List of formulas for STK4011/9011 – Statistical Inference Theory (2022)

Chapter 2: Transformations and Expectations

Theorem 2.1.3 Let X have cdf $F_X(x)$, let Y = g(X), and let X and Y be defined as in (2.1.7).

- **a.** If g is an increasing function on \mathcal{X} , $F_Y(y) = F_X\left(g^{-1}(y)\right)$ for $y \in \mathcal{Y}$.
- **b.** If g is a decreasing function on \mathcal{X} and X is a continuous random variable, $F_Y(y) = 1 F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$.

$$(2.1.7) \ \mathcal{X} = \left\{x: \ f_X(x) > 0\right\} \qquad \text{and} \qquad \mathcal{Y} = \left\{y: \ y = g(x) \ \text{for some} \ x \in \mathcal{X}\right\}.$$

Theorem 2.1.5 Let X have $pdf f_X(x)$ and let Y = g(X), where g is a monotone function. Let \mathcal{X} and \mathcal{Y} be defined by (2.1.7). Suppose that $f_X(x)$ is continuous on \mathcal{X} and that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} . Then the pdf of Y is given by

(2.1.10)
$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| & y \in \mathcal{Y} \\ 0 & otherwise. \end{cases}$$

Definition 2.2.1 The expected value or mean of a random variable g(X), denoted by E g(X), is

$$\operatorname{E} g(X) = \begin{cases} \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} g(x) f_X(x) = \sum_{x \in \mathcal{X}} g(x) P(X = x) & \text{if } X \text{ is discrete,} \end{cases}$$

Theorem 2.2.5 Let X be a random variable and let a, b, and c be constants. Then for any functions $g_1(x)$ and $g_2(x)$ whose expectations exist,

- **a.** $E(ag_1(X) + bg_2(X) + c) = aE g_1(X) + bE g_2(X) + c.$
- **b.** If $g_1(x) \geq 0$ for all x, then $E g_1(X) \geq 0$.
- **c.** If $g_1(x) \geq g_2(x)$ for all x, then $E g_1(X) \geq E g_2(X)$.
- **d.** If $a \leq g_1(x) \leq b$ for all x, then $a \leq E g_1(X) \leq b$.

Definition 2.3.1 For each integer n, the nth moment of X (or $F_X(x)$), μ'_n , is

$$\mu'_n = \mathrm{E} X^n$$
.

The nth central moment of X, μ_n , is

$$\mu_n = \mathrm{E}(X - \mu)^n,$$

where $\mu = \mu'_1 = \mathbf{E} X$.

Definition 2.3.2 The variance of a random variable X is its second central moment, $\operatorname{Var} X = \operatorname{E}(X - \operatorname{E} X)^2$. The positive square root of $\operatorname{Var} X$ is the standard deviation of X.

Theorem 2.3.4 If X is a random variable with finite variance, then for any constants a and b,

$$Var(aX + b) = a^2 Var X.$$

Definition 2.3.6 Let X be a random variable with cdf F_X . The moment generating function (mgf) of X (or F_X), denoted by $M_X(t)$, is

$$M_X(t) = \mathbf{E} \, e^{tX},$$

Theorem 2.3.11 Let $F_X(x)$ and $F_Y(y)$ be two cdfs all of whose moments exist.

- **a.** If X and Y have bounded support, then $F_X(u) = F_Y(u)$ for all u if and only if $EX^r = EY^r$ for all integers $r = 0, 1, 2, \ldots$.
- b. If the moment generating functions exist and $M_X(t) = M_Y(t)$ for all t in some neighborhood of 0, then $F_X(u) = F_Y(u)$ for all u.

