List of formulas for STK4011/9011 — Statistical Inference Theory (2022)

Chapter 2: Transformations and Expectations

Theorem 2.1.3 Let X have cdf Fx(z), let Y = g(X), and let X and Y be defined

as in (2.1.7).

a. If g is an increasing function on X, Fy (y) = Fx (971 (v)) fory €.

b. Ifg is a decreasing function on X and X is a continuous random variable, Fy (y) =
1- Fx (g7 (y)) fory € ).

(2.1.7) X = {z: fx(z) >0} and Y= {y: y=g(z) for some r € X}.

Theorem 2.1.5 Let X have pdf fx(z) and let Y = g(X), where g is a monotone
function. Let X and Y be defined by (2.1.7). Suppose that fx(z) is continuous on X
and that g~'(y) has a continuous derivative on Y. Then the pdf of Y is given by

(2.1.10) frly) = {fx(g‘l(y)) %g‘l(y)‘ yey

0 otherwise.

Definition 2.2.1 The expected value or mean of a random variable g(X), denoted
by Eg(X), is

Eg(X) = [2o9(2) fx (z) dz
o Y eex 9(2) fx(z) = Ysex 9(2)P(X = z) if X is discrete,

if X is continuous

Theorem 2.2.5 Let X be a random variable and let a,b, and c be constants. Then
for any functions g (z) and g2(x) whose ezpectations ezxist,

. E(agi(X) + bg2(X) + ¢) = aE g1 (X) + bE g2(X) + c.

. If g1(z) > 0 for all z, then Eg;(X) > 0.

. If g1(z) > g2(z) for all z, then E g1(X) > E g2(X).

. Ifa<gi(z) <b for all z, thena < Eg,(X) < b.

op

g o

Definition 2.3.1 For each integer n, the nth moment of X (or Fx(z)), i, is
w, =EX™
The nth central moment of X, pn,, is
Bn =E(X —p)",

where u =y} =EX.

Definition 2.3.2 The variance of a random variable X is its second central moment,
Var X = E(X — E X)2. The positive square root of Var X is the standard deviation
of X.

Theorem 2.3.4 If X is a random variable with finite variance, then for any con-
stants a and b,

Var(aX + b) = a? Var X.

Definition 2.3.6 Let X be a random variable with cdf Fx. The moment generating
function (mgf) of X (or Fx), denoted by Mx(t), is

Mx(t) = EetX,

Theorem 2.3.11  Let Fx(z) and Fy(y) be two cdfs all of whose moments exist.

a. If X and Y have bounded support, then Fx(u) = Fy(u) for all u if and only if
EX" =EYT" for all integersr =0,1,2,... .

b. If the moment generating functions exist and Mx(t) = My (t) for all t in some
neighborhood of 0, then Fx(u) = Fy(u) for all u.



Theorem 2.3.12 (Convergence of mgfs)  Suppose {X;,i1=1,2,...} is a se-
quence of random variables, each with mgf My, (t). Furthermore, suppose that

lim My, (t) = Mx(t), for all t in a neighborhood of 0,

and Mx(t) is an mgf. Then there is a unique cdf Fx whose moments are determined
by Mx(t) and, for all z where Fx(z) is continuous, we have

lim Fx, (z) = Fx(z).
1—00

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Theorem 2.3.15  For any constants a and b, the mgf of the random variable a X +b
18 given by

M,x+(t) = e My (at).

Chapter 3: Common Families of Distributions

A family of pdfs or pmfs is called an ezponential family if it can be expressed as

k
(3.4.1) f(z|@) = h(z)c(8) exp (Z wi(B)ti(z)) .
i=1

Here h(z) > 0 and t,(z), . . ., tx(z) are real-valued functions of the observation z (they
cannot depend on 8), and ¢(8) > 0 and w;(8),. .., wk(8) are real-valued functions of
the possibly vector-valued parameter 8 (they cannot depend on ).

Definition 3.5.5  Let f(z) be any pdf. Then for any u, —0o < u < 0o, and any
o > 0, the family of pdfs (1/0) f((z — u)/o), indexed by the parameter (u, o), is called
the location—scale family with standard pdf f(z); u is called the location parameter
and o is called the scale parameter.

Theorem 3.5.6 Let f(-) be any pdf. Let pu be any real number, and let o be any
positive real number. Then X is a random variable with pdf (1/0) f((z — i)/o) if and
only if there ezxists a random variable Z with pdf f(z) and X =oZ + p.

