ1(X) = X̄n/2 + θ0/2,

where X̄n = n−1
∑n
i=1Xi. For θ0 = 1/2 and n = 10, sketch its risk function.

(c) Your task, as was Pierre-Simon Laplace’s in 1781 I believe, is to estimate the probability of giving

birth to a boy. Which of the two above estimators do you prefer, the maximum likelihood estimator or

δ1 with θ0 = 1/2?

(d) Consider the estimator

δw(X) = wnX̄n + (1− wn)
1

2
.

Find a function wn such that the risk function R(θ, δwn) is constant.

(e) For n = 10, sketch the risk function of your estimator (that is, draw a line).

(f) Suppose you have absolutely no idea whatsoever about where in the unit interval θ may be located.

Which of your three estimators of θ do you prefer?

2. Probabilities, distribution functions, and random variables

Exercise 2.1. Consider the function

(2.1) F (x) =

{
(1− θ)x, 0 ≤ x < τ,

θ + (1− θ)x, τ ≤ x ≤ 1.
, 0 < θ, τ < 1.

(a) Show that F is a distribution function.

(b) Sketch how you would simulate data from F .

(c) Find the expectation and the variance of X ∼ F .

(d) Find the expected sample size needed to identify τ with probability 1.

(e) Suppose that τ is known and that it does not equal 1/2. Propose two estimators for θ and compare

their variances.

Exercise 2.2. (Pólya urn). An urn contains r red balls and b blue balls. A ball is drawn from the urn

at random, its colour is noted, and the ball is returned to the urn along with d more balls of the same

colour. This is repeated indefinitely.

(a) What’s the probability that the second ball drawn is red?

(b) What’s the probability that the k’th ball drawn is red?

(c) What’s the probability that the first ball drawn was red, given that the third ball drawn is red?

Exercise 2.3. Probability measures are continuous. If A1 ⊂ A2 ⊂ · · · is a sequence of events, then

(2.2) P (∪∞n=1An) = lim
n→∞

P (An).

And if A1 ⊃ A2 ⊃ · · · is a sequence of events, then

(2.3) P (∩∞n=1An) = lim
n→∞

P (An).

Prove (2.2) and (2.3).

Exercise 2.4. Suppose that P is a finitely additive probability measure with the property that if

A1 ⊂ A2 ⊂ · · · is a sequence of events, then P (∪∞n=1An) = limn→∞ P (An). Show that P is countably

additive.

Exercise 2.5. Let F (x) be a distribution function. Show that F has at most a countable number of

discontinuities, i.e., points x such that F (x)− F (x−) > 0, where F (x−) = limy↑x F (x).
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3. Transformations of random variables

Exercise 3.1. Let X be a standard normal random variable, and set Y = I{X ≥ c} for constant c.

(a) Find the distribution of Y .

(b) Based on independent draws Y1, . . . , Yn, find the maximum likelihood estimator, say ĉn, of c. Hint:

The maximum likelihood estimator is in this case the estimator your intuition leads you to.

(c) This exercise requires material we have yet to cover in class. Show that

√
n(ĉn − c)

d→ N
(
0,

Φ(c)(1− Φ(c))

φ(c)2
)
,

as n tends to infinity, where φ(x) = (2π)−1/2 exp(−x2/2) is the standard normal probability density

function, and Φ(x) =
∫ x
−∞ φ(y) dy. Hint: Use the delta method. In other words, use the mean value

theorem; the fact that 1 − Ȳn = 1 − n−1
∑n
i=1 Yi is consistent for Φ(c); and that Xn

p→ η, implies

g(Xn)
p→ g(η), when g is continuous.

Exercise 3.2. Go to the 2014 STK4011 website and do Exercises 1 and 2 (‘Transformations of random

variables’ and ‘Transformations of random vectors’) from Nils Lid Hjort’s ’Exercises and Lecture Notes’

https://www.uio.no/studier/emner/matnat/math/STK4011/h14/exercises_stk4011a.pdf.

Exercise 3.3. (An exercise from Nils’ lecture notes). Let X and Y be independent standard normals,

and transform to polar coordinates,

X = R cos θ, Y = R sin θ.