Theorem 2.3.12 (Convergence of mgfs) Suppose $\{X_i, i = 1, 2, ...\}$ is a sequence of random variables, each with mgf $M_{X_i}(t)$. Furthermore, suppose that

$$\lim_{t\to\infty} M_{X_t}(t) = M_X(t), \quad \text{for all t in a neighborhood of 0},$$

and $M_X(t)$ is an mgf. Then there is a unique cdf F_X whose moments are determined by $M_X(t)$ and, for all x where $F_X(x)$ is continuous, we have

$$\lim_{i\to\infty}F_{X_i}(x)=F_X(x).$$

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Theorem 2.3.15 For any constants a and b, the mgf of the random variable aX + b is given by

$$M_{aX+b}(t) = e^{bt} M_X(at).$$

Chapter 3: Common Families of Distributions

A family of pdfs or pmfs is called an exponential family if it can be expressed as

(3.4.1)
$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right).$$

Here $h(x) \geq 0$ and $t_1(x), \ldots, t_k(x)$ are real-valued functions of the observation x (they cannot depend on θ), and $c(\theta) \geq 0$ and $w_1(\theta), \ldots, w_k(\theta)$ are real-valued functions of the possibly vector-valued parameter θ (they cannot depend on x).

Definition 3.5.5 Let f(x) be any pdf. Then for any μ , $-\infty < \mu < \infty$, and any $\sigma > 0$, the family of pdfs $(1/\sigma)f((x-\mu)/\sigma)$, indexed by the parameter (μ, σ) , is called the location-scale family with standard pdf f(x); μ is called the location parameter and σ is called the scale parameter.

Theorem 3.5.6 Let $f(\cdot)$ be any pdf. Let μ be any real number, and let σ be any positive real number. Then X is a random variable with pdf $(1/\sigma)f((x-\mu)/\sigma)$ if and only if there exists a random variable Z with pdf f(z) and $X = \sigma Z + \mu$.

Theorem 3.6.1 (Chebychev's Inequality) Let X be a random variable and let g(x) be a nonnegative function. Then, for any r > 0,

$$P(g(X) \ge r) \le \frac{\mathrm{E}g(X)}{r}.$$

Chapter 4: Multiple Random Variables

If (X,Y) is a discrete bivariate random vector, then there is only a countable set of values for which the joint pmf of (X,Y) is positive. Call this set \mathcal{A} . Define the set $\mathcal{B} = \{(u,v) : u = g_1(x,y) \text{ and } v = g_2(x,y) \text{ for some } (x,y) \in \mathcal{A}\}$. Then \mathcal{B} is the countable set of possible values for the discrete random vector (U,V). And if, for any $(u,v) \in \mathcal{B}$, A_{uv} is defined to be $\{(x,y) \in \mathcal{A} : g_1(x,y) = u \text{ and } g_2(x,y) = v\}$, then the joint pmf of (U,V), $f_{U,V}(u,v)$, can be computed from the joint pmf of (X,Y) by

$$(4.3.1) \ f_{U,V}(u,v) = P(U=u,V=v) = P((X,Y) \in A_{uv}) = \sum_{(x,y) \in A_{uv}} f_{X,Y}(x,y).$$

If (X,Y) is a continuous random vector with joint pdf $f_{X,Y}(x,y)$, then the joint pdf of (U,V) can be expressed in terms of $f_{X,Y}(x,y)$ in a manner analogous to (2.1.8). As before, $\mathcal{A} = \{(x,y): f_{X,Y}(x,y) > 0\}$ and $\mathcal{B} = \{(u,v): u = g_1(x,y) \text{ and } v = g_2(x,y) \text{ for some } (x,y) \in \mathcal{A}\}$. The joint pdf $f_{U,V}(u,v)$ will be positive on the set \mathcal{B} . For the simplest version of this result we assume that the transformation $u = g_1(x,y)$ and $v = g_2(x,y)$ defines a one-to-one transformation of \mathcal{A} onto \mathcal{B} . The transformation is onto because of the definition of \mathcal{B} . We are assuming that for each $(u,v) \in \mathcal{B}$ there is only one $(x,y) \in \mathcal{A}$ such that $(u,v) = (g_1(x,y), g_2(x,y))$. For such a one-to-one, onto transformation, we can solve the equations $u = g_1(x,y)$ and $v = g_2(x,y)$ for x and y in terms of u and v. We will denote this inverse transformation by $x = h_1(u,v)$ and $y = h_2(u,v)$. The role played by a derivative in the univariate case is now played by a quantity called the Jacobian of the transformation. This function of (u,v), denoted by J, is the determinant of a matrix of partial derivatives. It is defined by

$$J = egin{bmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \end{bmatrix} = rac{\partial x}{\partial u} rac{\partial y}{\partial v} - rac{\partial y}{\partial u} rac{\partial x}{\partial v},$$

where

$$\frac{\partial x}{\partial u} = \frac{\partial h_1(u,v)}{\partial u}, \quad \frac{\partial x}{\partial v} = \frac{\partial h_1(u,v)}{\partial v}, \quad \frac{\partial y}{\partial u} = \frac{\partial h_2(u,v)}{\partial u}, \quad \text{and} \quad \frac{\partial y}{\partial v} = \frac{\partial h_2(u,v)}{\partial v}.$$

