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Preface

This book builds on Hello, here is some text without a meaning. This text should show

what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and

some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives

you information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of words

should match the language.

(xx then several crisp paragraphs here, on the carrying ideas behind and structure

of the book: exercises and stories. a partly flipped classroom, with direct participation

from the first pages of each chapter, also on prerequisties: linear algebra, with matrix

theory, etc.; calcululs, with functions of one or more variables, partial derivatives, etc.;

programming, in R or Python or other appropriate language, for simulation etc.)

The authors owe special thanks to Céline Cunen, Gudmund Hermansen, Tore Schwe-

der, for having contributed significantly to several of our Statistical Stories, and also for

always pleasant and inspiring long-term collaborations. Many thanks are also due to a

long list of colleagues and friends, who have taken part in discussions and rounds of clari-

fication of relevance to various exercises and stories in our book: Marthe Aastveit, Patrick

Ball, Bear Braumoeller, Aaron Clauset, Dennis Cristensen, Ingrid Dæhlen, Åsa Engel-

stad, Arnoldo Frigessi, Ingrid Glad, H̊avard Hegre, Aliaksandr Hubin, Ingrid Hobæk Haff,

Kristoffer Hellton, Bjørn Jamtveit, Martin Jullum, Vinnie Ko, Alexander Koning, Per

Mykland, Jonas Moss, H̊avard Mokleiv Nyg̊ard, Lars Olsen, Catharina Stoltenberg, Gun-

nar Taraldsen, Ingunn Fride Tvete, Sam-Erik Walker, Lars Walløe, Jonathan Williams,

Lan Zhang.

We have also benefited, directly and indirectly, through the collective efforts of

grander wide-horizoned funded projects: the FocuStat: Focus Driven Statistical Inference

with Complex Data 2014-2019 project (led by Hjort) at the Department of Mathematics,

University of Oslo, funded by the Norwegian Research Council; the Stability and Change

2022-2023 project (led by Hegre and Hjort) at the Centre for Advanced Study, Academy

of Science and Letters, Oslo; the grand Integreat: The Norwegian Centre for Knowledge-

Driven Machine Learning 2023-2033 Centre of Excellence (led by Frigessi and Glad),

Oslo, funded by the Norwegian Research Council. We finally acknowledge with grati-
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tude a partial support stipend from the Norwegian Non-Fiction Writers and Translators

Association (Norsk faglitterær forfatter- og oversetterforening).

(xx Then current time plan, as of 13-Aug-2023, possibly optimistic xx)

Nils Lid Hjort and Emil Aas Stoltenberg

Blindern, some day in 2023
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Short & crisp
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I.1

Statistical models

In this chapter we study families of distributions and densities that we are to meet

time and again in this book. A partial list includes the uniform, normal and multi-

normal, chi-squared, the t and the F, Gamma, exponential, Beta, Dirichlet, Poisson,

compound Poisson, binomial, multinomial, geometric. These families have param-

eters, with values to be set for certain studies or illustrations, or for purposes of

confidence setting and tests; more generally these parameters are estimated from

data, as we return to in several later chapters. We also learn fruitful ways of ex-

tending and mixing given families of distributions. Mathematical techniques for

deriving crucial properties include those of moment-generating functions. In con-

nection with studying the general exponential family of models, which has various

classic models as special cases, we also discuss what it means for a function of a

dataset to be sufficient, with related themes returned to in later chapters.

1.A Chapter introduction

The aim of this chapter is to go through a generous list of parametric statistical models,

from the well-known distributions connected with the normal model, to the Beta and the

Gamma, to the binomial, Poisson, and negative binomial for discrete data, etc., along

with deriving their basic properties. These models turn up repeatedly in later chapters

and in our Statistical Stories, with variations, as direct models for data, or as building

blocks for more complicated constructions. The normal and multinormal distributions

play important roles, also because these become fruitful simple-to-use approximations to

sometimes much more complicated exact distributions.

These models, for probability theory and statistics, rely on deeper mathematical

constructions and considerations, with random variables being measurable functions on

probability spaces, measure and integration theory, etc. For this book it has been practi-

cal to organise that body of mathematical theory in Appendix A. For the present chapter

on models we take certain notions and basic definitions for granted, with background and

more detail in this appendix. Thus we deal here with classes of distributions, parameters,

probability densities, cumulative distribution functions, conditional and marginal distri-

butions, means and variances, quantiles, correlations, and so on. Thus a model with prob-

ability density f(y) has a cumulative distribution function (c.d.f.) F (y) =
∫ y
−∞ f(y′) dy′,

3



4 Statistical models

its mean is EY =
∫
yf(y) dy, its median is F−1( 1

2 ), its variance VarY = E (Y − EY )2,

etc. There are also occasions where the double expectation rule EX = E E (X |Y ) of

Ex. ?? comes in handy.

In addition to defining and presenting a list of useful models, and diving into their

properties and inter-connections, we develop certain tools, useful also in later chapters.

These include transformations (see Ex. 1.12), moment-generating functions (see Ex. 1.20-

1.21), conditional distributions, mixtures, and simulation. (xx make sure we have a

little bit on simulation. xx) Also included is material on the general exponential family

class, which has several of the classic models as special case (see Ex. 1.57-1.59). In that

connection we also discuss the notion of a function of a dataset being sufficient (see

Ex. 1.61-1.63), foreshadowing material in Chs. 5, 6, 8.

(xx also include: negative binomial, logarithmic, Poisson compound, hypergeomet-

ric, excentric hypergeometric. briefly generating functions G(s) = E sX too. Agree on φ

and Φ as fixed notation for the standard normal density and c.d.f. And check that we

most of the time write c.d.f. check in a while the title we choose for the short & crisp

sections, here and in all later chapters. xx)

(xx just a few pointers to later chapters. CLT. normal approximations. estimation,

testing. calibrate with what’s in the abstract. we may point to more complex models,

making clear that these classic families of distributions are often used as stepping stones.

could point to Markov chains etc., but not really touching these in this chapter. also:

take care with mentions of limit distributions and CLT, which we may choose to touch

here and there, but details come in Ch. 4. xx)

1.B Distributions & densities

Ex. 1.1 The normal distribution. The perhaps most famous and broadly useful dis-

tribution in probability theory and statistics is the normal distribution, also called the

Gaußian distribution. It is also a building block for various inferred and related models

and distributions, as we learn later in the chapter. In its standard form, before we add

on two more parameters, the normal density is

φ(x) =
1√
2π

exp(− 1
2x

2) on the real line.

We call this the standard normal distribution, and write X ∼ N(0, 1) to indicate this. It

is standard in statistics and probability theory to use φ(x) for its density and Φ(x) for

its cumulative distribution function (c.d.f.).

(a) There are myriad ways of demonstrating that 1/(2π)1/2 is the correct constant here,

i.e. that I =
∫

exp(− 1
2x

2) dx = (2π)1/2. You are allowed to take this for granted, but

attempt to show it via expressing I2 as a double integral, featuring exp{− 1
2 (x2 + y2)},

and then substituting x = r cos θ and y = r sin θ, followed by the use of double integration

tools from calculus.

(b) Show that for X a standard normal, its mean is zero and its variance is one.
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(c) With X a standard normal, consider Y = µ + σX, with µ any number and σ

positive. Show that its mean and standard deviation are µ and σ, and that its density

can be writtenGauß

f(y) = φ
(y − µ

σ

) 1

σ
=

1

(2π)1/2σ
exp
{
− 1

2

(y − µ
σ

)2}
.

We write Y ∼ N(µ, σ2) to indicate this distribution. Show that P (µ − 1.96σ ≤ Y ≤
µ+ 1.96σ) = 0.95. Fint the c such that P (|Y − µ| ≤ cσ) = 0.50.

(d) With X a standard normal, consider Z = X2. Find its distribution, and show

that its density becomes g(z) = (2π)−1/2 exp(− 1
2z)/
√
z. We learn about the chi-squared

distribution in Ex. 1.32; this X2 has such a chi-squared distribution, with degrees of

freedom equal to 1, which we write as X2 ∼ χ2
1.

(e) Consider X1, X2, X3 being independent and standard normal. Work out the means

and variances of X2
1 , X2

1 + X2
2 , X2

1 + X2
2 + X2

3 . Simulate say 104 realisations of these

distributions, check their histograms, and describe their different behaviour close to zero.

(f) Consider the enigmatic density f(x) = e−πx
2

, featuring and combining the eternal

mathematical constants e and π, integrating to 1. What is its standard deviation, and

what is the probability that an X with this distribution is inside [−1, 1]?

(g) For X a standard normal, and for x becoming large, show that P (X ≥ x)
.
= φ(x)/x,

in the sense that the ratio {1−Φ(x)}/{φ(x)/x} tends to 1. This is the Mills ratio. Make

a plot of this ratio, to see how it converges to 1, and to assess the implied approximation.

(xx footnote, to be returned to, with hazards. xx) Show from this that P (X ∈ [x, x +

ε] |X ≥ x)
.
= xε for growing x, and give this an interpretation.

(h) (xx some pointers, placed here or elsewhere. point to mgf already, for the linear

combination property. then a simple question to illustrate this. xx)

Ex. 1.2 Normal sums. Sums of independent normals have themselves normal distribu-

tions. This is actually clearly easiest to demonstrate via moment-generating functions,

as we come back to in Ex. 1.20, 1.21, 1.22, but here we show this in a more direct fashion.

(a) Let X and Y be independent standard normals. Use the convolution formulae from

Ex. A.23 to show that X + Y ∼ N(0, 2). With a bit more algebraic work, show that if

X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent, then X1+X2 ∼ N(µ1+µ2, σ

2
1 +σ2

2).

(b) Generalise this: show that if Xi ∼ N(µi, σ
2
i ) for i = 1, . . . ,m, and these are indepen-

dent, then Z =
∑m
i=1 aiXi is also normal, with mean

∑m
i=1 aiµi and variance

∑m
i=1 aiσ

2
i .

Ex. 1.3 Binomial distribution. One of the more old, classic, and deservedly famous

distributions in probability and statistics is the binomial. If there is a fixed probability

p = P (A) of a certain event A taking place, in a certain type of experiment, then the

number Y of times A is seen, in n independent experiments, is the binomial, which we

write as Y ∼ binom(n, p).the binomial

distribution
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(a) Show that

P (Y = y) =

(
n

y

)
py(1− p)n−y for y = 0, 1, . . . , n.

Explain that Y can be expressed as X1 + · · · + Xn, where Xi is a simple 0-1 variable,

with P (Xi = 1) = p, and where these are independent. Such Xi are called Bernoulli

variables. Use this to prove the classic formulae np and np(1−p) for mean and variance.

Also, deduce the P (Y = y) formula from the Y =
∑n
i=1Xi description. Bernoulli

variables

(b) If the first question to ask concerning a distribution is about its centre (its mean, or

perhaps its median), and the second is about its spread (its standard deviation, or perhaps

a different measure, like its interquartile range), then the third question would be about

its skewness, the degree of asymmetry. The classical skewness definition of a distribution,

or equivalently of a random variable Y having that distribution, is γ3 = EW 3, where

W = (Y − EY )/(VarY )1/2 is the normalised version of Y , i.e. linearly transformed to

have mean zero and standard deviation one. Show for the binomial (n, p) case that its the skewness

skewness is

γ3 = E
[ Y − np
{np(1− p)}1/2

]3
=

1− 2p

{np(1− p)}1/2
,

going to zero with rate 1/
√
n. Briefly discuss what this entails regarding the degree of

asymmetry for the binomial distribution.

(c) After the skewness comes the so-called kurtosis, defined as γ4 = EW 4 − 3, with W the kurtosis

as in the previous point. The minus 3 is there in order for the kurtosis to be zero for the

normal distribution; show that this is the case. Then show that

γ4 = (1/n)[1/{p(1− p)} − 6],

for the binomial, and comment.

Ex. 1.4 Trinomial probabilities. (xx emil looks it over and checks if this is suitable here

in Ch1, perhaps before Ex. 1.5. if not in App A. xx) Consider the so-called trinomial

distribution for a random pair (X,Y ), with probability mass function

f(x, y) =
n!

x! y! (n− x− y)!
pxqy(1− p− q)n−x−y for x ≥ 0, y ≥ 0, x+ y ≤ n.

Here n is the total count number, p, q the probabilities of events of type One and Two in

repeated experiments, with p+ q < 1. With Z = n−X − Y representing the number of

events of type Three (not One, not Two), this is a model for the number of events One,

Two, Three in n independent experiments; hence the trinomial name. See also Ex. 1.5.

(a) Verify that what is here called the probability mass function is the same as the

density of the distribution with respect to counting measure on the set of (x, y) with

x ≥ 0, y ≥ 0, x + y ≤ n – or, for that matter, with respect to counting measure on the

set of all pairs (x, y) with x ≥ 0, y ≥ 0.
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(b) Show by summing over the y that the distribution of X becomes a binom(n, p) from

Ex. 1.3.

(c) Show that Y | (X = x) ∼ binom(n− x, q/(1− p)). Give a formula for E (Y |X = x),

and deduce the formula for EX from this. Find also the covariance between X and Y ,

using this scheme of conditioning with respect to X = x first. Deduce that the correlation

between them is −{p/(1− p)}1/2{q/(1− q)}1/2.

(d) Find a formula for P (X ≤ x0, Y ≤ y0), expressed as a sum over x ∈ {0, 1 . . . , x0}
(as opposed to a double sum over lots of (x, y) pairs). For a setup with n = 50, (p, q) =

(0.22, 0.33), compute the probability P (X ≤ 15, Y ≤ 15).

Ex. 1.5 The multinomial model. The binomial model, with basic properties treated

in Ex. 1.3, is about sorting and counting events in two categories; if Y ∼ binom(n, p),

then also n − Y ∼ binom(n, 1 − p). The multinomial model is the natural extension to

more than two categories. Suppose there are n independent experiments, where each

time one (and only one) of the events A1, . . . , Ak takes place, with the same probabilities

p1, . . . , pk for each experiment. Let then Y = (Y1, . . . , Yk), with Yj counting the number

of times Aj occurred, for j = 1, . . . , n. Of course Y1 + · · ·+Yk = n, and p1 + · · ·+pk = 1,

so there are k − 1 free parameters in the model.

(a) Show that Yj ∼ binom(n, pj), and deduce that we already know EYj = npj and

VarYj = npj(1−pj), even before we start working on the joint distribution of (Y1, . . . , Yk).

(b) Show that the joint probability distribution becomesthe multinomial

model

f(y1, . . . , yk) = P (Y1 = y1, . . . , Yk = yk) =
n!

y1! · · · yk!
py11 · · · p

yk
k

for nonnegative (y1, . . . , yk) with sum n. The first factor n!/(y1! · · · yk!) is a combinatorial

one, the number of different ways one may place ‘1’ in y1 positions, ‘2’ in y2 positions,

etc., up to ‘k’ in yk positions. Note that this generalises the classic n!/(y1! y2!) =
(
n
y1

)
for the binomial case, the number of ways one may place ‘1’ in y1 ways (and hence ‘2’ in

n− y1 ways) in a list 1, . . . , n.

(c) Show that each pair has a trinomial distribution, e.g.

P (Y1 = y1, Y2 = y2) =
n!

y1! y2! (n− y1 − y2)!
py11 p

y2
2 (1− p1 − p2)n−y1−y2

for y1 ≥ 0, y2 ≥ 0, y1 + y2 ≤ n. Note that formulae from Ex. 1.4 therefore apply to pairs

(Yi, Yj) here.

(d) Show that cov(Y1, Y2) = −np1p2, and find the correlation between Yi and Yj .

(e) Among the most used acronyms of statistical parlance is i.i.d., for independent and

identically distributed. Explain in the present setup that Y = Z1 + · · · + Zn, where

Z1, . . . , Zn are i.i.d., with Zi taking values (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) with probabilities

p1, . . . , pk. Derive again the formulae for means, variances, covariances, starting with this

representation.i.i.d.
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Ex. 1.6 Histograms. Suppose data Y1, . . . , Yn are i.i.d. from some density f . Create

disjoint cells C1, . . . , Ck, with Cj = (aj−1, aj ], for a0 < · · · < ak. Let then Nj count the

number of data points in cell j. The histogram, associated with the chosen cells, is then

f̂(x) = p̂j/|Cj | for x ∈ Cj ,

where p̂j = Nj/n estimates pj = P (Yi ∈ Cj); also, |Cj | = aj − aj−1 is the length of that

cell.

(a) Show that (N1, . . . , Nk) is multinomial. Find expressions for the mean and variance

of f̂(x).

(b) (xx some easy simulation, from the normal. play with k being small, big, and about

right. point to density estimation. xx)

Ex. 1.7 Hazard rates and survival functions. Consider a random variable T on the

halfline [0,∞), with density f and c.d.f. F . Classes of such distributions are sometimes

most conveniently or fruitfully defined and discussed in terms of their hazard or cumu-

lative hazard functions, as opposed to their densities and c.d.f.s, as we outline here; see

also Ch. 10.

(a) Show that hazard rate

function

P (T ∈ [t, t+ ε] |T ≥ t) = h(t)ε+O(ε2), (1.1)

in terms of the so-called hazard rate function h(t) = f(t)/{1−F (t)}. With T interpreted

as the time to a certain event, the function h(t) describes the chance of this event taking

place in the next instance, among those having survived up to t.

(b) So we may deduce hazard rate from the density. Starting instead with h(t), define

first the cumulative hazard H(t) =
∫ t

0
h(s) ds, and show that F (t) = 1 − exp{−H(t)}.

The function S(t) = P (T ≥ t) = exp{−H(t)} is important in its own right, and is called

the survival function.

(c) Suppose an individual has survived up to time t0. Show that

P (T ≥ t |T ≥ t0) =
S(t)

S(t0)
= exp[−{H(t)−H(t0)}] for t ≥ t0.

Show that the median lifetime, for such an individual having lived up to t0, is t∗ =

H−1(H(t0) + log 2).

Ex. 1.8 The exponential distribution. Here and below we shall partly follow the implied

tradition of using say T and f(t) and h(t), for random variables and their densities and

hazard rate functions, rather han say Y and f(y) and h(y), when these relate to time. – A

simple but important distribution in probability theory and statistics is the exponential

distribution, which with positive parameter θ is the density f(t, θ) = θ exp(−θt) for t > 0.

We write Y ∼ Expo(θ) to indicate this.
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(a) Show that the cumulative becomes F (t, θ) = 1 − exp(−θt), and find the median.

Show also that we may write T = T0/θ, where T0 has the unit exponential distribution

with density exp(−t0). Show that T has mean and variance 1/θ and 1/θ2.

(b) Using Ex. 1.7, show that the hazard rate is constant, h(t) = θ, and that the cumu-

lative hazard rate is H(t) = θt. Show also that the exponential distribution is the only

one where the hazard rate is constant.

(c) Show that the median survival time is (log 2)/θ. If an individual has survived up to

time t0, what is the median survival time?

(d) Assume certain light bulbs have a longevity distribution with the property that

P (T ≥ t0 + t |T ≥ t0) does not depend on t0. Argue that such light bulbs may be soldthe memoryless

property as if they were brand new, as long as they are still alive. Show that their distribution

must be exponential.

Ex. 1.9 The Gamma distribution. The gamma function is important in various branches

in mathematics, probability theory, and statistics, and is defined as Γ(a) =
∫∞

0
xa−1

exp(−x) dx for a positive. We may hence define a family of probability densities via

g0(t, a) = Γ(a)−1ta−1 exp(−t) for t > 0. This is called the Gamma distribution with

shape parameter a.

(a) With T0 having this density, and b a positive scale parameter, show that T = T0/b

has density

g(t, a, b) = {ba/Γ(a)}ta−1 exp(−bt) for t > 0.

This is the two-parameter Gam(a, b) distribution. Verify that Γ(1) = 1, that Γ(a+ 1) =the Gamma

distribution aΓ(a) for all a > 0, and that Γ(m) = (m− 1)! for m = 1, 2, . . ..

(b) When T has the Gam(a, b) distribution, show that the mean and variance are a/b and

a/b2. Find also that ET p = {Γ(a+ p)/Γ(a)}/bp, valid for any p, as long as p > −a. Use

this to show that the skewness and kurtosis become equal to γ3 = 2/a1/2 and γ4 = 6/a.

Finally, regarding moments, find that the inverse gamma distributed variable 1/T has

mean b/(a − 1) and finite variance (xx check this xx) b2/{(a − 1)2(a − 2)}, as long as

a > 2.

(c) Verify that for a = 1 we have the exponential distribution, with density b exp(−bt)
and cumulative 1−exp(−bt). Show that a = 2 gives density b2t exp(−bt) and cumulative

1− exp(−ty)(1 + bt). More generally, show that the cumulative is∫ t

0

g(s, a, b) ds = 1− exp(−bt)
{

1 + bt+
(bt)2

2!
+ · · ·+ (bt)a−1

(a− 1)!

}
for the case of a being an integer.

(d) For a an integer, give an explicit expression for the hazard function h(t, a, b), as per

(1.1), and show that it converges to b as time increases. Show that this is the case also

for any a, i.e. not only for integers; it increases from zero to b, if a > 1, and decreases

from infinity to b, if a < 1.
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(e) Let T1, T2 be independent and exponential with the same θ. Show that T1 + T2 ∼
Gam(2, θ). With T1, . . . , Tk seen as the independent waiting times between events, show

that the time to event k is a Gam(k, θ).

(f) With T1 ∼ Gam(a1, b) and T2 ∼ Gam(a2, b) independent, show that T1 + T2 ∼
Gam(a1 + a2, b). Generalise. This may indeed be accomplished via the convolution for-

mulae from Ex. A.23, but as for other instances it becomes easier to show such statements

via moment-generating functions; see Ex. 1.20–1.21.

Ex. 1.10 Mixing the exponential. Sometimes waiting time type data do not follow an

exact exponential distribution, but rather one characterised as a mixture of such; T given

θ has the Expo(θ) distribution, but the values of θ vary from occasion to occasion.

(a) Suppose indeed that T | θ ∼ Expo(θ) but that θ has some density g(θ). Show that

the density of T then becomes f(t) =
∫∞

0
θ exp(−θt)g(θ) dθ.

(b) Suppose the distribution of θ is such that 1/θ has mean value 1/θ0 and a positive

standard deviation τ . Show, starting with E (T | θ) = 1/θ and Var (T | θ) = 1/θ2, that

ET = 1/θ0 and VarT = 1/θ2
0 + 2τ2. The case of a very tight distribution for the θ

corresponds to τ small, which again means the case of a constant rate θ0 for all.

(c) A convenient class of distributions for θ is the Gamma, with parameters (a, b), from

Ex. 1.9. Its mean and variance are a/b and a/b2; now find also the mean and variance

of 1/θ. Show that the density of T can be written

f(t, a, b) =

∫ ∞
0

θ exp(−θt) ba

Γ(a)
θa−1 exp(−bθ) dθ =

aba

(b+ t)a+1
,

and also that its cumulative distribution function is

F (t, a, b) = 1−
( b

b+ t

)a
= 1− 1

(1 + t/b)a
.

(d) (xx a bit more. the hazard rate function h(t) = f(t)/{1 − F (t)} is decreasing.

expressions for quantiles, t0(p, a, b) = b{1/(1 − p)1/a − 1}, solution to F (t) = p, to be

used for Story iii.2 for fitting the distribution to the 95 between-war-times. xx)

(e) Find an expression for the hazard rate function h(t, a, b) = f(t, a, b)/{1− F (t, a, b)},
and comment on its form, compared to the exponential case.

(f) Find the mean and variance of T , for the g(t, a, b) distribution. This might be used to

estimate (a, b) from data. (xx could point to Story iii.2, perhaps with better calibration.

xx)

(g) (xx Can use the n = 799 nerve impulse data from Hand et al. data collection. xx)

Ex. 1.11 Gamma-mixing the gamma. A given parametric distribution may sometimes

be fruitfully extended by placing a separate distribution on one of its parameters. The

following is an illustration.
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(a) Consider a distribution which for given individuals is a gamma, but where the scale

parameter varies between individuals. Specifically, suppose Y | b ∼ Gam(a0, b) and that

b has a distribution with E 1/b = 1/b0 and Var 1/b = τ2. Show that Y has mean a0/b0
and variance a0/b

2
0 + (a0 + a2

0)τ2.

(b) For the special case of b ∼ Gam(c, d), thus leading to a 3-parameter model, find the

density f(y, a, c, d) for Y . (xx work a bit with parametrisation here; big (c, d) correspond

to old gamma. the following to be cleaned and sent to solutions. xx)

f̄(y) =

∫ ∞
0

ba

Γ(a)
ya−1 exp(−by)

dc

Γ(c)
bc−1 exp(−db)db =

dc

Γ(c)

Γ(a+ c)

Γ(a)

ya−1

(d+ y)a+c
.

Ex. 1.12 Transformation from X to Y . We often encounter transformations, from one

variable X to another Y , also in the vector case. We need formulae for how the density

g(y) of the Y can be found in terms of the density f(x) for X.

(a) In the one-dimensional case, suppose X = h(Y ), equivalently Y = h−1(X), where h

is smooth and increasing. Show that P (Y ≤ y) = P (X ≤ h(Y )), with density formula

g(y) = f(h(y))h′(y).

Show also that if x = h(y) is continuous and decreasing, the formula becomes g(y) =

f(h(y))|h′(y)|. Write down density formulae for the variables Y1 = exp(X), Y2 = 3.33−
2.22X, Y3 = logX (assuming for that case that X is positive).

(b) Show that if X is normal, then a linearly transformed Y = a + bX is also normal.

Show that if X ∼ Gam(a, b), with density proportional to xa−1 exp(−bx), then Y =

bX ∼ Gam(a, 1).

(c) Suppose then that X = (X1, . . . , Xp)
t and Y = (Y1, . . . , Yp)

t are vectors, with trans-

formations binding them together,X1

...

Xp

 =

h1(Y1, . . . , Yp)
...

hp(Y1, . . . , Yp)

 ,

Y1

...

Yp

 =

h
−1
1 (X1, . . . , Xp)

...

h−1
p (X1, . . . , Xp)

 .

We write this as X = h(Y ) and Y = h−1(X), for short. It is assumed that these

systems of equations have unique solutions, and that the transformations are smooth,

with continuous partial derivatives. In particular, the so-called Jacobi matrix

J(y) =
∂h(y)

∂y
=
∂h(y1, . . . , up)

∂y1 · · · ∂yp
,

having ∂hi(y)/∂yj as its (i, j) component, exists, and is continuous, with a non-zero

determinant det(J(y)) (xx point to real analysis reference xx). – Now, if X has density

f(x), show that

P (Y ∈ B) =

∫
h(B)

f(x) dx =

∫
B

f(h(y))|det(J(y))|dy.

This shows that Y has density g(y) = f(h(y))|J(y)|. This is essentially the multidimen-

sional ‘integration by substitution’ formula of calculus.
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(d) For an application, suppose X and Y are independent and standard normal, and

transform to polar coordinates, X = R cosA and Y = R sinA. Find the density g(r, a)

for (R,A), wth R positive and A ∈ [0, 2π]. Show in particular that length R and angle

A become independent, with A having a uniform distribution on [0, 2π]. Find also the

distribution of Z = Y/X = tanA; see also Ex. 1.13.

(e) Suppose X and Y are independent Gamma variables with parameters (a, 1) and

(b, 1). Construct from these the sum Z = X + Y and ratio R = X/(X + Y ). Find the

joint density for (R,Z).

Ex. 1.13 Ratios and the Cauchy. If (X,Y ) has a certain distribution, what happens to

the ratio V = Y/X?

(a) Suppose that X and Y are independent with the same density f on (0,∞). Show

that V = Y/X has density g(v) =
∫∞

0
xf(x)f(vx) dx. With X and Y independent from

the same exponential distribution, show that g(v) = 1/(1 + v)2.

(b) With X and Y independent from the same Gamma (a, b), show that V = Y/X has

density {Γ(2a)/Γ(a)2} va−1/(1 + v)2a.

(c) Suppose now that X and Y are independent from the same density f , symmetric

around zero. Show that V has density g(v) = 2
∫∞

0
xf(x)f(vx) dx. For the special case

of a ratio of two independent standard normals, show that the Cauchy

g(v) = (1/π)/(1 + v2) with c.d.f. G(v) = 1
2 + (1/π) arctan v.

This is the Cauchy distribution. Show that it has no mean. Find its interquartile range.

Ex. 1.14 The Poisson distribution. (xx make a pointer here to Poisson processes, which

we perhaps have in Ch. 9. xx) Let a count variable Y have the point probabilities

P (Y = y) = exp(−θ)θy/y! for y = 0, 1, 2, . . . .

We say that Y has the Poisson distribution with parameter θ, and write Y ∼ Pois(θ).

(a) Show that the probabilities indeed sum to 1, and that the mean and variance are both

equal to θ. Letting W = (Y −θ)/
√
θ, show that γ3 = EW 3 = 1/

√
θ, γ4 = EW 4−3 = 1/θ.

Show also that Var (Y − θ)2 = 2θ2 + θ.

(b) With Y ∼ Pois(θ), what is the most probable outcome? What is the probability

that Y is odd?

(c) Show that the sum of two independent Poisson variables is Poisson, with parameter

equal to the sum of the two parameters. Generalise.

(d) Consider Y ∼ binom(n, p), and assume that n grows, while p becomes small, in the

fashion of np→ θ. Show that Y then tends to the Pois(θ) distribution, in the sense that

the point probabilities converge. (xx here a few pointers, to more general poisson limits,

and a full process. xx)
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(e) In some event counting applications there are more zeroes than predicted by the

Poisson, leading naturally to a more general model with

P (Y = 0) = p0, P (Y = y) = (1− p0) exp(−θ)θy/y! /{1− exp(−θ)} for y ≥ 1.

Verify that these probabilities sum to 1, and find expressions for the mean and variance.

This model is sometimes called the zero-inflated Poisson, since situations with p0 >

exp(−θ) are prevalent, but also cases with p0 < exp(−θ) are allowed. Simulate say 1000

datapoints from the model with θ = 3.00 and p0 = 0.25, and check the histgram.

Ex. 1.15 The geometric distribution. Suppose Y has the distribution with point prob-

abilities f(y) = (1 − p)y−1p for y = 1, 2, . . .. This is the geometric distribution, and we

write Y ∼ geom(p) to indicate this.

(a) Show that the probabilities f(y) indeed sum to 1. Suppose independent experiments

are carried out, each time with probability p that a certain event A takes place. With Y

the first time A happens, show that Y ∼ geom(p).

(b) Show that Y has mean 1/p and variance (1 − p)/p2, via direct summation of∑∞
y=1 yf(y) etc. If Y is the number of times you need to roll a six-sided die until it

shows a ‘6’, find the mean and the standard deviation.

(c) Another way of finding the mean and variance is as follows. With probability p,

Y = 1; with complementary probability 1 − p, Y = 1 + Y ′, with Y ′ having the same

distribution as Y . Show that this leads to EY = p+ (1− p)(1 + EY ) and solve. Use this

representation to also find the variance. Show also that E (Y −1/p)3 = (1−p)(2−p)/p3.

(d) Find expresssions for P (Y ≥ y) and for P (Y ≥ y0 + y |Y ≥ y0), and comment.

(e) (xx edit and perhaps wash away; we haven’t seen the CLT yet; could come back to this

after seeing CLT. cc) Suppose Y1, . . . , Yn are i.i.d. from the geom(p), with Ȳ the sample

average. Find the limit distribution of
√
n(Ȳ − 1/p), and then the limit distribution of√

n(p̂− p), where p̂ = 1/Ȳ .

(f) A simple related distribution is when one starts counting at 0, not at 1, so to speak.

Show that with Y ∼ geom(p), as defined above, the variable Y0 = Y − 1 has point

probabilities P (Y0 = y) = qyp for y = 0, 1, . . ., writing q = 1− p. Show that Y0 has mean

(1−p)/p and variance (1−p)/p2. Show also that G(s) = E sY0 = p/(1−qs) for |s| < 1/q.

(g) (xx something re the two experiments for determining p, the binomial and the geo-

metric. each experiment costs 100 kroner. precision and cost. xx)

Ex. 1.16 Mixing the Poisson. Suppose observations come from Poisson mechanisms,

but with different parameters, forming their own distribution. There are several versions

and uses of such Poisson overdispersion models. (xx pointer to Poisson regression with

overdispersion, perhaps in Ch5. xx)

(a) Suppose Y | θ ∼ Pois(θ) but that θ has a distribution with mean θ0 and variance τ2
0 .

Show that Y has mean θ0 and variance θ0 + τ2
0 .
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(b) Specialise to the case of θ ∼ Gam(a, b), see Ex. 1.9. Show that EY = θ0 = a/b and

that VarY = θ0(1+1/b). Argue that with a large b we come back to pure Poisson. Show

also that the marginal distribution of Y becomes

f(y, a, b) =
Γ(a+ y)

Γ(a) y!

ba

(b+ 1)a+y
=

Γ(a+ y)

Γ(a) y!

( b

b+ 1

)a( 1

b+ 1

)y
for y = 0, 1, 2, . . . .

We are discovering the general negative binomial distribution in the process, of the form negative

binomial

g(y, a, p) =
Γ(a+ y)

Γ(a) y!
(1− p)ypa for y = 0, 1, . . . , (1.2)

for parameters a > 0, p ∈ (0, 1); see Ex. 1.17 for more details.

(c) (xx one more thing here, perhaps even mixture of a small and a larger θ value. also

point to regression overdispersion model later on: Yi |xi has a distribution determined by

Yi |µi ∼ Pois(µi) but µi ∼ Gam(exp(xt
iβ)/c, 1/c). show that Yi |xi has mean exp(xt

iβ)

and inflated variance exp(xt
iβ)(1 + c). xx)

Ex. 1.17 The negative binomial. We met the negative binomial distribution in Ex. 1.16

and now point to other features and constructions.