Find the distribution of the random length R and the random angle θ, and show that these are indepen-

dent.

Exercise 3.4. Two more exercises from Nils’ lecture notes. Do Exercise 4. Ordering exponentials, and

Exercise 5. Ratios of ordered uniforms.

4. Moment generating functions

Exercise 4.1. Let X be a Poisson random variable with mean λ.

(a) Find the moment generating function MX(t) of X.

(b) Let Yn be binomial(n, pn), and assume that npn tends to λ as n → ∞. Show that the moment

generating function of Yn tends to MX(t)

(c) Suppose X1, . . . , Xn are independent Bernoulli random variables with expectations p1,n, . . . , pn,n.

Set Zn =
∑n
i=1Xi. Assume that

∑n
i=1 pi,n tends to λ and that maxi≤n pi,n tends to 0, as n→∞. Show

that the moment generating function of Zn tends to MX(t).

Exercise 4.2. Let X be a standard normal random variable and set Y = exp(X).

(a) Find the distribution of Y . What’s the name of this distribution?

(b) Show that all the moments of Y exist.

(c) Show that the random variable Y does not have a moment generating function.

Exercise 4.3. Let Xn be a sequence of random variables with moment generating functions Mn(t),

X be a random variable with moment generating function M(t), and suppose that P (0 ≤ Xn ≤ 1) =

P (0 ≤ X ≤ 1) = 1 for all n. Suppose that all the moments of Xn converge to the moments of X, that is

EXk
n → EXk for k = 1, 2, . . .. Show that Mn(t)→M(t).

3

https://www.uio.no/studier/emner/matnat/math/STK4011/h14/exercises_stk4011a.pdf
https://www.uio.no/studier/emner/matnat/math/STK4011/h14/exercises_stk4011a.pdf


5. Exponential families

Lemma 5.1. If ∂g(x, θ)/∂θ exists and is continuous in θ for all x and all θ in an open interval S, and

if |∂g(x, θ)/∂θ| ≤ k(x) for all θ ∈ S for some integrable function k(x), and if
∫
g(x, θ) dν(x) exists on S,

then
d

dθ

∫
g(x, θ) dν(x) =

∫
∂

∂θ
g(x, θ) dν(x).

Exercise 5.1. Prove Lemma 5.1. Hint: Use first the mean value theorem, then Dominated convergence.

Exercise 5.2. Let fθ(x) be a density function, θ ∈ Rk, and suppose that log fθ(x) satisfies the conditions

of Lemma 5.1 for each θj , j = 1, . . . , k.

(a) Define uj(θ;x) = ∂ log fθ(x)/∂θj , and show that

Eθ uj(θ;X) = 0, and Eθ uj(θ;X)ul(θ;X) = −Eθ
∂2

∂θj∂θl
log fθ(X).

(b) Suppose that fθ(x), θ ∈ Θ ⊂ Rp is an exponential family in its natural parametrisation (i.e.,

wj(θ) = θj in Eq. (5.1)). Use (a) to find expressions for the expectation and variance of tj(X) j = 1, . . . , p.

(c) Let X be Gamma(a, b) with density ba/Γ(a)xa−1 exp(−bx). Show that X has an exponential family

distribution and find the expectation of logX.

(d) Consider a sequence of independent Bernoulli trials with success probability p. Let X be the

number of failures until the first success. Show that X has an exponential family distribution and find

the expectation of X.

Exercise 5.3. Let X1, . . . , Xn be independent draws from a distribution with density fθ(x) of exponen-

tial family form, that is

(5.1) fθ(x) = h(x)c(θ) exp
{ k∑
j=1

wj(θ)tj(x)
}
, x ∈ X , θ ∈ Θ,

with the sample space X not depending on θ; h(x) and c(θ) are non-negative functions; and the

wj(θ), tj(x), j = 1, . . . , k ≥ 1, are real valued functions. We suppose that Θ ⊂ Rp.

(a) Show that the joint distribution of X1, . . . , Xn is also an exponential family.