We assume that J is not identically 0 on \mathcal{B} . Then the joint pdf of (U,V) is 0 outside the set \mathcal{B} and on the set \mathcal{B} is given by

$$(4.3.2) f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v))|J|,$$

Lemma 4.2.7 Let (X,Y) be a bivariate random vector with joint pdf or pmf f(x,y). Then X and Y are independent random variables if and only if there exist functions g(x) and h(y) such that, for every $x \in \Re$ and $y \in \Re$,

$$f(x,y) = g(x)h(y).$$

Theorem 4.2.12 Let X and Y be independent random variables with moment generating functions $M_X(t)$ and $M_Y(t)$. Then the moment generating function of the random variable Z = X + Y is given by

$$M_Z(t) = M_X(t)M_Y(t).$$

Theorem 4.3.5 Let X and Y be independent random variables. Let q(x) be a function only of x and h(y) be a function only of y. Then the random variables U = g(X)and V = h(Y) are independent.

Theorem 4.4.3 If X and Y are any two random variables, then

$$(4.4.1) EX = E(E(X|Y)),$$

provided that the expectations exist.

Theorem 4.4.7 (Conditional variance identity) For any two random variables X and Y.

$$(4.4.4) \operatorname{Var} X = \operatorname{E} \left(\operatorname{Var}(X|Y) \right) + \operatorname{Var} \left(\operatorname{E}(X|Y) \right),$$

provided that the expectations exist.

Definition 4.5.1 The covariance of X and Y is the number defined by

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$

Theorem 4.5.5 If X and Y are independent random variables, then Cov(X,Y) = 0and $\rho_{XY} = 0$.

Theorem 4.5.6 If X and Y are any two random variables and a and b are any two constants, then

$$Var(aX + bY) = a^{2}Var X + b^{2}Var Y + 2abCov(X, Y).$$

If X and Y are independent random variables, then

$$Var(aX + bY) = a^{2}Var X + b^{2}Var Y.$$

Theorem 4.7.7 (Jensen's Inequality) For any random variable X, if g(x) is a convex function, then

$$Eg(X) \ge g(EX)$$
.

Equality holds if and only if, for every line a + bx that is tangent to g(x) at x = EX. P(a(X) = a + bX) = 1.

Chapter 5: Multiple Random Variables

Theorem 5.2.6 Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

- **a.** $\mathbf{E}\bar{X}=\mu$,
- **b.** Var $\bar{X} = \frac{\sigma^2}{n}$, **c.** ES² = σ^2 .

Theorem 5.2.7 Let X_1, \ldots, X_n be a random sample from a population with mgf $M_X(t)$. Then the maf of the sample mean is

$$M_{\bar{X}}(t) = \left[M_X(t/n) \right]^n.$$

Theorem 5.2.9 If X and Y are independent continuous random variables with pdfs $f_X(x)$ and $f_Y(y)$, then the pdf of Z = X + Y is

(5.2.3)
$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z-w) \, dw.$$

Theorem 5.4.4 Let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics of a random sample, X_1, \ldots, X_n , from a continuous population with cdf $F_X(x)$ and pdf $f_X(x)$. Then the pdf of $X_{(j)}$ is

(5.4.4)
$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}.$$

Theorem 5.4.6 Let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics of a random sample, X_1, \ldots, X_n , from a continuous population with cdf $F_X(x)$ and pdf $f_X(x)$. Then the joint pdf of $X_{(i)}$ and $X_{(j)}, 1 \le i < j \le n$, is

(5.4.7)
$$f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f_X(u) f_X(v) [F_X(u)]^{i-1} \times [F_X(v) - F_X(u)]^{j-1-i} [1 - F_X(v)]^{n-j}$$

for $-\infty < u < v < \infty$.