(a) Let X1, X2 be independent from the geometric distribution qxp for x = 0, 1, . . .,

with q = 1 − p. Show that Y = X1 + X2 has distribution P (Y = y) = (y + 1)qyp2, for

y = 0, 1, . . .. For Y = X1 +X2 +X3 a sum of three such independent geometric variables,

show that P (Y = y) =
(
y+2

2

)
qyp3 for y = 0, 1, . . ..

(b) Generalise to the case of Y = X1 + · · · + Xa, the sum of a independent geometric

variables, each with qxp for x = 0, 1, . . .. Show that

P (Y = y) =

(
y + a− 1

a− 1

)
qzpa =

Γ(y + a)

Γ(a) y!
(1− p)zpa for y = 0, 1, . . . ,

i.e. the negative binomial with parameters (a, p). Deduce that the number of ways in

which one may find nonnegative numbers x1, . . . , xa with a given sum y is
(
y+a−1
a−1

)
=

(y + a− 1)!/{(a− 1)! y!}. In how many ways may one find 5 nonnegative numbers with

sum 100? And with 10 nonnegative numbers with sum 100?

(c) How do we know that the negative binomial probabilities (1.2) sum to one, also when

the a is a non-integer? Deduce from this that

∞∑
y=0

Γ(y + a)

Γ(a)

uy

a!
=

1

(1− u)a
for u ∈ (0, 1).

Show that Ga(s) = E sY = {p/(1 − qs)}a for |s| < 1/q, and that EY = aq/p, VarY =

aq/p2.

(d) (xx the step from Y = X1 + · · · + Xr, counting from zero, to Y ′ = X ′1 + · · · + X ′a,

counting each from one, so that Y ′ ≥ a. and just a bit more. reason for the negative

binomial term. xx)
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(e) In one of the episodes of the television series Siffer (NRK, 2011), programme leader

Jo Røislien announced he would flip his coin and land ‘krone’ ten times in a row – which

he then proceeded to do. He looked a bit tired, though; he had just kept on doing this,

complete with his opening statement, until he had achieved the ten krone in a row event,

and then showed only this crowning minute on tv. About how many times did he need

to flip his coin, in total, before he (and his camera man) could show that final string of

crowns? Simulate the process, and give a histogram of say 1,000 realisations.

Ex. 1.18 The uniform. [xx to be polished. xx] can we simply invert {exp(t)− 1}n/tn,

for n = 2, 3, . . .? EN = e for N , the number of uniforms to sum to reach 1. xx] We

say that a variable U is uniform on the interval [a, b] if its density is constant over that

interval, i.e. 1/(b−a), and zero outside. In particular, we write U ∼ unif(0, 1) to indicate

a variable with the uniform distribution on the unit interval.

(a) For such a U ∼ unif(0, 1), find its mean and variance.

(b) Let U1, U2, . . . be i.i.d. uniforms on the unit interval. Show that the densities for

U1 + U2 and U1 + U2 + U3 may be written

f2(x) =

{
x when 0 ≤ x ≤ 1,

2− x when 1 ≤ x ≤ 2,

and

f3(x) =


1
2x

2 when 0 ≤ x ≤ 1,
1
2 (−2x2 + 6x− 3) when 1 ≤ x ≤ 2,
1
2 (3− x)2 when 2 ≤ x ≤ 3.

Show that f2 is continuous, but that its derivative has a jump at position x = 1. Show

however that f3 is smoother, with a continuous derivative.

(c) Generalise the above to the case of X = U1 + · · ·+Un; show that its density may be

written

fn(x) =
1

(n− 1)!

bxc∑
j=0

(−1)j
(
n

j

)
(x− j)n−1

for 0 ≤ x ≤ n, where bxc is the so-called floor function, the largest integer equal to

or to the left of x (so b2.99c = 2, b3.00c = 3, b3.01c = 3). In particular, show that

fn(x) = xn−1/(n−1)! for 0 ≤ x ≤ 1. This is sometimes called the Irwin–Hall distribution,

from the related and concurrently published papers Irwin (1927), Hall (1927).

(d) Draw the densities f1, f2, f3, f4, f5 in a diagram, and comment on their forms.

(e) Let now N be the number of uniforms Uj needed in order for their sum to exceed 1.

Show that

P (N > n) = P (U1 + · · ·+ Un < 1) = Fn(1),
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with Fn the cumulative for fn. Also show that in fact Fn(1) = 1/n!. Use this to deduce

that P (N = n) = 1/{n (n − 2)!} and that EN = e. As a follow-up computational

exercise, simulate a high number of such N to calculate the mathematical constant e to

three decimal places.

Ex. 1.19 Moments. Consider a random variable X with c.d.f. F . Its mean is EX =∫
xdF (x), and we may of course define higher moments.

(a) Use results of Ex. A.10 to show that EXk, first seen as
∫
y dGk(y), the mean of the

variable Y = Xk with distribution Gk inherited from F , is also the same as
∫
xk dF (x);

thus there is no ambiguity there.

(b) For X a standard normal, find formulae for EXk and for E |X|k.

(c) For r < s, show that (E |X|r)1/r ≤ (E |X|s)1/s, i.e. h(r) = (E |X|r)1/r is a non-

decreasing function in r. (xx have we given the Jensen inequality somewhere? perhaps

do it here. xx) In particular, note that if |X| has a finite s-moment, then all moments of

smaller order are also finite. Illustrate by computing and graphing h(r) and log h(r) for

the case of X ∼ Expo(1).

(d) For a random variable X with finite fourth moment, we have defined its skew-

ness γ3 and kurtosis γ4 in Ex. 1.3. Give expressions γ3 = h3(µ1, µ2, µ3) and γ4 =

h4(µ1, µ2, µ3, µ4) in terms of the moments µj = EXj , and also expressions γ3 = h∗3(µ∗2, µ
∗
3)

and γ4 = h∗4(µ∗2, µ
∗
3, µ
∗
4) in terms of the centralised moments µ∗j = E (X − µ1)j .

Ex. 1.20 Moment-generating functions: examples. For a random variable Y , with

distribution P , its moment generating function is

M(t) = E exp(tY ) =

∫
exp(ty) dP (y),

defined for each t at which the expectation exists. It is useful for finding and charac-

terising distributions, for finding their moments, for handling the distributions of sums

of variables, and in connection with distributional limits. When Y has a density f(y),

we have M(t) =
∫

exp(ty)f(y) dy, and if it is discrete with pointmasses f(y) for sample

space S, say, then M(t) =
∑
y∈S exp(ty)f(y). The expectation operator is more general,

however, and M(t) is perfectly defined also for intermediate cases where Y can have both

discrete and continuous parts; see Ex. A.10. [xx the list is a bit too long; may take the

chi-squared and the non-central chi-squared to a separate exercise. xx]

(a) For a standard normal Y ∼ N(0, 1), show thatM(t) = exp(1
2 t

2). When Y ∼ N(µ, σ2),

derive M(t) = exp(µt+ 1
2σ

2t2).

(b) For Y ∼ Expo(θ), show that M(t) = 1/(1− t/θ), for t < θ.

(c) For Y ∼ Gam(a, b), with density {ba/Γ(a)}ya−1 exp(−by), show that M(t) = {b/(b−
t)}a, for t < b.

(d) Suppose Y is equal to zero with probability 0.90, but a standard normal with prob-

ability 0.10. Find the M(t), and generalise.



1.B. Distributions & densities 17

(e) For the binomial (n, p), show that M(t) = {1− p+ p exp(t)}n.

(f) For Y ∼ Pois(θ), find M(t) = exp{θ(et − 1)}. Use this, with Ex. 1.16, to find M(t)

also for the negative binomial (a, p). (xx hm, should give the formula here. xx)

(g) Let Y = ±1 with probabilities 1
2 ,

1
2 . Show that

M(t) = cosh(t) = 1
2 (et + e−t) = 1 + (1/2)t2 + (1/4!)t4 + (1/6!)t6 + · · · .

(h) For the uniform distribution on the unit interval, show that M(t) = {exp(t)− 1}/t,
for t 6= 0, and with M(0) = 1.

(i) Let Y have the uniform distribution on the [−1, 1] interval. Show that

M(t) =
exp(t)− exp(−t)

2t
=

sinh t

t
,

and that this function may be written as the infinite sum 1 + (1/3!)t2 + (1/5!)t4 + · · · .

Ex. 1.21 Moment-generating functions: properties. Among the basic properties of

moment-generating functions are the following; attempt to demonstrate these.

(a) We have M(0) = 1, and when the mean is finite, then M ′(t) exists, with M ′(0) = EY .

(b) More generally, if |Y |r has finite mean, then M (r)(0) = EY r (the rth derivative of

M , at the point zero). So the moment-generating function generates moments!

(c) For X ∼ N(0, 1), show the M(t) for |X| becomes 2 exp( 1
2 t

2)Φ(t), and use this to find

its mean and variance.

(d) It Y has mean ξ and standard deviation σ, and moment-generating function M(t),

give a formula for that of Y ′ = (Y −ξ)/σ. Illustrate this in the case of Y ∼ Pois(θ), com-

puting and drawing the moment-generating function of (Y −θ)/θ1/2, alongside exp( 1
2 t

2).

Comment on what you find.

(e) If Y has a distribution symmetric around zero, such that Y and −Y have the same

distribution, then M(t) = M(−t), so it depends on t only via |t|.

(f) Suppose X and Y are variables with distributions on the unit interval, with identical

moment-generating functions, say
∫ 1

0
exp(tx) dF (x) =

∫ 1

0
exp(tx) dG(x), at least for all t

in an interval around zero. Show that X and Y then have identical moment sequences,

and that
∫ 1

0
p(x) dF (x) =

∫ 1

0
p(x) dG(x) for all polynomials p(x). Use the Weierstraß ap-

proximation theorem, see Ex. 4.28, to show that this equality must hold for all continuous

functions p(x), and use this to prove F = G.

(g) (xx calibrate this, point to full crucial theorem saying MX = MY in interval around

zero implies equality of distributions. point to later things. xx) If X and Y are two

variables with identical moment-generating functions, then their distributions are iden-

tical. [xx There are also ‘inversion formulae’ in the literature, giving the distribution as

a function of M . need to give clear pointer to proofs for this, in Ch. 4. xx]
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Ex. 1.22 Moment-generating functions for sums. (xx point here to Ex. A.23, and more.

xx) If Y1 and Y2 are independent, with given distributions, say with densities f1 and f2,

then their sum Z = Y1 + Y2 have of course a well-defined distribution, and its density

can be expressed as

g2(z) =

∫
f1(z − y2)f2(y2) dy2 =

∫
f1(y1)f2(z − y1) dy1.

With algebraic patience this may e.g. be used to show that if Y1 ∼ N(µ1, σ
2
1) and

Y2 ∼ N(µ2, σ
2
2), then indeed Y1 +Y2 is normal too, with parameters µ1 +µ2 and σ2

1 +σ2
2 ;

see Ex. 1.2. Such convolutions quickly become convoluted in more general setups, how-

ever, and finding the density of say Y1 + Y2 + Y3 + Y4 from given densities f1, f2, f3, f4

may become too complicated. Pushing the matter to the domain of moment-generating

functions instead makes matters simpler.

(a) When X and Y are independent, then MX+Y (t) = MX(t)MY (t), in the obvious

notation. This generalises of course to the case of more than two independent variables.

(b) Let Yi ∼ N(µi, σ
2
i ), for i = 1, . . . , n, with these variables being independent. Find the

moment-generating function for the sum Z = Y1 + · · ·+Yn, and use the characterisation

property to establish that indeed Z ∼ N(
∑n
i=1 µi,

∑n
i=1 σ

2
i ).

(c) Let Y1, . . . , Yk be independent Gamma distributed variables, with parameters (a1, b),

. . . , (ak, b); see Ex. 1.9. Show that their sum is a Gamma with parameters (
∑k
i=1 ai, b).

(d) Suppose Z = Y1 +Y2, with these two being independent, and suppose you know that

Y1 ∼ N(0, 2) and Z ∼ N(0, 7). Prove that Y2 must be a N(0, 5).

(e) Similarly, suppose Z = Y1 + Y2, with these two being independent, and assume it is

known that Y1 ∼ χ2
10 and that Z ∼ χ2

24. Prove that Y2 ∼ χ2
14.

Ex. 1.23 The Beta distribution. An important class of distributions, over the unit

interval (0, 1), is the Beta distribution, with two positive parameters. We write p ∼ the Beta

distributionBeta(a, b) if its density is

be(p, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1 for p ∈ (0, 1).

(a) Compute and display a few of these densities, for (a, b) of your choice. Note that the

uniform is the special case of (a, b) = (1, 1).

(b) Show that E p = p0 = a/(a+ b) and that Var p = p0(1− p0)/(a+ b+ 1).

(c) (xx just a bit more. Write (a, b) = (cp0, c(1 − p0)). Find a formula for E pm, for

m = 1, 2, 3, . . .. Find the skewness of p. xx)

(d) (xx some attention to the density f(p) = (1/π)/
√
p(1− p), which is the Beta( 1

2 ,
1
2 ).

show that its cumulative is F (p) = (2/π) arcsin(
√
p). Find is quantile F−1(q). point

to Jeffreys prior, and also to the ‘how much of the time is one of two teams leading’ in

random walks and Brownian motion. xx)
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Ex. 1.24 The Dirichlet distribution. Let G1, . . . , Gk be independent and Gamma dis-

tributed, with parameters (a1, 1), . . . , (ak, 1). With G = G1+· · ·+Gk their sum, consider

the random ratios

(X1, . . . , Xk−1) = (G1/G, . . . , Gk−1/G).

It inherits a distribution, with density h(x1, . . . , xk−1), worked with below, in the simplex

where each xi ≥ 0 and x1+· · ·+xk−1 < 1. Taking also Xk = Gk/G = 1−(X1+· · ·+Xk−1)

on board, we have a vector (X1, . . . , Xk) of random probabilities summing to 1 over its k

categories. Its distribution has a name: it’s the Dirichlet distribution, with k categories,

and parameters (a1, . . . , ak), which we write as X ∼ Dir(a1, . . . , ak).the Dirichlet

distribution

(a) Suppose (X1, X2, X3, X4, X5, X6) ∼ Dir(a1, a2, a3, a4, a5, a6). Show that (X1 +X4 +

X6, X2, X3 +X5) ∼ Dir(a1 +a4 +a6, a2, a3 +a5). Generalise and formalise this summing-

over-cells property of the Dirichlet distribution.

(b) With X ∼ Dir(a1, . . . , ak), show that each Xi ∼ Dir(ai, a−ai), with a = a1+· · ·+ak,

and that this is the same as a Beta(ai, a− ai). Show from this that

EDi =
ai
a
, VarDi =

1

a+ 1

ai
a

(
1− ai

a

)
.

Show also the cov(Di, Dj) = −(ai/a)(aj/a)/(a+ 1) for i 6= j.

(c) We have been able to derive certain basic properties above, without really needing

an expression for the density of a Dirichlet vector. Tending to this now, however, show

that

g(x1, . . . , xk−1) =
Γ(a)

Γ(a1) · · ·Γ(ak)
xa1−1

1 · · ·xak−1−1
k−1 (1− x1 − · · · − xk−1)ak−1

over the simplex, using Ex. 1.12.

(d) xx

Ex. 1.25 The Beta-binomial distribution. [xx intro sentences. sometimes p not quite

the same, in a row of experiments. will be used for Story i.3. xx]

(a) Suppose in general terms that Y | p ∼ binom(n, p), and that p has a distribution with

mean p0 and standard deviation τ0. Using the double expectation rules of Ex. ??, show

that

EY = np0 and VarY = np0(1− p0) + n(n− 1)τ2
0 .

Hence the extra-binomial component of the variance, the n(n − 1)τ2
0 , becomes more

noticeable with increasing n. The case of τ0 = 0 corresponds to the usual binomial.

(b) Suppose Y | p ∼ binom(n, p) and that p ∼ Beta(a, b). Show that this leads to the

distribution

P (Y = y) =

∫ 1

0

(
n

y

)
py(1− p)n−yg(p, a, b) dp

=

(
n

y

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ y)Γ(b+ n− y)

Γ(n+ a+ b)
for y = 0, 1, . . . , n.
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Give formulae for the mean and variance of Y . For the special case of the uniform for p,

show that all outcomes for Y are equally likely.

(c) (xx estimating (a, b) from data via sample mean and variance. pointer to Story i.3.

xx)

(d) (xx pointer to Bayes things. xx)

Ex. 1.26 The Dirichlet-multinomial distribution. Here we deal with the natural exten-

sion of the Beta-binomial setup of Ex. 1.25, from the case of two categories to more than

two.

(a) Let Y = (Y1, . . . , Yk), for given probability vector p = (p1, . . . , pk), have a multinomial

(n, p1, . . . , pk) model, as per Ex. 1.5. Assume then that the p is not fixed, but with pi
variances τ2

0,i around mean p0,i. Show that Yi, marginally, has mean np0,i and variance

np0,i(1− p0,i) + n(n− 1)τ2
0,i.

(b) Let in particular p ∼ Dir(cp0), with parameters cp0 = (cp0,i, . . . , cp0,k). Show that

VarYi = {n+ n(n− 1)/(c+ 1)}p0,i(1− p0,i) =
c+ n

c+ 1
np0,i(1− p0,i),

with a clear overdispersion factor with respect to multinomial variation.

(c) Show that the marginal distribution of (Y1, . . . , Yk), now overdispersed compared to

the multinomial, becomes

f̄(y1, . . . , yk) =

∫
n!

y1! · · · yk!
py11 · · · p

yk−1

k−1 (1− p1 − · · · − pk−1)yk

g(p1, . . . , pk−1) dp1 · · · dpk−1

=
n!

y1! · · · yk!

Γ(c)

Γ(cp0,1) · · ·Γ(cp0,k)

Γ(cp0,1 + y1) · · ·Γ(cp0,k + yk)

Γ(c+ n)

(d) For the case of Dirichlet parameters cp0 = (1, . . . , 1), show that all outcomes (y1, . . . , yk)

have the same probability, and find a formula for how many different outcomes there can

be.

Ex. 1.27 The Laplace distribution. The Laplace or double exponential distribution, in the Laplace

distributionits simplest form, has density f0(y) = 1
2 exp(−|y|), on the real line; note the cusp at its

centre point zero.

(a) Let V1 and V2 be independent standard exponentials. Show that Y = V1 − V2 has

this density f0(y). Deduce from this that its moment-generating function is M0(t) =

1/(1− t2), for |t| < 1.

(b) More generally, consider Y = V1−V2 where these two are independent and Expo(θ).

Show that Y has density f(y) = 1
2θ exp(−θ |y|), with zero mean and variance 2/θ2. Also,

show that its moment-generating function is M(t) = 1/{1 − (t/θ)2} for |t| < θ. The

Laplace with variance 1 is hence that with θ =
√

2.
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(c) Suppose X for given σ is a N(0, σ2), but that the variance V = σ2 has some dis-

tribution. Show that the moment-generating function for such a normal scale mixture

becomes M(t) = E exp(tX) = MV ( 1
2 t

2), where MV (s) is the moment-generating func-

tion for V . In particular, show that if X |σ ∼ N(0, σ2) and σ2 ∼ Expo(1), then X has

the Laplace distribution with variance 1.

(d) If X |V ∼ N(0, V ), and V has density g(v), show that X has density f(x) =∫∞
0
φ(x/v1/2)(1/v1/2)g(v) dv. Translate the result above to the interesting formula∫ ∞

0

1

(2π)1/2
exp
(
− 1

2

x2

v

)exp(−v)

v1/2
dv = 2

∫ ∞
0

1

(2π)1/2
exp{−( 1

2x
2/w2 + w2)} dw

= 1
2

√
2 exp(−

√
2|x|).

Use this to find a formula for the integral
∫∞

0
exp{−(av2 + b/v2)} dv.

(e) (xx point to Ex. 4.61. xx)

Ex. 1.28 Mixing the normal scale. (xx at the moment nils thinks this exercise will go

away, partly with material in Stpru v.6 and partly elsewhere. point back to and calibrate

with Ex. 1.27. xx) Suppose X ∼ N(ξ, σ2) for given parameters (ξ, σ), but that there are

background mechanisms producing these (ξ, σ). In various settings this leads to good

‘mixtures of normals’ models for actually observed data.

(a) Suppose a given individual has his ξ and that his associated X is a N(ξ, σ2). Assume

next that in a population of such X, there is a distribution ξ ∼ N(ξ0, σ
2
extra) of their

means. Show that an X sampled from that population is a N(ξ0, σ
2 + σ2

extra). From a

statistical modelling viewpoint we have simply ‘put in more in the σ’, perhaps stretched

its interpretation a little, without inventing or having to invent a new model for the ob-

served X, per se. Also, without knowing more, or perhaps having a separate experiment,

we cannot identify the components of the observed variance.

(b) Now turn attention to the scale. With the mean ξ kept fixed, but σ having some den-

sity π(σ), show that X has density f̄(x) =
∫

(1/σ)φ((x− ξ)/σ)π(σ) dσ, and the variance

of X is the mean of the distribution of σ2. Assume for simplicity of presentation that

ξ = 0, and work with the case where the distribution of σ is such that 1/σ2 ∼ Gam(a, b)

(it is common to express this by saying that σ2 has an inverse gamma distribution).

Work out that

f̄(x) =
1

(2π)1/2

ba

Γ(a)

Γ(a+ 1
2 )

(b+ 1
2x

2)a+1/2
.

It is useful to transform this to a member of the well-known distributions, to facilitate

computations of probabilities etc. Show therefore that

V = ( 1
2X

2/b)/(1 + 1
2X

2/b) ∼ Beta( 1
2 , a),

and express the c.d.f. of X in terms of the c.d.f. of this Beta distribution: P (|X| ≤ x) =

Be(( 1
2x

2/b)/(1 + 1
2x

2/b), 1
2 , a). Check these details via simulations. (xx nils jotting down
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the details here, to land in solutions. xx) solving the V equation for X, this inverse

transformation is X = (2b)1/2{v/(1 − v)}1/2. Since X is symmetric around zero, the

density of V must be

h̄(v) = 2f̄((2b)1/2{v/(1− v)}1/2) (2b)1/2 1
2{(1− v)/v}1/2/(1− v)2.

Sorting out terms with v and 1− v gives the desired Beta distribution density.

(c)

Ex. 1.29 The multinormal distribution. Let Y = (Y1, . . . , Yp)
t be a random vector of

length p. We say that it is multinormally distributed, with mean vector ξ and variance

matrix Σ, which needs to be positive definite, provided its joint density can be written

f(y) = (2π)−p/2|Σ|−1/2 exp{− 1
2 (y − ξ)tΣ−1(y − ξ)},

where the domain for y is all of Rp. We write Y ∼ Np(ξ,Σ) to indicate this distribution.

(a) Show that
∫
yf(y) dy indeed is equal to ξ, so calling it the mean vector is appropriate.

Show also that E (Y − ξ)(Y − ξ)t, calculated from the density, is equal to Σ.

(b) Show that if Y ∼ Np(ξ,Σ), then Y − ξ ∼ Np(0,Σ).

(c) Assume now that A is an invertible p × p matrix, and consider the transformation

Z = AY . Show that if Y ∼ Np(ξ,Σ), then Z = AY ∼ Np(Aξ,AΣAt).

(d) By the spectral decomposition theorem of linear algebra, there is an orthonormal

matrix P , with PP t = I = P tP , such that PΣP t = D = diag(λ1, . . . , λp), with these

values being the eigenvalues of Σ. Show that Z = P (Y − ξ) has components Z1, . . . , Zp
which are independent, with Zj ∼ N(0, λj).

(e) Show that a vector Y is multinormal if and only if all linear combinations are normal.

In particular, if Y ∼ Np(ξ,Σ), then V = ctY = c1Y1 + · · ·+ cpYp is normal N(ctξ, ctΣc).

[xx need to say something careful about allowing constants to be seen as normal, with

zero variance. xx]

(f) Generalise point (c) to state that with any matrix A, of size say q×p, the transformed

Z = AY is a multinormal Nq(Aξ,AΣAt).

(g) For the binormal case, with means ξ1, ξ2, standard deviations σ1, σ2, and correlation

ρ, show that the density is

f(x, y) =
1

2π

1

σ1σ2(1− ρ2)1/2
exp
[
− 1

2

1

1− ρ2

{(x− ξ1
σ1

)2

+
(y − ξ2

σ2

)2

−2ρ
(x− ξ1

σ1

)(x− ξ1
σ1

)}]
.

Show that X and Y are independent if and only if the correlation is zero.

(h) We learn that the situation is easy and clean for the multinormal case, where in-

dependence is equivalent no zero correlation. This is in general more complicated –

construct an example of a joint density f(x, y) where the correlation is zero, even though

X and Y are not independent.



1.B. Distributions & densities 23

Ex. 1.30 The multinormal and conditional distributions. Consider a multinormally

distributed vector, of length p+ q, blocked into subvectors of sizes p and q. Let us write

this is (
Y1

Y2

)
∼ Np+q(

(
ξ1
ξ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)
).

[xx there are actually a couple of different ways of proving the points below, and we ought

to think through what’s best here. perhaps both, the direct f(y1, y2)/f2(y2), which must

be exp(− 1
2Q) for a quadratic Q, which then needs sorting out. or the other path, via a

nice transformation, avoiding the need for patient manipulations. xx]

(a) By carrying out a linear transformation, and using results from Ex. 1.29, show that

Z = Y1 − Σ12Σ−1
22 Y2 ∼ Np(ξ1 − Σ12Σ−1

22 ξ2,Σ11 − Σ12Σ−1
22 Σ21),

and that this Z is independent of Y2.

(b) Show that the distribution of Y1 given Y2 = y2 must be multinormal. Derive the

important formulae for the conditional mean and variance,

E (Y1 | y2) = ξ1 + Σ12Σ−1
22 (y2 − ξ2), Var (Y1 | y2) = Σ11 − Σ12Σ−1

22 Σ21.

Note that the conditional mean is a linear function in y2 and that the conditional variance

matrix is constant, not depending on y2.

(c) Now study the simplest two-dimensional prototype case, with(
X

Y

)
∼ N2(

(
0

0

)
,

(
1, ρ

ρ, 1

)
).

Show that Y |x ∼ N(ρx, 1 − ρ2) and that X | y ∼ N(ρy, 1 − ρ2). [xx some more prose

here. if x is seen as a proxy for y, then the stronger the correlation, the more one learns

about y from having observed x. xx]

(d) (xx a bit more. pointer to linear regression, and back to Galton c. 1876. if there’s

multinormality for (xi, yi), in dimension p+ 1, then the linear regression model for yi |xi
follows perfectly. we could hunt for some of Galton’s 1876-ish work, with (height, weight)

and so on, xx)

(e) (xx a bit here on regression towards the mean. xx)

Ex. 1.31 How tall is Nils? Assume that the heights of Norwegian men above the age

of twenty follow the normal distribution N(ξ, σ2) with ξ = 180 cm and σ = 9 cm.

(a) If you have not yet seen or bothered to notice this particular aspect of Nils’s appear-

ance, what is your point estimate of his height, and what is your 95 percent prediction

interval?



24 Statistical models

(b) Assume now that you learn that his four brothers are actually 195 cm, 207 cm,

196 cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the

population of Norwegian men is equal to ρ = 0.80. Use this information about his four

brothers to revise your initial point estimate of his height, and provide the updated 95

percent prediction interval. Is Nils a statistical outlier in his family?

(c) Suppose that Nils has n brothers and that you learn their heights. Give formulae for

the updated normal parameters ξn and σn, in the conditional distribution of his height

given these extra pieces of information. Use this to clarify the following statistical point:

Even if you get to know all facts concerning 99 brothers, there should be a limit to your

confidence in what you may infer about Nils.

Ex. 1.32 The chi-squared. [xx note to nils; look things carefully through later on,

to see that i’ve landed on a ‘natural sequence’ for giving these properties, and that i

don’t foregriper and that i don’t repeat things, e.g. regading the convolution properties.

these are best handled after the mgf things. xx] This exercise goes through some basic

properties of the chi-squared; see also Ex. 1.35 for its eccentric cousin, the noncentral or

eccentric chi-squared.

(a) Start with the density

gm(k) =
1

2m/2Γ(m/2)
km/2−1 exp(− 1

2k) for k > 0

for the χ2
m. Show that its moment-generating function becomes M(t) = (1−2t)−m/2, for

t < 1
2 . Show also that EK = m, VarK = 2m, and that the skewness, which is defined

as EW 3 with W = (K − EK)/(VarK)1/2 = (K −m)/(2m)1/2, is (8/m)1/2.

(b) With this result, show the simple and basic convolution property for the chi-squared,

that if K1, . . . ,Kn are independent and chi-squared distributed with degrees of freedom

m1, . . . ,mn, the the sum Z =
∑n
i=1Ki is chi-squared too, with degrees of freedom∑n

i=1mi. A generalisation is given in Ex. 1.35.

(c) If N is standard normal, show that K = N2 ∼ χ2
1. Establish that if K ∼ χ2

m, with

m a natural number, then it may be represented as K = N2
1 + · · · + N2

m, in terms of

independent standard normals N1, . . . , Nm. Note, however, that the χ2
m with the density

gm(k) above may be used also when m is not a natural number.

(d) (xx briefly: note and explain the relation between a χ2
m and a Gam(a, b), see Ex. 1.9.

With (a, b) = (m/2, 1/2), we have the χ2
m. also, starting with any Y ∼ Gam(a, b), show

that K = 2bY ∼ χ2
a/2. check this. xx)

Ex. 1.33 Orthonormal transformations. [xx check and calibrate with chi-squared things,

to get the order right. xx] We have seen in Ex. 1.29 that a multinormal vector can be

sent via a linear transformation to independent one-dimensional normal components,

and vice versa. This also leads to useful characterisation and representation theorems

involving independence. In the present exercise we shall e.g. find a proof that the sample

mean Ȳ and the sample variance statistic S =
∑n
i=1(Yi− Ȳ )2 are independent; this fact,
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which does not hold outside the normal family, was actively used in Ex. 2.4, and will

also be utilised (xx in other exercises, like Ex. 3.2 xx). It turns out, however, that the

independence of Ȳ and S is an instance of a more general phenomenon, to which we turn

in Ex. 1.64(h).

(a) Suppose X = (X1, . . . , Xn) is a vector with i.i.d. and standard normal components,

and let A be an orthonormal matrix, which means AAt = I = AtA. In yet other words,

each row of A and each column of A has length 1, rows are orthogonal, as well as columns.

Show that Y = AX must have components Y1, . . . , Yn which are also i.i.d. and standard

normal. – Here you may also use the general transformation formula of Ex. 1.12.

(b) To exemplify the above, show that if X1, X2 are independent and standard normal,

then also Y1, Y2, where(
Y1

Y2

)
=

(
1/
√

2, 1/
√

2

1/
√

2, −1/
√

2

)(
X1

X2

)
=

(
(X1 +X2)/

√
2

(X1 −X2)/
√

2

)
,

must be independent and standard normal.

(c) When A is orthonormal, show that it preserves length, so ‖Au‖ = ‖u‖, for any

vector u.

(d) Let again X1, . . . , Xn be i.i.d. standard normals. Construct an orthogonal matrix

A by letting its first row be (1/
√
n, . . . , 1/

√
n), and define Y = AX. Then show that

Y1 =
√
nX̄ =

∑n
i=1Xi/

√
n, and that

Z =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

X2
i − nX̄2 =

n∑
i=2

Y 2
i .

(e) Conclude from this that (i)
√
nX̄ ∼ N(0, 1), (ii) Z ∼ χ2

n−1, and (iii) X̄ and Z are

idependent.

(f) Show that this implies the following classical and important properties, starting

with and independent sample Y1, . . . , Yn from the N(µ, σ2): The statistics Ȳ and Z =∑n
i=1(Yi− Ȳ )2 are independent, with Ȳ ∼ N(µ, σ2/n) and Z ∼ σ2χ2

n−1. Show also from

this that the classical empirical variance

σ̂2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2 (1.3)

is unbiased for the population variance, i.e. E σ̂2 = σ2. Construct an unbiased estimator

for σ, of the type cnσ̂. [xx point to generalisations for the linear regression model. xx]

(g) Consider the general multinormal distribution Y ∼ Np(ξ,Σ), with invertible Σ. Show

that K = (Y − ξ)tΣ−1(Y − ξ) ∼ χ2
p. Suppose Y = yobs is observed, that Σ is known,

but ξ unknown. Give a confidence region R such that ξ ∈ R with probability 90 percent.

How does this region shrink, if you observe 100 vectors from the multinormal, rather

than merely 1?
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Ex. 1.34 The t distribution. Consider independent variables X ∼ N(0, 1) and K ∼ χ2
m.

The ratio t = X/(K/m)1/2 is then said to have the t distribution, with m degrees of

freedom. We write t ∼ tm to indicate this.

(a) Find the mean and variance of t.

(b) Show that its density can be written

gm(x) =
Γ((m+ 1)/2)

Γ(m/2)

1√
mπ

1

(1 + x2/m)(m+1)/2
.

Show that gm(x) tends to the standard normal density φ(x) as m increases, and explain

why this is to be expected. Show also that the Cauchy distribution, see Ex. 1.13, is the

t1 distribution. (xx find the little fun fact from Hjort (1994). xx)

(c) Find also the skewness and kurtosis for the tm distribution. In particular, show that

the latter is γ4 = 6/(m− 4) for m > 4.

(d) Assume Y1, . . . , Yn are i.i.d. N(µ, σ2). With σ̂ the empirical standard deviation, from

(1.3), show that

t =
Ȳ − µ
σ̂/
√
n
,

which is the classic t-statistic dating all the way back to Student (1908), has the t-

distribution with n− 1 degrees of freedom.