Theorem 3.6.1 (Chebychev’s Inequality) Let X be a random variable and let
g(z) be a nonnegative function. Then, for any r > 0,

Po(x) > ) < LX),

Chapter 4: Multiple Random Variables

If (X,Y) is a discrete bivariate random vector, then there is only a countable set
of values for which the joint pmf of (X,Y) is positive. Call this set .A. Define the
set B = {(u,v): u= gi(z,y) and v = gao(z, y) for some (z,y) € A}. Then B is the
countable set of possible values for the discrete random vector (U, V). And if, for any
(u,v) € B, Ay, is defined to be {(z,y) € A: g1(z,y) = u and ga(z,y) = v}, then the
joint pmf of (U, V), fu,v(u,v), can be computed from the joint pmf of (X,Y) by

(43.1) fuy(w,v) =PU=1u,V=0)=P(X,Y)€Aw)= Y. fxv(zy)
(z,9)EAw

If (X,Y) is a continuous random vector with joint pdf fx,y(z,y), then the joint pdf
of (U, V) can be expressed in terms of fx,y(z,y) in a manner analogous to (2.1.8). Ag,
before, A = {(z,y) : fx,v(z,y) > 0} and B = {(u,v) : u = g1(z,y) and v = ga(z,y)
for some (z,y) € A}. The joint pdf fyv(u,v) will be positive on the set B. For the
simplest version of this result we assume that the transformation u = g;(z,y) and
v = ga(z,y) defines a one-to-one transformation of A onto B. The transformation ig
onto because of the definition of B. We are assuming that for each (u,v) € B there ig
only one (z,y) € A such that (u,v) = (g91(z, ), g2(z,y)). For such a one-to-one, onto
transformation, we can solve the equations v = g;(z,y) and v = go(z,y) for z and y
in terms of u and v. We will denote this inverse transformation by z = hs(u,v) and
y = ha(u,v). The role played by a derivative in the univariate case is now played by
a quantity called the Jacobian of the transformation. This function of (u,v), denoted’
by J, is the determinant of a matriz of partial derivatives. It is defined by

d9r Oz
du Ou|_0Oxdy Oyoz

T=\oy oy|~Bude Budw’
du Ov
where
@ _ ahq(u, ‘U) @ . Bhl(u,v) @ _ 8h2(u,v) d 6_y _ 6}12(11.,‘0)
du~  Bu ' B  Bv ' Bu  Bu ov~ v

We assume that J is not identically 0 on B. Then the joint pdf of (U, V) is 0 outside
the set B and on the set B is given by

(432) fU,V(uvv) = fX,Y(hl(uv ’U), h2(u1 'U))|J|,



Lemma 4.2.7 Let (X,Y) be a bivariate random vector with joint pdf or pmf f(x,y).
Then X and Y are independent random variables if and only if there exist functions
g(z) and h(y) such that, for everyz € R and y € R,

f(z,y) = g(z)h(y).

Theorem 4.2.12 Let X and Y be independent random variables with moment gen-
erating functions Mx(t) and My(t). Then the moment generating function of the
Tandom variable Z = X + Y is given by

Mz(t) = Mx(t) My (t).
* Theorem 4.3.5 Let X andY be independent random variables. Let g(z) be a func-

tion only of z and h(y) be a function only of y. Then the random variables U = g(X)
and V = h(Y') are independent.

Theorem 4.4.3 If X and Y are any two random variables, then
(4.4.1) EX =E(E(X|Y)),

provided that the ezpectations ezist.

Theorem 4.4.7 (Conditional variance identity) For any two random variables
XandV,
(4.4.4) Var X = E (Var(X|Y)) + Var (E(X[Y)),

provided that the expectations ezist.

Definition 4.5.1 The covariance of X and Y is the number defined by

Cov(X,Y) =E((X — pux)(Y — uy)).

Theorem 4.5.5 If X andY are independent random variables, then Cov(X,Y) =10
and pxy = 0.

Theorem 4.5.6 If X and Y are any two random variables and a and b are any two
constants, then

Var(aX +bY) = a®Var X +b*Var YV + 2abCov(X,Y).
If X and Y are independent random variables, then
Var(aX 4 bY) = a®Var X + b*VarY.

Theorem 4.7.7 (Jensen’s Inequality) For any random variable X, if g(z) is a
convez function, then

Eg(X) > g(EX).

Equality holds if and only if, for every line a + bz that is tangent to g(z) atz = EX,
Plg(X)=a+bX)=1.