(b) Define t̃j(x) =
∑n
i=1 tj(xi) for j = 1, . . . , k. For the discrete case, that is when fθ(x) = Pθ(X = x),

show that the joint distribution of t̃1(X), . . . , t̃k(X) is an exponential family with natural parameters

w1(θ), . . . , wk(θ).

Exercise 5.4. Let Y1, . . . , Yn be independent Bernoulli trials with success probabilities p1, . . . , pn. These

are linked to covariates x1, . . . , xn, regarded as known constants, through

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
, i = 1, . . . , n.

Show that the joint distribution of X1, . . . , Xn is an exponential family.

Exercise 5.5. Let Y1, . . . , Yn be independent N(β0 + β1xi, 1), where x1, . . . , xn are known constants.

Show that the joint distribution of X1, . . . , Xn is an exponential family.

Exercise 5.6. Let X1, . . . , Xn be independent Poisson random variables with mean λ. Show that the

joint distribution of Xi, i = 1, . . . , n is an exponential family, and identify t̃(x). Find the conditional

distribution of X1, . . . , Xn given t̃(X) = t. What’s noticable about this distribution?

Exercise 5.7. Consider the two-parameter exponential family with t1(x) = x and t2(x) = x2, and

h(x) = 1 on {0, 1, 2}, and zero outside. Find its natural parameter space and its density.
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Exercise 5.8. Consider the one-parameter exponential family fθ(x) with h(x) = 1/x on (0, 1], zero

elsewhere, and t(x) = log x.

(a) Find its natural parameter space and its density.

(b) Find the distribution of Y = − logX.

(c) Let X1, . . . , Xn be independent draws from fθ(x). Find the maximum likelihood estimator θ̂n of θ

and show that it is approximately unbiased.

(d) Find the limiting distribution of
√
n(θ̂n − θ).

6. Sufficiency, ancilliarity and completeness

Exercise 6.1. Suppose T (X) is statistic such that θ 7→ Pθ(X = x)/Pθ(T (X) = t) is constant for all x.

Show that T (X) is sufficient.

Exercise 6.2. Do Exercise 6.9 in Casella and Berger (2002). That is, let X1, . . . , Xn be a random

sample. For each of the following distributions, find a minimal sufficient statistic for θ.

(a) fθ(x) = (2π)−1/2 exp(−(x− θ)2/2), x, θ ∈ R;

(b) fθ(x) = exp(−(x− θ)), x > θ, θ ∈ R;

(c) fθ(x) = exp(−(x− θ))/{1 + exp(−(x− θ))}, x, θ ∈ R;

(d) fθ(x) = 1/{π(1 + (x− θ)2)}, x, θ ∈ R;

(e) fθ(x) = exp(−|x− θ|)/2, x, θ ∈ R.

Exercise 6.3. Let X1, . . . , Xn be independent draws from the uniform distribution on (0, θ), θ > 0.

(a) Show that T (X) = T (X1, . . . , Xn) = maxi≤nXi is minimal sufficient for θ.

(b) Find a so that θ̂max = aT (X) is an unbiased estimator of θ, and compute the variance of this

estimator. Hint: Start by finding the density of T (X).

(c) Show that the estimator θ̂mean = 2X̄n is unbiased for θ. Compare the variance of θ̂mean with the

variance of θ̂max.

(d) Consider the class of estimators δa(X) = aT (X). Find the value of a, say a?, that minimises the

risk function R(θ, δa) = Eθ(aT (X)− θ)2. Compare the risk functions of δa? and θ̂max.

Exercise 6.4. Let g be a positive and integrable function on (0,∞). Set c(θ)−1 =
∫∞
θ
g(x) dx, and

define fθ(x) = c(θ)g(x) for x > θ and zero otherwise. Suppose X1, . . . , Xn are independent draws from

fθ(x).

(a) Show that T (X) = mini≤nXi is sufficient for θ.

(b) Show that T (X) is minimal sufficient.

Exercise 6.5. Let g(x) be a positive integrable function on (−∞,∞). For a < b, Set c(a, b)−1 =∫ b
a
g(x) dx, and define f(a,b)(x) = c(a, b)g(x) for a < x < b, and zero otherwise. If X1, . . . , Xn are

independent from fθ(x), show that (X(1), X(n)) = (mini≤nXi,maxi≤nXi) is minimal sufficient for (a, b).