Ex. 1.35 The noncentral chi-squared. Consider also the so-called noncentral chi-squared

distribution, say K ∼ χ2
m(λ), with λ the excentre or eccentricity parameter; the case of

λ = 0 corresponds to the ordinary K ∼ χ2
m. It is the distribution of Y 2

1 + · · ·+Y 2
m, where

the Yi are independent normals, with Yi ∼ N(µi, 1), and λ =
∑m
i=1 µ

2
i .

(a) Show that the moment-generating function of K ∼ χ2
m(λ) may be written

M(t) = E exp(tK) =
exp{λt/(1− 2t)}

(1− 2t)m/2
for t < 1

2 .

(b) Its density can be expressed in several ways; show that this is one such valid formula:

f(k,m, λ) =

∞∑
j=0

{exp(− 1
2λ)( 1

2λ)j/j!} gm+2j(k),

where gm+2j(k) is the χ2
m+2j density. In other words, the noncentral chi-squared is a

Poisson mixture of central chi-squared distributions. Show that this entails the repre-

sentation K | (J = j) ∼ χ2
m+2j , where J ∼ Pois( 1

2λ). Also non-integer values of m are

allowed here.

(c) Also the noncentral chi-squared distributions have convolution properties, generalis-

ing those of Ex. 1.32. If Ki ∼ χ2
mi

(λi), and these are independent, for i = 1, . . . , n, show

that
∑n
i=1Ki is another noncentral chi-squared, with degrees of freedom

∑n
i=1mi and

excentre parameter
∑n
i=1 λi.
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(d) Establish that for K ∼ χ2
m(λ), we have EK = m + λ and VarK = 2m + 4λ. Show

also that the skewness of K becomes 23/2(m + 3λ)/(m + 2λ)3/2. What is required in

order for this skewness to tend to zero?

(e) Let K = (λ1/2 + N)2, which has the χ2
1(λ) distribution. Consider the normalised

variable

K − (1 + λ)

(2 + 4λ)1/2
=
N2 + 2λ1/2N − 1

(2 + 4λ)1/2
.

Work out its moment-generating function and show that it ends to exp( 1
2 t

2) for growing

λ.

(f) More generally, with K ∼ χ2
m(λ), work out a formula for the moment-generating

function M(t) for Z = {K − (m + λ)}/(2m + 4λ)1/2. For any fixed m, show that

M(t)→ exp( 1
2 t

2) as λ grows, and comment on this finding.

Ex. 1.36 The purely noncentral excentric chi-squared. The noncentral chi-squared, with

its somewhat complicated density expressed as an infinite sum, etc., admits a simple

representation, as a pure chi-squared plus a pure noncentral part, as shown in Hjort

(1988).

(a) Consider a variable K from the noncentral chi-squared distribution, say K ∼ χ2
m(λ).

We found its moment-generating function in Ex. 1.35. Deduce that if there is a represen-

tation, of the form K = K0 + U , with K0 ∼ χ2
m and a certain purely eccentric variable

U , then we must have M(t) = E exp(tU) = exp{λt/(1 − 2t)}. In particular, such a U

will then have a distribution depending only on λ, the same for each m.

(b) Let us use the occasion to demonstrate the moment-generating aspect of moment-

generating functions. Still under the assumption that there actually is a purely eccentric

U , as above, find the four first moments of U , using EU j = M (j)(0), the derivatives of

M at zero. Show indeed that EU = λ, VarU = 4λ, and that its skewness is 3/λ1/2.

(c) Indeed, there is such a U . You may check Hjort (1988) to find constructive arguments

to deduce the distribution of U , as opposed to taking the answer and then verifying that

it is correct. Here we are content with the verification: show that with U having the

distribution

P (U ≤ u) =

∞∑
j=1

p(j)Γ2j(u), with p(j) = exp(− 1
2λ)( 1

2λ)j/j!,

where Γ2j(u) = P (χ2
2j ≤ u) is the cumulative for the χ2

2j , its moment-generating function

indeed becomes the desired exp{λt/(1− 2t)}. We allow also Γ0 here, for the chi-squared

with zero degrees of freedom, for the variable which is equal to zero with probability one.

This is a Poisson mixture of χ2
2j distributions. In particular, U has a positive pointmass

at zero, P (U = 0) = exp(− 1
2λ).

(d) Use the representation U | (J = j) ∼ χ2
2j , with J ∼ Pois( 1

2λ), to find the mean, the

variance, the skewness, the kurtosis of U . Use these formulae again to find the mean,

variance, skewness, kurtosis for K = K0 + U , the noncentral χ2
m(λ).
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(e) What is required, of (m,λ), for K ∼ χ2
m(λ) to have a normal limit distribution (when

properly normalised)?

(f) (xx just a bit more. for small λ, an approximation is (1 − 1
2λ)χ2

m + 1
2λχ

2
2m+2. note

its use for power studies of certain tests. there is a full purely noncentral process, say

{U(λ) : λ ≥ 0}, perhaps in chapter 8. xx)

Ex. 1.37 Noncentral chi-squared for empirical variances. We saw in Ex. 1.33 that if

X1, . . . , Xn are i.i.d. N(a, 1), with common a, then Z =
∑n
i=1(Xi − X̄)2 ∼ χ2

n−1, with

consequences for the empirical variance estimator. Here are some fruitful generalisations.

(a) Let the Xi have non-identical means, Xi ∼ N(ai, 1). Show that Z ∼ χ2
n−1(λ), with

noncentrality parameter λ =
∑n
i=1(ai − ā)2.

(b) Assume now that Xi ∼ N(ai, 1/mi) for i = 1, . . . , n, perhaps reflecting sample sizes

mi for different groups, and with M =
∑n
i=1mi. Consider Z =

∑n
i=1mi(Xi− X̃)2, with

X̃ =
∑n
i=1(mi/M)Xi. Show that Z =

∑n
i=1miX

2
i −MX̃2, and that its distribution is

a χ2
n−1(λ), with λ =

∑n
i=1mi(ai − ã)2, where ã =

∑n
i=1(mi/M)ai.

(c) Let X ∼ Np(ξ,Σ). Show that Z = XtΣ−1X ∼ χ2
p(ξ

tΣ−1ξ).

Ex. 1.38 The F distribution. As we have seen Ex. 1.33, with a normal sample

X1, . . . , Xn, the distribution of the classical empirical variance estimator σ̂2 = (n −
1)−1

∑n
i=1(Xi−X̄)2 is governed by σ̂2 ∼ σ2χ2

m/m, where m = n−1 is the degrees of free-

dom. Suppose there are two independent samples, from normal distributions N(ξ1, σ
2
1)

and N(ξ2, σ
2
2), of sample sizes n1 and n2, with estimators σ̂2

1 and σ̂2
2 .

(a) Let ρ = σ1/σ2, the ratio of standard deviations. For the ratio of the two empirical

variances, show that

R2 =
σ̂2

1

σ̂2
2

= ρ2F, where F ∼
χ2
m1
/m1

χ2
m2
/m2

,

with degrees of freedom m1 = n1 − 1 and m2 = n2 − 1, and with the two chi-squareds

being independent. We say that F has the F distribution, or Fisher distribution, with

degrees of freedom (m1,m2), and write F ∼ F (m1,m2).

(b) (xx the mean, the variance, density later. show that when F ∼ F (m1,m2), then

1/F ∼ F (m2,m1). xx) Show that

EF =
m1

m1

m2

m2 − 2
, EF 2 =

m1(m1 + 2)

m2
1

m2
2

(m2 − 2)(m2 − 4)
,

these expressions being finite when m2 > 2 and m2 > 4, respectively. Find also an

expression for the variance. Verify that both EF and EF 2 tend to 1 as the degrees of

freedom increase, and deduce from this that F →pr 1. (xx calibrate here; we haven’t

properly introduced convergence in probability yet. xx)
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(c) (xx its approximate distribution, from knowing χ2
m/m = 1+(2/m)1/2Nm, where Nm

tends to the standard normal. so

F ∼ 1 + (2/m1)1/2Nm1

1 + (2/m2)1/2Mm2

≈ 1 + (2/m1)1/2Nm1
− (2/m2)Nm2

.

Deduce that when m1 and m2 are not too small, F is approximately a normal, with

mean 1 and variance (2/m1) + (2/m2). xx)

(d) (xx in this point, tidy up, check, and calibrate notation with g and G for the chi-

squared exercise. xx) The main aspects of the F distribution have been worked out, above,

from the constructive definition given in ((a)), without actually needing any formula for

its density; also, probabilities are found using software packages, like pf(x,m1,m2) in R.

Once in a while one needs the density function, however. Show first that the cumulative

function can be written

P (F ≤ x) = P (χ2
m1
/m1 ≤ xχ2

m2
/m2) =

∫ ∞
0

G(xy(m1/m2),m1)g(y,m2) dy,

in terms of the cumulative G(·,m) and density g(·,m) of the χ2
m. Then take the derivative

to get

h(x,m1,m2) =

∫ ∞
0

g(xy(m1/m2),m1)y(m1/m2)g(y,m2) dy.

Complete the math to land at

h(x,m1,m2) =
Γ( 1

2 (m1 +m2))

Γ( 1
2m1)Γ( 1

2m2)
(m1/m2)m1/2

xm1/2−1

{1 + (m1/m2)x}(m1+m2)/2
.

Ex. 1.39 The noncentral F distribution. A ratio of independent chi-squared distribu-

tions, modulo a multiplication factor, has the F distribution, as seen in Ex. 1.38. There

are certain statistical uses of the extended construction (xx give pointers; power; cc(λ);

more) when the nominator is a noncentral chi-squared. Formally, if X ∼ χ2
m1

(λ) and

Y ∼ χ2
m2

are independent, then

F =
X/m1

Y/m2
=
χ2
m1

(λ)/m1

χ2
m2
/m2

∼ F (m1,m2, λ),

termed a noncentral F distribution with degrees of freedom (m1,m2) and excentre pa-

rameter λ.

(a) Find the mean and variance of such an F .

(b) Suppose Y1, . . . , Yn are i.i.d. N(µ, σ2), and consider F = nȲ 2/σ̂2. Show that F ∼
F (1, n− 1, nµ2/σ2).

Ex. 1.40 The Weibull distribution. The Weibull distribution, with positive parameters

(a, b), has c.d.f. F (t) = 1− exp{−(t/a)b} for t ≥ 0. The b is called the shape parameter,

with a a scale parameter. The Weibull generalises the exponential distribution, which

is the special case of b = 1. Other parametrisations are sometimes convenient, as with

1− exp(−ctb).
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(a) Find a formula for the median, and more generally for the q-quantile F−1(q). Show

that the density can be written f(t) = exp{−(t/a)b}btb−1/ab for t > 0. Find also a

formula for the hazard rate, and draw this in a diagram, for b = 0.9, 1.0, 1.1, say for

a = 1.

(b) Work through the details of

ET p =

∫ ∞
0

P (T p ≥ u) du =

∫ ∞
0

exp{−(u1/p/a)b} du = ap Γ(1 + p/b).

Show that this leads to mean aΓ(1 + 1/b) and variance a2 {Γ(1 + 2/b) − Γ(1 + 1/b)}2.

With T from the Weibull (a, b), plot the function sd(T )/ET as a function of b. (xx write

out. also reparametrisation, with 1− exp(−ctb). point to story. xx)

(c) Show that V = (T/a)b ∼ Expo(1), and use this to give a recipe for simulating

outcomes from any Weibull.

Ex. 1.41 The Gompertz distribution. The Gompertz distribution, with positiver pa-

rameters (a, b), has hazard rate h(t) = a exp(bt).

(a) Find the cumulative hazard rate, the c.d.f., and the density. Find also a formula for

the median, and more generally for the q quantile, expressed via (a, b). (xx pointer to

Story ii.1. more; round off. xx)

(b) Suppose an individual has survived up to time t0. Show that her cumulative hazard

rate, for the remaining lifetime, is H(t) − H(t0) = (a/b){exp(bt) − exp(bt0)}. Give a

formula for t∗(t0), her median survival time. (xx then brief application of this, for Nor-

wegian women, using perhaps rough estimates of (a, b), via data from Human Mortality

Index. give (t0, t
∗(t0)) as a graph, for women born in perhaps 1900, 1960, 2020. can also

be a Story. xx)

Ex. 1.42 Generating functions. Moment-generating functions, studying distributions

via the transformation M(t) = E exp(tX), have several close relatives, which might be

more convenient for certain classes of distributions. It is e.g. common to use Laplace

transformations L(s) = E exp(−sX) for distributions on [0,∞), then studied for s ≥ 0. Laplace

transformsHere we work through the basic properties of generating functions, primarily used for

distributions on the nonnegative integers. If P (Y = j) = pj , for j = 0, 1, 2, . . ., define

G(s) = E sY =
∑∞
j=0 pjs

j = p0 +p1s+p2s
2 + · · · , called the generating function for that

distribution, or for variables having that distribution. generating

functions

(a) Show that G(s) = M(log s), for s such that the latter exists. Demonstrate that G(s)

is finite, for |s| < 1, and also for s = 1. Find the generating functions for (i) the simple

Bernoulli variable with P (Y = 0) = 1− p, P (y = 1) = p; (ii) the binomial (n, p); (iii) the

Poisson with parameter θ; (iv) the geometric with P (Y = j) = (1− p)j−1p.

(b) Give an expression for G′(s), show that G′(1) = EY , and that G′′(1) = EY (Y − 1).

Find the mean and variance for the Poisson using generating functions.
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(c) Suppose X and Y are random variables taking on values in {0, 1, 2, . . .}, and that

their generating functions are equal, on an interval around zero. Show that X and Y

must have identical distributions.

(d) Show that if X,Y, Z are independent, with generating functions G1, G2, G3, then the

generating function for X+Y +Z is G1(s)G2(s)G3(s). Show from this, and the previous

point, that a sum of independent Poissons is a Poisson.

Ex. 1.43 Sums of random lengths. Let X1, X2, . . . be i.i.d., from a distribution with

mean ξ, variance σ2, and moment-generating function M0(t). Consider then a random

sum of these random elements; Z =
∑N
i=1Xi, where N has some distribution with mean

λ, variance τ2, and generating function G(s) = E sN . We define Z as zero if N = 0.

(a) Show that Z has moment-generating function M(t) = G(M0(t)). Show that Z has

mean λξ and variance λσ2 + ξ2τ2.

(b) (xx a bit more here; might be used in Ch10 for frailty. edit and polish. xx) Consider

the so-called compound Poisson variable Z =
∑N
i=1Xi, where the Xi are nonnegative

with Laplace transform L0(s) = E exp(−sXi) and N ∼ Pois(λ). Show that its Laplace

transform may be writtencompound

Pisson

E exp(−sZ) = EL0(s)N = exp[−λ{1− L0(s)}],

with mean λξ and variance λ(ξ2 + σ2), in terms of mean ξ and variance σ2 for the Xi.

For the particular case of Xi ∼ Gam(a, b), show that

E exp(−sZ) = exp
(
−λ[1− {b/(b+ s)}a]

)
.

(c) (xx a bit more here. compound Poisson. find an expression for the skewness of

γ3 = E (Z − λξ)3/{λ(ξ2 + σ2)}3/2. a special case or two. distribution of a random sum

of standard normals. expo. xx)

Ex. 1.44 The logarithmic distribution. Consider a variable Y with point probabilities

P (Y = y) = c(p)−1py/y for y = 1, 2, . . ., with p a parameter in (0, 1). This distribution

is sometimes called the logarithmic distribution.

(a) Show that we must have c(p) = − log(1 − p). Find expressions for the moment-

generating function M(t), its mean, and its variance. Comment on the cases where p is

close to zero, or close to one. Show also for its generating function that G(s) = E sY =

c(ps)/c(p).

(b) Consider Z =
∑N
i=1 Yi, with the Yi being i.i.d. with this logarithmic distribution,

and N is Poisson, with parameter expressed as λc(p). Find the mean and variance of

Z, and show that its distribution is a negative binomial. We learn that the negative

binomial is inside the class of compound Poissons.

Ex. 1.45 The Tweedie distribution. As a special case of the construction of Ex. 1.43,

study Z =
∑N
i=1Xi, where N ∼ Pois(λ) and the Xi are i.i.d. from a Gam(a, b).
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(a) Show that the c.d.f. can be expressed as

H(z) =

∞∑
n=0

p(n, λ)G(z, na, b) = p(0, λ) +

∞∑
n=1

p(n, λ)G(z, na, b),

with p(n, λ) the Poisson and G(z, na, b) the c.d.f. of the Gam(na, b). In particular, show

that P (Z = 0) = exp(−λ), and that EZ = λa/b, VarZ = λ{(a/b)2 + a/b2}.

(b) Simulate say n = 500 outcomes for this distribution, for parameter values (λ, a, b)

you decide on. Check if you can estimate these values based on the simulated sample.

(c)

Ex. 1.46 The Beta Prime distribution. (xx keep it brief. essentially just Y = X/(1−X)

with X ∼ Beta(a, b). xx)

Ex. 1.47 The Dagum distribution. [xx to be done. three para. formulae for quantiles

etc. xx]

Ex. 1.48 The Gumbel distribution. [xx more here. point to later applications. xx]

(a) Let X1, . . . , Xn be i.i.d. from the standard exponential distribution. Show that

their maximum value Mn has c.d.f. {1 − exp(−m)}n. Deduce that Mn − log n has

c.d.f. Gn(u) = {1− (1/n) exp(−u)}n, for all u ≥ − log n.

(b) Show that the limit c.d.f. for Mn− log n becomes G(u) = exp{− exp(−u)}, and that

this defines a c.d.f. on the full line. This is called the Gumbel distribution.

(c) Find its density g(u), and draw it in a diagram, along with the densities gn for say

n = 10, 20, 30, for Mn − log n.

(d) Find the median, the mean, and the variance of the Gumbel distribution. (xx and

just a bit more. x)

Ex. 1.49 A normal with a normal mean is normal. (xx preliminary version; need just a

few editorial decisions regarding where to place it, and how. xx) The normal distribution

has a convenient coherence type property: if X given its mean parameter is normal, and

this mean parameter itself is normal, then X, marginally, is again normal. This is also

related to what is found in Ex. 1.30.

(a) Consider first independent X1 and X2 with densities f1 and f2. Show that
∫
f1f2 dx

is the density of X1 −X2, evaluated at zero. Write then φσ(x− ξ) = σ−1φ(σ−1(x− a))

for the N(ξ, σ2) density. Show that∫
φσ1(x− ξ1)φσ2(x− ξ2) dx = φ(σ2

1+σ2
2)1/2(ξ1 − ξ2).

(b) Assume that X given ξ has mean ξ and variance σ2, and further that ξ stems from

its own distribution, with mean ξ0 and variance τ2. Show that X, marginally, has mean

ξ0 and variance σ2 + τ2. Then specialise to the normal case, with X | ξ and ξ having
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normal distributions. Show that X indeed also is normal, (i) by integrating out the ξ,

with respect to its distribution, and also (ii) by arguing via X = ξ+ε = ξ0 +δ+ε, where

ε and δ are zero-mean normals with variances σ2 and ε2. (xx point to connected thing

for logN. xx)

(c) Suppose Y | (x1, x2) is normal N(a+ b1x1 + b2x2, σ
2), as in linear regression models

we will study in later chapters; see e.g. Ex. 3.33. Assume then that (x1, x2) themselves

have a distribution, in its space of covariate pairs, and that this distribution is binormal.

Show that Y , marginally, is normal, and give formulae for its mean and variance.

Ex. 1.50 The log-normal distribution. Starting with X ∼ N(ξ, σ2), the variable Y =

exp(X) is said to be a log-normal, and we write Y ∼ logN(ξ, σ2) to indicate this.the log-normal

distribution

(a) Consider the view that the distribution should or could have been named the expo-

normal instead – would you agree? Show that with Y ∼ logN(ξ, σ2), its mean and

variance are exp(ξ + 1
2σ

2) and {exp(2σ2)− exp(σ2)} exp(2ξ).

(b) Show that its density may be written φσ(log y − ξ)/y = σ−1φ(σ−1(log y − ξ))/y, for

y > 0. Find its mode.

(c) Assume that Y | ξ ∼ logN(ξ, σ2), and that ξ ∼ N(ξ0, τ
2). Show that marginally,

Y ∼ logN(ξ0, σ
2 + τ2). Make explicit the connection to Ex. 1.49.

(d) Show that a product of independent log-normals is log-normal. Suppose Y1, . . . , Yn
are i.i.d. from the logN(ξ, σ2) distribution. Explain what happens to their harmonic

mean, Zn = (Y1 · · ·Yn)1/n.

(e) Assume a random time variable T has the logN(0, 1) distribution. Find a formula for

its hazard rate h(t), and show that h(t)
.
= (log t)/t for growing t. Plot the exact hazard

rate, along with its approximation, and comment.

Ex. 1.51 Normal mixtures. [xx to come. mean, variance, skewness. xx] Suppose Y

is such that with probability pj , it is a normal (µj , σ
2
j ), with probabilities p1, . . . , pk

summing to 1. Its density may be written f(y) =
∑k
j=1 pjφσj

(y − µj), where φσ(u) =

σ−1φ(σ−1u) is the density of a N(0, σ2). Such distributions are called normal mixtures.

(a) With J taking values 1, . . . , k, with probabilities p1, . . . , pk, let Y | (J = j) ∼ N(µj , σ
2
j ).

Show that this Y has the density above; this amounts to a way of representing and in-

terpreting a normal mixture.

(b) From E (Y | J) = µJ and Var (Y | J) = σ2
J , show that

EY = µ̄ =

k∑
j=1

pjµj , VarY = E (Y − µ̄)2 =

k∑
j=1

pjσ
2
j +

k∑
j=1

pj(µj − µ̄)2.

(c) (xx someting; display a few. xx)

Ex. 1.52 The hypergeometric distribution. You draw a sample of n items from a bag

of N , which has A of Type One and B = N − A of type Two. Consider X, the number

among the sampled n which are of Type One.
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(a) Show that X has distribution

f(x) = P (X = x) =

(
A

x

)(
B

n− x

)/(N
n

)
.

For which x is this positive? Explain the identity
∑A
x=0

(
A
x

)(
B
n−x
)

=
(
A+B
n

)
.

(b) Show that EX = nA/N = np, with p = A/N the proportion of Type One in the

bag. This may be done work with
∑n
x=0 xf(x), or by writing X = J1 + · · ·+ Jn, with Ji

and indicator for selected item i being a Type One or not.

(c) Explain that if one samples one item at the time, followed by replacing the item,

then the J1, . . . , Jn above are independent Bernoulli variables with probability p = A/N ,

leading in that case to binomial variance np(1 − p). For the present hypergeometric

setting, where n items sampled in one go without replacement, the Ji are dependent;

show that cov(J1, J2) = p(A − 1)/(N − 1) − p2 = −p(1 − p)/(N − 1). Deduce that

the variance formula becomes VarX = cnnp(1 − p), with cn being the shrinking factor

(N − n)/(N − 1). This may be accomplished working algebraically with EX(X − 1), or

via the representation above.

(d) (xx just a bit more. comparing with binomial. xx)

Ex. 1.53 Leftovers. [xx we push smaller things here, when they belong better in later

chapters. in particular, the present chapter should be free of estimators and confidence

and inference, and also of lilmits. xx]

(a) If Yn and Y have moment-generating functions Mn and M , then Mn(t)→M(t) for

all t in a neighbourhood around zero is sufficient for Yn →d Y . [xx repair this, point to

Ch. 4. since we need to point to what convergence in distribution is. xx]

(b) In particular, if the moment-generating function Mn(t) of some Yn tends to exp( 1
2 t

2)

for all t close to zero, then Yn →d N(0, 1). Illustrate this principle for the following

situation: Let Y1, Y2, . . . be i.i.d. from the simple symmetric two-point distribution, where

Yi takes on values −1, 1 with probabilities 1
2 ,

1
2 . Show that the normalised mean Zn =√

nȲn = n−1/2
∑n
i=1 Yi has moment-generating function cosh(t/

√
n)n, and show that it

converges to exp( 1
2 t

2). You have now proved the Central Limit Theorem for this special

case.

Ex. 1.54 Moment-generating functions for two or more variables. (xx needs rounding

off and pointers to other matters. xx) The one-dimensional M(t) for a variable Y dealt

with in Ex. 1.20, 1.21 generalises neatly to the case of several variables. For a vector

Y = (Y1, . . . , Yp)
t the joint moment-generating function is

M(t) = M(t1, . . . , tp) = E exp(ttY ) = E exp(t1Y1 + · · ·+ tpYp),

involving of course the joint distribution of the random vector.

(a) Assume Y1, . . . , Yp are actually independent, with moment-generating functionsM1, . . . ,Mp.

Show that M(t1, . . . , tp) = M1(t1) · · ·Mp(tp).
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(b) Assume Y ∼ Np(µ,Σ). Show that M(t) = exp(µtt+ 1
2 t

tΣt).

(c) Let Y be standard normal. Show that

M(s, t) = E exp(sY + tY 2) = exp{ 1
2s

2/(1− 2t)}/(1− 2t)1/2

for t < 1
2 . This characterises the joint distribution of (Y, Y 2). Comment on the cases

s = 0 and t = 0.

(d) (xx do the trinomial too. xx)

Ex. 1.55 Product of two normals. (xx we will see later how this pans out; connect to a

cc(φ) in Ch7. xx) For independent X ∼ N(a, 1) and Y ∼ N(b, 1), consider their product

XY . Can its distribution be close to a normal?

(a) Writing X = a + U and Y = b + V , for independent standard normals U and V ,

show that Z = XY − ab = aV + bU + UV , and that XY has variance σ2 = 1 + a2 + b2.

Work also out its skewness and kurtosis; in particular, show that EZ3 = 6ab.

(b) Establish first that E {exp(tZ) | (U = u)} = exp(tbu) exp{ 1
2 t

2(a + u)2}, and use

results from Ex. 1.54 to show that Z has moment-generating function

M(t) =
1

(1− t2)1/2
exp{ 1

2a
2t2 + 1

2 t
2(b+ at)2/(1− t2)1/2} for |t| < 1.

(c) In order to check if Z/σ might have a distribution not far from the standard normal,

plot the function logM(t), for a few choices of (a, b), and inspects its closeness to 1
2 t

2.

(xx round this off. xx)

(d) (xx might drop this, or give a pointer to something in Ch7, re difference of Fieller

ratios. xx) Consider the parameters x0,1 = −a1/b1 and x0,2 = −a2/b2, the positions

at which two lines a1 + b1x and a2 + b2x = 0. It’s tricky to test x0,1 = x0,2, but that

hypothesis is equivalent to a1b2 = a2b1. May hence construct Z = â1b̂2− â2b̂1 = Z1−Z2,

say. I find something like

E exp(tZ) =
1

(1− t2)1/2
exp{ 1

2a
2
1t

2 + 1
2 t

2(b2 + a1t)
2/(1− t2)1/2}

1

(1− t2)1/2
exp{ 1

2a
2
2t

2 + 1
2 t

2(b1 − a2t)
2/(1− t2)1/2}.

the point is that the skewness has disappeared, and that (Z1 − Z2)/τ becomes closer to

normal, with τ2 = 2 + a2
1 + b21 + a2

2 + b22. still a hard thing to do very well.

Ex. 1.56 The Gaussian copula. (xx something here. need to have something beside the

multinormal for dependence. xx)

Ex. 1.57 The exponential family class, I. Many parametric models fall under the wide

umbrella of the exponential family class, which we treat in this and the folllowing exer-

cises. This will be properly generalised and extended down the road, but we start with

this definition: Suppose Y has model density of the formexponential

family
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f(y, θ) = exp{θ1T1(y) + · · · θpTp(y)− k(θ1, . . . , θp)}h(y)

= exp{θtT (y)− k(θ)}h(y),
(1.4)

for appropriate functions T1(y), . . . , Tp(y) and h(y); the k(θ) function is there to secure

integration to one, it is called the normalising function of the cumulant generating func-

tion. We then say Y is of the exponential family class, or, more precisely, that is has

a density belonging to a p-parameter exponential family in canonical form, with natural

statistics T (y) = (T1(y), . . . , Tp(y))t and natural parameter θ = (θ1, . . . , θp)
t.

The densities in (1.4) are defined with respect to some measures µ, such as the

uniform (i.e., Lebesgue) measure on R for the normal family; or the measure giving weight

one to each member of {0, 1, 2, . . . , } (i.e., the counting measure) for the Poisson family.

A change of measure changes the representation of the exponential family. For example,

if we define the measure ν(A) =
∫
A
h(y) dµ(y) say, we obtain an exponential family

with densities f̃θ(y, θ) = exp{θtT (y) − k(θ)} with respect to ν. From the possibility of

changing measure it is clear theat the representation in (1.4) is not unique. For example,

γj = cjθj and Sj(y) = Tj(y)/cj for j = 1, . . . , p gives a reparametrised density fγ(y) of

the same exponential form.

(a) Before we start developing the general theory for the full class, we verify that a few

classic models are under its umbrella. For the following models, write the model density

in a form matching (1.4). (i) Y ∼ binom(n, p). (i) Y ∼ Pois(λ). (iii) Y ∼ Beta(a, b).

(iv) Y ∼ Gam(a, b). (v) Y ∼ N(ξ, σ2), first with known σ, then with both parameters

unknown. (v) one more.

(b) Show that we must have

k(θ) = log
(∫

exp{θtT (y)}h(y) dµ(y)
)
,

assumed to be finite for at least some θ. Thus, k(θ) = log(
∫

exp{θtT (y)}h(y) dy) if µ is

Lebesgue measure, and k(θ) = log(
∑
y exp{θtT (y)}h(y)) if µ is counting measure. Let in natural

parameter spacefact H be the set of θ such that k(θ) is finite, called the natural parameter space. Show

that H is a convex set.

(c) For the following one-dimensional exponential families having densities with respect

to Lebesgue measure, describe the natural parameter space, find expressions for the

densities. (i) h(y) = 1/yI(0,1], and T (y) = log y; (ii) h(y) = I(0,∞), and T (y) = y;

(iii) h(y) = y3I(0,1)(y) and T (y) = log(1 − y); (iv) h(y) = exp(−y/2)/yI(0,∞)(y) and

T (y) = log y; and (v) h(y) = exp(−y2/2) and T (y) = y.

(d) Show that the score function corresponding to a density of the form (1.4) becomes

u(y, θ) = T (y)− ξ(θ), where

ξ(θ) =
∂k(θ)

∂θ
=

∫
T (y) exp{θtT (y)}h(y) dy∫

exp{θtT (y)}h(y) dy
.

In particular Eθ T (Y ) = ξ(θ). Show also that

Varθ T (Y ) = J(θ) = ∂2k(θ)/∂θ∂θt,

giving variances and covariances of the Tj(Y ) in one matrix formula.
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(e) Let Y1, . . . , Yn be i.i.d., each with marginal densities fθ(y) = exp{θtT (y)−k(θ)}h(y).

Show that the joint density fθ(y1, . . . , yn) is also belongs to an exponential family. Show

that the log-likelihood function for a sample Y1, . . . , Yn can be written `n(θ) = n{θtT̄ −
k(θ)}, with T̄ = (1/n)

∑n
i=1 T (Yi) the vector of averages T̄j = (1/n)

∑n
i=1 Tj(yi), and

that this is a concave function. If this is a family with say p = 3 parameters, and

n = 10000, then the full relevant information is captured in the 3 averages T̄1, T̄2, T̄3.

(f) In (d) we used a certain smoothness property of exponential families (see, e.g.,

Schervish (1995, Theorem 2.64, p. 105) or Brown (1986, Theorem 2.2, p. 34)), implying,

among other things, that for any function f such that
∫
|f(y)| exp{θtT (y)}h(y) dµ(y) is

finite for all θ ∈ H, we can pass the derivative with respect to θ under the integral sign,

that is

d

dθ

∫
f(y) exp{θtT (y)}h(y) dµ(y) =

∫
T (y)f(y) exp{θtT (y)}h(y) dµ(y). (1.5)

Anticipating Ex. 5.5(f), we will, with out loss of generality, verify (1.5) for the function

exp{k(θ)} (i.e., f(y) = 1) for a one dimensional parameter θ. Let θ0 be some point in

the interior of the natural parameter space, so that exp{k(θ)} is finite on some interval

around θ0. For some ε > 0, the derivative at θ0 is then

lim
n→∞

ek(θ0+ε/n) − ek(θ0)

ε/n
= lim
n→∞

∫
e(θ0+ε/n)T (y) − e(θ0)T (y)

ε/n
h(y) dµ(y).

Use the inequalities |eu − 1| ≤ |u|e|u| and |u| ≤ e|u| to find an integrable function not

depending on n, say g(y), so that the absolute value of the integrand on the right is

always smaller than or equal to g(y). We can then appeal to the Dominated convergence

theorem, Ex. A.6(d), to conclude that what we did in (d) is legitimate.

Ex. 1.58 Some moments. For the time being we stick to one-parameter exponential

families. That is, let Y be a random variable with density fθ(y) = exp{θT (y)−k(θ)}h(y).

We’ll take as a fact that as long as
∫
|f(y)| exp{θT (y)}h(y) dµ(y) is finite, the function

θ →
∫
f(y) exp{θT (y)}h(y) dµ(y) has continuous derivatives of all orders (see the refer-

ences in Ex. 1.57(f)).

(a) Show that Eθ T (Y ) = k′(θ) and VarθT (Y ) = k′′(θ), where k′ and k′′ denotes the first

and second derivative of the cumulant generating function. Argue that k(θ) is a convex

function, and show that the function θ 7→ Eθ T (Y ) is increasing in the natural parameter

θ.