Chapter 5: Multiple Random Variables

Theorem 5.2.6 Let X;,...,X, be a random sample from a population with mean
1 and variance 02 < co. Then

a. EX =y,
— 0'2
b. Var X = —,
n

c. ES? =2,

Theorem 5.2.7 Let X,,...,X, be a random sample from a population with mgf
My (t). Then the mgf of the sample mean is

Mx (t) = [Mx(t/n)]".

Theorem 5.2.9 If X andY are independent continuous random variables with pdfs
fx(z) and fy(y), then the pdf of Z=X +Y is

(5.23) fa() = / " fxw) fr(z - w) dw.



Theorem 5.4.4 Let Xy),...,X(n) denote the order statistics of a random sample,
X1, .-y Xn, from a continuous population with cdf Fx(z) and pdf fx(x). Then the
pdf of X(;) is

(5.44) fx ;) (z) = 1fx (@)[Fx(2)P Y1 - Fx ()" .

n!
G —1)n-17)

Theorem 5.4.6 Let X(yy,...,X(n) denote the order statistics of a random sample,
X1,...,Xn, from a continuous population with cdf Fx(z) and pdf fx(z). Then the
joint pdf of X(i) and X(j), 1<i<j<n,is

64T) Fxinxin (9 = e =g O OB @

x [Fx(v) - Fx(u)]' ™' 71 — Fx(v)]*™?

for —oo < u < v < o0.

Definition 5.5.1 A sequence of random variables, X;, X5,..., converges in proba-
bility to a random variable X if, for every € > 0,

lim P(|X, — X|>¢€)=0 or,equivalently, lim P(|X,— X|<e€) =1
n—oo n—oo

Theorem 5.5.2 (Weak Law of Large Numbers) Let X, Xa,... be iid random
variables with EX; = p and Var X; = 0® < oo. Define X, = (1/n) 3 ., X;. Then,

for every € > 0,
lim P(| X, —pul<e) =1;
n—oo
that s, X, converges in probability to .
Theorem 5.5.4 Suppose that X1, X, ... converges in probability to a random vari-

able X and that h is a continuous function. Then h(X1), h(X2),... converges in prob-
ability to h(X).

Definition 5.5.6 A sequence of random variables, X1, Xs,..., converges almost
surely to a random variable X if, for every € > 0,

P(lim [ X, - X|<e¢) =1

Theorem 5.5.9 (Strong Law of Large Numbers) Let X1, X2,... be iid random
variables with EX; = p and Var X; = 0% < oo, and define X,, = (1/n) i, Xi.
Then, for every € > 0,

P(lim | X, —u| <€) =1,
n—oo

that is, X, converges almost surely to .

Definition 5.5.10 A sequence of random variables, X, Xa, ..., converges in distri-
bution to a random variable X if

lim Fx, (z) = Fx(z)
n—oo

at all points z where Fx(z) is continuous.

Theorem 5.5.12 If the sequence of random variables, X,, X, ..., converges in prob-
ability to a random variable X, the sequence also converges in distribution to X .

Theorem 5.5.13 The sequence of random variables, X, X2, ..., converges in prob-

ability to a constant p if and only if the sequence also converges in distribution to u.
That is, the statement

P(|Xn~—pul>€)—0 for everye >0
is equivalent to

0 ifz<u
P(X"Sz)_’{l ifz > p.

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let
Xy, X2,... be a sequence of iid random variables with EX; = p and 0 < Var X; =
0% < 00. Define X, = (1/n) Y14 Xi. Let Gn(z) denote the cdf of (X, — p)/o.
Then, for any z, —00 < T < 00,

T
1 2
lim G,(z) = ——e V2 gy,
Jm Go(e)= [ ey
that is, /n(X, — u)/o has a limiting standard normal distribution.

Theorem 5.5.17 (Slutsky’s Theorem) If X,, — X in distribution and Y, — a, a
constant, in probability, then

a. Y, X, — aX in distribution.

b. X, +Y, — X + a in distribution.



Theorem 5.5.24 (Delta Method) Let Y, be a sequence of random variables that
satisfies /n(Y, —8) — n(0,0?) in distribution. For a given function g and a specific
value of 6, suppose that g’(0) ezists and is not 0. Then

(5.5.10) Vnlg(Yy) — 9(8)] — n(0,02[g'(8)]?) in distribution.