Exercise 6.6. (Lehmann and Casella (1999))Let X1, . . . , Xn be independent and identically distributed

from a contionuous distribution F , that is otherwise unknown. Let T (X) = (X(1), . . . , X(n)) be the order

statistics. Show that T is sufficient.

(a) Let U1(X) =
∑n
i=1Xi, U2(X) =

∑n
1≤i<j≤nXiXj , U3(X) =

∑n
1≤i<j<k≤nXiXjXk, and so on, with,

Un(X) = X1 · · ·Xn. Show that U(X) = (U1(X), . . . , Un(X)) is sufficient.

(b) Let Vk(X) = Xk
1 + · · ·+Xk

n, and set V (X) = (V1(X), . . . , Vn(X)). Show that V is sufficient.
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Exercise 6.7. Let X be a single observation from N(0, θ), θ > 0. Show that both X and |X| are

sufficient for θ.

(a) Are they both minimal sufficient?

(b) Let U be Bernoulli(1/2), and set X ′ = U |X| − (1− U)|X|. Show that X ′ has the same distribution

as X.

Exercise 6.8. Let Y1, . . . , Yn be independent N(βxi, 1), where x1, . . . , xn are fixed constants not all

zero.

(a) Show that the least-squares estimator β̂ =
∑n
i=1 xiYi/

∑n
i=1 x

2
i is complete and sufficient.

(b) Show that β̂ and
∑n
i=1(Yi − xiβ̂)2 are independent.

Exercise 6.9. Suppose that given λ, the random variables X1, . . . , Xn are independent Poisson with

mean λ, while λ itself stems from an exponential distribution with mean 1/θ. Find a minimal sufficient

statistic for θ.

Exercise 6.10. For i = 1, . . . , n, let εi and Xi be independent standard normal random variables. For

θ ∈ (0, 1), set

Yi = θXi +
√

1− θ2εi, i = 1, . . . , n.

Suppose we observe the pairs (Xi, Yi), i = 1, . . . , n.

(a) Find a minimal sufficient statistic for θ.

(b) Is your minimal sufficient statistic complete?

(c) Show that
∑n
i=1X

2
i and

∑n
i=1 Y

2
i are ancilliary, but that (

∑n
i=1X

2
i ,
∑n
i=1 Y

2
i ) is not.

Exercise 6.11. Let Y1, . . . , Yn be independent Bernoulli random variables with success probabilites

pi = 1/{1 + exp(−β0 − β1xi)}, i = 1, . . . , n, for fixed and known xi. Find a minimal sufficient statistic

for θ = (β0, β1).

Exercise 6.12. (Keener (2011)) Let X1, . . . , Xn be independent random variables from a Beta (a, b)

distribution. Recall that the density of this distribution is

fa,b(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0, 1),

for positive parameters a and b. Find a minimal sufficient statistic (i) when a and b vary freely; (ii) when

a = 2b; and when (iii) a = b2.

Exercise 6.13. Let X1, . . . , Xn be independent N(θ, θ2), θ > 0. Find a minimal sufficient statistic for

θ, and show that it is not complete. Explain why Theorem 6.2.25 in Casella and Berger (2002, p. 288)

does not apply.

Exercise 6.14. Let X1, . . . , Xn be independent N(θ, σ2). Show that X̄n = n−1
∑n
i=1Xi and S2 =

(n− 1)−1
∑n
i=1(Xi − X̄n)2 are independent. Hint: Use Basu’s theorem.

Exercise 6.15. (Casella and Berger (2002)) Let N be a random variable taking values in {1, 2, . . . , }
with known probabilities p1, p2, . . .. Given N = n, perform n independent Bernoulli trials X1, . . . , Xn

with success probabilities θ.

(a) Show that (
∑N
i=1Xi, N) is minimal sufficient and that N is ancilliary for θ

(b) Show that N−1
∑N
i=1Xi is unbiased for θ, and find its variance.

Exercise 6.16. (Shao (2003)) Let T and S be two statistics such that S = g(T ) for some measurable

function g. Show that

(a) If T is complete, then S is complete.