(b) Determine the mean and the variance of random variables with the densities you

found in Ex. 1.57(c)

(c) Suppose that Y stems from an exponential family with density fθ(y) = exp{θT (y)−
k(θ)}h(y). Let MT (u) = Eθ exp(uT ) be the moment generating function of T = T (Y )

(as introduced in Ex. 1.20). Show that logMT (u) = k(θ + u) − k(θ), and use this to,

once more, derive the result of Ex. 1.21(a), namely that dMT (u)/du evaluated in u = 0

equals EθT (Y ).
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Ex. 1.59 The exponential family class, II. In Ex. 1.57 we considered exponential fam-

ilies in canonical form. The canonical thing about these densities is that they were

parametrised in terms of the natural parameters. We do, however, typically prefer to

parametrise our densities in terms of parameters making more intuitive sense, such as

the mean and the variance. Consider therefore the moderate jump from (1.4) to

f(y, θ) = exp{η1(θ)T1(y) + · · ·+ ηp(θ)Tp(y)− k(η(θ1, . . . , θp))}h(y), (1.6)

where η(θ) = (η1(θ), . . . , ηp(θ)) is a vector valued function from some parameter space

Θ into the natural parameter space H. Densities of the form (1.6) are simply called p-

parameter exponential families. Thus, from Ex. 1.57(a) again, for the normal distribution

with unknown parameter θ = (µ, σ2) we have η1(θ) = µ/σ2 and η2(θ) = −1/(2σ2), that

is, η is a mapping from Θ =: R× (0,∞) into H = R× (−∞, 0).

(a) [xx some more basics xx]

(b) [xx curved exponential families somewhere dim(Θ) < p xx]

(c) Important examples of densities such as that in (1.6) arise when working with the

regression models falling under the umbrella of generalised linear models. Consider the

classical linear regresion model

Yi = xt
iβ + εi,

where ε1, . . . , εn are i.i.d. N(0, σ2) for i = 1, . . . , n with σ2 known, and the x1, . . . , xn are

known constants. Show that the density of Yi belongs to an exponential family, and find

and expression for its natural parameter ηi.

(d) The general idea arising from (c) that if (x1, Y1), . . . , (xn, Yn) are independent re-

gresion data, where xi are p-dimensional covariate vectors, and the Yi have marginal

densities Yi ∼ fηi(y) = exp{ηiT (y) − k(ηi)}h(y), then a generalised linear model ex- generalised

linear modelspresses the natural parameter ηi as a function of linear function the known xi and an

unknown regression coefficient β ∈ Rp, that is ηi = xt
iβ. In the case that Yi ∼ Pois(θi)

show that this gives θi = log(xt
iβ). For the case where Yi ∼ Bernoulli(θi) independent,

show that we obtain the logistic regression model, θi = exp(xt
iβ)/{1 + exp(xt

iβ)}.

(e) With data as described in (d), show that the joint density of Y = (Y1, . . . , Yn) can

be expressed as

fβ(y1, . . . , yn) = βtSn(y)− kn(β)hn(y)

where Sn(y) =
∑n
i=1 xiT (yi), kn(β) =

∑n
i=1 k(xt

iβ), and hn(y) =
∏n
i=1 h(yi). We now

see that the theory developed in Ex. 1.57 applies more or less directly to this regres-

sion setting. Show, for example, that the log-likelihood `n(β) = log fβ(y1, . . . , yn) is a

concave function. Show also that the maximum likelihood estimator β̂ is the solution

to
∑n
i=1 xi{T (Yi)− EβT (Yi)} = 0. Verify that in the normal case of (c), this yields the

least squares solution β̂ = (
∑n
i=1 xix

t
i)
−1
∑n
i=1 xiYi.

Ex. 1.60 The exponential family: marginals and conditionals. [xx fix details without

making it too heavy-handed. xx] Suppose that Y stem from an exponential family with
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density of the form fa,b(y) = exp{atU(y)+btV (y)−k(a, b)}h(y). Then both the density of

the marginal distribution of V , as well as the conditional density of U given V = v belong

to exponential families. These are densities, however, with respect to some potentially

rather weird dominating measures.

(a) We start with some additional facts about exponential families. Let fθ(y) = exp{θtT (y)−
k(θ)}h(y) be an exponential family. This means that for all θ, fθ is a density with respect

some dominating measure µ, that is, Pθ(A) =
∫
A
fθ(y) dµ(y).

Let θ0 be some point in the natural parameter space, and explain why Pθ0(A) = 0

implies Pθ(A) = 0 for all θ. In other words, for any θ, the distribution Pθ is absolutely

continuous with respect to Pθ0 .

(b) Show that the density of Pθ with respect to Pθ0 is also of the exponential family

form, i.e., fθ(y) = exp{(θ− θ0)T (y)− [k(θ)− k(θ0)]}, meaning that we can express fθ as

a density with respect to µ as

fθ(y) = exp{(θ − θ0)T (y)− [k(θ)− k(θ0)]}fθ0(y).

In other words, any density fθ can be expressed as an exponential tilt of our chosen

density fθ0 .

(c) Now, let us look at an exponential family fa,b(u, v) = exp{au+ bv− k(a, b)}f0(u, v),

where f0 = fa0,b0 is some (arbitrary) member of the family. For simplicity, we assume

that the fa,b(u, v) are densities with respect to Lebesgue measure on R2, i.e., Fa,b(x, y) =∫ x
−∞

∫ y
−∞ fa,b(u, v) dv du is the c.d.f. of (U, V ) ∼ fa,b. Show that

fVa,b(v) = exp{bv − ka(b)}ha(v),

where ha(v) = {
∫

exp(au)f
U |V
0 (u | v) du}f0(v).

(d) Use the result from (c) to show that the distribution of U given V = v has density

fU |Va (u | v) = exp{au− k(a | v)}f0(u | v),

where k(a | v) = log(
∫

exp(au)f
U |V
0 (u | v) du).

(e) We now move on to the repeated sampling situation. Suppose that Y1, . . . , Yn are

independent with common density fa,b(y) = exp{aU(y) + bV (y) − k(a, b)}h(y) with

respect to µ. Show that the joint density of (Y1, . . . , Yn), say f joint
a,b (y1, . . . , yn) belongs

to an exponential family on the same form.

(f) In (e) we saw that f joint
a,b only depends on the sample through U(y1, . . . , yn) and

V (y1, . . . , yn). Thus we may define f joint
a,b (u(y1, . . . , yn), v(y1, . . . , yn)) = f joint

a,b (y1, . . . , yn).

Define T = (
∑n
i=1 U(Yi),

∑n
i=1 V (Yi)), and use the change of variable formula (see

Ex. A.7(d) in the appendix) to show that T has density f joint
a,b (u, v) with respect to

µnT−1, where µn = µ× · · · × µ is the product measure on the range of (Y1, . . . , Yn).

(g) In (f), if µnT−1 happens to be absolutely continuous with respect to Lebesgue mea-

sure on R2, then (c) and (d) give us the marginal density of
∑n
i=1 V (Yi), and the condi-

tional density of
∑n
i=1 U(Yi) given

∑n
i=1 V (Yi) = v, respectively. Generalise (c) and (d)

to the situation where (U, V ) has some arbitrary two-dimensional distribution.
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(h) (xx some concrete examples, and pointers ahead to Ex. 3.26–3.30 xx)

Ex. 1.61 Sufficiency. A sufficient statistic is a summary of the data that contains all

the information in the data. If you flip a coin ten times, it is intuitively clear that the

number of heads in the ten tosses is as informative about the unknown θ = Pr(heads)

of the coin, as the exact ordering in which the heads and tails occurred. In other words,

the original sequence, for example (T,H, T, T,H,H, T, T,H, T ), can be compressed to a

single number, 4 in this case, without any information about θ being lost. When you

think about it, if you were told that the number of heads in ten tosses was four, then you

would attach the same probability to (T,H, T, T,H,H, T, T,H, T ) having occured as to

(H,H,H,H, T, T, T, T, T, T ) having occured, and so on for all the 210 sequences of ten

tosses that contains exactly four heads. And, importantly, this probability would not

depend on θ, as the θ = Pr(heads) is sort of already swallowed up into the fact that you

condition on the number of heads being four.

Well, this leads us to the definition of sufficiency. If X is your data, stemming from sufficient

statistica member of the family of distributions {Pθ : θ ∈ Θ}, then the statistic T = T (X) is

sufficient for θ if the distribution of X given T = t is the same for all values of θ. Down

the road, in Ex. 1.63, we look more into this definition, and be a bit more formal.

(a) Here are a few examples. (i) Let X1, . . . , Xn be independent Bernoulli(θ) random

variables. Show that T =
∑n
i=1Xi is sufficient for θ (ii) Let Y1, . . . , Yn be i.i.d. Pois(θ).

Show that T =
∑n
i=1 Yi is sufficient for θ. (iii) Let Z1, . . . , Zn be i.i.d. unif(0, θ) and let

T = maxi≤n Zi. Provide an intuitive argument for why T is sufficient for θ. (iv) Let

W ∼ N(0, σ2) and consider T = |W |. Again, provide an intuitive argument for why T is

sufficient for σ2.

(b) If you used Bayes theorem in solving (i) and (ii) of Ex. (a) you may already have

deduced the following result: Let X1, . . . , Xn be discrete random variables and T =

T (X1, . . . , Xn) a statistic. Show that T is sufficient if and only if

θ 7→ Prθ{X1 = x1, . . . , Xn = xn}
Pθ{T (x1, . . . , xn) = t}

(1.7)

is constant for every x1, . . . , xn. In Ex. 1.63(f) we will see that this result holds more

generally, that is, if X = (X1, . . . , Xn) has density fθ and T = T (X) has density gθ(t),

then T is sufficient if and only if θ 7→ fθ(x)/gθ(T (x)) is constant for every x.

(c) The problem with the approach in (b) is that one has to make a guess at a sufficient

statistic, find its distribution, and then compute the ratio in (1.7). The Fisher–Neyman

factorisation theorem provides us with an automatic way for finding sufficient statistics. Fisher–Neyman

factorisation

theorem
Suppose that X1, . . . , Xn are random variables with joint density fθ(x1, . . . , xn), and let

T = T (X1, . . . , Xn) be a statistic. The factorisation theorem says that T is sufficient if

and only if there exists nonnegative functions h and gθ so that for all θ and x

fθ(x1, . . . , xn) = gθ(T (x1, . . . , xn))h(x1, . . . , xn).

Prove the discrete version of this theorem, that is, the version where fθ(x1, . . . , xn) =

Prθ(X1 = x1, . . . , Xn = xn). For a general proof of this theorem, i.e., one in which fθ is

any density, see Ex. 1.63.
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(d) Use the factorisation theorem verify that the statistics from (a) are indeed sufficient.

Find also a sufficient statistic based on an independent sample from the unif(θ, θ + 1)

distribution. Compared to the four other sufficient statistics of this exercise, what is

particular about this latter?

(e) A sufficient statistic is not unique, and different sufficient statistics may provide

varying degress of data compression. At one extreme are sufficient statistics not providing

any compression of the data: (i) If X1, . . . , Xn stem from a distribution with density fθ,

then then full sample is sufficient. Prove it. Or, (ii) let X1, . . . , Xn be i.i.d. from an

unknown continuous distribution F , and let T = (X(1), . . . , X(n) be the order statistics.

Show that the conditional distribution of X1, . . . , Xn given T does not depend on F .

For the lack of uniqueness, you can use the factorisation theorem to prove that any

one-to-one transformation of a sufficient statistic is sufficient. And, for an example of

increasing data compression, let X1, . . . , Xn be i.i.d. N(0, σ2) and consider the statistics

T1 = (X1, . . . , Xn), T2 = (X2
1 , . . . , X

2
n), T3 = (X2

1 + · · · + X2
k , X

2
k+1 + · · · + X2

n), and

T4 = X2
1 + · · · + X2

n. Clearly, T4 is a function of T3, T3 is a function of T2, and T2 is a

function of T1, so the data compression is increasing in the indices. Use the factorisation

theorem to prove that they are all sufficient.

Ex. 1.62 Simulating data based on sufficient statistics. A sufficient statistic T contains

all the information provided by the original sample X = (X1, . . . , Xn) about some pa-

rameter θ. Thus, given the sufficient statistic T , one may throw away the original data,

and create an equally good data set X ′ = (X ′1, . . . , X
′
n). What makes this possible is,

of course, that the conditional distribution of X given T does not depend on θ. That

X ′ is as good as X means that X ′ has the same distribution as X, so, for example, an

estimator based on X ′ will be as good (i.e., same risk, see Ch. 8) as the same estimator

computed from X. Let us look at a few examples.

(a) Let X and Y be independent Expo(θ). Show that T = X + Y is sufficient for θ.

Consider the random variables X ′ = UT and Y ′ = (1 − U)T , where U is unif(0, 1)

and independent of X and Y . Think of U as a random variable you simulate on your

computer knowing T . Show that (X ′, Y ′) ∼ (X,Y ).

(b) Let X and Y be independent unif(0, θ) for some θ > 0. Show that T = max(X,Y )

is sufficient for θ. Consider the random variables X ′ = ηUT + (1 − η)T and Y ′ = (1 −
η)UT +ηT , where U ∼ unif(0, 1) and η ∼ Bernoulli( 1

2 ) are independent and independent

of X and Y . Show that (X ′, Y ′) ∼ (X,Y ). Find the conditional distribution of (X,Y )

given T = t.

(c) Prove the general version of the above results, as discussed in the classical article

Halmos and Savage (1949). That is, let X ∈ Rn be a random variable with distribution

Prθ, and assume that T is sufficient for θ. Suppose we use a random number generator

to simulate X ′ ∈ Rn from the conditional distribution Qt(B) = Prθ(X ∈ B | T = t).

Show that X ′ ∼ X for all θ.

Ex. 1.63 The factorisation theorem.[xx move to appendix xx] Above, in Ex. 1.61(b)

we proved the factorisation theorem for discrete random variables. In this exercise we
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prove the general version, valid for any distribution dominated by a σ-finite measure (see

Ex. A.1(g) for definition of σ-finiteness). First, we must be more formal in our definition

of a sufficient statistic. Let {Pθ : θ ∈ Θ} be a family of probability distributions on

a measurable space (X ,A). The statistic T is sufficient for {Pθ : θ ∈ Θ} if there is a

function p(A, x) of A ∈ A and x ∈ X , not depending on θ, such that for all A ∈ A and

θ ∈ Θ, ∫
G

p(A, x) dPθ(x) =

∫
G

IA(x) dPθ(x), for all G ∈ G.

Using the terminology introduced in Ex. A.21 on conditional expectation, this means that

p(A, ·) is a version of the conditional probability Pθ(A |T ) for all A ∈ A and θ ∈ Θ. Here,

Pθ(A |T ) is shorthand for the more cumbersome Pθ(A |σ(T )), with σ(T ) the σ-algebra

generated by T .

We now turn to the factorisation theorem. Suppose that the family {Pθ : θ ∈ Θ} is

dominated by a σ-finite measure µ. For each θ, let fθ be the density of Pθ with respect

to µ. The statistic T is sufficient for {Pθ : θ ∈ Θ} if and only if there exist nonnegative

functions h and gθ such that

fθ(x) = gθ(T (x))h(x),

for all θ ∈ Θ. The proof of the factorisation theorem relies on the existence of a proba-

bility measure Q dominating {Pθ : θ ∈ Θ}, i.e., Pθ � Q for all θ, with this dominating

probability measure on the form Q =
∑∞
j=1 ajPθj , with aj > 0 and each Pθj belonging

to the family {Pθ : θ ∈ Θ}. In the following string of exercises we first prove the factori-

sation theorem assuming the existence of such a probability measure Q, and defer the

construction of Q to Ex. (d) [xx or perhaps the appendix? xx].

(a) Before we get to the proof of the factorisation theorem, let us work through some

preliminaries. Let Q be as just described. First, show that Q is indeed a probability

measure. Second, show that Pθ � µ if and only iff Q� µ. Finally, show that when µ is

σ-finite, dQ/dµ =
∑∞
j=1 ajdPθj/dµ.

(b) Suppose that {Pθ : θ ∈ Θ} � Q� µ, as described above. Assume that T is sufficient

for {Pθ : θ ∈ Θ}, i.e., there exists p(A, ·) that is a version of Pθ(A | T ) for every θ ∈ Θ.

First, show that ∫
G

Q(A | T )(x) dQ(x) =

∫
G

p(A, x) dQ(x),

for all G ∈ σ(T ). This shows that T is sufficient for the augmented family {Pθ : θ ∈
Θ} ∪ {Q}. Next, since Pθ � Q, we can switch measure, dPθ = (dPθ/dQ) dQ (see

Ex. A.14). Use this measure switching in combination with the tower property of condi-

tional expectation to show that

Pθ(A) =

∫
gθ(T (x))h(x) dµ(x),

for all A ∈ A, where h(x) = dQ/dµ(x) and gθ(T (x)) = Eθ{dPθ/dQ |σ(T )}(x), which

proves (why?) one way of the factorisation theorem.
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(c) To prove a converse of (b), still under the {Pθ : θ ∈ Θ} � Q� µ assumption, show

first that if, for all θ ∈ Θ, the density of Pθ with respect to Q only depends on x through

T (x), and is hence σ(T )-measurable, then Q(A |σ(T )) is a version of Pθ(A |σ(T )) for all

θ ∈ Θ. Next, assume that fθ(x) = gθ(T (x))h(x) as described in the theorem. Appeal

to (a) and Ex. A.14 in the appendix, to show that

dPθ
dQ

(x) =
gθ(T (x))∑∞

j=1 ajgθj (T (x))
,

and conclude that T is sufficient.

(d) [xx construction of Q here or in appendix xx]

(e) Suppose that {Pθ : θ ∈ Θ} satisfies the conditions of the factorisation theorem, and

let T be a sufficient statistic, taking values in the measurable space (T , C). Thus, for

every θ ∈ Θ, the density of Pθ with respect to µ is fθ(x) = gθ(T (x))h(x). For every

θ, we let PTθ (B) = Pθ({x ∈ X : T (x) ∈ B}) for B ∈ C, be the distributions induced

by T on (T , C). Let Q =
∑∞
j=1 ajPθj be as described above, let (QT−1)(B) = Q({x ∈

X : (T (x) ∈ B}) be the measure induced on (T , C) via Q, and define a measure ν on

(T , C) by ν(B) =
∫
B

∑∞
j=1 ajgθj (t) d(QT−1)(t), for B ∈ C. Use what you found in (c)

and the change of variable formula (see Ex. A.10(c)), to show that

PTθ (B) =

∫
B

gθ(t) dν(t),

for every B ∈ C. This shows that PTθ has density gθ(t) with respect to ν.

(f) Use (e) and the factorisation theorem to prove the general version of (1.7) in Ex. 1.61.

(g) Let us look at the result in (e) for a concrete example. Suppose X1, . . . , Xn are

i.i.d. Expo(θ), and let T =
∑n
i=1Xi. Show that the joint density of X1, . . . , Xn can

be written fθ(x1, . . . , xn) = gθ(T (x1, . . . , xn))h(x1, . . . , xn), and conclude that T is suffi-

cient. To find the marginal distribution of T , show that the moment generating function

of T is Eθ {exp(aT )} = (1 − a/θ)−n, a < θ, from which we get that T ∼ Gamma(n, θ).

Find a measure ν on the range of T , with respect to which PTθ (B) = Pθ(T ∈ B) has

density gθ(t). Convince yourself that ν is σ-finite.

Ex. 1.64 Minimal sufficiency. In Ex. 1.61(e) we saw that for any model there are

many different sufficient statistics, often with some providing more compression of the

data than others. Since the purpose of sufficient statistics is to compress the data, this

naturally leads to a search for a sufficient statistic providing the maximum amount of

data compression, while still retaining all the information about the unknown parameter

of interest. Such a statistic is called a minimal sufficient statistic.

The formal definition is as follows: Let T be sufficient for {Pθ : θ ∈ Θ}. Then T isminimal

sufficient minimal sufficient if for any other sufficient statistic S, there is a measurable function g

so that T = g(S) almost surely, for all values of θ. Another ways of saying this is that if

T is such that the implication ‘if S(x) = S(y) then T (x) = T (y)’ holds for any sufficient

statistic S, then T is minimal sufficient.
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(a) Let X ∼ N(0, σ2). Show that both X and |X| are sufficient for σ2. Let X ′ =

U |X| + (1 − U)|X|, and show that X ∼ X ′. We see that |X| provides more data

compression than X, but is it minimal? We will soon have the tools to find out.

(b) Suppose that T is minimal sufficient, and let S be some sufficient statistic. Show

that the σ-algebra generated by T must be contained in the σ-algebra generated by S.

Show that any one-to-one function of a minimal sufficient statistic is minimal sufficient.

(c) The following theorem say the mapping from data to likelihood function, that is,

x 7→ {fθ(x) : θ ∈ Θ}, is minimal sufficient. The proof is based on the observation that

from the factorisation fθ(x) = fX|S(x | s)fSθ (s), the likelihood θ 7→ fθ(x) is proportional

to θ 7→ fSθ (s), for any sufficient statistic S. In other words, the likelihood function fθ(x)

is a function of the likelihood function fSθ (s) of any sufficient statistic S, and therefore

the fθ(x) is minimal sufficient.

Here is the theorem: Let fθ(x) be the density of X. Suppose there is a function

T (x) is such that T (x) = T (y) if and only if for some h(x, y) > 0

fθ(x) = fθ(x)h(x, y) for all θ.

Then T (X) is minimal sufficient. To prove this, first, use the factorisation theorem to

show that T is sufficient. Second, introduce another sufficient statistic S, and again use

the factorisation theorem to show that T must be a function of S.

(d) (i) With X ∼ N(0, σ2), show that the absolute value |X| is minimal sufficient. (ii)

Let X1, . . . , Xn be i.i.d. N(µ, σ2), and show that (X̄n, Sn) with X̄n = n−1
∑n
i=1Xi and

Sn =
∑n
i=1(Xi−X̄)2 is minimal sufficient. (iii) Let Y1, . . . , Yn be i.i.d. from a distribution

with density fθ(y) = exp(−(y−θ)) for x > θ and θ ∈ R. Find a minimal sufficient statistic

for θ.

(e) Let g(x) be a positive and integrable function on (−∞,∞). Set c(a, b)−1 =
∫ b
a
g(x) dx,

and define fa,b(x) = c(a, b)g(x)I(a,b)(x). Let X1, . . . , Xn be i.i.d., from the distribution

with density fa,b(x). Find a minimal sufficient statistic for (a, b).

(f) Let X1, . . . , Xn be i.i.d. from a distribution with density fθ(x) = 1/2 exp(−|x −
θ|), x, θ ∈ R. Show that the order statistics are minimal sufficient.

(g) Let Y1, . . . , Yn be i.i.d. from a distribution with a density of the exponential class

fθ(y) = exp{
∑p
j=1Qj(θ)Tj(y)− k(θ1, . . . , θp)}h(y) of full rank (see Ex. 1.59). Show that

T̄ = (T̄1, . . . , T̄p), where T̄j = n−1
∑n
i=1 Tj(Yi) is minimal sufficient for (θ1, . . . , θp).

In fact, a stronger result holds, namely that T̄ is complete. See, e.g., Schervish

(1995, Theorem 2.74, p. 108) for a proof of this fact, and Ex. ?? as well as Ex. 8.5 for

a proper treatments of completeness. That T̄ being complete and sufficient (the latter

follows from the factorisation theorem) is stronger than minimal sufficiency, is proven in

Ex. 8.5(g).

(h)
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Ex. 1.65 Ancillary statistics. The opposite of sufficiency, in a sense, is ancillarity. If

X ∼ Pθ, a statistic U = U(X) is ancillary if its distribution is the same for all θ. In ancillary

statisticother words, U by itself does not provide any information about θ. As (d) below clearly

demonstrates, this does not mean that U should be disregarded when making inference

on θ. It just means that if you only learn U = u, you have not learned anything about θ.

(a) Let X and Y be independent N(θ, 1), and set R = X−Y . Show that R is an ancillary

statistic.

(b) In fact, (a) is an instance of a more general result: Let X1, . . . , Xn be independent

from a family of distribution with density f(x − θ) with respect to Lebesgue measure.

Show that Xi = Zi + θ, where Zi has density f(x), and use this to show that the range

maxi≤nXi −mini≤nXi is ancillary.

(c) Similarly, let X1, . . . , Xn be independent from a family of distribution with density

f(x/σ)/σ with respect to Lebesgue measure. Show that Xi = σZi, where Zi has density

f(x), and use this to show that any function of the ratios X1/Xn, X2/Xn, . . . , Xn−1/Xn

is ancillary.

(d) Let Z ∼ Bernoulli(1/2), X1 ∼ N(θ, 1), and X2 ∼ N(θ, 2), and suppose that all three

are independent. Set X = ZX1+(1−Z)X2 and suppose that we observe (X,Z). Explain

why Z is ancillary, and show that (X,Z) is minimal sufficient for θ, but that X is not

sufficient. One says that X is conditionally sufficient given Z.

(e) Let X1, . . . , Xn be independent N(θ, 1). Show that S =
∑n
i=1(Xi− X̄n)2 is ancillary.

(f) Let N ∼ Pois(λ) for some known λ. Given N = n, n independent Bernoulli(θ) trials

X1, . . . , Xn are performed. Show that (
∑n
i=1Xi, N) is minimal sufficient for θ, and that

N is ancillary. Show that N−1
∑N
i=1Xi is unbiased for θ, and find its variance.

(g)

Ex. 1.66 Basu’s theorem. [xx but we have to wait with Basu, because completeness

has yet to be introduced xx]

Ex. 1.67 Nonparametric models. Above we have seen a wide range of parametric models,

each model indexed via a finite and perhaps small number of parameters. Models can also

be nonparametric, however, with fewer modelling assumptions placed on their outcomes.

(xx just a bit. data with unknown mean and unknown variance, but saying nothing

more. symmetry. unimodal. shape constraints. xx)

Ex. 1.68 Alice and Bob correlate their binomials. Here we show how correlated bino-

mials may be constructed, leading also to correlated random walks.

(a) Alice flips her fair coin n times, with i.i.d. 0-1 outcomes A1, . . . , An. Bob has two

coins, and mixes between them depending on Alice’s outcomes: if Ai = 1, he uses the

plus-coin with probability 1
2 +a for heads; and if Ai = 0 he uses his minus-coin with 1

2−a
for heads. With Bi his outcome, show that P (Bi = 1) = 1

2 , and argue therefore that

both Xn and Yn are binomial (n, 1
2 ) variables, where Xn =

∑n
i=1Ai and Yn =

∑n
i=1Bi

are the number of heads for Alice and for Bob. Show that the correlation between these

two binomials is 2a.
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(b) In the little story-telling above, Bob observes Alice’s outcomes, one by one, which

then influence his choice between two coins; Alice doesn’t even need to be aware of

Bob’s existence. Explain however that we from observed pairs of coin flips (Ai, Bi)

never can see the difference between that scenario and the alternative one, that Bob

is the one flipping his fair coin, without caring for Alice, before she chooses between

two biased ones. This is arguably an instance of what Breiman (2001) alludes to as the

Rashomon Effect (from a Japanese movie in which different persons report very differently

about something they have all observed): data alone cannot help us uncover which of the Rashomon

Effect: different

models may

offer equally

good

explanations

the chains of action have been at work. Show indeed that as long as Alice and Bob

have a joint scheme of producing outcomes (0, 0), (0, 1), (1, 0), (1, 1), with probabilities

respectively 1
4 (1 + a), 1

4 (1 − a), 1
4 (1 − a), 1

4 (1 + a), then (Xn, Yn) have the correlated

binomial distribution.

(c) Find a way to compute f(x, y) = P (Xn = x, Yn = y), for x, y = 0, 1, . . . , n.

(d) Leaving the Rashomon aspects to the side, generalise the first setup to the case of

two correlated binomials (n, p), where p is not necessarily 1
2 . Take indeed P (Ai = 1) = p

and then P (Bi = 1 |Ai = 1) = p + a, P (Bi = 0 |Ai = 0) = 1 − p + ap/(1 − p), for

a < min(p, 1 − p), and show that this works properly. What is the correlation between

Xn and Yn?

(e) Show that
√
n(Xn/n − p, Yn/n − p) tends in distribution to a binormal zero-mean

(X,Y ), with variances p(1− p) and covariance ap.

(f) (xx brief pointer to two correlated random walks, Ch9, with two correlated Brownian

motions. also good ML exercise, finding â based on having observed Alice and Bob

random walks, easy
√
n(â− a), test for a = 0, etc.)

1.C Notes and pointers

(xx to come. a bit old literature, but crisply, and not systematic. brief genesis of the

normal, a few sentences on the chi-squared, Pearson (1900), the t, Student (1908), the

F, the Dirichlet, more. we also point to essential things in later chapters. point out that

the normal is famous and useful also because of a host of approximation methods. xx)

(xx where do we have a precise theorem on MX = MY implying F = G? inversion

formula? xx)

The chi-squared is on the list over deservedly famous distributions in probability

theory and statistics, and stems from Karl Pearson’s famous 1900 paper, ‘On the criterion

that a given system of deviations from the probable in the case of a correlated system

of variables is such that it can be reasonably supposed to have arisen from random

sampling’. [xx a bit more: he establishes the chi-square distribution, the test carrying

the chi-squared name, and sets up a rigorous conceptual framework for hypothesis testing.

xx]



I.2

Parameters, estimators, precision

With data observed from a statistical model, the theme of this chapter is that of con-

structing estimators for unknown statistical parameters, along with assessing their

precision. This also leads to ways of comparing competing estimation methods.

Basic concepts include the bias, the variance, the mean squared error of estima-

tors. General estimation methods covered here include the method of moments

and the method of quantiles; these can also be combined. For regression setups,

with response variables influenced by covariates, we go through the method of least

squares. The more versatile method of maximum likelihood is treated in Ch. 5. To

understand the properties of classes of estimators in general models, we learn the

basics of normal approximations, involving the Central Limit Theorem and versions

of the delta method. This enables one to assess precision and to compare different

competing estimators.

2.A Chapter introduction

Most statistical models have parameters, as we learn from the generous variety of models

in Ch. 1. Parameters may then be fine-tuned, or estimated, from data, which is the

grand theme of the present chapter. In generic terms, if a model has density f(y, θ),

with θ = (θ1, . . . , θp)
t its parameter vector, we use data D to construct an estimator

θ̂ = θ̂(D). Thus f(y, θ̂) is the fitted model, which we use for interpretation and inference,

themes we return to in more detail in later chapters. The data D can often be in the form

of direct independent observations y1, . . . , yn from the model, but can also be different

in character, involving censoring mechanisms, or measurement error.

One often needs estimates and inference methods for focus parameters, those of par-focus parameter

ticular and context-driven interest, which are one-dimensional functions φ = φ(θ1, . . . , θp)

of the underlying model parameter vector. If φ̂ is an estimator for this parameter, we

often care about its mean, represented here as

Eθ φ̂ = φ+ b(θ). (2.1)

The footscript signals that the expectation operator is at work at the parameter position

θ. The b(θ) is termed the bias, and if Eθ φ̂ = φ, at all positions θ, we say the estimatorunbiased

estimator

47
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is unbiased. In addition to wishing for estimators with small bias, we care about its

variability, and often about its mean squared error mean squared

error

mse(φ̂, θ) = Eθ (φ̂− φ)2 = Varθ φ̂+ b(θ)2, (2.2)

the classic variance plus squared bias. This is a function of the unknown parameter,

and gives a way of understanding and comparing performance for competing estimation

schemes. When we can sort out the mathematics properly, depending on the situation

at hand, we then choose estimators with smaller mse than those of competitors.

The mse(φ̂, θ) of (2.2) is sometimes called the risk, or risk function, and relates to

having chosen squared error (φ̂− φ)2 as the underlying measure of quality. Other ways

in which to compare and rank performance, involving also different quality functions and

risk functions, will be dealt with Ch. 8.

In various setups one can study distributions, biases, variances etc. quite accurately,

as will be seen in many exercises below. Often enough this might be too complicated,

however, and one relies instead on good approximations. There is indeed a host of normal

approximations, sometimes with additional tools for finetuning these. We return to such

themes in Chs. 4, 5, with more detail and a much wider discussion, but it is fruitful

to learn about some of the basic methods and their uses already in this chapter. Thus

Ex. 2.8-2.11 provide the basics of convergence in distribution (often to the normal), the

Central Limit Theorem (acronym CLT), the delta method, and generally speaking to

normal approximations. These methods may be understood, appreciated, seen in action,

and used for new situations, without necessarily having been through each δ and ε of

their full proofs (but see again Chs. 4, 5 for such detail).

In this chapter we learn certain estimation principles, including those associated with

the method of moments and the method of quantiles. There is also room for combining

such methods, or for coming up with new estimators in unfamiliar waters. We go on

to more advanced models and hence estimation methods in later chapters (and in some

of our stories), but included below is the basics of linear regression and the least sum

of squares methods. The more versatile and often well-performing method of maximum

likelihood will be studied with care in Ch. 5.

[xx In this brief intro there should be a figure, conveying some basic ideas. We may

snikinnføre confidence intervals, but that comes with more weight in Ch. 3, along with

testing and power and p-values. we do mention a few key concepts here in intro, like

unbiasedness, low variance, etc. xx]

(xx meeds a bit of perestroika, as of 13-Aug-2023: we do snikinnfoere confidence

intervals, via CLT, but just in a few exercises, with the real thing coming in Ch3. so we

need more editorial care to secure that things come in the right order below. xx)

2.B Short and crisp

Ex. 2.1 Mean squared error. Suppose data lead to an estimator φ̂ for a focus parameter

φ = φ(θ), in a model with parameter θ.