Theorem 5.5.26 (Second-order Delta Method) Let Y;, be a sequence of random
variables that satisfies /n(Y, — 8) — n(0,0?) in distribution. For a given function g
and a specific value of 8, suppose that ¢'(8) = 0 and g”(8) exists and is not 0. Then

29"(6)
2

(5.5.13) n[g(Yn) —9(8)] — o x2 in distribution.

Chapter 6: Principles of Data Reduction

Definition 6.2.1 A statistic 7(X) is a sufficient statistic for 8 if the conditional
distribution of the sample X given the value of T'(X) does not depend on 6.

Theorem 6.2.2  If p(x|6) is the joint pdf or pmf of X and q(t|6) is the pdf or pmf
of T(X), then T(X) is a sufficient statistic for 8 if, for every x in the sample space,
the ratio p(x|8)/q(T(x)|0) is constant as a function of 6.

Theorem 6.2.6 (Factorization Theorem) Let f(x|f) denote the joint pdf or
pmf of a sample X. A statistic T(X) is a sufficient statistic for 6 if and only if there
exist functions g(t|0) and h(x) such that, for all sample points x and all parameter
points 6,

(6.2.3) f(x[6) = g(T(x)[6)h(x).

Theorem 6.2.10 Let X,...,X, be iid observations from a pdf or pmf f(z|@) that
belongs to an exponential family given by

f(z16) = h(z)c(8) exp (Zwt(o ti(z )

i=1

where @ = (64,0,,...,04), d < k. Then

= (ztl(xj),...,ztk(xj))
ij=1 j=1

is a sufficient statistic for 6.

Definition 6.2.11 A sufficient statistic 7(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 7”(X), T'(x) is a function of T”(x).

Theorem 6.2.13  Let f(x|0) be the pmf or pdf of a sample X. Suppose there ezists a
function T(x) such that, for every two sample points x andy, the ratio f(x|0)/f(y|6)
is constant as a function of 0 if and only if T(x) = T(y). Then T'(X) is a minimal
sufficient statistic for 0.

Definition 6.2.21 Let f(t|6) be a family of pdfs or pmfs for a statistic 7(X). The
family of probability distributions is called complete if Egg(T") = 0 for all § implies
Py(g(T) = 0) = 1 for all §. Equivalently, T'(X) is called a complete statistic.

Theorem 6.2.25 (Complete statistics in the exponential family) Let

Xy,..., X, be uid observations from an exponential family with pdf or pmf of the
form
(6.2.7) f(z]8) = h(z)c(8) exp (Zw ti(z) ) ,

i=1

where @ = (01,0,,...,0;). Then the statistic

X) = (Ztl(xi)v th(Xi), Ceny Ztk(Xi)>
=1 i=1 i=1

is complete as long as the parameter space © contains an open set in R*.

Chapter 7: Point Estimation

Theorem 7.2.10 (Invariance property of MLEs) If 6 is the MLE of 0, then
for any function 7(8), the MLE of 7(0) is 7(6).

Definition 7.3.7 An estimator W* is a best unbiased estimator of 7(0) if it satisfies
EgW* = 7(8) for all § and, for any other estimator W with EgW = 7(6), we have
Varg W* < Varg W for all §. W* is also called a uniform minimum variance unbiased
estimator (UMVUE) of 7(6).



Theorem 7.3.9 (Cramér-Rao Inequality) Let Xi,...,X, be a sample with pdf
f(x|6), and let W(X) = W(X,,...,X,) be any estimator satisfying

dgE(,W / 2 W0 f(xl6)] dx
(7.3.4) and
VargW (X) < oo.
Then
LE,W (X))’
(7.3.5) Vary (W(X)) > (& EaW (X0)

Bo ((§log £(X[6))")

Corollary 7.3.10 (Cramér—Rao Inequality, iid case) If the assumptions of The-

orem 7.8.9 are satisfied and, additionally, if X1,..., X, are iid with pdf f(z|0), then
2

(35EsW (X))

Varg W(X) >
’ nEs (% log /(X10))*)

Lemma 7.3.11 If f(x|0) satisfies

o (3 rerx0) = [ 55 | (g51085@) 162l ao

(true for an exponential family), then

Eo (( 210 f(Xl0)>2> ~ 5o (g3 g 1 X10)).