(b) If T is complete and sufficient and g is one-to-one, then S is complete and sufficient.
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Exercise 6.17. LetX and Y be independent Poisson random variables with means θ and θ2, respectively.

Find a minimial sufficient statistic. Is the minimal sufficient statistic complete?

Exercise 6.18. Let X1, . . . , Xn be independent random variables with density,

fθ(x) =
1

θ
exp{−(x− θ)/θ}, for x > θ > 0,

and zero otherwise. Find a statistic that is minimal sufficient for θ. Is the minimal sufficent statistic

complete?

Exercise 6.19. Let X1, . . . , Xn be independent exponentials with mean 1/θ. Show that X̄n and

maxi≤nXi/mini≤nXi are independent.

Exercise 6.20. Let X1, . . . , Xn be independent uniform random variables on (a, b). Show that T (X) =

(mini≤nXi,maxi≤nXi) is sufficient and complete.

Exercise 6.21. Let θ be a real-valued parameter that we are to estimate with a loss function L(δ, θ)

that is convex in δ for each θ. Let δ(X) be an unbiased estimator of θ and suppose that T is a sufficient

statistic. Consider

δ2(X) = Eθ[δ1(X) | T ].

(a) Explain why δ2 is an estimator, and show that it is unbiased.

(b) Recall that the risk function of an estimator δ is R(δ, θ) = Eθ L(δ(X), θ). Show that

R(δ2, θ) ≤ R(δ1, θ), for all θ.

What additional assumptions do we need for this inequality to be strict?

(c) Suppose that T is also complete. Show that R(δ2, θ) ≤ R(δ, θ) for all competitors δ.

(d) Go back to Exercise 6.3(c), and explain what you found in view of the current exercise.

7. Miscellaneous exercises

Exercise 7.1. It’s raining at Blindern. Is it raining at Huk? The Norwegian Meteorological Institute

have pluviometers, or rain gauges, stationed both places, with daily rain measurements in milimeters

available on the website yr.no. I found the data for Blindern and Huk here and here, respectively. Here

is the rain data for Blindern and for Huk as text-files, use read.table(path,sep=";").
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Rain in mm at Blindern. Jan 1, 2019 − Sep 5. 2019.
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t 
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Figure 1. Rainfall measured in milimeters at Blindern and Bygdøy weather stations.

Data from yr.no, extracted Sept. 5,2019.
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Denote the rain data for the n = 248 days from January 1. to September 5., 2019 by,

Blindern : YB,1, . . . , YB,n;

Huk : YH,1, . . . , YH,n.

In order to predict the weather at Huk by looking out the window at Blindern, we need a statistical

model.

(a) All you care about is whether or not it’s raining, the amount of rain does not bother you. Sketch

how you would estimate Pr(Rain at Huk | Rain at Blindern), and how you would assess the uncertainty

of this estimate. Think about what assumptions you’re making when using your chosen estimator.

(b) A little rain does not stop you. With the model

YH,i = β0 + β1YB,i + εi, i = 1, . . . , n,

where the εi are independent mean zero random variables with variance σ2, we can, after having estimated

the parameters, say something about quantities such as E [YH | YB = y], Pr(YH ≤ y | YB = y), and so

on. Is this a good model for the phenomenon you are interested in? Why, or why not?

(c) Consider the following model. Let Fλj
(y) = 1− exp(−λjy), j = B,H, for y ≥ 0 and positive param-

eter λj . As (almost) always, let Φ(x) be the distribution function of the standard normal distribution,

and take

Yj,i = F−1λj
(Φ(Xj,i)), j = H,B, i = 1, . . . , n,

where (
XB,i

XH,i

)
∼ N(

(
0

0

)
,

(
1 ρ

ρ 1

)
), i = 1, . . . , n,

are independent. Denote θ = (λB , λH , ρ), and derive an expression for the log-likelihood function

`n(θ) =

n∑
i=1

log f(yB,i, yH,i; θ),

where f(yB,i, yH,i; θ) is the density of (YB , YH).

(d) Are you comfortable with the assumptions the model in (c) is making about rain in Oslo?