(a) Verify the mse formula (2.2).
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(b) For a simple situation, let Y ∼ N(θ, 1), with θ to be estimated. Find formulae for the

mean squared errors of the three estimators 0.9Y , Y , 1.1Y . Note the interplay between

bias and variance.

(c) Generalise to the case of Y1, . . . , Yn being independent and identically distributed

(i.i.d.) from N(θ, 1). Find mse(θ̂, θ) for the three estimators 0.99 Ȳ , Ȳ , 1.01 Ȳ , with Ȳ

the sample average. Comment on what you find.

(d) In somewhat more general terms, consider an i.i.d. sample Y1, . . . , Yn from a distri-

bution with unknown mean µ and variance σ2. Show that Ȳ is unbiased with variance

σ2/n. If your estimator for µ is cnȲ , what is required of cn, in order for the mean squared

error to go to zero with growing n?

Ex. 2.2 Binomial estimation. Consider Y being binomial (n, p), as in Ex. 1.3.

(a) To estimate p the canonical choice would be p̂ = Y/n. Find its mean and variance,

and a formula for mse(p̂, p) = Ep (p̂− p)2.

(b) Then compare the simple binomial unbiased proportion with the Ur-Bayes estimator

p̂B = (Y + 1)/(n + 2) (xx pointer to exercise in Ch. 6 xx). Find its bias and variance,

and a formula for mse(p̂B , p). Draw the two mse functions in a diagram, for say n = 10.

When is the Bayes estimator better than the Y/n, according to this criterion?

Ex. 2.3 Estimating the normal mean. Suppose we have independent observations

Y1, . . . , Yn from the normal distribution N(µ, σ2).

(a) Prove that the sample average Ȳ = n−1
∑n
i=1 Yi has the N(µ, σ2/n) distribution.

Here Ȳ is the canonical estimator for µ. Find also a clear formula for its risk, or mean

squared error, namely mse(Ȳ , µ, σ) = Eµ,σ(Ȳ − µ)2. The subscript indicates that the

mean operator is with respect to the probability mechanism dictated by (µ, σ).

(b) Then generalise the above somewhat, by finding the mean and variance also for the

estimator µ̂ = bȲ , with b a constant (which might be close to 1). Use this to put up a

clear expression for

mse(bȲ , µ, σ) = Eµ,σ(bȲ − µ)2.

Illustrate this, for values b = 0.98, 1.00, 1.02, and comment. For what values of the

parameters (µ, σ) will the estimator 0.98 Ȳ be better than the classic Ȳ ? Are there

values of the parameters where 1.02 Ȳ is better than the plain 1.00 Ȳ ?

(c) Suppose the starting assumptions about the data at hand is changed to merely saying

that the Yi are i.i.d. with mean µ and standard deviation σ, i.e. we avoid saying that the

distribution of the error terms εi = (Yi − µ)/σ needs to be exactly normal. How does

this affect your findings and claims for the previous points?

Ex. 2.4 Estimating the normal variance. As in Ex. 2.3, suppose there are i.i.d. data

Y1, . . . , Yn from the N(µ, σ2). Here we care about the standard deviation parameter σ.

As we saw in Ex. 1.33, Z =
∑n
i=1(Yi − Ȳ )2 ∼ σ2χ2

m, where m = n − 1. Also, the Z is

stochastically independent of the sample mean Ȳ .
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(a) Use the statement above to find the mean and variance of σ̂2 = cZ (where c ought

to be about 1/n). Find the mean squared error mse(cZ, σ) = Eσ (cZ − σ2)2. Check in

particular the result for c = 1/(n−1), the classical factor to make the estimator unbiased;

for c = 1/n, which comes out of the maximum likelihood paradigm (see Ch. 5); and for

c = 1/(n+ 1).

(b) Find the best possible constant c for estimators of this type cZ, using the mean

squared error on the σ2 scale as criterion.

(c) Find also the mean and variance of dZ1/2, seen as an estimator of σ, i.e. on the

standard deviation scale, not that of the variance. Find an expression for

mse(dZ1/2, σ) = Eσ (dZ1/2 − σ)2.

Find the best d, according to this criterion.

(d) (xx something more. could briefly investigate (log σ̂ − log σ)2. examine the risk

function mse(kZ1/2, σ) = Eσ {log(kZ1/2)− log σ}2 and find the best value of k. xx)

(e) A hard-core solution to the issue of determining ‘the best constant’ when estimating

σ, disregarding tradition and mathematical convenience, might be as follows. With

σ̂2 = Z/(n− 1) being the traditional sample variance, with 1/(n− 1) selected to achieve

unbiasedness on the σ2 scale, consider σ∗ = cnσ̂, with cn to be fine-tweaked perhaps a

little bit away from 1. Find the cn that makes

risk(cnσ̂, σ) = Eσ |cnσ̂ − σ|

smallest. This means relying on absolute error as loss function, and the solution needs

numerical minimisation of a function which needs numerical integration. Give a table

with these optimal cn for say n = 10, . . . , 30. Show that cn → 1 as n grows.

Ex. 2.5 Normal quantiles. Consider again the setup of Ex. 2.3, with a sample of Yi from

the normal N(µ, σ2) model. In the present exercise we care about quantiles, as opposed

to ‘only’ the mean or the standard deviation.

(a) Writing F for the cumulative distribution function of Yi, show that

F (y) = P (Yi ≤ y) = Φ((y − µ)/σ),

with Φ(x) = P{N(0, 1) ≤ x} the cumulative distribution function for the standard normal

(i.e. the pnorm function in R). Show that the q quantile F−1(q) is equal to γq = µ+ zqσ,

with zq = Φ−1(q). Thus the 0.95 quantile is γ0.95 = µ+ 1.645σ, etc.

(b) Find the mean and variance of the natural estimator γ̂q = Ȳ + zq σ̂, where σ̂ =

(Z/m)1/2, with Z as in Ex. 2.4 and m = n− 1.

(c) (xx a bit more. confidence interval for γq. note that this is tighter in the middle than

near the edges. xx)

(d) (xx a simple data example. xx)
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Ex. 2.6 Estimating the normal density. Most often the statistical interest lies in esti-

mating some parameter related to, or expressed through, the normal distribution, like

the mean or spread, as illustrated above. In some situations one wishes to estimate the

density itself. Consider once again a sample Y1, . . . , Yn from the normal N(µ, σ2).

(a) For the parameter σ, we shall again use Z =
∑n
i=1(Yi− Ȳ )2 ∼ σ2χ2

m, with m = n−1,

as in several previous exercises. With the traditional default estimator σ̂2 = Z/(n − 1)

of (1.3), find formulae for the mean of 1/σ̂2 and log σ̂.

(b) Construct unbiased estimators for 1/σ2 and for log σ.

(c) The log-density function is f(y) = − log σ− 1
2 (y− µ)2/σ2 − 1

2 log(2π). Construct an

unbiased estimator for this log f(y).

(d) (xx more elaborate: constructing unbiased estimator for f(y) on the direct density

scale. no, perhaps wait until next exercise. xx)

(e) (xx can ask for estimates with bands of the ratio f1(y)/f2(y), perhaps constructed

by first estimating the log difference, finding band there, and exp-ing home. could also

bake a Type B Story from the birthweights of Oslo boys and Oslo girls, 2001–2008, see

(xx Data Story B.2.B xx), with other natural analyses. xx)

Ex. 2.7 Some probability tail inequalities. For a random variable X, how can we find

useful bounds for tail probabilities, i.e. P (X ≥ a)? There are several such, as we learn

here, with more to come in Ex. 4.33. Their uses include assessing how likely it might be

that an estimator is some distance off its target.

(a) Suppose X is nonnegative, with distribution F . Using

EX =

∫ ∞
0

xdF (x) ≥
∫ ∞
a

xdF (x) ≥
∫ ∞
a

a dF (x),

prove the the Markov inequality, that P (X ≥ a) ≤ EX/a. Comment on the followingthe Markov

inequality type of consequence: If the average income in your municipality is 1 million kr, then a

maximum of 20 percent earns more than 5 million kr.

(b) More generally, if h(x) is a nonincreasing function, show that P (X ≥ a) ≤ Eh(X)/h(a).

(c) From this, deduce the Chebyshov inequality: if X has finite variance, thenthe Chebyshov

inequality

P (|X − EX| ≤ ε) ≤ (VarX)/ε2 for ε > 0.

With X1, . . . , Xn being i.i.d. from such a distribution, with mean ξ and standard devi-

ation σ, show that for the empirical mean X̄n that P (|X̄n − ξ| ≥ ε) ≤ σ2/(nε2), anda version of the

LLN comment. This is actually a form of the Law of Large Numbers: P (|X̄n − ξ| ≥ ε) → 0,

for any ε > 0; see Ch. 4.

(d) If X has mean ξ, and a finite fourth moment, show that P (|X − ξ| ≥ ε) ≤ E |X −
ξ|4/ε4. For X ∼ N(ξ, σ2), show that P (|X − ξ| ≥ ε) ≤ 3σ4/a4.
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(e) With X1, . . . , Xn i.i.d. from a distribution with finite fourth moment, write γ4 =

E {(Xi − ξ)/σ}4 − 3 for its kurtosis. Show that

E |X̄n − ξ|4 =
σ4

n4
{nγ4 + 3n(n− 1)} =

σ4

n2
{3 + (1/n)(γ4 − 3)}.

Show hence that P (|X̄n − ξ| ≥ ε) ≤ 3.01σ4/(n2ε2), for all large enough n. When is this

a sharper result than that of the Chebyshov inequality?

Ex. 2.8 Approximate normality and convergence in distribution. Often the distribution

of estimators as well as classes of other statistics are approximately normal. There are

several ways of making such a notion precise, and indeed we come back to a more formal

apparatus, and to many more details, in Chs. 4, 5. Since approximate normality is

so pervasively and powerfully present also when describing behaviour of estimators in

simpler settings, we give some preliminary definitions and remarks in this exercise.

(a) With a variable Yn, with distribution depending on an index n, which often will be or

is related to the sample size, we say that Yn tends to the standard normal in distribution,

and write Yn →d N(0, 1), if it is the case that

P (a ≤ Yn ≤ b)→ P{a ≤ N(0, 1) ≤ b} =

∫ b

a

φ(x) dx,

for all intervals [a, b], where φ(x) = (2π)−1/2 exp(− 1
2x

2) is the standard normal density.

Show that P (|Yn| ≥ 1.96) → 0.05. Find the limiting probability of the event that Yn
lands in [0, 0.50] ∪ [1, 1.50] ∪ [2, 2.50] ∪ [3, 3.50].

(b) Since it’s so deservedly famous and powerfully useful, from theoretical probability

to applied statistics, let’s not hesitate to point to the CLT, the Central Limit Theorem. the CLT

We do come back to the CLT, its proof, ramifications, and some extensions later, in

particular in Chs. 4, 5, 9, but we state it here: Suppose Y1, Y2, . . . are i.i.d. with finite

mean ξ and standard deviation σ. Then the random sum, normalised to have mean zero

and variance one, i.e.

Zn =
( n∑
i=1

Yi − nξ
)
/
√
nσ2 =

√
n(Ȳn − ξ)/σ,

tends to the N(0, 1) in distribution. Note that there are no further assumptions on the

distribution of the Yi, so the exact distribution of Zn, for a given small or moderate n,

might be complicated or strange, but as n increases everything is being smoothened out in

the Gaussian fashion. – Use this to show that if Kn ∼ χ2
n, then

√
n(Kn/n−1)→d N(0, 2).

(c) Let more generally Yn and Y have cumulative distribution functions Fn and F . We

say that Yn converges to Y in distribution, and write Yn →d Y , provided

Fn(b)− Fn(a) = P (a < Yn ≤ b)→ P (a < Y ≤ b) = F (b)− F (a),

for all windows [a, b] where both endpoints a and b are continuity points for F . The point,

theoretically, practically, and empirically, is that perhaps complicated Yn probabilities
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might be approximated by perhaps simple Y probabilities. – Suppose Yn →d N(0, 1).

Show that Y 2
n →d χ

2
1. [xx later: make sure the Wn,q →d N(0, 1 + 1

2z
2
q ) is seen as a good

case in point here. xx]

(d) With U1, . . . , Un being i.i.d. from the uniform distribution on the unit interval, let

Mn = maxi≤n Ui. Show that n(1−Mn) tends to the unit exponential in distribution.

(e) Suppose Yn and Y are integer valued variables, with values in 0, 1, 2, . . ., and with

probabilities pn(j) = P (Yn = j) and p(j) = P (Y = j). Show that Yn →d Y if and only

if there is pointwise convergence of these probability functions, i.e. pn(j)→ p(j) for each

j.

(f) With Yn a binomial (n, p), with fixed p, show that (Yn−np)/{np(1−p)}1/2 →d N(0, 1),

and that
√
n(Yn/n− p)→d N(0, p(1− p)). With growing n and shrinking p, however, in

a manner such that np→ λ, show that Yn →d Pois(λ).

(g) When Zn ∼ Pois(n), show that (Zn − n)/
√
n→d N(0, 1).

(h) LetX1, . . . , Xn be independent standard normals. WithMn(t) = n−1
∑n
i=1 exp(tXi),

which we may call the empirical moment-generating function, find the limit distribution

for
√
n{Mn(t)− exp( 1

2 t
2)}.

Ex. 2.9 Approaching zero. When dealing with limit distributions it is practical to

formalise and build some rules around the notion of variables approaching zero. We say

that Zn converges to zero in probability, and write Zn →pr 0, if P (|Zn| ≥ ε) → 0 for

each ε > 0.

(a) WhenX1, X2, . . . are i.i.d., with mean zero and finite variance, show that the sequence

of sample averages tends to zero in probability; see Ex. 2.7.

(b) When Zn →pr 0, show that also h(Zn)→pr 0, if h is continuous at zero.

(c) Show that if Yn →d Y , and Y ′n − Yn →pr 0, then also Y ′n →d Y . This says that

variables which are essentially close, for growing n, have identical limit distributions.

(d) Show that if Yn →d Y and εn →pr 0, then Yn + εn →d Y and Ynεn →pr 0.

(e) With X1, . . . , Xn being i.i.d., with mean ξ, variance σ2, and finite fourth moment,

consider σ̂2
0 = (1/n)

∑n
i=1(Xi − ξ)2, which uses the ξ, and σ̂2 = (1/n)

∑n
i=1(Xi − X̄n)2,

which uses the sample mean X̄n. Show that these are close;
√
n(σ̂2 − σ̂2

0)→pr 0.

Ex. 2.10 Approximate multinormality. In Ex. 2.8 we described the basics for ap-

proximate normality and convergence in distribution, for the one-dimensional case, also

pointing to the CLT. We also need to extend this machinery to the multi-dimensional

case, also since there are many situations where a one-dimensional estimator or test

statistic is a function of several components. Again, more material on large-sample

methods, results, techniques is in Chs. 4, 5, 9, but here we work through the basics for

the multi-dimensional CLT and see some of its applications.
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(a) To approach the notion of ‘approximate multinormality’ we need an associated notion

of convergence in distribution to a multinormal distribution. We will work with more

general notions and definitions in Chs. 4, 5, but for the present introduction chapter

it is sufficient to say that a random vector Yn = (Yn,1, . . . , Yn,p)
t converges to a limit

distribution variable Y = (Y1, . . . , Yp)
t in distribution if (and actually only if) all linear

combinations converge accordingly:

Zn = ctYn = c1Yn,1 + · · ·+ cpYn,p →d Z = ctY = c1Y1 + · · ·+ cpYp

for each vector c = (c1, . . . , cp)
t. – Show that Yn →d Np(0,Σ) if and only if ctYn →d

N(0, ctΣc) for all c.

(b) Prove that the multi-dimensional CLT then follows from the one-dimensional version:

If X1, X2, . . . are i.i.e. from some p-dimensional distribution, with finite mean ξ = EXi

and variance matrix Σ = VarXi, then the normalised sum Zn = n−1
∑n
i=1(Xi − ξ) =√

n(X̄n − ξ) tends to the multinormal Np(0,Σ).

(c) Show that a random pair (Xn, Yn) converges in distribution to the binormal N2(0,Σ),

with Σ having diagonal elements 1, 1, and correlation ρ, if and only if aXn + bYn →d

N(0, a2 + b2 + 2ρab) for each (a, b).

(d) Suppose X1, X2, . . . are i.i.d. with mean ξ and standard deviation σ. We assume that

also the skewness and kurtosis are finite, γ3 = E (Xi−ξ)3/σ3 amd γ4 = E (Xi−ξ)4/σ4−3.

Show from the two-dimensional CLT that(√
n(X̄n − ξ)√
n(σ̂2

0 − σ2)

)
→d N2(

(
0

0

)
,

(
σ2, γ3σ

3

γ3σ
3, σ4(2 + γ4)

)
)

where σ̂2
0 = n−1

∑n
i=1(Xi − ξ)2.

(e) Then show that with σ̂2 = n−1
∑n
i=1(Xi−X̄)2, which is a ‘real estimator’, as opposed

to σ̂2
0 , which uses ξ, then we have

√
n(σ̂2−σ̂2

0)→pr 0; see Ex. 2.9. Conclude that the two-

dimensional limit distribution result above continues to hold with
√
n(σ̂2−σ2) replacing√

n(σ̂2
0 − σ2).

(f) Let in particular the distribution of the Xi be normal, so Xi ∼ N(ξ, σ2). Show that

γ3 and γ4 are equal to zero, so the general result above simplifies to(√
n(X̄n − ξ)√
n(σ̂2 − σ2)

)
→d N2(

(
0

0

)
,

(
σ2, 0

0, 2σ4

)
).

[xx pointer to later uses, via the delta method, for functions g(X̄, σ̂). an example,

with moment estimators, is for the Gam(a, b), see Ex. 5.4. must be others, for moment

estimators. xx]

Ex. 2.11 Approximate variances and the delta method. There are important and often

reasonably simple to use approximation methods, in probability theory and statistics,

going by the name of the delta method. It is related to functions of variables often

being approximately linear, if the variables in question are not too spread out, with
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consequences for approximate normality. More details are discussed in Ch. 4; see in

particular Ex. 4.25. Here we are content to work out the basics, and to see its uses in

the following few exercises.

(a) Suppose X1, . . . , Xn are i.i.d. with mean zero, variance σ2, and finite skewness γ3 =

E (Xi/σ)3 and kurtosis γ4 = E (Xi/σ)4 − 3 (xx calibrate crosslink later xx). With X̄ as

usual being the average, show then that

E X̄2 = σ2/n,

E X̄3 = (σ3/n2)γ3,

E X̄4 = (σ4/n2)(3 + γ4/n),

Var X̄2 = (σ4/n2)(2 + γ4/n).

(b) Let then Y1, . . . , Yn be i.i.d., with finite mean ξ, standard deviation σ, skewness γ3,

kurtosis γ4. With Ȳ the sample average, consider then the variable

Zn = a0 + a1(Ȳn − ξ) + 1
2a2(Ȳn − ξ)2.

Show that EZn = a0 + 1
2a2σ

2/n, and that

VarZn = a2
1σ

2/n+ (1/n2){ 1
4a

2
2σ

4(2 + γ4/n) + a1a2σ
3γ3}.

(c) Consider any smooth function Zn = g(Ȳ ), Since Ȳ is close to ξ with high probability,

as we learn more formally in Ex. 2.7, it makes sense to carry out a Taylor expansion,

Zn = g(ξ) + g′(ξ)(Ȳ − ξ) + 1
2g
′′(ξ)(Ȳ − ξ)2 + δn,

where δn is a smaller-sized remainder term – you may prove that n3/2δn is bounded in

probability, if g has three derivatives in a neighbourhood around ξ. Show from the above

that

VarZn = g′(ξ)2σ2/n+ (1/n2){ 1
4g
′′(ξ)2σ4(2 + γ4/n) + g′(ξ)g′′(ξ)σ3γ3}+ o(1/n2).

(d) There is hence a clear leading O(1/n) term, for the variance, with other terms being

of size O(1/n2). To the first order of approximation, show

VarZn
.
= g′(ξ)2σ2/n,

√
n(Ȳ − ξ) ≈ N(0, σ2).

(e) This is a version of the so-called delta method, very useful in probability theory and

statistics. Try to prove, with direct methods, using the formal appartus of Ex. 2.8, that

√
n(An − a)→d Z implies

√
n{g(An)− g(a)} →d g

′(a)Z.

If the limit Z is a normal (0, σ2), then g′(a)Z is the normal (0, g′(a)2σ2).

(f) We come forcefully back to the delta method, with more details, generalisations, and

uses, in Ch. 4, see e.g. Ex. 4.25. Here we spell out the function of a vector version,

since it is so immediately useful; see exercises below. – Suppose
√
n(An − a) →d Z, as
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random vectors of dimension k (xx calibrate with what is said previously in chapter on

such convergence; can go to linear combinations xx). With a smooth g(An), defined at

least in a neighbourhood around a, we have

√
n{g(An)− g(a)} →d c

tZ = c1Z1 + · · ·+ ckZk,

where c = ∂g(a)/∂a, the vector of partial derivatives cj = ∂g(a)/∂aj , computed at

position a. Show that if the limit Z of
√
n(An − a) is multinormal, say Nk(ξ,Σ), then

the limit ctZ is normal (ctξ, ctΣc). The vector version of the delta method is often given

precisely in this form. (xx to form this as an exercise, go via linear combinations, which

then needs us mentioning the cramer-wold, see Ex. 2.10, with details in Ex. 4.42. we

make the readers understand that the vector case follows from the unidim case. xx)

(g) (xx The point is that once a start limit distribution result has been established,

perhaps via the CLT, then a string of further limit distribution results come almost for

free. simple illustration here; more in Ex. 2.12 and 2.14. xx)

Ex. 2.12 Applying the delta method. Here we exercise our delta method muscles, to see

how the general recipes may be applied in a few situations.

(a) For Y a binomial (n, p), we have of course Var p̂ = p(1−p)/n for the classic estimator

p̂ = Y/n. Use the delta method to find approximations to the means, variances, and

distributions of (i) the estimated odds ratio p̂/(1 − p̂); (ii) the estimated log-odds-ratio

log p̂− log(1− p̂); (iii) the transformed estimator γ̂ = 2 arcsin(p̂1/2).

(b) Suppose p̂1 = Y1/n and p̂2 = Y2/n are two binomial estimates, with the same sample

size n. Then
√
n(p̂1 − p1)→d Z1 and

√
n(p̂2 − p2)→d Z2, where Zj ∼ N(0, pj(1− pj)).

Find the approximate normal distribution of p̂1/p̂2, viewed as an estimator of p1/p2.

Modify arguments appropriately to find a good approximation to the variance of p̂1/p̂2,

and its approximate normal distribution, also in the case of unequal sample sizes, say n1

and n2. [xx pointer to Story i.1. xx]

(c) Suppose Y1, . . . , Yn are independent from the geometric distribution with P (Yi =

y) = (1− p)y−1p for y = 1, 2, . . .. We learned in Ex. 1.15 that the mean and variance are

1/p and (1− p)/p2. Find first the limiting distribution of
√
n(Ȳ − 1/p) and then that of√

n(p̂− p), where p̂ = 1/Ȳ .

(d) Suppose (a, b) is a certain position on the map, where one only has estimates, say

An and Bn, for its x- and y-coordinates. Assume these are independent, approximately

unbiased, and approximate normal, after n measurements. We formalise a version of

this as
√
n(An − a) →d N1 and

√
n(Bn − b) →d N2, the limit variables N1, N2 being

independent and standard normal. Having observed An and Bn, explain how you can

put up 90 percent confidence intervals for a and b separately. Construct also a 90 percent

confidence circle for (a, b).

(e) Let us pass from Cartesian to polar coordinates, letting

Rn = ‖(An, Bn)‖ = (A2
n +B2

n)1/2 and α̂n = arctan(Bn/An),
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seen as estimators of the length r = ‖(a, b)‖ and angle α = arctan(b/a). Find the limit

distributions for
√
n(Rn − r) and

√
n(α̂n − α), and show that these are independent in

the limit.

(f) Suppose one observes (An, Bn) = (4.44, 2.22), with n = 100. Construct and display

a approximate 90 percent confidence circle for (a, b), and then approximate 90 percent

confidence intervals for the length r and angle α. How can you construct confidence

intervals for r and α jointly, say Ir,n and Iα,n, such that the probability that (r ∈
Ir,n) ∩ (α ∈ Iα,n) converges to 0.90?

Ex. 2.13 Estimating mean and standard deviation outside normality. Let Y1, . . . , Yn be

i.i.d. from a distribution with finite fourth moment, and consider the usual mean Ȳn and

empirical standard deviation σ̂n. Under normality we have precise finite-sample results

regarding their distributions, see Ex. 1.33, but here we investigate behaviour outside

normality.

(a) Let as on previous occasions γ3 and γ4 be the skewness and kurtotis of the distribu-

tion. Use the delta method, with previous results from Ex. 2.10, to show that(√
n(Ȳn − ξ)√
n(σ̂n − σ)

)
→d N2(

(
0

0

)
, σ2

(
1, 1

2γ3
1
2γ3,

1
2 + 1

4γ4

)
).

(b) Show that
√
n(σ̂− σ)/κ̂→d N(0, 1), if κ is a consistent estimator for κ = ( 1

2 + 1
4γ4).

For an application of this, with sample size up to half a million, see Story vii.2.

Ex. 2.14 Delta method calculus for the normal case. Let Y1, . . . , Yn be i.i.d. from the

normal N(µ, σ2). In Exercises [xx fill in xx] we have worked with exact finite-sample

calculus, for certain basic parameters, like the quantile γq = µ + zpσ. Here we show

how the delta method, starting with the basic limit distributions for the two parameters,

can be used to put up large-sample normal approximations for any functions of the

parameters, in cases where it is too hard to carry out exact finite-sample calculus.

(a) Since the skewness and the kurtosis for the normal are zero, show that the general

result [xx above xx] implies that (
√
n(Ȳ − µ),

√
n(σ̂ − σ))t tends to say (A,B)t, with

these being independent and zero-mean normals with variances σ2 and 1
2σ

2. Show this

directly, from the normality assumptions, as opposed to deriving it as a special case of

the general statement. Note also that the
√
n(Ȳ − µ) ∼ N(0, σ2) holds exactly, for each

finite n.

(b) With α = g(µ, σ), for any smooth function of the two parameters, the natural

estimator is α̂ = g(Ȳ , σ̂). Show that

√
n(α̂− α)→d cA+ dB ∼ N(0, (c2 + 1

2d
2)σ2),

where c and d are the partial derivatives of g, evaluated at the position (µ, σ). Show how

this leads to construction of confidence intervals for the α parameter.

(c) Consider the probability p = P (Y ≥ y0) = 1−Φ((y0−µ)/σ), for some given threshold

y0, and the associated estimator p̂ = 1 − Φ((y0 − Ȳ )/σ̂). Finr the limit distribution of
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√
n(p̂−p), and use this to put up a confidence interval for p, with coverage level converging

to 0.90. Compare with the simpler estimator p∗ = n−1
∑n
i=1 I(Yi ≥ y0), the binomial

proportion, which bypasses the normal assumption.

(d) Then consider the parameter κ = µ/σ, the normalised mean (so its value is unchanged

when one passes from say millimetres to metres). Find the limit distribution for κ̂ = Ȳ /σ̂,

and construct an approximate 90 percent confidence interval. [xx also try exact inference

for this parameter, and compare. xx]

(e) (xx we do one more such. xx)

Ex. 2.15 Variance of the variance estimator. Let Y1, . . . , Yn be i.i.d., with mean ξ,

variance σ2, and finite kurtosis γ4 = E (Yi − ξ)4/σ4 − 3.

(a) With A =
∑n
i=1(Yi− Ȳ )2, show that EA = (n−1)σ2. This says that σ̂2 = A/(n−1)

is unbiased for the variance, regardless of the underlying distribution.

(b) If the Yi are actually normal, then A ∼ σ2χ2
m, with m = n− 1. Show that Var σ̂2 =

2σ4/(n− 1).

(c) Outside normality, work out an expression for VarA, and show that

Var σ̂2 =
(

3 + γ4 −
n− 3

n− 1

)σ4

n
=

2σ4

n− 1
+
γ4σ

4

n
.

(xx check carefully. use Ex. 2.11. with normality, γ4 = 0; show that it reduces to chi-

squared based formula above. may perhaps check with O’Neill (2014). simulate a high

number of samples of size n = 12 from the t distribution tm, with say m = 6, and ‘verify’

the formula. xx)

(d) (xx tie this to large-sample results, with (2 + γ4)σ4 variances for limits, etc. xx)

Ex. 2.16 The binomial, the normal approximation, and confidence intervals. Here is a

good occasion to use the CLT, also since some of its immediate consequences and uses

for this binomial situation must be considered basic knowledge (i.e. even if one does not

necessarily know or does not yet care about all the mathematical details under the hood).

(a) So, use the CLT, as formalised e.g. in Ex. 2.8, to deduce that the normalised variable

Wn =

∑n
i=1(Xi − p)

{Var
∑n
i=1(Xi − p)}1/2

=
Yn − np

{np(1− p)}1/2
=

p̂− p
{p(1− p)/n}1/2

converges to the standard normal N(0, 1) with increasing n. [xx push to pointers: This

theorem is associated with the famous names de Moivre (who showed a version of this

in 1733) and Laplace (who had a clearer and more general proof in 1812). xx] Discuss

briefly the skewness result from Ex. 1.3 above in light of the limiting normality.

(b) With p̂B = (Y + 1)/(n+ 2), as in Ex. 1.3, show that the difference between Wn and

Wn,B =
√
n(p̂B−p) is so small, for large n, that Wn,B must have the same normal limit.

The confidence intervals we construct below, based on p̂, can therefore alternatively be

based on p̂B .
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(c) Show from the above that

P (−1.96 ≤Wn ≤ 1.96)→ 0.95 as sample size increases,

and use this to construct an interval, based on having observed Yn = y in a givena confidence

interval experiment with known n, which covers the true p with probability approximately 95

percent.

(d) There are actually several constructions of such confidence intervals, with this prop-

erty. Here we shall point to one more such, since the method is famous and easy to

use, and since carefully considering these matters for the simple binomial model paves

and points the way to various partly related, partly similar findings and constructions

in more complicated situations, covered later in this chapter. Considering the basic es-

timator p̂ = Y/n again, write σ2
n = p(1− p)/n for its variance, and σ̂2

n = p̂(1− p̂)/n for

its estimated variance. Then bothasymptotic

equivalence

Wn =
p̂− p
σn

and W ′n =
p̂− p
σ̂n

tend to the standard normal in distribution. The first version is that reached and used

above (essentially the CLT for Bernoulli variables), whereas the second version requires

some additional analysis, returned to in e.g. Ex. 4.14. Now show that the arguments

above, used for W ′n in lieu of Wn, lead to the confidence interval p̂ ± 1.96 σ̂n instead.

Exemplify, with n = 100, for the three cases y = 22, y = 55, y = 77, where you compute

both versions of the 95 percent confidence interval for p.

(e) Suppose certain details related to your applied research project require that you

compute the probability p that L ≤ 1.33R, where

L = {(G1/G)(G2/G)(G3/G)(G4/G)}1/4, R = {(G5/G)(G6/G)(G7/G)}1/3,

in terms of G1, . . . , G8 being i.i.d. (independent and identically distributed) from the χ2
12

distribution (the chi-squared with degrees of freedom equal to 12), and G =
∑8
i=1Gi.

Since it’s hard to find an exact formula, or an exact answer in other ways, you simulate

a high number sim of such vectors (G1, . . . , G8), and check for each simulation whether

the event just described takes place or not. How large should sim be, in order for your

simulation based estimate of p to be correct to three decimal places? Carry out such

simulations and thus find p. Display also a histogram of simulated L/R.

Ex. 2.17 Limiting distributions via densities. It is often practical to work with densities,

rather than cumulatives, and fn → f for densities indeed implies Fn → F for cumulatives.

This is called the Scheffé lemma; see Ex. 4.16 for details.

(a) Show that tν →d N(0, 1).

(b) Show that if Xn ∼ Gam(an, bn), and an → 1, bn → b, then Xn → Expo(b).

(c) (xx one or two more. the point is to set it up for use for the quantiles below. xx)
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Ex. 2.18 The sample median. Let Y1, . . . , Yn be i.i.d. from a positive density f with

true median θ = F−1( 1
2 ).

(a) Suppose for simplicity that n is odd, say n = 2m+ 1. Show that Mn has density of

the form

gn(y) =
(2m+ 1)!

m!m!
F (y)m{1− F (y)}mf(y).

(b) Show then that the density of Zn =
√
n(Mn− θ) can be written in the form hn(z) =

gn(θ + z/
√
n)/
√
n. Prove that

hn(z)→ (2π)−1/22f(θ) exp{− 1
24f(θ)2z2}.

The limit is the density h(z) of the normal N(0, τ2), with τ = 1
2/f(θ). We have hence

proved Zn →d N(0, τ2), by Scheffé’s lemma.

(c) So when is the sample mean best, and when might the sample median be the better

estimator, when it comes to estimating the centre point θ of a symmetric density? This

is a matter of the ratio

ρ =
σ

1
2/f(θ)

= 2σf(θ),

where σ is the standard deviation for f . Explain that if ρ < 1, then the sample mean is

best, and that if ρ > 1, then the sample median is the best.

(d) Compare the limiting distributions for the sample mean and the sample median for

the normal density, the double exponential density 1
2 exp(−|y|), and the Cauchy density

(1/π)/(1 + y2).