Definition 5.5.1 A sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n\to\infty}P(|X_n-X|\geq\epsilon)=0\quad\text{or, equivalently,}\quad \lim_{n\to\infty}P(|X_n-X|<\epsilon)=1.$$

Theorem 5.5.2 (Weak Law of Large Numbers) Let X_1, X_2, \ldots be iid random variables with $EX_i = \mu$ and $Var X_i = \sigma^2 < \infty$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Then,

for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1;$$

that is, \bar{X}_n converges in probability to μ .

Theorem 5.5.4 Suppose that X_1, X_2, \ldots converges in probability to a random variable X and that h is a continuous function. Then $h(X_1), h(X_2), \ldots$ converges in probability to h(X).

Definition 5.5.6 A sequence of random variables, X_1, X_2, \ldots , converges almost surely to a random variable X if, for every $\epsilon > 0$,

$$P(\lim_{n\to\infty}|X_n-X|<\epsilon)=1.$$

Theorem 5.5.9 (Strong Law of Large Numbers) Let X_1, X_2, \ldots be iid random variables with $EX_i = \mu$ and $Var X_i = \sigma^2 < \infty$, and define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Then, for every $\epsilon > 0$,

$$P(\lim_{n\to\infty}|\bar{X}_n-\mu|<\epsilon)=1;$$

that is, \bar{X}_n converges almost surely to μ .

Definition 5.5.10 A sequence of random variables, X_1, X_2, \ldots , converges in distribution to a random variable X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

at all points x where $F_X(x)$ is continuous.

Theorem 5.5.12 If the sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X, the sequence also converges in distribution to X.

Theorem 5.5.13 The sequence of random variables, X_1, X_2, \ldots , converges in probability to a constant μ if and only if the sequence also converges in distribution to μ . That is, the statement

$$P(|X_n - \mu| > \varepsilon) \to 0 \text{ for every } \varepsilon > 0$$

is equivalent to

$$P(X_n \le x) \to \begin{cases} 0 & \text{if } x < \mu \\ 1 & \text{if } x > \mu. \end{cases}$$

Theorem 5.5.15 (Stronger form of the Central Limit Theorem) Let X_1, X_2, \ldots be a sequence of iid random variables with $EX_i = \mu$ and $0 < Var X_i = \sigma^2 < \infty$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Let $G_n(x)$ denote the cdf of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$. Then, for any $x, -\infty < x < \infty$,

$$\lim_{n\to\infty}G_n(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-y^2/2}\,dy;$$

that is, $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting standard normal distribution.

Theorem 5.5.17 (Slutsky's Theorem) If $X_n \to X$ in distribution and $Y_n \to a$, a constant, in probability, then

- **a.** $Y_n X_n \to aX$ in distribution.
- **b.** $X_n + Y_n \rightarrow X + a$ in distribution.

Theorem 5.5.24 (Delta Method) Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to n(0, \sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that $g'(\theta)$ exists and is not 0. Then

(5.5.10)
$$\sqrt{n}[g(Y_n) - g(\theta)] \to n(0, \sigma^2[g'(\theta)]^2) \text{ in distribution.}$$

Theorem 5.5.26 (Second-order Delta Method) Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to n(0, \sigma^2)$ in distribution. For a given function g and a specific value of θ , suppose that $g'(\theta) = 0$ and $g''(\theta)$ exists and is not 0. Then

(5.5.13)
$$n[g(Y_n) - g(\theta)] \to \sigma^2 \frac{g''(\theta)}{2} \chi_1^2 \text{ in distribution.}$$

Chapter 6: Principles of Data Reduction

Definition 6.2.1 A statistic $T(\mathbf{X})$ is a *sufficient statistic for* θ if the conditional distribution of the sample \mathbf{X} given the value of $T(\mathbf{X})$ does not depend on θ .

Theorem 6.2.2 If $p(\mathbf{x}|\theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t|\theta)$ is the pdf or pmf of $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} in the sample space, the ratio $p(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)$ is constant as a function of θ .

