UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK4011/9011 — Statistical Inference Theory
Day of examination:	Wednesday, December 8, 2021
Examination hours:	15:00-19:00
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	Approved calculator and "List of formulas for STK4011/9011 – Statistical Inference Theory (2021)".

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Assume that X_1, \ldots, X_n are independent and identically distributed $U(0, \theta)$ random variables with probability density function

$$f(x \mid \theta) = \begin{cases} 1/\theta, & \text{if } 0 < x < \theta, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 0$.

- (a) Find the probability density function of $X_{(n)} = \max_{i}(X_i)$.
- (b) Show that both $\hat{\theta} = 2\bar{X}$ and $\tilde{\theta} = X_{(n)}(n+1)/n$ are unbiased estimators of θ .
- (c) Show that $Var(\tilde{\theta}) \leq Var(\hat{\theta})$.
- (d) Find a sufficient statistic for θ .

Problem 2

Assume that X_1, \ldots, X_n are independent and identically distributed Pareto (θ, ν) random variables with probability density function

$$f(x \mid \theta, \nu) = \begin{cases} \frac{\theta \nu^{\theta}}{x^{\theta+1}}, & \text{if } x \ge \nu, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 0$ and $\nu > 0$.

(a) Show that the maximum likelihood estimators of θ and ν are given by

$$\hat{\theta} = \frac{n}{T(\boldsymbol{X})}$$
 and $\hat{\nu} = X_{(1)},$

where $T(\mathbf{X}) = \log \left[(\prod_{i=1}^{n} X_i) / (X_{(1)})^n \right]$ and $X_{(1)} = \min_i (X_i)$.

(Continued on page 2.)

(b) Assuming that ν is unknown, show that the likelihood ratio test statistic for testing

$$H_0: \theta = 1$$
 versus $H_1: \theta \neq 1$

is given by

$$\lambda(\boldsymbol{X}) = \left(\frac{T(\boldsymbol{X})}{n}\right)^n e^{-T(\boldsymbol{X})+n}.$$

- (c) Show that the likelihood ratio test is equivalent to rejecting H_0 if $T(\mathbf{X}) \leq c_1$ or $T(\mathbf{X}) \geq c_2$ for some constants $0 < c_1 < c_2$.
- (d) Assuming you know the distribution of $T(\mathbf{X})$ under H_0 , explain how you would choose c_1 and c_2 to obtain a likelihood ratio test of size α .

Problem 3

Assume that X_1, \ldots, X_n is a random sample from an exponential population with probability density function

$$f(x \mid \lambda) = \lambda e^{-\lambda x}, \quad 0 \le x < \infty,$$

where $\lambda > 0$. It can be shown that the maximum likelihood estimator is given by

$$\hat{\lambda}_n = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\overline{X}_n}$$

and its expectation and variance are

$$E(\hat{\lambda}_n) = \frac{n}{n-1}\lambda$$
 and $Var(\hat{\lambda}_n) = \frac{\lambda^2 n^2}{(n-1)^2(n-2)}.$

- (a) Show that $\sum_{i=1}^{n} X_i$ is a sufficient and complete statistic of λ .
- (b) Find the best unbiased estimator of λ and compute its variance.
- (c) Check if the best unbiased estimator from (b) attains the Cramer-Rao lower bound.

Now, for each i = 1, ..., n, define the random variables

$$Y_i = \begin{cases} 1, & \text{if } X_i > 1, \\ 0, & \text{otherwise,} \end{cases}$$

and define the following estimator of λ :

$$\tilde{\lambda}_n = -\log\left(\frac{\sum_{i=1}^n Y_i}{n}\right) = -\log(\overline{Y}_n).$$

Note that $Y_i \sim \text{Bernoulli}(p)$ with $p = P(X_i > 1)$.

- (d) Show that $\tilde{\lambda}_n$ is a consistent estimator of λ .
- (e) Show that $\sqrt{n}(\tilde{\lambda}_n \lambda) \to N(0, e^{\lambda} 1)$ in distribution as $n \to \infty$.
- (f) Find the asymptotic relative efficiency (ARE) of $\tilde{\lambda}_n$ with respect to the maximum likelihood estimator $\hat{\lambda}_n$. Which estimator is better based on the asymptotic variance?