(e) Consider t distribution, with degrees of freedom ν, see Ex. 1.34. find an expression for

the ratio ρ = ρ(ν), plot (ν, ρ(ν)) in a diagram, and comment. Show that ρ(ν) approaches

(2/π)1/2 = 0.7979 for large ν. Show that for ν < 4.678, there is roughness at the top,

and the median is best; whereas for ν > 4.678, there is a smoother density at the top,

and the mean is best. (xx See also Ex. 3.19. xx)

(f) Carry out a similar analysis for the binormal symmetric mixture model f = 1
2 N(−a, 1)+

1
2 N(a, 1). For which values of a is the sample median a better estimator of the centre

point then the sample mean? [xx later on, another chapter: the estimator which says θ̂

is sample median if An and sample mean if Acn, where An is the event that 1
2/f̂(θ̂0) < σ̂.

xx]

Ex. 2.19 Uniform ordering. Consider U1, . . . , Un i.i.d. from the uniform distribution.

Order these, to U(1) < · · · < U(n).

(a) Show that U(i) has density connection to

Beta

distributions
gi(u) =

n!

(i− 1)! 1! (n− i)!
ui−1(1− u)n−i for u ∈ (0, 1).

Explain that U(i) ∼ Beta(i, n − i + 1), see Ex. 1.25, show that EU(i) = pi = i/(n + 1),

and that VarU(i) = pi(1− pi)/(n+ 2).
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(b) With i < j, show that (U(i), U(j)) has density

gi,j(u, v) =
n!

(i− 1)! 1! (j − i− 1)! 1! (n− j)!
ui−1(v − u)j−i−1(1− v)n−j

for u < v. The idea behind the reasoning, and the ensuing notation, is that in order to

see U(i) ∈ [u, u + du] and U(j) ∈ [v, v + dv], there is a multinomial situation, with five

boxes [0, u], [u, u + du], [u + du, v], [v, v + dv], [v + dv, 1], inside which we need to find

i− 1, 1, j − i− 1, 1, n− j datapoints.

(c) For an i.i.d. uniform sample U1, . . . , Un on [0, 1], consider the uniform range Rn =

U(n) − U(1), where we know that U(1) ∼ Be(1, n). Show that given U(1) = u, U(n)

can be represented as u + Z, where Z is the maximum of another uniform sample,

of size n − 1, on [u, 1]. Use this to show that the c.d.f. of Rn can be expressed as

Hn(r) = nrn−1(1− r) + rn = nrn−1 − (n− 1)rn, and show that this is the Be(n− 1, 2)

distribution. (xx pointer to exercises in Ch6, Ch7, or perhaps just to Story ii.6, depending

on how Abel story is written out. xx)

(d) In general, if Y1, . . . , Yn are i.i.d. from a density f , show that the joint density for

the full order statistic vector (Y(1), . . . , Y(n)) is n! f(y(1)) · · · f(y(n)), on the set where

y(1) < · · · < y(n). In particular, for order statistics from the uniform distribution, show

that the joint density of (U(1), . . . , U(n)) is flat and equal to n! on the set u(1) < · · · < u(n).

(e) Use this, in conjunction with Ex. 1.24, to demonstrate thatconnection to

Dirichlet

(U(1), U(2), . . . , U(n)) =d (D1, D1 +D2, . . . , D1 + · · ·+Dn)

=d (V1/S, (V1 + V2)/S, . . . , (V1 + · · ·+ Vn)/S),

with V1, . . . , Vn, Vn+1 being i.i.d. from the unit exponential, with sum S = V1+· · ·+Vn+1,

and (D1, . . . , Dn, Dn+1) is a flat Dirichlet (1, . . . , 1, 1). The differences Di = U(i)−U(i−1)

are called the spacings. We use ‘=d’ to signal equality in distributions. Show that this

leads to the representation of the order statistics process as

U([nq]) =

[nq]∑
i=1

Vi/

n+1∑
i=1

Vi for 0 ≤ q ≤ 1. (2.3)

Here [nq] is the largest integer less than or equal to nq. (xx check things and where

they appear. Use the law of large numbers to show from this that U([nq]) →pr q. point

to things in Ch9 with full process convergence
√
n(U[nq] − q) →d W

0(q), the Brownian

bridge. xx)

Ex. 2.20 Sample quantiles. Suppose Y1, . . . , Yn are independent observations coming

from the same distribution, with positive density f and cumulative distribution func-

tion F . The sample median estimates the population median F−1(0.50), and similarlysample

quantiles the sample quantile Qn(q), at any prescribed level q ∈ (0, 1), estimates the population

quantiles F−1(q). Built-in functions like quantile(data,0.33) in R find such sample

quantiles directly, so users do not need the cumbersome linear interpolation fiddling be-

tween the two ordered observations coming closest to nq, or to care too much about

ties in the data due to rounding-off errors. This exercise finds limit distributions for√
n{Qn(q)− F−1(q)}, where the previous exercise corresponds to q = 0.50.
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(a) Suppose U ∼ unif and let Y = F−1(U). Show that Y has distribution F , and hence

density f .

(b) Explain that the full order statistic vector Y(1) < · · · < Y(n) may be represented via

a correspondingly ordered sample of the uniform, as F−1(U(1)) < · · · < F−1(U(n)), with

U(i) being the ith ordered observations in an i.i.d. sample U1, . . . , Un from the uniform,

studied in Ex. 2.19. In particular, Y(i) has the same distribution as F−1(U(i)).

(c) This also means that if we work out basic approximation results for the order statistics

from the uniform, we are a modest delta method step away from similar results for the

general case of a density f . In particular, suppose we manage to show
√
n(U([nq])− q)→

Zq, for some Zq. Show that we then will have
√
n{Qn(q)− F−1(q)} →d (F−1)′(q)Zq.

(d) To illustrate this point in a simple case first, show from what we already know

in Ex. 2.18 that
√
n(U([0.50n]) − 0.50) →d N(0, 0.502), for the uniform median. Then

show for a general density f that
√
n{Qn(0.50) − µ} →d N(0, 0.502/f(µ)2), with µ =

F−1(0.50) the population median. Here we used an exact expression for the density of

the median. There are actually several other ways of proving this median of uniforms

result. Such an alternative approach is to use the representation (2.3). Explain that

U([0.50n]) = An/(An +Bn), with An and Bn the averages of the first and second half of

i.i.d. variables V1, . . . , Vn+1 from the unit exponential. Use the CLT for the joint limit

distributions of
√
n(An − 1

2 ) and
√
n(Bn − 1

2 ), and then use the delta method to land

the N(0, 0.502) limit.

(e) Then generalise to the case of any given quantile level q. Show first that
√
n(U[nq] −

q) →d N(0, q(1 − q)), and then that the limit distribution is N(0, q(1 − q)/f(µq)
2) for√

n{Qn(q)− µq}, with µq = F−1(q).

(f) For the case of two quantiles jointly, like the lower and upper sample quartiles, show

for the uniform case that with q1 < q2,(√
n{Qn(q1)− q1}√
n{Qn(q2)− q2}

)
→d N2(

(
0

0

)
,

(
q1(1− q1), q1(1− q2)

q1(1− q1), q2(1− q2)

)
).

Prove this via the explicit density for (U(i), U(j)), given in Ex. 2.19.

(g) It is also instructive to use representation (2.3) via i.i.d. unit exponentials. Do

this. Then generalise to the case of r quantiles, for levels q1 < · · · < qr. Show for the

uniform case that there is a joint multivariate normal limit, with variances qj(1−qj) and

covariances −qjq` for j < l. Then carry out the transformation arguments needed to

prove that for the case of an underlying positive density f , there is limiting joint normality

for
√
n(Qn,j − µj}, where the limit has variances qj(1 − qj)/f(µj)

2 and covariances

−qjq`/{f(µj)f(µ`)} for j < `, where µj = F−1(qj). See Ex. 9.17 for convergence of a

full quantile process.

(h) (xx something here, or in new separate not long exercise: checking c(q){q(1−q)}1/2 =

{q(1−q)}1/2/f(F−1(q)) for a few densities, which tells us the sizes of confidence intervals

for quantiles, and more. link to q-q plots briefly discussed in Ch9. xx)
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Ex. 2.21 Min and max of two uniforms. Suppose Y1, Y2 are i.i.d. from a density

f(y), and order them, to V1 < V2. (xx ask per august and martin why this particular

probability calculation was of value. xx)

(a) Show that (V1, V2) has joint density 2f(v1)f(v2), on the set where v1 < v2.

(b) Then consider the special case of two datapoints from the uniform distribution on the

unit interval, ordered to V1 < V2. Show that R = V1/V2 is another uniform on the unit

interval, and that W = Y2−Y1 is a Beta(1, 2). Show that P (Y2−Y1 ≤ c) = P (Y2−Y1 >

c) = 1
2 , for c = 1− 1/

√
2 = 0.2929.

(c) Find also the joint distribution for (R,W ) here.

Ex. 2.22 Ordering exponentials. (xx check and calibrate the order in which things are

told here. xx) Let Y1, Y2, Y3 be independent unit exponentials (with density exp(−y) for

y positive), and order them, to Y(1) < Y(2) < Y(3). Then define the so-called spacings

between them, D1 = Y(1), D2 = Y(2) − Y(1), D3 = Y(3) − Y(2).

(a) Find their joint distribution, and show that they are independent. (xx i think this

is not true for other start distributions for the data points than the exponential. can we

semi-easily prove such a characterisation? xx)

(b) Then generalise, considering i.i.d. unit exponentials Y1, . . . , Yn, ordered into Y(1) <

· · · < Y(n). Work with the scaled spacings D1 = nY(1), D2 = (n− 1)(Y(2) − Y(1)), up to

Dn−1 = 2(Y(n−1) − Y(n−2)), Dn = Y(n) − Y(n−1). Show that

Y(1) =
V1

n
, Y(2) =

V1

n
+

V2

n− 1
, . . . , Y(n) =

V1

n
+

V2

n− 1
+ · · ·+ Vn−1

2
+
Vn
1
,

and then show that in fact V1, . . . , Vn are i.i.d. unit exponentials.

(c) Use this to show that Mn = maxXi has mean close to log n+ γ, where γ = 0.5772...

is the Euler constant, and variance converging to π2/6. Finally find the limit or P (Mn−
log n ≤ u). (xx pointer to things in Ch1 with Gumbel etc. xx)

Ex. 2.23 Good and bad estimators. Suppose X1, . . . , Xn are i.i.d. from the density

f(x, θ) = exp{−(x− θ)} for y ≥ θ, i.e. a unit exponential starting at parameter θ.

(a) Explain that we have Xi = θ+Yi, with the Yi being i.i.d. from the unit exponential,

and hene that the order statistics can be represented as X(i) = θ + Y(i), cf. Ex. 2.22.

(b) For the smallest and largest observations, show that θ̂A = X(1) − 1/n and θ̂B =

X(n) − sn are unbiased estimators of θ, with sn = 1 + 1/2 + · · ·+ 1/n the partial sum of

the harmonic series. Find their variances.

(c) (xx a bit more. spell out that θ̂B is not consistent. a bit on X(i) − ci too, where

ci = 1/n+ · · ·+ 1/(n− i+ 1) = sn − sn−i. median is ok. xx)

Ex. 2.24 Ratios of ordered uniforms. (xx again, need checing and calibration, regarding

what is told where. xx) Let U1, . . . , Un be an i.i.d. sample from the uniform distribution

on the unit interval, and order these into U(1) < · · · < U(n). From these form the ratios

V1 = U(1)/U(2), V2 = U(2)/U(3), . . . , Vn−1 = U(n−1)/U(n), Vn = U(n)/1.
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(a) Show that the inverse transformation leads to the representation

U(n) = Vn, U(n−1) = VnVn−1, . . . , U(2) = VnVn−1 · · ·V2, U(1) = VnVn−1 · · ·V2V1.

(b) Find the joint probability density for (V1, . . . , Vn), and show in fact that these are

independent, with

V1 ∼ Beta(1, 1), V2 ∼ Beta(2, 1), . . . , Vn−1 ∼ Beta(n− 1, 1), Vn ∼ Beta(n, 1).

(c) Independently of the details above, find the density of U(i), and show that it is a

Beta(i, n− i+ 1). In particular, we have

EU(i) =
i

n+ 1
and VarU(i) =

1

n+ 2

i

n+ 1

(
1− i

n+ 1

)
.

The previous point then tells us that this Beta(i, n − i + 1) can be represented as a

product of different independent Beta variables.

(d) It is of course a somewhat cumbersome simulation recipe for generating a uniform

sample, but it is a useful exercise, opening doors & minds to fruitful generalisations:

For n = 10, say, generate ordered uniform samples of size n in your computer via the

representation above, in terms of products of Beta variables. Carry out some checks to

see that each single U(i) then has the right distribution, i.e. as described in (c).

(e) Work with the following generalisation of the construction above: Let X1, . . . , Xn be

an i.i.d. sample from the distribution with density f(x) = axa−1, i.e. a Beta(a, 1). Again

form the ratios Vi = X(i)/X(i+1) as above, leading to X(i) = ViVi+1 · · ·Vn. Show that

the Vi are again independent, now with Vi ∼ Beta(ai, 1).

(f) (xx just a bit more. indicate how this may be used to build more general models,

possibly in BNP. xx)

Ex. 2.25 Exercises with sample quantiles. [xx various things, using the general results

above. interquartile range Rn = Qn(0.75)−Qn(0.25), e.g. for the normal and the Cauchy.

Limit distribution of sample median, given the two 0.25 and 0.75 quartiles. a little link to

the nonparametric quantile processes of Hjort and Petrone (2007) and the more general

quantile pyramids of Hjort and Walker (2009). also pointer to fuller process result in

Ch. 9. the limit is (F−1)′(q)W 0(q). xx]

Ex. 2.26 Which order statistics interval contains the true median? (xx nilsrant, as

of 13-Aug-2023, to be properly cleaned and with motivation. xx) Let Y1, . . . , Yn be

i.i.d. from a positive and smooth density f , with cumulative F . With Y(1) < · · · < Y(n)

the order statistics, which of the subintervals (Y(i), Y(i+1)) will contain the true median,

µ = F−1( 1
2 )?

(a) Show that

pi = P{µ ∈ (Y(i), Y(i+1))} = P{ 1
2 ∈ (U(i), U(i+1))},

in terms of the order statistics from a uniform sample. We allow i = 0, 1, . . . , n, here, for

the n+ 1 possibilities for which interval shall contain µ, writing u(0) = 0 and u(n+1) = 1.
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(b) Given U(i) = u, show that the distribution of U(i+1) is the same as that of u+(1−u)W ,

where W is the smallest of n− i observations from the uniforom in the unit interval. Use

this to show that

pi = P{U(i) <
1
2 < U(i+1)} =

∫ 1/2

0

P{U(i+1) >
1
2 |U(i) = u}gi(u) du

=

∫ 1/2

0

( 1
2

1− u

)n−i
be(u, i, n− i+ 1) du,

involving a Beta density, as per Ex. 2.20. Show that this indeed leads to the explicit

probability

pi = ( 1
2 )n−i

n!

(i− 1)! (n− i)!

∫ 1/2

0

ui−1 du =

(
n

i

)
( 1

2 )n.

Hence we’ve reached the binomial probabilities, for a binom(n, 1
2 ), via direct probability

calculations. Try also to give a direct argument.

(c) (xx generalise to general quantile µp = F−1(p). xx)

Ex. 2.27 The empirical distribution function. Assume there is an i.i.d. dataset Y1, . . . , Yn
from an unknown distribution, with cumulative distribution function F (t) = P (Yi ≤ t).

The empirical distribution function is Fn(t) = n−1
∑n
i=1 I(Yi ≤ t), the simple binomialthe empirical

distribution

function
proportion of points falling in (−∞, t]. Since we know so much about the binomial, we

quickly learn a few basic properties of the Fn.

(a) Explain that the empirical distribution function is the cumulative of the probabil-

ity measure that puts probability mass 1/n at each data point. This is the natural

nonparametric estimator of the unknown F .

(b) Construct a version of Figure 2.1, left panel, where n = 100 datapoints are simulated

from the distribution f = 0.50 Expo(r1) + 0.50 Expo(r2), with rates r1 = 2.00 and r2 =

4.00. The empirical Fn(t) is the natural nonparametric estimator of the underlying (and

typically unkwown) F .

(c) Show that Fn(t) is unbiased for F (t), and that its variance is F (t){1− F (t)}/n.

(d) Consider the process Zn(t) =
√
n{Fn(t) − F (t)}. Show that it has mean zero, and

that Zn(t)→d Z(t), say, where Z(t) is a zero-mean normal with variance F (t){1−F (t)}.
Show also that

cov{Zn(t), Zn(t′)} = F (t){1− F (t′)} for t ≤ t′.

Compute and display the Zn plot, using the same data values as for the previous figure;

in other words, construct a version of Figure 2.1, right panel. [xx nils emil: we might

contemplate putting comments such as the following in a ‘comments’ format, at the end

of certain exercises, with pointsrs to things to come, connections, etc. xx] Such plots

may e.g. be used to check model adequacy – if the data come from a distribution not
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Figure 2.1: Left panel: The real underlying data-generating F (t) (dashed, red), with

the empirical distribution function Fn(t) (full line, black), computed from a sample of

n = 100 data points from F . Right panel: The process Zn(t), computed for the data

used for the same data. In 95 percent of such cases, the maximum absolute value of the

Zn process will be below 1.358.

close to the F used to construct the plot, then the Zn plot will deviate aignificantly

from the zero line. To understand what might qualify as ‘significantly different from the

zero line’ means we need theory for the behaviour of the full Zn process, not merely the

pointwise result that Zn(t) →d N(0, F (t){1 − F (t)}). [xx pointer to Ch. 9. the 1.358

limit. kolmogorov-smirnov. and to Glivenko–Cantelli theorem, in Ex. 4.37. xx]

(e) (xx some pointers: the Fn is used in CoW Story. there is full process convergence

Zn →d Z, a Gaussian zero-mean process with covariance function F (y)(1 − F (y′)), see

Ch. 9. kolmogorov-smirnov things. xx)

(f) xx can also briefly ask about interesting variations, like

F ∗n(t) =
1 +

∑n
i=1 I(Yi ≤ t)
n+ 2

=
1

n+ 2
+

n

n+ 2
Fn(t),

inspired by the Bayes type (Y + 1)/(n + 2) binomial estimator. And the minimax esti-

mator, point to Hjort (1976); Phadia (1973). xx

Ex. 2.28 Moment fitting estimators. Suppose Y1, . . . , Yn are i.i.d. from some model

f(y, θ), where θ = (θ1, . . . , θp)
t is of dimension p. The method of moments consists in

fitting the first p empirical moments to the theoretical ones. In detail, one computes method of

moments

M1 = Ȳ = n−1
n∑
i=1

Yi, M2 = n−1
n∑
i=1

(Yi − Ȳ )2, . . . ,Mp = n−1
n∑
i=1

(Yi − Ȳ )p,

and solves the p equations M1 = g1(θ), . . . ,Mp = gp(θ), where g1(θ) = Eθ Y , g2(θ) =

Eθ {Y − g1(θ)}2, up to gp(θ) = Eθ {Y − g1(θ)}p.
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(a) For one-parameter models, explain that this amounts to fitting the empirical and

theoretical mean. If Y1, . . . , Yn are i.i.d. geom(p), see Ex. 1.15, use EYi = 1/p to find the

method of moments estimator for p. For another application, assume Y1, . . . , Yn follow

the distribution with c.d.f. yθ on [0, 1]. Find the method of moments estimator for θ.

(b) For two-parameter models, explain that the method of moments means fitting the

empirical mean and variance to the theoretical ones. If Y1, . . . , Yn are i.i.d. Beta(a, b),

see Ex. 1.23, find expressions for the method of moments estimators for a, b.

(c) Generate n = 100 data points via the equation yi = [exp{a(ξ + σNi)} − 1]/a, for

say (a, ξ, σ) = (0.33, 0.55, 0.77), with the Ni being standard normal. This is a skewed

extension of the usual normal model, which corresponds to a→ 0 here. From your data,

use the method of moments to estimate the three parameters.

Ex. 2.29 Moment fitting estimators for the Gamma distribution. We now apply the

moment matching principle of Ex. 2.28 to the Gamma model with parameters (a, b), with

density proportional to ya−1 exp(−by) for y positive; see Ex. 1.9, where we also give the

mean, variance, skewness, kurtosis. An aspect of what we find here will be used in Story

ii.1 (xx check this xx).

(a) With Ȳ and S2 the usual sample mean and sample variance, find explicit formulae

for the moment estimators â, b̂.

(b) Use skewness and kurtosis formulae, in combination with Ex. 2.10, to show that( √
n(Ȳ − a/b)√
n(S2 − a/b2)

)
→d N2(

(
0

0

)
,

(
a/b2, 2a/b3

2a/b3, (2 + 6/a)a2/b4

)
).

Transform this, via the delta method, to find the limit distribution for the moment

estimators.

(c) (xx application in Story ii.1. delta method for g(â, b̂), like the median. xx)

(d) xx

Ex. 2.30 Quantile fitting estimators. [xx will be used for GoT story. and for CoW

story. fitting parameters by solving quantile matching equations. xx] An alternative

to the method of moments, described in Ex. 2.28, we may fit empirical and theoretical

quantiles (actually in several ways). If Y1, . . . , Yn are i.i.d. from a density f(y, θ), for

a parameter vector of length p, with quantiles Q(r, θ) = F−1(r, θ), we choose quantile

levels r1 < · · · < rp, and solve the p equations Qn(rj) = Q(rj , θ) with respect to the p

unknown parameters, where Qn(r) = F−1
n (r) is the empirical quantile.method of

quantiles

(a) Suppose the distribution to be fitted has c.d.f. F (y) = yθ on the unit interval. Find

the estimator corresponding to fitting the empirical to the theoretical median. Starting

with the limit distribution for the median, see Ex. 2.18, find the limit distribution for√
n(θ̂ − θ). More generally, find the estimator θ̂r corresponding to fitting the r level

quantile, and then the limit distribution for
√
n(θ̂r − θ).
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(b) Consider Y1, . . . , Yn from the location Cauchy density f0(y − θ), with f0(x) =

(1/π)/(1+x2) the standard Cauchy. Its c.d.f. is F0(x) = 1
2 +(1/π) arctanx, see Ex. 1.13.

Show that the r level quantile is µ + F−1
0 (r), and that this leads to the estimator

µ̂r = Qn(r) − F−1
0 (r). Find the limit distribution for

√
n(µ̂r − µ). What quantile

level r leads to the sharpest estimator?

(c) (xx the normal, with median and interquartile range. more generally Qn(1 − r) −
Qn(r), and find the best r. xx)

(d) (xx the Weibull, with two equations. xx)

(e) (xx point to more general versions, minimisingAn(θ) =
∑
wn(rj){Qn(rj)−F−1(rj , θ)}2.

xx)

Ex. 2.31 Moment fitting and quantile fitting for the Weibull. As a general illustration

of moment and quantile fitting estimation methods, consider the Weibull distribution

with c.d.f. F (t) = 1− exp{−(t/a)b} for t ≥ 0, see Ex. 1.40.

(a) Take e.g. (a, b) = (3.33, 1.44), and simulate n = 100 realisations. (i) Compute average

and standard deviation for these, and compute estimates (âm, b̂m). (ii) From 0.25 and

0.75 quantiles, fit the two relevant equations to compute (âq, b̂q). Take the trouble to

display three curves, the correct underlying cumulative hazard function A(t) = (t/a)b

along with the two estimated versions.

(b) Repeat the experiment many times, to see how close the two (â, b̂) is to (a, b). Also,

as an instance of a focused question, how close the two median estimates m̂ = â(log 2)1/b̂

is closest to the real median? Which of the two estimating schemes is best? We should

point here to the likelihood methodologies of Ch. 5; the maximum likelihood method

will be the winning strategy, beating both moment and quantile fitting, under model

conditions.

Ex. 2.32 Moment-generating functions close to zero. (xx need polish; might go to large-

sample. xx) Consider a variable Y , with moment-generating function M(t) = E exp(tY ),

assumed to be finite in at least a neighbourhood around zero. We have seen in Ex. 1.21

that EY r = M (r)(0). Write ξ and σ2 for the mean and variance of Y .

(a) Show that M(t) = 1 + ξt + o(h), for |t| small. Taking a Taylor expansion to the

next step, show that M(t) = 1 + ξt+ 1
2 (ξ2 + σ2)t2 + o(t2). Deduce also that logM(t) =

ξt+ 1
2σ

2t2 + o(t2).

(b) We may also take the expansion to the third order, but it is simpler and more

insightful to proceed from Y = ξ + Y0, with Y0 having mean zero. Show that

M(t) = exp(tξ) E exp(tY0) = exp(tξ){1 + 1
2σ

2t2 + 1
6γ3t

3 + o(|t|3)},

where γ3 = E (Y − ξ)3.
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(c) Consider Y1, . . . , Yn i.i.d. from a distribution with mean zero and moment-generating

function M(t) being finite around zero. Show that Zn =
√
nȲ has

Mn(t) = E exp(tZn) = M(t/
√
n)n

= {1 + 1
2σ

2t2/n+ 1
6γ3t

3/n3/2 + o(|t|3/n3/2)}n.

Show from this that under the assumptions given, logMn(t) = 1
2σ

2t2 + 1
6γ3t

3/
√
n +

o(1/
√
n). Explain why this is a proof of the CLT (via criteria given in Ex. 1.21, with

attention to certain further details in Ch 3 xx).

(d) (xx round off, point to CLT, identify remainder term with skewness. xx)

Ex. 2.33 Estimation via least sum of squares. (xx to come. the basics. minimising

Q(θ) =
∑n
i=1{yi − ξi(θ)}2. some easy points, finding formulae.

(a) (xx some easy cases. binomial. normal mean. poisson. xx)

(b) Assume y1, . . . , yn are i.i.d. and gamma distributed (a, b), with known a. Find the

least squares estimator b̂. Then find the mean and variance of this estimator.

(c) (xx regression, with mean a+ bxi, then mean a exp(bxi). xx)

(d) xx

Ex. 2.34 Linear regression. Consider the model for observed pairs (xi, yi), where

Yi ∼ N(a0 + bxi, σ
2) for i = 1, . . . , n, with the Yi being independent. This is classical

linear regression, widely used in theoretical and applied statistics. Importantly, the

model, along with methods for estimation and inference, will be broadly generalised in

Ch. 3, see Ex. 3.33, 3.34, 3.35, to the case of multiple linear regression, allowing several

covariates. (xx Least squares things, and also σ̂. Estimation also of a+ bx0 fixed x0, and

for P (Y ≥ y0 |x0). xx)

(a) It is helpful to reparametrise the regression line from a0 + bxi to a+ b(xi− x̄). Show

that minimising the sum of squares Q(a, b) =
∑n
i=1{yi − a− b(xi − x̄)}2 leads to

â = (1/n)

n∑
i=1

yi = ȳ, b̂ =

n∑
i=1

(xi − x̄)yi/Mn, with Mn =

n∑
i=1

(xi − x̄)2.

(b) Show that â and b̂ are unbiased, with zero covariance, and variances σ2/n and σ2/Mn.

(c) Let Q0 = mina,bQ(a, b) =
∑n
i=1{yi− â− b̂(xi− x̄)}2 be the minimum sum of squares.

Show that

Q(a, b) =

n∑
i=1

{yi − a− b(xi − x)}2 = Q0 + n(â− a)2 +Mn(̂b− b)2.

Use this to show thatQ0/(n−2) is an unbiased estimator of σ2. (xx more under normality.

that Q0/σ
2 ∼ χ2

n−2, independent of (â, b̂). xx)
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(d) (xx inference for β. and for σ. and for m(x0) = E (Y |x0) = a+ b(x0− x̄) for a fixed

x0. xx)

Ex. 2.35 Predicting the next y. [xx for the next observation, with x0, where will y0

land? An application. point to Story iv.1. xx]

(a) (xx The next y0. xx)

Ex. 2.36 One or two more on linear regression things. [xx How to test β = 0. careful

xref with Ch 2 exercises. How to test linear a + bx inside a + bx + cx2. Example.

Predicting the next point. Some simple goodness-of-fit things. xx]

Ex. 2.37 Exponential regression. Something like λi = λ0 exp(βxi). Perhaps we need to

write down a log-likelihood, but we don’t push it hard, since that comes later. The point

is to convey ‘yes, we can put up regression models beyond the linear one’.

Ex. 2.38 Nonparametric estimation. [xx Something around estimation in iid setup of

means, quantiles, functions thereof via delta method. A few points regarding σ̂2, which

remains a perfectly good estimator of σ2 also outside normality, but then with a more

complex variance formula, etc. xx]

Ex. 2.39 Regression outside normality. [xx We do β̂ analysis without assuming that the

εi are normal. Hint at Lindeberg and such things. An example, with a bit of simulation.

xx]

Ex. 2.40 Extra: empirical covariance matrix. (xx we’ll see later where and how to fit

this in. could also be inside likelihood chapter.) Suppose Y1, . . . , Yn are i.i.d. vectors in

dimension p, with mean ξ and covariance matrix Σ.

(a) With A =
∑n
i=1(Yi − Ȳ )(Yi − Ȳ )t, show that Show that

n∑
i=1

(Yi − ξ)(Yi − ξ)t = A+ n(Ȳ − ξ)(Ȳ − ξ)t.

Deduce that Σ̂u = A/(n − 1), the so-called empirical covariance matrix, is unbiased for

Σ.

(b) (xx to be pushed to likelihood chapter. xx) Under multinormality, show that the

log-likelihood function can be expressed as

`n(ξ,Σ) = − 1
2n log |Σ| − 1

2

n∑
i=1

(Yi − ξ)tΣ−1(Yi − ξ).

Show that this, for any positive definite Σ, is maximised for ξ̂ = Ȳ , leading to the profiled

`prof(Σ) = − 1
2n{log |Σ|+ Tr(Σ−1Σ∗)},

in terms of Σ∗ = A/n, i.e. with divisor n not n − 1 as above. Show in general that if

B is some given symmetric positive definite matrix, then the function h(Σ) = log |Σ| +
Tr(Σ−1B) is minimised for Σ̂ = B. Deduce that Σ∗ is the ML estimator for Σ. (xx

this might perhaps most easily be shown using the spectral decomposition PΣP t = D,

a diagonal. xx)
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Ex. 2.41 Squares and products of normals. (xx this might not earn its place, depends

on how dennis nils fieller difference work pans out. but it is a good illustration of good

clean probability calculus, for a purpose.) For independent â ∼ N(a, 1) and b̂ ∼ N(b, 1),

consider

U = 2 âb̂ and V = â2 + b̂2.

Aspects of their joint distribution come up in the context of Fieller parameters, of the

type a/b, etc.

(a) Show that |U | ≤ V . For

T1 = (â+ b̂)/
√

2 ∼ N((a+ b)/
√

2, 1), T2 = (â− b̂)/
√

2 ∼ N((a+ b)/
√

2, 1),

show that these two are independent, and that

Z1 = T 2
1 = 1

2V + 1
2U, Z2 = T 2

2 = 1
2V −

1
2U.

From V = Z1 + Z2 and U = Z1 − Z2, show that (U, V ) has joint density

h(u, v) = g1( 1
2u+ 1

2v,
1
2 (a+ b)2) g1(− 1

2u+ 1
2v,

1
2 (a− b2),

in terms of the density function g1(·, λ) for the noncentral χ2
1(λ) (xx mind the determi-

nant; is it a factor 1/8? xx).

(b) Show that the conditional density for U given V = v may be written

f0(u | v) =
g1( 1

2u+ 1
2v,

1
2 (a+ b)2) g1(− 1

2u+ 1
2v,

1
2 (a− b)2)

g2(v, a2 + b2)
for u ∈ (−v, v).

The ratio R = U/V has density f(r | v) = vf0(vr | v) for r ∈ (−1, 1).

(c) (xx can we complete this? xx) For the difference between two Fieller parameters, i

think we need something like U − U ′ and V + V ′. perhaps

U∗ = U − U ′ = Z1 − Z2 − (Z3 − Z4) = Z1 − Z2 − Z3 + Z4,

V ∗ = V + V ′ = Z1 + Z2 + Z3 + Z4.

which leads to

1
2 (V ∗ + U∗) = Z1 + Z4,

1
2 (V ∗ − U∗) = Z2 + Z3.

So we can write down the joint density for (U∗, V ∗):

h∗(u∗, v∗) = γ2( 1
2u
∗ + 1

2v
∗, 1

2 (a1 + b1)2 + 1
2 (a2 − b2)2)

γ2(− 1
2u
∗ + 1

2v
∗, 1

2 (a1 − b1)2 + 1
2 (a2 + b2)2),

modulo a determinat.

(d)
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2.C Notes and pointers

(xx to come. we point to various matters, genesis of crucial concepts, and also point to

chapters ahead. explain that yes, we’ve touched and used CLT and delta method and a

bit more here, but with details and more material to come in Ch 4. xx)

Briefly genesis of neravencvo Markova, the Markov, and the neravencvo Qebyxëva,

the Chebyshov (often anglisised to Chebyshev, but his name was really Qebyxëv). men-

tion Kahneman et al. (2020).



I.3

Confidence intervals, testing, and power

In the previous chapters we have learned about classes of distributions, their pa-

rameters, and ways of estimating these from data. The present chapter goes on to

the fundamental statistical reporting tools of confidence intervals and testing. The

former are data-based intervals made to cover the true underlying parameter value

with a given degree of confidence, like 95 percent. Statistical testing of hypotheses

are data-based rules for when to reject (and hence, when not to reject) a hypothesis

about the parameters of a model. Theory is developed to construct such intervals

and tests in quite general setups. A test is constructed to have a certain significance

level, like 0.05, the intended low probability of rejecting the hypothesis if it is in

fact true. It also has has a power function, the probability of rejection as a function

of how far the model parameters might be from the hypothesis. We learn the basics

of the Neyman–Pearson theory for optimal testing, and see it panned out for many

situations. (xx more to come in Chapters 5, 7, 8. xx)

3.A Chapter introduction

Fundamental and conspicuous instruments in the statistical toolkits, when summaris-

ing and reporting findings of investigations, are confidence intervals and testing of null

hypotheses. This chapter deals with such, their interpretation, construction, properties,

performance, and connections.