(e) If you program the likelihood function you found in (b) and feed it to an optimiser such as nlm() in

R, things will go astray (the nlm()-function is a minimiser, so give it the negative log-likelihood). Why

is that? Propose a modification of the model in (c) that takes care of this problem. Hint: Fortunately,

there are sunny days.

8. Convergence concepts

Exercise 8.1. Let X1, X2, . . . be independent Bernoulli variables with success probabilities p1, p2, . . ..

We shall investigate when

Zn =

∑n
i=1(Xi − pi)

Bn

d→ N(0, 1),

where Bn = {
∑n
i=1 pi(1−pi)}1/2. Show, using mgf’s, that this happens if and only if

∑p
i=1 pi =∞. Show

also that this condition is equivalent to Bn →∞. This means that the cases pi = 1/i and pi = 1/i2, for

example, are very different.

Exercise 8.2. Suppose Xn is Beta(1/n, 1/n) and X is Bernoulli(1/2). Show that Xn
d→ X. What if

Xn is Beta(a/n, b/n)? Hint: See Nils exercise 12.

Exercise 8.3. Suppose Xn is uniformly distributed on {1/n, 2/n, . . . , 1}. Show that Xn converges in

distribution to X, where X is uniform(0, 1). Does Xn
p→ X?
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Exercise 8.4. A few counterexamples.

(a) Make an example where Xn
d→ X and Yn

d→ Y , but Xn + Yn does not converge in distribution to

X + Y .

(b) Make an example where Xn converges to 0 in probability, but EXn does not converge to 0.

(c) Let Z be uniform(0, 1), and set X1 = 1, X2 = I[0,1/2)(Z), X3 = I[1/2,1)(Z), X4 = I[0,1/4)(Z), X5 =

I[1/4,1/2)(Z), . . ., and so on. Find the probability limit of Xn. Does Xn converge almost surely to this

limit?

Exercise 8.5. Let X1, X2, . . . be i.i.d. with density f(x) = ax−(a+1) for x ∈ (1,∞), and zero otherwise.

(a) For what values of a > 0 is it true that X̄n
p→ 0?

(b) For what values of a > 0 is it true that Xn/n → 0 almost surely? Hint: Use the Borel–Cantelli

lemma.

Exercise 8.6. Let Y1, . . . , Yn be independent Poisson variables with density Pθ(X = x) = e−θθx/x!, x =

0, 1, 2, . . ., and let Zn be the proportion of zeros observed, Zn = n−1
∑n
i=1 I{Xi = 0}. Show that

√
n

(
X̄n − θ
Zn − e−θ

)
d→ N2

((0

0

)
,

(
θ −θe−θ

−θe−θ e−θ(1− e−θ)

))
.

Exercise 8.7. Consider independent observations Y1, . . . , Yn from a normal distribution with expectation

µ and variance σ2.

(a) Write down the log-likelihood function `n(µ, σ), and derive formulae for the maximum-likelihood

estimators, say (µ̂n, σ̂
2
n). Identify also the exact distributions of µ̂n and σ̂2

n. Hint: The maximum-

likelihood estimators are the estimators solving ∂`n(µ, σ)/∂µ = 0 and ∂`n(µ, σ)/∂σ = 0.

(b) Show that
√
n

(
µ̂n − µ
σ̂n − σ

)
d→ N2

((0

0

)
,

(
σ2 0

0 σ2/2

))
Hint: You can show this by computing it in a straightforward manner, using tools that we covered in

class. But, if you want to, take a look at the variance of the score function (the first derivative of the

log-likelihood) and its inverse; look back at Exercise 5.2; and Taylor-expand the score function around

the true values of the parameters. We’ll do all this on Thursday.

(c) Consider the parameter γ = µ/σ, sometimes called the normalised mean. With γ̂n = µ̂n/σ̂
2
n, show

that √
n(γ̂n − γ)

d→ N(0, 1 + γ2/2).

(d) Let now h(x) =
√

2 log(x/
√

2 +
√

1 + x2/2). Show that

√
n(h(γ̂n)− h(γ))

d→ N(0, 1).
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