Theorem 6.2.6 (Factorization Theorem) Let $f(\mathbf{x}|\theta)$ denote the joint pdf or pmf of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ ,

(6.2.3)
$$f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}).$$

Theorem 6.2.10 Let X_1, \ldots, X_n be iid observations from a pdf or pmf $f(x|\theta)$ that belongs to an exponential family given by

$$f(x|oldsymbol{ heta}) = h(x)c(oldsymbol{ heta})\exp\left(\sum_{i=1}^k w_i(oldsymbol{ heta})t_i(x)
ight),$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d), d \leq k$. Then

$$T(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \dots, \sum_{j=1}^n t_k(X_j)\right)$$

is a sufficient statistic for θ .

Definition 6.2.11 A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.

Theorem 6.2.13 Let $f(\mathbf{x}|\theta)$ be the pmf or pdf of a sample \mathbf{X} . Suppose there exists a function $T(\mathbf{x})$ such that, for every two sample points \mathbf{x} and \mathbf{y} , the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

Definition 6.2.21 Let $f(t|\theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability distributions is called *complete* if $E_{\theta}g(T) = 0$ for all θ implies $P_{\theta}(g(T) = 0) = 1$ for all θ . Equivalently, $T(\mathbf{X})$ is called a *complete statistic*.

Theorem 6.2.25 (Complete statistics in the exponential family) Let X_1, \ldots, X_n be iid observations from an exponential family with pdf or pmf of the form

(6.2.7)
$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{j=1}^{k} w(\theta_j)t_j(x)\right),$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$. Then the statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is complete as long as the parameter space Θ contains an open set in \Re^k .

Chapter 7: Point Estimation

Theorem 7.2.10 (Invariance property of MLEs) If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Definition 7.3.7 An estimator W^* is a best unbiased estimator of $\tau(\theta)$ if it satisfies $E_{\theta}W^* = \tau(\theta)$ for all θ and, for any other estimator W with $E_{\theta}W = \tau(\theta)$, we have $\operatorname{Var}_{\theta}W^* \leq \operatorname{Var}_{\theta}W$ for all θ . W^* is also called a uniform minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$.

Theorem 7.3.9 (Cramér-Rao Inequality) Let X_1, \ldots, X_n be a sample with pdf $f(\mathbf{x}|\theta)$, and let $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} \mathbf{E}_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} \left[W(\mathbf{x}) f(\mathbf{x}|\theta) \right] d\mathbf{x}$$

(7.3.4) and

$$\operatorname{Var}_{\theta}W(\mathbf{X}) < \infty.$$

Then

(7.3.5)
$$\operatorname{Var}_{\theta} (W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta} \operatorname{E}_{\theta} W(\mathbf{X})\right)^{2}}{\operatorname{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)\right)^{2}\right)}.$$

Corollary 7.3.10 (Cramér-Rao Inequality, iid case) If the assumptions of Theorem 7.3.9 are satisfied and, additionally, if X_1, \ldots, X_n are iid with pdf $f(x|\theta)$, then

$$\operatorname{Var}_{\boldsymbol{\theta}} W(\mathbf{X}) \geq \frac{\left(\frac{d}{d\boldsymbol{\theta}} \operatorname{E}_{\boldsymbol{\theta}} W(\mathbf{X})\right)^{2}}{n \operatorname{E}_{\boldsymbol{\theta}} \left(\left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f(X|\boldsymbol{\theta})\right)^{2}\right)}.$$

Lemma 7.3.11 If $f(x|\theta)$ satisfies

$$rac{d}{d heta} \mathrm{E}_{ heta} igg(rac{\partial}{\partial heta} \log f(X| heta) igg) = \int rac{\partial}{\partial heta} \left[\left(rac{\partial}{\partial heta} \log f(x| heta)
ight) f(x| heta)
ight] \, dx$$

(true for an exponential family), then

$$\mathrm{E}_{ heta}\!\left(\left(rac{\partial}{\partial heta}\log f(X| heta)
ight)^2
ight) = -\mathrm{E}_{ heta}\!\left(rac{\partial^2}{\partial heta^2}\log f(X| heta)
ight).$$

Corollary 7.3.15 (Attainment) Let X_1, \ldots, X_n be iid $f(x|\theta)$, where $f(x|\theta)$ satisfies the conditions of the Cramér-Rao Theorem. Let $L(\theta|\mathbf{x}) = \prod_{i=1}^n f(x_i|\theta)$ denote the likelihood function. If $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ is any unbiased estimator of $\tau(\theta)$, then $W(\mathbf{X})$ attains the Cramér-Rao Lower Bound if and only if

(7.3.12)
$$a(\theta)[W(\mathbf{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x})$$

for some function $a(\theta)$.