We have in fact already bumped into confidence intervals in the course of exercises

in Ch. 2, but here we give them a more formal treatment, with yet more to come in

Chs. 5, 7. Consider data y, perhaps a long vector or a data matrix, from a model with

parameter θ = (θ1, . . . , θp), and suppose φ = φ(θ1, . . . , θp) is a parameter of interest.

Then [L(y), U(y)] is a confidence interval, with confidence level α, like 0.90 or 0.95 or an

even higher 0.99, providedconfidence

interval

Pθ{L(Y ) ≤ φ ≤ U(Y )} = α for all θ. (3.1)

Thus [L(Y ), U(Y )] is a random interval, and with a high number of repeated situations it

will capture the underlying φ a fraction α of the times. The reported confidence interval

is [Lobs, Uobs] = [L(yobs), U(yobs)], computed based on the actually observed data yobs.

73
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There is a long list of situations where (3.1) does hold precisely, but an even longer

list where the statistician only can construct approximate confidence intervals, where

the coverage probability in question holds approximately rather than with full precision.

Often such approximations stem from large-sample calculus, via methods and results of

Chs. 4, 5. There are many such versions in exercises below. We note that the notion

of confidence intervals can be formulated also in nonparametric situations; as long as φ

above has a clear interpretation, as a function of the model, we can put up a parallel

version of (3.1) without having a θ.

The second major theme of this chapter is that of statistical tests. Consider in

general terms, as above, data y stemming from a model with a parameter vector θ =

(θ1, . . . , θp), and suppose one wishes to test the null hypothesis H0 that θ is inside a

well-defined subset Θ0 of the full parameter region Θ. A simple illustration is the test of

one component parameter being equal to zero, or testing that two parameters, perhaps

for two groups, are equal. A test for such an hypothesis, is a rule saying ‘we reject H0 if

data y fall in the set R’, along with the opposite statement ‘we do not reject H0 if data

y fall in the set Rc’. We talk here of the rejection region R and the acceptance region Rc.

A fundamental aspect of such a test to look for is its significance level, typically meant

to be a relatively small probability, like 0.05 or 0.01 or even smaller. We say that the

test has level α provided the level of a

test

Pθ(reject H0) ≤ α for all θ ∈ Θ0. (3.2)

With level 0.01 one is guaranteed such a low chance of falsely claiming that H0 is wrong,

if it is indeed correct. We are also keenly interested in the power of a test, which is the

detection chance Pθ(reject H0) as a function of θ, in the alternative parameter domain

Θ−Θ0. Thus some tests are stronger than other tests with the same level, and we learn

recipes in the exercises below.

Below we also define, discuss, and use p-values, which are commonly quoted in most

branches of applied statistics work, typically to indicate how clear a potential finding is.

The idea is to quantify how unlikely it is, to observe what is actually observed, if some

relevant null hypothesis H0 is actually true. If the test is set up to reject the null if an

appropriate test statistic T is sufficiently large, we’re after p = PH0
(T ≥ tobs), with tobs

the observed T for the given dataset. Some care is needed since that probability might

depend on parameters under H0. The more careful version is the p-value

p = max{Pθ(T ≥ tobs) : θ ∈ Θ0}. (3.3)

A small p-value, like p ≤ 0.01, casts serious doubt on H0, since the observed tobs is so

unlikely. A rephrasing of the testing scheme, with significance level say 0.01, is to reject

H0 if p ≤ 0.01.

A classic result for testing theory is the Neyman–Pearson Lemma, which in an

idealised setup with just two possible densities identifies the most powerful method for

testing one density against the other; see Ex. 3.12–3.14. This sharpens further questions

for more general setups, and we manage to find optimal tests in a variety of setups,

including for the broad exponential family class.
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(xx todo: since we have exponential family in Ch1, we should supplement the exer-

cises with conditional tests with one or two grander things for optimal power for testing

inside such exponential families. xx)

(xx then one paragraph with pointers to other chapters and perhaps to a few of the

stories. xx)

3.B Be confident, and test it

Ex. 3.1 Confidence interval for an exponential rate. Choose a sample size n, and

simulate i.i.d. variables Y1, . . . , Yn from the exponential distribution, see Ex. 1.8, with

parameter θ equal to say θ0 = 3.33.

(a) Construct a 90 percent confidence interval [L,U ] for θ. Check if θ0 is contained in

this interval, for the data you generated.

(b) Repeat the experiment say 100 times, and record how often the intervals contain θ0.

What is in fact the distribution of N , the number of the 100 intervals which cover the

truth?

(c) In addition to checking whether the intervals cover the truth, compute the length

D = U − L, and give a histogram of its distribution. Find ED. Repeat also these

experiments with a couple of other sample sizes, and comment.

Ex. 3.2 Confidence interval for a normal variance. (xx easy stuff. to be polished.

xx) Let Y1, . . . , Yn be i.i.d. from a normal distribution. How can we set up confidence

intervals for the standard deviation σ (or, equivalently, for the variance σ2)? Writing

m = n − 1, the sample variance is σ̂2 = Z/m, with Z =
∑n
i=1(Yi − Ȳ )2 ∼ σ2χ2

m, from

(xx exercises in chapter 1 xx).

(a) Start with [a, b] = [Γ−1
m (0.05),Γ−1

m (0.95)], an interval covering the χ2
m with probability

0.90. Transform a ≤ mσ̂2/σ2 ≤ b to the confidence interval ci = [(m/b)1/2σ̂, (m/a)1/2σ̂].

Show in detail that Pσ(σ ∈ ci) = 0.90.

(b) Most often one wishes to estimate and assess the σ parameter directly, being on

the same scale as the measurements, but once in a while it would be more natural to

communicate and interpret results on the variance scale. Show in suitable detail that

Pσ((m/b)σ̂2 ≤ σ2 ≤ (m/a)σ̂2) = 0.90; confidence intervals can in this fashion be easily

transformed, say from θ to g(θ), as here, from σ2 to σ, or the other way around.

(c) The construction above is ‘equitailed’, starting with 0.05 probability to the left of a

and 0.05 probability to the right of b. One might somewhat more generally use any [a, b]

with 0.90 probability for the χ2
m, needing Γm(b) − Γm(a) = 0.90. The length of the 90

percent σ interval above is proportional to 1/a1/2 − 1/b1/2. Minimise this function, say

for m = 10, 20, 30, 40. Compare these length-minimising 0.90 intervals with the simpler

ones, and comment.

(d) (xx same exercise for minimising 1/a−1/b, for σ2. moral: it doesn’t matter so much,

and we’re largely happy with the equitailed scheme. xx)



76 Confidence intervals, testing, and power

(e) (xx simple illustration with an easy dataset. xx)

Ex. 3.3 Confidence interval for a normal mean. Here we go through the basics for

constructing confidence intervals for normal means. Since approximations to normality

abound in statistical theory and practice, what we learn here quickly finds use also outside

the strict normality assumptions.

(a) Start with the statistical world’s simplest prototype setup, a single Y from the N(ξ, 1)

model. Show that the random interval [Y − 1.96, Y + 1.96] captures ξ with probability

0.95.

(b) Suppose Y1, . . . , Yn are i.i.d. from the N(ξ, σ2) model, at the moment with standard

deviation parameter σ taken known. With Ȳ as usual being the data average, show that√
n(Ȳ −ξ)/σ is standard normal, and deduce from this that Ȳ ±1.96σ/

√
n is a 95 percent

confidence interval for ξ.

(c) In most cases also the σ is unknown, however. Let σ̂ be the usual empirical standard

deviation, see e.g. Ex. 2.4. Show that the natural construction

t =
Ȳ − ξ
σ̂/
√
n

=

√
n(Ȳ − ξ)
σ̂

=

√
n(Ȳ − ξ)/σ
σ̂/σ

(3.4)

has a distribution not depending on the two parameters, and that this distribution, call

it Gn, is symmetric around zero. Deduce also that with t0,n = G−1
n (0.975), the random

interval Ȳ ± t0,nσ̂/
√
n covers ξ with probability 0.95.

(d) It is then ‘only’ a matter of finding and perhaps tabulating the distribution Gn of t.

It is in fact the celebrated t distribution, with df = n−1 degrees of freedom, see Ex. 1.34.

But even without that specific knowledge detail, we could easily have simulated a high

number for t, from (3.4), and read off the required quantile. (xx also: t0,n not far from

1.96 with n moderate to big. xx)

(e) In more generality, suppose β is a model parameter for which there is an estimator

β̂ with distribution N(β, c2nσ
2), say, with a known factor cn. Suppose also that there is

a statistically independent estimator σ̂ for σ, with the property that σ̂2/σ2 ∼ χ2
m/m, for

a known m. Then show that t = (β̂ − β)/(cnσ̂) ∼ tm. Put up a 0.99 confidence interval

for β based on this.

Ex. 3.4 Confidence intervals via normal approximations. (xx make connection to Wald

tests to come below. xx) As we’ve already seen in various situations of Ch. 2, there are

often estimators for interest parameters for which there is approximate normality. Then

various recipes under strict normality can still be used, but as approximations.

(a) Suppose φ is such a parameter of interest, for which there is an estimator φ̂, being

approximately normal, in the mathematical sense of
√
n(φ̂ − φ) →d N(0, τ2), for some

appropriate limiting variance τ2. Suppose also that there is a consistent estimator τ̂ of τ ,

with τ̂ /τ →pr 1. Show that Zn =
√
n(φ̂− φ)/τ̂ →d N(0, 1); you may check with Ex. 2.9.
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(b) Show under these mild and very frequently met assumptions that

P (φ ∈ φ̂± 1.96 τ̂ /
√
n)→ 0.95.

In other words, the [φ̂ − 1.96 τ̂ /
√
n, φ̂ + 1.96 τ̂ /

√
n] is an approximate or asymptotic 95

percent interval for φ. Note the grand generality here; this simple construction works in

a large variety of situations, also in nonparametric setups, cases with dependent data,

etc.

(c) The simplest interesting application of this standard recipe is for the unknown mean

ξ of a population. Verify via the CLT of Ch. 2 that
√
n(Ȳ − ξ)/σ̂ →d N(0, 1). Hence the

t-based interval Ȳ ± 1.96 σ̂/
√
n, for which we have very precise probability computations

under normality, is large-sample correct even if the data are not at all normal.

(d) Suppose (X,Y, Z) is trinomial (n, p, q, r), with p+ q + r = 1. Construct an approxi-

mate 90 percent confidence interval for d = q− p. – Check that you see how similar and

not complicated tasks can be tended to in the examples of Ex. 2.12.

Ex. 3.5 Confidence for a normal quantile. (xx need to polish this, calibrating with

previous exercises. xx) Consider again a normal sample, observations Y1, . . . , Yn from the

normal N(µ, σ2). In addition to understanding the behaviour of the natural estimators for

the mean µ, the standard deviation σ, the quantile µ+ zqσ, and for yet other quantities,

one needs of course methods for constructing confidence intervals and tests, for these

parameters.

(a) (xx inference for γq = µ+zqσ. more tricky. for this one. check and edit the following.

xx) write

γ̂q − γq ∼ µ+ (σ/
√
n)N + zqσ(Km/m)1/2 − µ− zqσ

= σ[(1/
√
n)N + zq{(Km/m)1/2 − 1}],

in terms of N ∼ N(0, 1) and Km ∼ χ2
m, with these being independent. This leads to the

pivot

Wn,q =

√
n(γ̂q − γq)

σ̂
∼ N + zq

√
n{(Km/m)1/2 − 1}
(Km/m)1/2

.

Its distribution is complicated, but independent of parameters, and can be simulated,

for any given sample size n and quantile level q. With an such that P (−an ≤ Wn,q ≤
an) = 0.95, the above may be easily converted to a 95 percent confidence interval for γq.

Note that for q = 0.50, the median case, the distribution of the Wn,q is the tm, the t

with degrees of freedom m = n − 1. [xx can also give the large-sample approximation,

with limit of
√
n{(Km/m)1/2 − 1} →d N(0, 1

2 ). so Wn,q →d N(0, 1 + 1
2z

2
q ). xx]

(b) (xx two-sample data, populations A and B, normal densities fA(y) and fB(y). esti-

mators and confidence intervals for fA(y)/fB(y), to test for their equality. easiest on the

log scale. xx)

(c) (xx simple data illustration. xx)
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(d) (xx pointer to delta method to come, whereby we’re able to have inference for any

g(µ, σ), via large-sample approximation to normality. but the cases treated in this exer-

cise admit exact finite-sample analysis, for any finite n. xx)

Ex. 3.6 Confidence intervals for the standard deviation, outside normality. Consider

i.i.d. data Y1, . . . , Yn, from which we compute the classical

ξ̂ = Ȳ = n−1
n∑
i=1

Yi and σ̂ =
{ 1

n− 1

n∑
i=1

(Yi − Ȳ )2
}1/2

.

Here we illustrate the general large-sample methods by building confidence intervals for

σ, with no assumptions on the distribution of the data, like normality. The only mild

assumption we make is a finite fourth moment, in order for σ̂ to have a clear limit

distribution. (xx see Figure 3.1 for 100 simulated confidence intervals, all attempting to

capture the true value, here σ = 1. xx)
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Figure 3.1: Simulations, with datasets of size n = 500 from the unit exponential, dis-

playing lower and upper confidence points for 90 percent intervals; the intervals attempt

to cover the true value σ = 1.

(a) Make sure you understand and can prove that ξ̂ and σ̂ are consistent for ξ and σ.

(xx calibrate this, with right pointer to LLN with Chebyshov etc.; stronger LLN in next

chapter. xx)

(b) Use S2
n = n−1

∑n
i=1(Yi−Ȳ )2 = n−1

∑n
i=1(Yi−ξ)2−(Ȳ −ξ)2 to deduce that

√
n(S2

n−
σ2) and {n−1

∑n
i=1(Yi − ξ)2 − σ2} must have identical limit distributions, and that this
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limit is a N(0, σ4(2 + γ4)), in terms of the kurtosis parameter γ4 = E {(Yi − ξ)/σ}4 − 3.

The ‘subtract 3’ is merely a thing of mild convenience, making the kurtosis equal to zero

for normal distributions. (xx check, calibrate, avoid defining the kurt several times. xx)

(c) Let us transform the above, from variance to its square root, getting back to the real

scale of the measurements: show that
√
n(σ̂−σ)→d N(0, ( 1

2 + 1
4γ4)σ2). (xx careful here,

tidy up, where is delta method laid out? xx)

(d) Show that γ̂4 = (1/n)
∑n
i=1{(Yi − Ȳ )/σ̂}4 − 3 is consistent for γ4, and use this

to construct an approximate 90 percent confidence interval for σ. Note that this is a

nonparametric procedure, totally free of other distributional assumptions, like normality

– if one assumes normality, as an extra condition, one may do more, of course.

(e) Consider the unit exponential distribution; show that the standard deviation is 1 and

that the kurtosis is γ4 = 6. Simulate a suitably high number of datasets of size n = 500

from this distribution. For each simulated dataset, compute γ̂4, to check how close it

is to γ4, and the approximate 90 percent confidence interval for σ. Construct a version

of Figure 3.1. Examine in particular the coverage of your intervals – how often do they

contain the correct σ? (xx check, calibrate, with earlier exercises. xx)

(f) Coming back to the general situation, define the skewness as γ3 = E {(Y − ξ)/σ}3,

which is zero for all symmetric distributions. Show that( √
n(Ȳ − ξ)√
n(S2

n − σ2)

)
→d N2(

(
0

0

)
,

(
σ2 σ3γ3

σ3γ3 σ
4(2 + γ4)

)
),

and also that (√
n(ξ̂ − ξ)√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1 1

2γ3
1
2γ3

1
2 + 1

4γ4

)
),

(g) Generate a dataset of size n = 400 from the unit exponential, and construct an

approximate 90 percent confidence ellipsoid on your screen for (ξ, σ). Check if it contains

the true values.

(h) (xx might also do ci for log σ first, then transforming back to σ. same 1st order

asymptotics. xx)

Ex. 3.7 Testing a null hypothesis. (xx edit and clean this exercise. we include binomial

and trinomial, and point to Story vii.1. “Nullhypotesen er det utsagn hvis feilaktige

forkastelse vi fortrinnsvis søker å unng̊a.” a couple of points, qua questions, guiding

readers to state hypotheses, and being clear about alternatives. xx)

(a) The probability p = P (A) of a certain event is meant to be 0.33, if the machinery

around it works. To test this one carries out the relevant experiment n = 100 times, and

the event takes place y = 46 times. Should you reject the 0.33 hypothesis? Show that

with Y ∼ binom(n, p), the statistic W = (Y − np0)2/{np0(1 − p0)} is approximately a

χ2
1, under the null assumption that p = p0. Show also that W tends to be bigger than a

χ2
1, if p 6= p0.
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(b) Suppose (X,Y, Z) is trinomial with sum n and probabilities (p, q, r); see Ex. 1.5.

Show that

W = (X − np)2/(np) + (Y − nq)2/(nq) + (X − nr)2/(nr)

has mean equal to 2. Attempt to show that W is approximately a χ2
2, using the mul-

tidimensional CLT for (X,Y, Z). Explain how this may be used to test the hypothesis

H0 that (p, q, r) = (p0, q0, r0), a given probability vector. This is actually the deservedly

famous Pearson chi-squared test for multinomials; see Story vii.1 for details, generalisa-

tions, and discussion.

(c) (xx one more case. perhaps Y ∼ geom(p), testing p = 1/6 versus p < 1/6, since it

takes me so long time to roll a 6 with my die. here P (Y ≥ y) = (5/6)y−1 for y ≥ 1 under

the null. for y = 15 not yet really suspicious. xx)

Ex. 3.8 Connections from confidence intervals to testing. Though confidence intervals

and testing are two different reporting tools, when summarising inference, there are

clear connections. Suppose φ is a parameter of inference, perhaps a function of model

parameters, for which we can build both confidence intervals and tests.

(a) Suppose one needs to test the one-point null hypothesis that φ = φ0, a given value,

and that [L,U ] is a 99 percent confidence interval. Show that the test consisting in

rejecting, if φ0 is outside this interval, has level 0.01.

(b) Suppose on the other hand that there is a well-defined 0.01 level test procedure for

testing φ = φ0, against φ 6= φ0, for each candidate value φ0. Gather together in a set A

all the φ0 values which are not rejected by the corresponding 0.01 level test. Show that

Pφ(φ ∈ A) = 0.99, making A a 99 percent confidence region.

(c) (xx a clear example, to see both ways. xx)

Ex. 3.9 Confidence intervals for quantiles. Let Y1, . . . , Yn be i.i.d. from a continuous

density, positive on its sample space. How can we construct confidence intervals for

the median µ = F−1( 1
2 ), and more generally for quantiles µq = F−1(q)? (xx there are

several approaches here; give pointers to CD chapter and more. but here we give the

basic method via Fn. should show later that this first-order equivalent to µ̂±1.645τ̂ /
√
n,

where τ̂ estimates 1
2/f(µ). xx)

(a) Let Fn be the empirical c.d.f. for the data, see Ex. 2.27. If µ0 is the true median,

show that Wn(µ0) =
√
n{Fn(µ0) − 1

2}/
1
2 is approximately a standard normal, e.g. via

Ex. 2.16. Argue that a natural 0.05 level test for µ = µ0 is to accept the hypothesis

provided |Wn(µ0)| ≤ 1.96.

(b) Following the general testing-to-confidence connection of Ex. 3.8, show that the

associated 95 percent confidence interval becomes cin = {µ : |Fn(µ)− 1
2 | ≤ 1.96/(2

√
n)}.

In other words, we may read off the interval from a plot of Fn, without knowing or taking

on board the details of the exact or approximate distribution of sample quantiles, as with

Ex. 2.20.
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Figure 3.2: The empirical c.d.f. for the pre-pregnancy weight of 189 mothers, with bands

to read off 90 percent confidence intervals for the 0.10 level and 0.90 level quantiles.

(c) Generalise to the case of any quantile µq = F−1(q). Show that the recipe above

leads to the confidence interval cin = {µq : |Fn(µq) − q| ≤ zα{q(1 − q)}1/2/
√
n}, where

P (|N(0, 1)| ≤ zα) = α, the confidence leve.

(d) Discuss ways in which more accurate confidence intervals can be constructed, using

the exact binomial distribution; for the median, for example, nFn(µ) ∼ binom(n, 1
2 ).

This leads to slight modification of the horizontal bands when reading off intervals from

the empirical c.d.f.

(e) Consider the dataset for n = 189 mothers and newborns, along with covariates, given

in (xx point here; list these data too in the overview; give reference from Hosmer and

Lemeshow (1999) xx). Here we look at the weights of the mothers, pre pregnancy, and

ask about 90 percent confidence intervals for the 0.10 and 0.90 deciles. Construct a

version of Figure 3.2. Use the method also to construct an interval for the median. (xx

answers: 43.10 to 46.20 for 0.10; 74.85 to 84.36 for 0.90; 54.44 to 56.69 for median. point

to analogous strategy for Kaplan–Meier quantiles, in Ch10, via band for the t∗ at which

A(t∗) = log 2. also: point to Story with direct CD and cc methods. xx)

Ex. 3.10 t testing, one and two samples. (xx to be well cleaned, and connected to others

exercises. xx) Testing the mean based on a sample of normal observations is a recurring

problem, in several guises, and with the famous t test being the canonical procedure;

details are given below. We also go through the basics for testing the difference of means
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for two normals samples. Due to the connections to confidence intervals discussed in

Ex. 3.8 we also find accurate confidence intervals for the key parameters. Beyond their

concrete relevance and repeated use in these standard setups, the t testing procedures

are important since similar constructions can be worked with in large classes of more

complicated setups, but then typically with approximations to key distributions, rather

than the exact solutions found under these classic strict modelling assumptions.

(a) Suppose X1, . . . , Xn are i.i.d. N(ξ, σ2) and that one wishes to test H0 : ξ = ξ0 against

the alternative that ξ 6= ξ0, where ξ0 is some appropriate given value, like zero. Using

the exact distribution of X̄, cf. Ex. 1.2, show that Z = (X̄ − ξ0)/(σ/
√
n) =

√
n(X̄ − ξ0)

is standard normal under H0, and that |Z| will tend to be bigger than a normal if H0

is not true. Asssuming to begin with that σ is known, demonstrate that the test which

rejects H0 when |Z| > 1.96 has level 0.05.

(b) For the more realistic case of σ not being known, the natural construction is the t

statistic t =
√
n(X̄−ξ0)/σ̂, with σ̂ the empirical standard deviation. Show from Ex. 1.34

that t ∼ tn−1 under H0, and write down a precise 0.05 level test.

(c) Suppose now that the mean ξ for the population of Xi is to be compared with the

mean η for another population, where we have i.i.d. data Y1, . . . , Ym ∼ N(η, σ2). So the

task is to test H0 that ξ = η. Show first that Ȳ − X̄ ∼ N(η − ξ, σ2(1/m + 1/n). To

build a t statistic we need an estimator for the denominator. Writing σ̂1 and σ̂2 for the

empirical deviances for samples 1 and 2, show that with

σ̂2 = c1σ̂
2
1 + c2σ̂

2
2 , using c1 = (n− 1)/(n+m− 2), c2 = (m− 1)/(n+m− 2),

we have σ̂2 ∼ σ2χ2
n+m−2/(n + m − 2), independent of X̄ − Ȳ . Conclude that t =

(X̄ − Ȳ )/R ∼ tn+m−2 under H0, where R = σ̂(1/m+ 1/n)1/2.

(d) Use these building blocks to also construct a 90 percent confidence interval for d =

ξ − η.

Ex. 3.11 Wald tests. Here we present the basics of so-called Wald tests, a general

and practical way of forming tests via approximate normality. Such tests are used very

routinely when looking for and reporting findings about regression coeffiecients in all

standard regression models. The Wald tests can be constructed almost immediately,

from the confidence interval construction of Ex. 3.4, via the interval-to-test connection of

Ex. 3.8, but we tend to a few details to allow for potential simplifications of assumptions.

– Assume Y1, . . . , Yn comprise the data (not necessarily i.i.d.), from a suitable model

with vector parameter θ. Suppose further that φ = φ(θ) is a focus parameter, for which

we need to test φ = φ0, for a given null value φ0.

(a) Suppose there is an estimator φ̂ with the property that
√
n(φ̂− φ)→d N(0, τ2), and

that there is a consistent estimator τ̂ for this limit spread τ . Show as with Ex. 3.4 that

Wn =
√
n(φ̂ − φ)/τ̂ →d N(0, 1). Show that the arguments go through, with a limiting

standard normal, for Wn,0 =
√
n(φ̂ − φ0)/τ̂0, at the null hypothesis, as long as τ̂0 is

consistent for τ at this null position; also, technically speaking, we only need to establish
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√
n(φ̂ − φ0) →d N(0, τ2) at the null hypothesis. Conclude that the test which rejects

φ = φ0 when |Wn,0| ≥ 1.96 has level approaching 0.05 (and of course similarly with other

chosen testing levels).

(b) (xx give a pointer perhaps to a story xx). Explain that p = P (|N(0, 1)| ≥ Wn,0,obs)

is an approximation to the exact p-value.

(c) Suppose X ∼ binom(100, p), with a need for testing p = 0.33. Set up a Wald test,

and compute the p-value, if xobs = 44.

(d) Suppose there is an additional Y ∼ binom(100, q), and that one wishes to test p = q.

Set up a Wald test, and compute the p-value, if (X,Y ) are observed to be (44, 55).

Ex. 3.12 The Neyman–Pearson Lemma. (xx finetune the intro prose here. xx) Suppose

data y come from a density f , where there are just two possibilities: either f = f0,

which is the null hypothesis to be tested, or f = f1, the alternative. Here there’s an

optimal strategy, made clear by the so-called Neyman–Pearson Lemma, part of the 49-

page landmark paper Neyman and Pearson (1933). For simplicity of presentation we

consider the continuous case, where f0 and f1 are densities on the relevant sample space

Y (which can be multidimensional). – A test function is a T : Y → [0, 1], with T (y) the

probability of rejecting f0 if the the data take on value y. This setup even allows the

possibility of an element of randomisation, as in ‘if y turns out be 3.33 I throw some coins

and I reject H0 with probability 0.77’. Once in a blue while this might be of relevance,

with discrete data, but in practice such a test function T (y) takes on only values 1, for

a rejection set R, and 0, for the complementary acceptance set Rc.

(a) Show that the probability of rejecting the null, if the null is true, can be written

Pf0(reject) =
∫
f0T dy.

(b) For a given testing level α, like 0.01, let T ∗ be the test which rejects when f1(y)/f0(y) ≥
c, with c tuned such that

Pf0(T ∗ rejects) =

∫
y : f1(y)/f0(y)≥c

f0(y) dy = α.

Let T be any other test function with the same level α. Show that the power difference

at f1 can be written

πT∗(f1)− πT (f1) =

∫
f1(T ∗ − T ) dy =

∫
(f1 − cf0)(T ∗ − T ) dy.

(c) Show that among all possible tests, with level α, the T ∗ has the strongest detectionthe Neyman–

Pearson

Lemma
power at position f1.

(d) (xx a bit more, to cover discrete case; and we may also allow competitors with∫
f0T < α. xx)

Ex. 3.13 The Neyman–Pearson Lemma: more details. Here we tend to some further

details, related to the Neyman–Pearson Lemma and its proof, in Ex. 3.12.
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(a) For two positive densities f0 and f1 defined on the same sample space, as with the

Neyman–Pearson Lemma, consider the event Ac = {f1(Y )/f0(Y ) ≥ c}. Show that the

function p(c) = Pf0(Ac) =
∫
f1(y)≥cf0(y)

f0(y) dy is a continuous and monotone function,

starting at 1 and ending at 0, when c travels through [0,∞). Hence deduce that there

for given α really is a unique c in the Neyman–Pearson recipe.

(b) Illustrate the p(c) = Pf0(Ac) in a few concrete situations, including (i) f0 ∼ N(0, 1)

and f1 ∼ N(1, 1); (ii) f0 ∼ Gam(2.2, 3.3) and f1 ∼ Gam(3.3, 2.2).

(c) (xx something about power at f1, when testing f0, is different from power at f0,

when testing f1. link to other exercise. xx)

Ex. 3.14 The Neyman–Pearson Lemma: applications. For the simple two-possibilities

setup we learn from the Neyman–Pearson lemma that there is a clear recipe for setting

up the optimal test for f = f0 against f = f1. Here are some examples.

(a) Suppose Y ∼ N(θ, 1). Show that the optimal test of level α = 0.01, for testing θ = 0

vs. θ = 1.234, is to reject if Y ≥ z0.99 = 2.326, the upper 0.01 point of the standard

normal.

(b) In this situation, verify that one finds the very same optimal 0.01 level test, for any

alternative point θ1 > 0. Hence the Y ≥ z0.99 test is uniformly most powerful, against

all positive alternative.

(c) Generalise this to the case of data Y1, . . . , Yn being i.i.d. from the normal N(θ, σ2),

with known σ. Show that the test which rejects θ = 0 against θ > 0 when Zn =
√
nȲ /σ >

z1−α is uniformly most powerful, among all tets with level α; here z1−α = Φ−1(1 − α).

Find its power function, and draw it in a diagram, for θ0 = 1.234, σ = 1, and for

n = 10, 20, 30.

(d) Let Y1, . . . , Yn be i.i.d. from the N(θ0, σ
2) distribution, with θ0 known. Consider the

problem of testing σ = σ0 against σ > σ0, at level say 0.01, where σ0 is a prescribed null

value. Show that the test which rejects when Vn =
∑n
i=1(Yi − θ0)2 ≥ γn,0.99, the 0.99

quantile of the χ2
n, is uniformly optimal. Find its power function.

(e) Consider f0, the standard normal, and f1(y) = 1
2

√
2 exp(−

√
2|y|); they have both

zero mean and unit variance. Find the optimal test for f0 against f1, with level 0.05,

and find its detection power at f1. Then do the opposite, constructing the best test at

level 0.05 for f1 against f0, and find the power at f0.

(f) (xx with n = 10 data points, not merely one. put up the tests, find their powers.

comment. make separate exercise to see optimal tests for f0 against f1, with n data

points, KL approximations. xx)

(g) Suppose Y1, . . . , Yn are i.i.d. from the exponential θ exp(−θy). Find the strongest

0.10 level test for θ = θ0 against an alternative θ1 > θ0. Your test will not depend on the

θ1, as long as it is to the right of θ0; hence this test is uniformly most powerful against

these alternatives.
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(h) xx

(i) xx

Ex. 3.15 Density ratios and optimal testing: the normal and the Cauchy. The Neyman–

Pearson recipe is to reject when the density ratio f1(y)/f0(y) is sufficiently big. This

pans out differently in different situations, as illustrated here.
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Figure 3.3: For the Cauchy density model, ratios f(y, θ1)/f(y, 0) (full line) and

f(y, θ2)/f(y, 0) (slanted) are shown, for alternative values θ1 = 0.50 and θ2 = 1.00

to the null. Also indicated are the rejection intervals [a1, b1] and [a2, b2], for the optimal

tests against θ1 and θ2.

(a) For a single observation Y , consider testing f0 = N(0, 1) against f1 = N(θ1, 1), with

θ1 positive. Show that

f1(y)

f0(y)
=

exp{− 1
2 (y − θ1)2}

exp(− 1
2y

2)
= exp(θ1y − 1

2θ
2
1).

Verify that this is a monotone function in y, regardless of the value of θ1 > 0. Argue

that ‘reject f0 provided Y is big enough’ becomes the uniformly optimal test. Exhibit

the rejection threshold in Y ≥ c, if the significance level is to be 0.10.

(b) The situation is rather different for the case of the Cauchy density f(y, θ) = (1/π){1+

(y − θ)2}−1. Suppose we wish to test θ = 0 versus a positive θ1. Show that

f1(y)

f0(y)
=
f(y, θ1)

f(y, 0)
=

1 + y2

1 + (y − θ1)2
,
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and draw this function in a diagram, for a few values of θ1.

(c) For a concrete illustration, work through the alternative cases θ1 = 0.50 and θ2 =

1.00, for each case finding the rejection interval, say [a1, b1] for the first and [a2, b2] for

the second, to give the optimal test, of level 0.10. (xx answers: [0.933, 1.804] for θ1;

[1.161, 2.388] for θ2. construct a version of Figure 3.3. xx) – The point is that these

rejection regions are different; the optimal test depends on the specific alternative, and

there can be no uniformly optimal test.

(d) Again for the sake of concreteness, compute the optimal possible power, for any 0.10

level test, at θ1 = 0.50 and at θ2 = 1.00. Compare these powers with that of the simple

test Y ≥ 3.078.

(e) (xx there are two drastic differences here, between the simple normal and the non-

simple Cauchy. the first is that the log-density-ratio

R(y, θ0, θ1) = log f(y, θ1)− log f(y, θ0)

is monotone, for the normal, and not at all monotone for the Cauchy. the second is that

of there being a simple one-dimensional sufficient statistic, in the case of Y1, . . . , Yn from

the normal, whereas no such statistic exists for the Cauchy. where is sufficiency in kiosk?

xx)

(f) (xx something about more regularity with n data points; above we just did n = 1.

xx)

Ex. 3.16 Optimal average power. Supppose Y is observed, perhaps a full vector, from

a density f , where one wishes to test the null hypothesis f = f0, a given density. As we

saw in Ex. 3.15, there are cases where there is no uniformly optimal test, against all or

a subset of alternatives; the optimal test at f1 might be different from the one at f2. In

one-parameter models, this is caused by the log-density-ratio not being monotone.