Corollary 7.3.15 (Attainment) Let X.,..., X, be iid f(z|6), where f(z|6) sat-
isfies the conditions of the Cramér-Rao Theorem Let L(0]x) = [Ti—, f(xi|6) denote
the likelihood function. If W(X) = W (X1, ..., Xn) is any unbiased estimator of 7(6),
then W (X) attains the Cramér-Rao Lower Bound if and only if

0 log L(6|x)

(7.3.12) a()[W(x) —7(8)] = 20

for some function a(6).

Theorem 7.3.17 (Rao—Blackwell) Let W be any unbiased estimator of 7(6), and
let T be a sufficient statistic for 6. Define ¢(T) = E(W|T). Then Eg¢(T) = 7() and
Varg ¢(T) < Varg W for all 0, that is, ¢(T) is a uniformly better unbiased estimator
of 7(9). ’

Theorem 7.3.19 If W is a best unbiased estimator of 7(0), then W is unique.

Theorem 7.3.20 If EgW = 7(8),W is the best unbiased estimator of 7(6) if and
only if W is uncorrelated with all unbiased estimators of 0.

Theorem 7.3.283  Let T be a complete sufficient statistic for a parameter 6, and
let ¢(T) be any estimator based only on T. Then ¢(T) 1s the unique best unbiased
estimator of its expected value.

Chapter 8: Hypothesis Testing
Definition 8.2.1  The likelihood ratio test statistic for testing Hy: 8 € ©q versus
Hl : 0 (S 68 is
sup L(6|x)
—_ S0
A = Sop L(x)
e

A likelihood ratio test (LRT) is any test that has a rejection region of the form {x: A(x)
< ¢}, where ¢ is any number satisfying 0 < ¢ < 1.

Theorem 8.2.4 IfT'(X) is a sufficient statistic for 8 and \*(t) and A(x) are the
LRT statistics based on T and X, respectively, then X\*(T'(x)) = A(x) for every x in
the sample space.

. Definition 8.3.1 The power function of a hypothesis test with rejection region R

is the function of 6 defined by 3(8) = P»(X € R).

Definition 8.3.5 For 0 < a < 1, a test with power function 8(6) is a size « test
if supgeeq, B(6) = o

Definition 8.3.6 For 0 < o < 1, a test with power function 3(8) is a level o test
if supgeg, B(6) < o



Definition 8.3.9 A test with power function 3(8) is unbiased if 3(6") > 8(8") for
every ' € ©§ and 6" € Oy.

Definition 8.3.11 Let C be a class of tests for testing Hqg: § € © versus H;: 0 ¢
©§. A test in class C, with power function 3(6), is a uniformly most powerful (UMP)
class C test if §(8) > 3'(0) for every 6 € ©F and every 3'() that is a power function
of a test in class C.

Theorem 8.3.12 (Neyman—Pearson Lemma) Consider testing Hy: 6§ = 6
versus Hy: 0 = 0,, where the pdf or pmf corresponding to 6; is f(x|6;),i = 0,1, using
a test with rejection region R that satisfies

x€ R if f(x]61) > kf(x|fo)
(8.3.1) and

x € R® if f(x|61) < kf(x[6o),

for some k > 0, and
(8.3.2) : a = Py (X € R).

Then

a. (Sufficiency) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level a test.

b. (Necessity) If there exzists a test satisfying (8.3.1) and (8.3.2) with k > 0, then
every UMP level a test is a size o test (satisfies (8.3.2)) and every UMP level « test
satisfies (8.3.1) except perhaps on a set A satisfying Pp,(X € A) = Py, (X € A) =
0.

Corollary 8.3.13 Consider the hypothesis problem posed in Theorem 8.8.12. Sup-
pose T'(X) is a sufficient statistic for 6 and g(t|6;) is the pdf or pmf of T corresponding
t06;, i = 0,1. Then any test based on T with rejection region S (a subset of the sample
space of T) is a UMP level a test if it satisfies

te S if g(tl61) > kg(t|bo)
(8.3.4) and

te S if g(tl61) < kg(t|6o),
for some k > 0, where

(8.3.5) a=Py(T€S).

Definition 8.3.16 A family of pdfs or pmfs {g(t|8): # € ©} for a univariate random
variable T' with real-valued parameter 8 has a monotone likelihood ratio (MLR) if,
for every 62 > 6y, g(t|f2)/g(t|61) is a monotone (nonincreasing or nondecreasing)
function of ¢ on {t: g(t|0:) > 0 or g(t|62) > 0}. Note that ¢/0 is defined as 0o if 0 < ¢.