Theorem 7.3.17 (Rao–Blackwell) Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathrm{E}(W|T)$. Then $\mathrm{E}_{\theta}\phi(T) = \tau(\theta)$ and $\mathrm{Var}_{\theta}\phi(T) \leq \mathrm{Var}_{\theta}W$ for all θ ; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Theorem 7.3.19 If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Theorem 7.3.20 If $E_{\theta}W = \tau(\theta)$, W is the best unbiased estimator of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of 0.

Theorem 7.3.23 Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

Chapter 8: Hypothesis Testing

Definition 8.2.1 The *likelihood ratio test statistic* for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta|\mathbf{x})}{\sup_{\Theta} L(\theta|\mathbf{x})}.$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{\mathbf{x} \colon \lambda(\mathbf{x}) \le c\}$, where c is any number satisfying $0 \le c \le 1$.

Theorem 8.2.4 If $T(\mathbf{X})$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(\mathbf{x})$ are the LRT statistics based on T and \mathbf{X} , respectively, then $\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$ for every \mathbf{x} in the sample space.

Definition 8.3.1 The power function of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$.

Definition 8.3.5 For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a *size* α *test* if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$.

Definition 8.3.6 For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$.

Definition 8.3.9 A test with power function $\beta(\theta)$ is *unbiased* if $\beta(\theta') \ge \beta(\theta'')$ for every $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$.

Definition 8.3.11 Let \mathcal{C} be a class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in class \mathcal{C} , with power function $\beta(\theta)$, is a uniformly most powerful (UMP) class \mathcal{C} test if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .

Theorem 8.3.12 (Neyman-Pearson Lemma) Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_i is $f(\mathbf{x}|\theta_i), i = 0, 1$, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$

(8.3.1) and

$$\mathbf{x} \in R^{\mathbf{c}}$$
 if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$,

for some $k \geq 0$, and

$$(8.3.2) \alpha = P_{\theta_0}(\mathbf{X} \in R).$$

Then

- **a.** (Sufficiency) Any test that satisfies (8.3.1) and (8.3.2) is a UMP level α test.
- b. (Necessity) If there exists a test satisfying (8.3.1) and (8.3.2) with k > 0, then every UMP level α test is a size α test (satisfies (8.3.2)) and every UMP level α test satisfies (8.3.1) except perhaps on a set A satisfying $P_{\theta_0}(\mathbf{X} \in A) = P_{\theta_1}(\mathbf{X} \in A) = 0$.

Corollary 8.3.13 Consider the hypothesis problem posed in Theorem 8.3.12. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T corresponding to θ_i , i=0,1. Then any test based on T with rejection region S (a subset of the sample space of T) is a UMP level α test if it satisfies

$$t \in S$$
 if $g(t|\theta_1) > kg(t|\theta_0)$

(8.3.4) and

$$t \in S^{c}$$
 if $g(t|\theta_1) < kg(t|\theta_0)$,

for some $k \geq 0$, where

$$(8.3.5) \alpha = P_{\theta_0}(T \in S).$$

Definition 8.3.16 A family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_2 > \theta_1$, $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (nonincreasing or nondecreasing) function of t on $\{t: g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\}$. Note that c/0 is defined as ∞ if 0 < c.

Theorem 8.3.17 (Karlin–Rubin) Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t|\theta): \theta \in \Theta\}$ of T has an MLR.* Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$. *Assumes nondecreasing LR.

Chapter 9: Interval Estimation

Definition 9.1.1 An interval estimate of a real-valued parameter θ is any pair of functions, $L(x_1, \ldots, x_n)$ and $U(x_1, \ldots, x_n)$, of a sample that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X} = \mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called an interval estimator.

Definition 9.1.4 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the coverage probability of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the true parameter, θ . In symbols, it is denoted by either $P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$ or $P(\theta \in [L(\mathbf{X}), U(\mathbf{X})]|\theta)$.

