UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:
STK4011/9011 - Statistical Inference Theory
Day of examination: Wednesday, December 8, 2021
Examination hours: 15:00-19:00
This problem set consists of 2 pages.
Appendices: None
Permitted aids: Approved calculator and "List of formulas for STK4011/9011 - Statistical Inference Theory (2021)".

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Assume that X_{1}, \ldots, X_{n} are independent and identically distributed $U(0, \theta)$ random variables with probability density function

$$
f(x \mid \theta)= \begin{cases}1 / \theta, & \text { if } 0<x<\theta \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta>0$.
(a) Find the probability density function of $X_{(n)}=\max _{i}\left(X_{i}\right)$.
(b) Show that both $\hat{\theta}=2 \bar{X}$ and $\tilde{\theta}=X_{(n)}(n+1) / n$ are unbiased estimators of θ.
(c) Show that $\operatorname{Var}(\tilde{\theta}) \leq \operatorname{Var}(\hat{\theta})$.
(d) Find a sufficient statistic for θ.

Problem 2

Assume that X_{1}, \ldots, X_{n} are independent and identically distributed $\operatorname{Pareto}(\theta, \nu)$ random variables with probability density function

$$
f(x \mid \theta, \nu)= \begin{cases}\frac{\theta \nu^{\theta}}{x^{\theta+1}}, & \text { if } x \geq \nu \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta>0$ and $\nu>0$.
(a) Show that the maximum likelihood estimators of θ and ν are given by

$$
\hat{\theta}=\frac{n}{T(\boldsymbol{X})} \quad \text { and } \quad \hat{\nu}=X_{(1)},
$$

where $T(\boldsymbol{X})=\log \left[\left(\prod_{i=1}^{n} X_{i}\right) /\left(X_{(1)}\right)^{n}\right]$ and $X_{(1)}=\min _{i}\left(X_{i}\right)$.
(b) Assuming that ν is unknown, show that the likelihood ratio test statistic for testing

$$
H_{0}: \theta=1 \quad \text { versus } \quad H_{1}: \theta \neq 1
$$

is given by

$$
\lambda(\boldsymbol{X})=\left(\frac{T(\boldsymbol{X})}{n}\right)^{n} e^{-T(\boldsymbol{X})+n}
$$

(c) Show that the likelihood ratio test is equivalent to rejecting H_{0} if $T(\boldsymbol{X}) \leq c_{1}$ or $T(\boldsymbol{X}) \geq c_{2}$ for some constants $0<c_{1}<c_{2}$.
(d) Assuming you know the distribution of $T(\boldsymbol{X})$ under H_{0}, explain how you would choose c_{1} and c_{2} to obtain a likelihood ratio test of size α.

Problem 3

Assume that X_{1}, \ldots, X_{n} is a random sample from an exponential population with probability density function

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}, \quad 0 \leq x<\infty
$$

where $\lambda>0$. It can be shown that the maximum likelihood estimator is given by

$$
\hat{\lambda}_{n}=\frac{n}{\sum_{i=1}^{n} X_{i}}=\frac{1}{\bar{X}_{n}}
$$

and its expectation and variance are

$$
E\left(\hat{\lambda}_{n}\right)=\frac{n}{n-1} \lambda \quad \text { and } \quad \operatorname{Var}\left(\hat{\lambda}_{n}\right)=\frac{\lambda^{2} n^{2}}{(n-1)^{2}(n-2)}
$$

(a) Show that $\sum_{i=1}^{n} X_{i}$ is a sufficient and complete statistic of λ.
(b) Find the best unbiased estimator of λ and compute its variance.
(c) Check if the best unbiased estimator from (b) attains the Cramer-Rao lower bound.

Now, for each $i=1, \ldots, n$, define the random variables

$$
Y_{i}= \begin{cases}1, & \text { if } X_{i}>1 \\ 0, & \text { otherwise }\end{cases}
$$

and define the following estimator of λ :

$$
\tilde{\lambda}_{n}=-\log \left(\frac{\sum_{i=1}^{n} Y_{i}}{n}\right)=-\log \left(\bar{Y}_{n}\right)
$$

Note that $Y_{i} \sim \operatorname{Bernoulli}(p)$ with $p=P\left(X_{i}>1\right)$.
(d) Show that $\tilde{\lambda}_{n}$ is a consistent estimator of λ.
(e) Show that $\sqrt{n}\left(\tilde{\lambda}_{n}-\lambda\right) \rightarrow N\left(0, e^{\lambda}-1\right)$ in distribution as $n \rightarrow \infty$.
(f) Find the asymptotic relative efficiency (ARE) of $\tilde{\lambda}_{n}$ with respect to the maximum likelihood estimator $\hat{\lambda}_{n}$. Which estimator is better based on the asymptotic variance?