Theorem 8.3.17 (Karlin—Rubin)  Consider testing Hy : 6 < 6y versus H; :
0 > 6o. Suppose that T is a sufficient statistic for 8 and the family of pdfs or pmfs
{9(t|6): 6 € ©} of T has an MLR. Then for any to, the test that rejects Hy if and
only if T >ty is a UMP level o test, where a = Py (T > tg). *Assumes nondecreasing LR.

Chapter 9: Interval Estimation

Definition 9.1.1 An interval estimate of a real-valued parameter # is any pair of
functions, L(z,...,z,) and U(zy,...,Txs), of a sample that satisfy L(x) < U(x) for
all x € X. If X = x is observed, the inference L(x) < § < U(x) is made. The random
interval [L(X), U(X)] is called an interval estimator.

Definition 9.1.4 For an interval estimator [L(X), U(X)] of a parameter 6, the cover-
age probability of [L(X),U(X)] is the probability that the random interval
[L(X),U(X]] covers the true parameter, 6. In symbols, it is denoted by either Py( €
[L(X), U(X)]) or P(6 € [L(X),U(X)]|6).

Definition 9.1.5 For an interval estimator [L(X),U(X)] of a parameter 6, the
confidence coefficient of [L(X),U(X)] is the infimum of the coverage probabilities,
infg Py(8 € [L(X), U(X)]).

Theorem 9.2.2 For each 6y € O, let A(6y) be the acceptance region of a level
test of Hy: 8 = 4. For each x € X, define a set C(x) /in the parameter space by
(9.2.1) C(x) = {fo: x € A(6o)}.

Then the random set C(X) is a 1 — a confidence set. Conversely, let C(X) beal—~q
confidence set. For any 6y € ©, define

A(bo) = {x: 6 € C(x)}.

Then A(Bp) is the acceptance region of a level o test of Hy: 6 = 6.

Chapter 10: Asymptotic Evaluations



Definition 10.1.1 A sequence of estimators W,, = W,(X,,...,Xy) is a consistent
sequence of estimators of the parameter 6 if, for every € > 0 and every 6 € 9,

(10.1.1) limp, oo Pp(|Wn — 6] <€) = 1.

Theorem 10.1.3 If W, is a sequence of estimators of a parameter 8 satisfying
i lim,_, o Varg W, =0,

ii. limy,_,oBiasgW, =0,

for every 0 € B, then W, is a consistent sequence of estimators of 9.

Definition 10.1.9 For an estimator T}, suppose that k. (T, — 7(8)) — n(0,0?) in
distribution. The parameter o? is called the asymptotic variance or variance of the
limit distribution of T,.

Definition 10.1.11 A sequence of estimators W, is asymptotically efficient for a
parameter 7(0) if \/n[W,, — 7(8)] — n[0,v(6)] in distribution and
[ (8)]? )
2 )
Eo ((&log £(X16))")

that is, the asymptotic variance of W,, achieves the Cramér—Rao Lower Bound.

v(f) =

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X1,Xo,..., be iid
f(z|6), let 6 denote the MLE of 6, and let T(8) be a continuous function of 6. Under
the regularity conditions in Miscellanea 10.6.2 on f(z|0) and, hence, L(6]x),

Valr(8) — 7(8)] - n0,v(6)],
where v(6) is the Cramér-Rao Lower Bound. That is, 7() is a consistent and asymp-
totically efficient estimator of T(6).
Definition 10.1.16 If two estimators W, and V,, satisfy
VW, —7(6)] - n[0, o3y ]
Va[Va = 7(8)] — n[0, o]

in distribution, the asymptotic relative efficiency (ARE) of V, with respect to W, is

0.2
ARE(V,, W,) = %,
oy

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple Hy) For test-
ing Hp : 6 = 0o versus H; : 0 # 6y, suppose X1,..., X, are iid f(z|0), 0 is the MLE
of 0, and f(z|0) satisfies the regqularity conditions in Miscellanea 10.6.2. Then under
Hy, asn — oo,

—2log A(X) — x? in distribution,

where x? is a x? random variable with 1 degree of freedom.

Theorem 10.3.3 Let X;,...,X,, be a random sample from a pdf or pmf f(z|0).
Under the regularity conditions in Miscellanea 10.6.2, if 6 € Oy, then the distribution
of the statistic —2log A\(X)) converges to a chi squared distribution as the sample size
n — 0o. The degrees of freedom of the limiting distribution is the difference between
the number of free parameters specified by 8 € ©¢ and the number of free parameters
specified by 6 € ©.