Definition 9.1.5 For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the confidence coefficient of $[L(\mathbf{X}), U(\mathbf{X})]$ is the infimum of the coverage probabilities, $\inf_{\theta} P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$.

Theorem 9.2.2 For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each $\mathbf{x} \in \mathcal{X}$, define a set $C(\mathbf{x})$ in the parameter space by

(9.2.1)
$$C(\mathbf{x}) = \{\theta_0 \colon \mathbf{x} \in A(\theta_0)\}.$$

Then the random set $C(\mathbf{X})$ is a $1-\alpha$ confidence set. Conversely, let $C(\mathbf{X})$ be a $1-\alpha$ confidence set. For any $\theta_0 \in \Theta$, define

$$A(\theta_0) = \{\mathbf{x} \colon \theta_0 \in C(\mathbf{x})\}.$$

Then $A(\theta_0)$ is the acceptance region of a level α test of H_0 : $\theta = \theta_0$.

Chapter 10: Asymptotic Evaluations

Definition 10.1.1 A sequence of estimators $W_n = W_n(X_1, \ldots, X_n)$ is a consistent sequence of estimators of the parameter θ if, for every $\epsilon > 0$ and every $\theta \in \Theta$.

(10.1.1)
$$\lim_{n\to\infty} P_{\theta}(|W_n - \theta| < \epsilon) = 1.$$

Theorem 10.1.3 If W_n is a sequence of estimators of a parameter θ satisfying

- i. $\lim_{n\to\infty} \operatorname{Var}_{\theta} W_n = 0$,
- ii. $\lim_{n\to\infty} \operatorname{Bias}_{\theta} W_n = 0$,

for every $\theta \in \Theta$, then W_n is a consistent sequence of estimators of θ .

Definition 10.1.9 For an estimator T_n , suppose that $k_n(T_n - \tau(\theta)) \to n(0, \sigma^2)$ in distribution. The parameter σ^2 is called the *asymptotic variance* or *variance of the limit distribution* of T_n .

Definition 10.1.11 A sequence of estimators W_n is asymptotically efficient for a parameter $\tau(\theta)$ if $\sqrt{n}[W_n - \tau(\theta)] \to n[0, v(\theta)]$ in distribution and

$$v(\theta) = \frac{[\tau'(\theta)]^2}{\mathrm{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 \right)};$$

that is, the asymptotic variance of W_n achieves the Cramér-Rao Lower Bound.

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X_1, X_2, \ldots , be iid $f(x|\theta)$, let $\hat{\theta}$ denote the MLE of θ , and let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions in Miscellanea 10.6.2 on $f(x|\theta)$ and, hence, $L(\theta|\mathbf{x})$,

$$\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \to n[0, v(\theta)],$$

where $v(\theta)$ is the Cramér-Rao Lower Bound. That is, $\tau(\hat{\theta})$ is a consistent and asymptotically efficient estimator of $\tau(\theta)$.

Definition 10.1.16 If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \to n[0, \sigma_W^2]$$

$$\sqrt{n}[V_n - \tau(\theta)] \to n[0, \sigma_V^2]$$

in distribution, the asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}.$$

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple H_0) For testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, suppose X_1, \ldots, X_n are iid $f(x|\theta)$, $\hat{\theta}$ is the MLE of θ , and $f(x|\theta)$ satisfies the regularity conditions in Miscellanea 10.6.2. Then under H_0 , as $n \to \infty$,

$$-2\log\lambda(\mathbf{X})\to\chi_1^2$$
 in distribution,

where χ_1^2 is a χ^2 random variable with 1 degree of freedom.

Theorem 10.3.3 Let X_1, \ldots, X_n be a random sample from a pdf or pmf $f(x|\theta)$. Under the regularity conditions in Miscellanea 10.6.2, if $\theta \in \Theta_0$, then the distribution of the statistic $-2\log \lambda(\mathbf{X})$ converges to a chi squared distribution as the sample size $n \to \infty$. The degrees of freedom of the limiting distribution is the difference between the number of free parameters specified by $\theta \in \Theta_0$ and the number of free parameters specified by $\theta \in \Theta$.