(a) Consider alternative densities f1, . . . , fm, given nonnegative weights of importance

w1, . . . , wm. These may be taken to have sum 1. The weighted average power of a test

T , at these points and with these weights, is

π̄T =

m∑
j=1

wjπT (fj) =

m∑
j=1

wj

∫
fj(y)T (y) dy,

with πT (fj) the power at fj . Let f̄(y) =
∑m
j=1 wjfj . Show that this average power is

maximised, among all test functions T (y) with level α at the null, by the T ∗(y) which

rejects H0 when f̄(y)/f0(y) ≥ c, with c tuned to give rejection probability α at the null.

(b) For a one-parameter model f(y, θ), consider testing of θ = θ0 against θ > θ0. For

any test function T (y) with rejection level α at the null, consider in general terms the

weighted average power

π̄T =

∫
θ>θ0

πT (θ) dw(θ),
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with πT (θ) =
∫
f(y, θ)T (y) dy the power of the test at position θ. Show that π̄T =∫

θ>θ0
f̄(y)T (y) dy, featuring the density f̄(y) =

∫
θ>θ0

f(y, θ) dw(θ). This is the model

density averaged over all alternatives to the null, as weighted by the dw(θ) measure.

(c) Show that the test maximising this weighted average power is rejecting the null of

f̄(y)/f0(y) ≥ c, with c tuned to have null level α.

(d) (xx a little more. the marginal density, or predictive density, with a link to Bayes, but

specifically with a ‘prior’ over the alternative space. can take Cauchy with a exp(−aθ)
over the halfline. xx)

(e) (xx can look at N(ξ, σ2) model, testing the null that f = N(0, 1), against the alter-

native that ξ > 0, or σ > 1, or both. show first that the NP test against alternatives

(1.1, 2.2) and (2.2, 3.3) are indeed different, so there is no uniformly most powerful test.

then maximise average power, using a weight density we give our readers, with

f̄(y1, . . . , yn) =

∫
ξ>0,σ>1

{ n∏
i=1

f(yi, ξ, σ)
}

dw(ξ, σ).

perhaps a data example. xx)

(f) (xx make sure we have a good version on board of a lemma which says the Wilks test

Dn = 2{`n,max − `n(θ0)} is an approximation to this optimal weighted power test. can

be in Ch 4, but then pointed to already here. xx)

Ex. 3.17 Do the data come from f0, or rather from f1? (xx perhaps a story, not merely

an exercise. we use simple tools, CLT and LLN, not much more. perhaps with f0 the

standard normal and f1 the scaled double expo with variance 1. xx) Suppose i.i.d. data

Y1, Y2, . . . are observed, these coming from either f0 or f1, two specified densities. We

may use Neyman–Pearson to test f0 against f1, and also vice versa. We assume that the

two variances

τ2
0,1 = Varf0 log{f0(Y )/f1(Y )} =

∫
f0{log(f0/f1)− d0,1}2 dy,

τ2
1,0 = Varf1 log{f1(Y )/f0(Y )} =

∫
f1{log(f1/f0)− d1,0}2 dy

are finite, involving the two Kullback–Leibler distances

d0,1 =

∫
f0 log(f0/f1) dy and d1,0 =

∫
f1 log(f1/f0) dy,

see Ex. 5.17.

(a) Let Rn =
∑n
i=1 log f1(Yi)/f0(Yi). Show that

Rn/n→pr

{
−d01 = −d(f0, f1) if data are from f0,

d10 = d(f1, f0) if data are from f1.

So a plot of Rn, as a function of growing sample size, will end up positive under f1 but

negative under f0.
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(b) Show that the optimal test for f0 against f1, with level say 0.05, is to reject when Rn
is big, i.e. bigger than the 0.95 point of the Rn distribution under f0. One may find this

threshold via simulation, for each given n, but show that the first-order approximation

is that of rejecting when Zn,0,1 =
√
n(Rn/n+ d0,1)/τ0,1 ≥ 1.645.

(c) Show that the detection power for this test, at f1, with n observations, can be

approximated as

πn,0,1 = Pf1(reject f0)
.
= P{(τ1,0/τ0,1)N +

√
nd1,0/τ0,1 ≥ 1.645}

= Φ((τ0,1/τ1,0)(
√
nd1,0/τ0,1 − 1.645)),

writing N for a standard normal.

(d) (xx similar for f1 against f0. do all of this in two cases, using simulation to arrive at

rejection thresholds in the second case. (i) f0 ∼ Expo(1.111) and f1 = Expo(2.222); (ii)

f0 the standard normal and f1(x) = 1
2

√
2 exp(−

√
2|x|). make power plots, as a function

of n. comment. xx)

Ex. 3.18 Non-monotone likelihood ratio. Consider a simple setup with Y ∼ N(θ, θ2/m),

for a known m. (xx point to this being approximate situation in several setups. xx)

Suppose one needs to test θ = θ0, a known value, against the alternative θ > θ0.

(a) For some θ1 > θ0, show that the log-likelihood-ratio can be written

R(y, θ0, θ1) = log f(y, θ1)− log f(y, θ0) = 1
2max

2 −mby − log(θ1/θ0),

with a = 1/θ2
0 − 1/θ2

1 and b = 1/θ0 − 1/θ1. Simplify this further to

R(y, θ0, θ1) = 1
2ma

(
y − 1

1/θ0+1/θ1

)2

+ const.,

(b) Set up the Neyman–Pearson optimal test, at level say 0.05, at this alternative point

θ1. Find the associated optimal power, at θ1. Compare this power with the simpler test

which rejects if m1/2(y − θ0)/θ0 > 1.645.

(c) (xx a few details. so there is no UMP, for Y ∼ N(θ, θ2/m), but there is a simple

UMP for Y ∼ N(θ, θ/m). xx)

(d) (xx a bit more, worth doing, in detail. find the ML estimator θ̂. explore the Wilks

test, Wm = 2{`(θ̂) − `(θ0)}, perhaps calibrated to have null distribution closer to χ2
1.

find its power function. compare with NP optimal in a few positions. xx)

(e) xx

Ex. 3.19 The t test and its power. (xx repair and polish and simplify here. xx) Suppose

Y1, . . . , Yn are i.i.d. from the N(ξ, σ2), with testing of ξ = 0 required against ξ > 0. This

is simple and standard, in the case of σ being known, but requires the t test, as we have

seen in Ex. 3.10, in the case of σ being unknown and estimated from the data. Setting up

the test requires the relevant t distribution, from t =
√
nȲ /σ̂ ∼ tn−1, but for studying

the power function also the noncentral t distribution is required.
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Figure 3.4: Two pairs of power: Testing ξ = 0 against ξ > 0, for a normal sample of size

10 (lower pair) and 20 (upper pair), at test level 0.05, as a function of ξ/σ. The lower

power is for the t test (slanted, red); the upper power if for the normal based test (full,

black), which requires that σ is known.

(a) Consider first the case of σ being known. Show that z =
√
nȲ /σ is standard normal

under the null, and that the 0.05 level test becomes that of rejecting when z ≥ z0 =

Φ−1(0.95) = 1.645.

(b) Show that at a given ξ > 0, we have z ∼ N(
√
nξ/σ, 1), and that this leads to the

power function πn,N (ξ/σ) = Φ(
√
nξ/σ − z0). Compute and display this power function

for the case of n = 10 and n = 20, as with the black full curves of Figure 3.4.

(c) Then consider the more complex situation where σ is not known, needing the empir-

ical standard deviation σ̂ of (1.3). We have seen in Ex. 1.34 that

t =

√
nȲ

σ̂
=

√
nȲ /σ

σ̂/σ
∼ N(0, 1)

(χ2
df/df)1/2

,

with nominator and denominator being independent, and where the degrees of freedom is

df = n− 1. The probability density gdf(x) and cumulative distribution Gdf(x) of this tdf

distribution are moderately complicated, see the exercise mentioned, but that does not

concern us much, as long as we can consult a table or run an algorithm to find associated

quantiles and probabilities. Show hence that the t test, with level 0.05, must consist of

rejecting when t ≥ t0 = G−1
df (0.95). Using qt(0.95,df) in R, we find 1.833 and 1.729
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for n = 10 and n = 20. Check that qt(0.95,df) becomes close to 1.645 as df increases,

and explain why.

(d) (xx check things, also where we have said what. xx) For the power of the t test,

show that πn,t(ξ/σ) = Pξ/σ(t ≥ t0), where

t =

√
nȲ

σ̂
∼ N(

√
nξ/σ, 1)

(χ2
df/df)1/2

,

again with nominator and denominator independent. Show that the power function can

be written

πn,t(ξ/σ) = Pξ/σ(t ≥ t0.m) = 1−Gm(t0,m,
√
nξ/σ),

with Gm(x, λ) denoting the cumulative distribution for this noncentral t with degrees of

freedom m and noncentrality parameter λ. This function is complicated, but can easily

be found numerically via e.g. pt(x,m,lambda) in R. Construct a version of Figure 3.4,

perhaps with other sample sizes than 10, 20. Comment on your findings.

(e) Describe how the two-sided tests and power functions pan out here, whem ξ = 0 is

to be tested against ξ 6= 0. Make a corresponding version of Figure 3.4, with the relevant

two-sided power functions.

Ex. 3.20 Power and local power, I. This exercise is meant to study a ‘prototype situ-

ation’ in some detail; the type of calculations and results will be seen to rather similar

in a long range of different situations. – Let Y1, . . . , Yn be i.i.d. data from N(θ, σ2). One

wishes to test H0 : θ = θ0 vs. the alternative that θ > θ0, where θ0 is a known value

(e.g. 3.14). Two tests will be considered, based on respectively

Ȳn = n−1
n∑
i=1

Yi and Mn = median(Y1, . . . , Yn).

[xx Figure 1: Limiting local power functions for two tests for θ ≤ θ0 against θ > θ0,

in the situation with N(θ, σ2) data. based on the mean (full line) and on the median

(dotted line). can do both exact and local approximation. xx]

(a) For a given value of θ, prove that

√
n(Ȳn − θ)→d N(0, σ2),

√
n(Mn − θ)→d N(0, (π/2)σ2).

Note that the first result is immediate and actually holds with exactness for each n; the

second result requires more care, e.g. working with the required density, cf. Exercise xx.

(b) Working under the null hypothesis θ = θ0, show that

Zn =
√
n(Ȳn − θ0)/σ̂ →d N(0, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N(0, 1),

where σ̂ is any consistent estimator of σ.
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(c) Conclude from this that the two tests that reject H0 provided respectively

X̄n > θ0 + z0.95σ̂/
√
n and Mn > θ0 + z0.95(π/2)1/2σ̂/

√
n,

where z0.95 = Φ−1(0.95) = 1.645, have the required asymptotic significance level 0.05;

αn = P{reject H0 | θ = θ0} → 0.05.

(There is one such αn for the first test, and one for the other; both converge however to

0.05.)

(d) Then our object is to study the local power, the chance of rejecting the null hypothesis

under alternatives of the type θn = θ0 + δ/
√
n. In generalisation of (b), show that

Zn =
√
n(Ȳn − σ0)/σ̂ →d N(δ/σ, 1),

Z∗n =
√
n(Mn − θ0)/{(π/2)1/2σ̂} →d N((π/2)1/2δ/σ, 1),

[xx check this xx] where the convergence in question takes place under the indicated

θ0 + δ/
√
n parameter values. (You need to generalise the results of Exercise xx, to the

δ 6= 0 case.)

(e) Use these results to show that

πn(δ) = P{reject | θ0 + δ/
√
n} → Φ(δ/σ − z0.95),

π∗n(δ) = P{reject | θ0 + δ/
√
n} → Φ((2/π)1/2δ/σ − z0.95),

for the two power functions. Draw these in a diagram, and compare; cf. Figure xx.

(f) Assume one wishes n to be large enough to secure that the power function is at least

at level β for a certain alternative point θ1. Using the local power approximation, show

that the required sample sizes are respectively

nA
.
=

σ2

(θ1 − θ0)2
(z1−α + zβ)2 and nB

.
=

σ2/c2

(θ1 − θ0)2
(z1−α + zβ)2

for tests A (based on the mean) and B (based on the median), with c =
√

2/π. Compute

these sample sizes for the case of β = 0.95 and θ1 = θ0 + 1
2σ, when also α = 0.05.

(g) One sometimes defines the ARE, the asymptotic relative efficiency of test B with

respect to test A, as

ARE = lim
nA(θ1, β)

nB(θ1, β)
,

the limit in question in the sense of alternatives θ1 coming closer to the null hypothesis

at speed 1/
√
n. Show that indeed

ARE =
σ2

σ2/c2
= c2 = 2/π = 0.6366

in this particular situation – test A needs only ca. 64 percent as many data points to

reach the same detection power as B needs.
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(h) (xx round off. pointers. xx)

Ex. 3.21 Power and local power, II. (xx we do also parallel exercise with two tests for

σ, based on the usual χ2
n−1, and on Bn = (1/n)

∑n
i=1 |Xi −Mm|, with Mn the sample

median. xx)

Ex. 3.22 Two denominators for Wald tests. (xx this needs work and editing, and might

be split in two parts. i need a better prototype example for the ‘two denominators’ thing

than what’s here as of 4 april 2021. xx) (xx for Wn = β̂/Dn there are often two choices

for the denominator Dn, constructed to be consistent at H0, or consistent in the wider

model. same N(0, 1) limit under H0, but different powers. need to point to and calibrate

wring to monotone likelihood ratio property. we need a good example where this property

does not hold. we make a Cauchy exercise too. xx) Consider the simple setup where

θ̂ ∼ N(θ, θ/m), with m known, perhaps the sample size behind the estimator θ̂. We also

suppose θ is sufficiently positive so that θ̂ is also positive with very high probability. One

wishes to test the null hypothesis that θ = θ0, a known null value, against the alternative

that θ > θ0.

(a) For a value θ1 > θ0, consider the log-ratio function

R(y, θ1, θ0) = log{f(y, θ1)/f(y, θ0)}
= − 1

2m(y − θ1)2/θ1 + 1
2m(y − θ0)2/θ0 − log θ1 + log θ0.

Show that R is increasing in x. (xx which implies that Wn,0 is optimal, on this occasion.

need another example to showcase different power behaviour. xx)

(b) Consider the two test ratios

Wm,0 =
θ̂ − θ0

(θ0/m)1/2
and Wm,1 =

θ̂ − θ0

(θ̂/m)1/2
.

Show that their null distributions both tend to the standard normal, as m grows; in fact

Wm,0 is exactly a N(0, 1) under the null. With a 0.05 level, the tests reject the null if

Wm,0 ≥ z0 or Wm,1 ≥ z0, with z0 = 1.645. (xx can ask just a bit more here, a more

exact version of the second test, needing then distribution of (θ̂/θ0)1/2. xx)

(c) First consider the local power, at the local alternatives θ = θ0 + a/m1/2. Show that

both Wm,0 and Wm,1 tend to N(a/θ0, 1), and hence that both power functions tend to

Φ(a/θ0 − z0).

(d) Then consider an alternative value, with a non-zero δ = θ − θ0. Show

Wm,0 =
m1/2{δ + (θ/m)1/2Zm}

θ
1/2
0

= (θ/θ0)1/2Zm +m1/2δ/θ
1/2
0 ,

Wm,1 =
m1/2{δ + (θ/m)1/2Zm}

θ̂1/2
= (θ/θ̂)1/2Zm +m1/2δ/θ̂1/2.

where Zm ∼ N(0, 1). Argue that this leads to power functions

πm,0(θ) = P{(θ/θ0)1/2N +m1/2(θ − θ0)/θ
1/2
0 ≥ z0},

πm,1(θ) = P{N +m1/2(θ − θ0)/θ1/2 ≥ z0},
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with N a standard normal; the first power expression is exact, the second an approxi-

mation.

(e) xx

(f) xx

Ex. 3.23 Completeness. Often, models are so harmoniously constructed that there are

clear one-to-one connections between estimators (perhaps based on a set of summary

statistics) and estimands, in the sense that there for each estimand is only one unbiased

estimator. Clarifying such regularity leads to the concept of completeness, which turns

out to be useful also when coming to conditional testing and optimal power in exercises

below. Technically, suppose some vector T = (T1, . . . , Tp)
t has a distribution f(t, θ),

with the property that Eθ h(T ) = 0 for all θ ∈ Θ implies Pθ{h(T ) = 0} = 1 for all θ,

i.e. h(t) = 0 almost everywhere. We then say that T , or more formally its distribution,

over the relevant parameter region, is complete.complete

(a) Let X ∼ binom(n, θ), with θ ∈ (0, 1). Show that X is complete; zero is the only

unbiased estimator of zero. (You may appeal to properties of power series.) Show that

X is complete as long as the parameter region contains an open interval. Show similarly

that if X ∼ geom(p), see Ex. 1.15, then X is complete, again requiring only that the

parameter range for p contains an open interval.

(b) With Y1, . . . , Yn i.i.d. from the uniform on [0, θ], consider M = maxi≤n Yi. Show

that M is sufficient and complete.

(c) Suppose Y1, . . . , Yn are i.i.d. from the uniform distribution over [θ − 1, θ + 1]. Show

that (Y(1), Y(n)), the smallest and largest, is sufficient, but not complete.

(d) If T is complete, show that any one-to-one transformation variable T ′ = a(T ) is also

complete.

(e) Consider Y1, . . . , Yn an i.i.d. sample from the double exponential with density f(y, θ) =
1
2 exp(−|y− θ|). Show that the full set of order statistics (Y(1), . . . , Y(n)) is sufficient, but

not complete; do this, by exhibiting two different unbiased estimators of θ.

Ex. 3.24 Completeness for the exponential family. For the large class of exponential

family models, see Ex. 1.57 and follow-up exercises, there is a completeness lemma, as

follows. Suppose Y1, . . . , Yn are i.i.d. from the model f(y, θ) = exp{θtT (y) − k(θ)}h(y),

with T = (T1, . . . , Tp)
t and θ = (θ1, . . . , θp)

t varying in an open set, then the vector

of sample averages (T̄1, . . . , T̄p)
t is not merely sufficient, as seen in Ex. 1.64, but also

complete. We shall freely use this lemma. (xx but point to proof, check BickelDoksumcompleteness

lemma for

exponential

family

or Johansen or Brown or Schervish. perhaps requiring analyting continuation arguments.

point is that a(θ) = Eθ h(T̄ ) is a super smooth functions with all derivatives smooth. xx)

(a) Let Y1, . . . , Yn be i.i.d. from the N(ξ, 1). Show that the full set (Y1, . . . , Yn) is not

complete, but that the sample mean Ȳ is.
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(b) Consider Y1, . . . , Yn i.i.d. from the Gam(a, b) model. Show that (
∑n
i=1 Yi,

∑n
i=1 log Yi)

is sufficient and complete. Identify similarly a sufficient and complete pair of statistics

for a sample from the Beta(a, b).

(c) Consider an i.i.d. sample Y1, . . . , Yn from the N(ξ, σ2). Show that (
∑n
i=1 Yi,

∑n
i=1 Y

2
i )

is sufficient and complete, and also that (Ȳ , σ̂) is sufficient and complete. Suppose then

that the variance is postulated to be equal to the squared mean, so that the sample

is from N(θ, θ2). Construct two different unbiased estimators of θ, and show that this

means that (Ȳ , σ̂) is not complete. You may similarly construct two different unbiased

estimators of θ2.

Ex. 3.25 Conditional tests. Suppose in general terms that data y are observed from a

model with parameter θ, where the null hypothesis H0 : θ ∈ Θ0 is to be tested, against the

alternative that θ /∈ Θ0. Assume one computes U = U(y) and V = V (y). A conditional

test, with respect to V , with level α, is then to find a rejection region R(v), using the

distribution of U given V (y) = v, with conditional

tests

Pθ{U(Y ) ∈ R(v) |V (Y ) = v} ≤ α for all θ ∈ Θ0.

Such tests are natural and important in multiparameter setups, as we shall see, and

various constructions succeed in ‘reducing the dimensionality’ down to the analysis of a

one-parameter family, where e.g. Neyman–Pearson more readily applies.

(a) Even when such a test has been constructed in a conditional modus, ‘what is unlikely

null behaviour of U given that V = v’, it may of course be translated or paraphrased

without the conditioning: one rejects if U(Y ) ∈ R(V ). Show that the test also has

unconditional level α.

(b) From unconditional to conditional: Conditional tests as above have the form T (U, V ) =

I(U ∈ R(V )), built to have Eθ {I(U ∈ R(v)) | v} = α. Assume now that V is complete

at the boundary ∂Θ0 of the null hypothesis parameter region; see Ex. 3.23. Show that

if any test T (U, V ) has constant level α at this boundary, then it is a conditional test,

with this level; Eθ {T (U, V ) |V = v} = α for all θ ∈ Θ̄0. (xx hint: check the function

h(v) = Eθ {T (U, V ) |V = v} − α. xx)

Ex. 3.26 Conditional tests: pairs of exponentials. Suppose X ∼ Expo(a) and Y ∼
Expo(a+ δ), and that one wishes to test δ = 0, i.e. equal distributions, against δ > 0.

(a) Show that the joint density may be written a(a+ δ) exp(−az − δy), with z = x+ y.

Find the distribution of Z = X + Y , and show that the distribution of Y given Z = z

has the density

gδ(y | z) =
δ exp(−δy)∫ z

0
δ exp(−δy′) dy′

=
δ exp(−δy)

1− exp(−δz)
for 0 ≤ y ≤ z.

In particular, it does not depend on the θ. For the null hypothesis case of δ = 0, show

that Y | z is uniform on [0, z].
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(b) The natural conditional 0.05 level test is then to first compute z, and then to reject

if y ≤ 0.05 z. Show that it indeed has level 0.05, and that is the power optimal test

among all conditional tests, using Y given z. Verify that this conditional test is the same

as the unconditional test of rejecting when R = Y/(X + Y ) ≤ 0.05. Compute the power

function of the T ∗ = I(Y ≤ 0.05Z) test (in the testing function parlance of Ex. 3.12),

conditional on z, and unconditionally.

(c) At the boundary of the null, where δ = 0, show that Z is complete. Show hence that

any test with level 0.05 also must be a conditional on Z 0.05 level test, via Ex. 3.26.

(d) We know that T ∗(y, z) = I(y ≤ 0.05 z) is the most powerful conditional test with

level 0.05; we now wish to extend this statement to T ∗ actually being the most powerful

among all tests with level 0.05. For any competing test T (Y,Z) with level 0.05, show,

since it must be a z-conditional 0.05 level test, where it cannot beat T ∗, that

Ea,δ {T ∗(Y,Z) | z} ≥ Ea,δ {T (Y,Z) | z} for all δ > 0, z > 0.

There is equality, to 0.05, at δ = 0. Show from this that T ∗ is more powerful than such

T , unconditionally; in suitable power function symbols, πT∗(a, δ) ≥ πT (a, δ) for all δ > 0.

(e) Suppose now that there are m independent pairs, Xi ∼ Expo(ai) and Yi ∼ Expo(ai+

δ), with sums Zi = Xi+Yi; there are hence m+1 parameters with 2m data points. Show

that the optimal test is to reject when Um = Y1 + · · · + Ym is small, given z1, . . . , zm.

Explain how the null distribution of Um can be evaluated via simulations. For an illustra-

tion, suppose three pairs (xi, yi) are observed: (0.927, 0.819), (1.479, 0.408), (3.780, 1.311).

Carry out the test of δ, and compute the p-value.

Ex. 3.27 Conditional tests: normal. (xx various situations with distribution of U | (V =

v), followed by natural conditional test. xx) Consider a pair of normals, where interest

lies in assessing their difference in means. This may of course be parametrised in different

ways, but one natural way is x ∼ N(θ, 1) and y ∼ N(θ + δ, 1). One wishes to test δ = 0

vs. δ > 0, equivalent, of course, to testing equality of the means vs. E y > Ex.

(a) Show that the joint likelihood can be written

f(x, y, θ, δ) = (2π)−1 exp[− 1
2{(x− θ)

2 + (y − θ − δ)2}]
= (2π)−1 exp{θz + δy − 1

2x
2 − 1

2y
2 − 1

2θ
2 − 1

2 (θ + δ)2},

where z = x + y, and with the main interaction between parameters and data being in

the θz + δy part.

(b) Show that (y, z) is a binormal, and set up its mean vector and variance matrix.

Then use Ex. 1.30, or other algebraic methods, to show that y | z ∼ N( 1
2 (z + δ), 1

2 ); in

particular, its conditional distribution does not depend on θ.

(c) Through the conditioning on z the testing problem has been reduced from a two-

parameter to a one-parameter situation. For y | z ∼ N( 1
2 (z+δ), 1

2 ), show that the optimal

test is to reject when y− 1
2z > (1/

√
2)c, with c = Φ−1(1−α) the standard normal quantile.
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(d) Show that the above test, constructed to be optimal in the model for y | z, is equiv-

alent to that of rejecting whem D = y − x >
√

2c. (xx so the conditional test is an

ordinary unconditional test in disguise, or vice versa, in this particular situation. the

point is the general principle. xx)

(e) (xx Consider m pairs of normal data, of the form xi ∼ N(θi, 1) and yi ∼ N(θi + δ, 1).

do the math, with the steps above. log joint density
∑m
i=1(θizi + δyi), with zi = xi + yi.

conditional test,
∑k
i=1 yi big given z1, . . . , zk. xx)

(f) (xx something re power. xx)

Ex. 3.28 Conditional tests: Poisson. (xx various situations with distribution of U | (V =

v), followed by natural conditional test. xx)

(a) We start with a single pair of Poissons, x with mean θ, y with mean θγ. Show that

the joint distribution becomes exp(−θ − θγ)θx+yγy/(x! y!). This inspires inspecting the

distribution of y given z = x+ y. Show that y | z ∼ binom(z, γ/(γ + 1)).

(b) To test γ = 1 against γ > 1, describe in details the natural conditional test which

rejects when y is big, given z = x+ y.

(c) Next consider independent Poisson pairs xi, yi for i = 1, . . . ,m, where xi has mean θi
and yi mean θiγ. The model hence has m+ 1 parameters for the 2m observations, with

γ the common multiplicative factor. Show that the joint distribution may be written

f = exp
[
−

m∑
i=1

(θi + θiγ) +

m∑
i=1

{(xi + yi) log θi + yi log γ}
]
.

With zi = xi+yi, find the distribution of yi | zi, and also the distribution of S =
∑m
i=1 yi

given z1, . . . , zm.

(d) Find the power optimal test for γ = 1 against γ > 1, among all those based on S

given z1, . . . , zm.

(e) (xx more, rounding off. something with limit. point to Ch7 optimal CD. also do Y ∼
Pois(m0θ0) and Y1 ∼ Pois(m1θ1), with m0 and m1 exposure time. With interest being in

the ratio parameter γ = θ1/θ0, show that Y1 | (Z = z) is binomial (z,m1γ/(m0 +m1γ)).

xx)

Ex. 3.29 Conditional tests: 2 × 2 tables. (xx various situations with distribution of

U | (V = v), followed by natural conditional test. xx)

(a) Consider two binomials y0 ∼ binom(m0, p0) and y1 ∼ binom(m1, p1). The outcomes

in such situations are often presented as a two-by-two table,

y0, m0 − y0

y1, m1 − y1

Consider the so-called logistic parametrisation

p0 = H(θ) =
exp(θ)

1 + exp(θ)
and p1 = H(θ + γ) =

exp(θ + γ)

1 + exp(θ + γ)
.
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Show that θ = log{p0/(1 − p0)} and θ + γ = log{p1/(1 − p1)} in terms of the so-called

log-odds. Show that the joint distribution can be written

f =

(
m0

y0

)(
m1

y1

)
exp(θ(y0 + y1))

{1 + exp(θ)}m0

exp(γy1)

{1 + exp(θ + γ)}m1
.

(b) (xx in view of ... check, calibrate. xx) This inspires reaching inference for γ via the

conditional distribution of y1 given z = y0 + y1. Show that this distribution becomes

gγ(y1 | z) =

(
m0

z − y1

)(
m1

y1

)
exp(γy1)

/ ∑
y′1≤min(m1,z)

(
m0

z − y′1

)(
m1

y′1

)
exp(γy′1)

for y1 = 0, 1, . . . ,min(m1, z). In particular, this so-called excentric hypergeometric dis-

tribution depends on γ but not θ. We recognise the ordinary hypergeometric for γ = 0;

see Ex. 1.52.

(c) Show that the optimal 0.05 level conditional test for the null hypothesis of equality,

p0 = p1, is to reject when y1 > c(z), with c(z) the highest number with
∑

0≤y1≤c(z) g0(y1 | z) ≤
0.95.

(d) (xx the power. xx)

(e) (xx to k two-by-two tables, pi,0 = H(θi) and pi,1 = H(θi + γ), k + 1 parameters.

optimal conditional test for
∑k
i=1 y1,i given z1, . . . , zk, with zi = yi,0 + yi,1. point to

Story i.9. xx)

Ex. 3.30 The t test as an optimal conditional test. Let Y1, . . . , Yn be i.i.d. from the

normal (ξ, σ2), where we wish to test ξ = 0 against ξ > 0. The canonical classical

test, of level say 0.05, is based on t =
√
nȲ /σ, rejecting if t ≥ tn−1,0.95, the upper 0.05

point of the tn−1 distribution; see also Ex. 3.3 and (3.4). We cannot use the Neyman–

Pearson lemma directly to demonstrate optimality of the t test, however. One of several

optimality properties may be derived via conditioning.

(a) Write U =
√
nȲ and V =

∑n
i=1 Y

2
i , so that in particular W =

∑n
i=1(Yi − Ȳ )2 =

V − U2. Show that the joint density of the data can be written

f =
1

(2π)n/2
1

σn
exp
{
− 1

2

1

σ2

n∑
i=1

(yi − ξ)2
}

=
1

(2π)n/2
1

σn
exp
{ ξ

σ2

√
nU − 1

2

1

σ2
V − 1

2

ξ2

σ2

}
.

Note that the testing problem is equivalent to testing λ = 0 against λ2 > 0, with

λ = ξ/σ2, the mathematics indicating that this is a parameter easier to work with than

ξ.

(b) Find the distribution of U | (V = v), and show in particular that it depends on the

parameters only via λ = ξ/σ2. It is convenient here to work with

T =
U

{W/(n− 1)}1/2
= (n− 1)1/2 U

(V − U2)1/2
.



98 Confidence intervals, testing, and power

(c) Show that the power optimal test, among all tests based on U | (V = v), is to reject

when U is big, say U ≥ c(v), with P0{U ≥ c(v) |V = v} = 0.05. Then show that this is

actually the same as the t test.

(d) (xx rounding off. xx)

Ex. 3.31 Conditional tests: multiparameter exponential models. In the rather simple

situation of Ex. 3.26, with the exponential pair X ∼ Expo(a) and Y ∼ Expo(a + δ),

with sum Z = X + Y , we learned that (i) there is a clear level α conditional test for

δ = 0 vs. δ > 0, in terms of Y |Z; (ii) that test is uniformly most powerful against all

δ > 0, among all conditional tests; and (iii) all other level α competitors are in fact also

Z-conditional. Hence the winning test, reject if Y ≤ αZ, is the uniformly most powerful

level α test. – We shall see now that the same arguments essentially go through for

the wide class of all exponential families. Consider data Y from a density of the form

f(y, a, b) = exp{aU(y) + btV (y) − k(a, b)}h(y), as in Ex. 1.60, with one-dimensional U

and p-dimensional V . Suppose we need to test a = a0 against a > a0, for some given

null hypothesis value a0.

(a) We have seen in the exercise pointed to that U | (V = v) has a density depending

on a but not b, and that it has an exponential form. Assume for simplicity that the

distribution of U is continuous; mild formalistic additional arguments are required if the

distribution is discrete. Deduce that there is a most powerful conditional level α test,

say T ∗(y) = I{U > c(V )}, with c(v) determined from Pa0(U > c(v) |V = v) = α, and

with consequent power function π(a, b) = Pa,b {U > c(V )}.

(b) Then consider any competing test T (U, V ) with level α. From Ea0,b T (U(Y ), V (Y )) =

α, for all b, use completeness in b of V (Y ) for fixed a0 to prove that

Ea0,b {T (U(Y ), V (Y )) |V (y) = v)} = α

for all v (except perhaps in a region of probability zero), and for all b. Thus the T

competitor is also a level α V -conditional test, and we have proved that the conditional

test is uniformly most powerful among all level α tests.

(c) The theory extends fruitfully to the case of testing H0 : a ≤ a0 against a > a0. Show

that the test T ∗ = I{U > c(V )} above, with c(v) determined from Pa0(U > c(v) |V =

v) = α at the boundary, is still of level α. Then show that this test is uniformly most

powerful against all competing tests with constant level α at the boundary a = a0; one

says that such tests are unbiased. This latter very mild limitation is in order for the

completeness argument to go through.

(d) (xx briefly about two-sided tests. still based on U | (V = v). xx)

(e) When U | (V = v) has a discrete distribution, the arguments still go through, but one

cannot expect to find c(v) with e.g. Pa0{U > c(v) |V = v} = 0.05. There are two ways

out of this mild quandary. The first is to be satisfied with level 0.042, say, if that is how

close one comes to 0.050, by appropriate choice of c(v). The other, if one pedantically
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insists on 0.05, is to finetune c(v) such that Pa0{U > c(v) |V = v} is just below 0.05,

and then identify the probability r such that

Pa0{U > c(v) |V = v}+ r Pa0{U = c(v) |V = v} = 0.05,

So one rejects if U > c(V ), or, but then with probability r, if U = v(C).

(f) (xx go through the previous exercises about conditional tests, once more, make sure

that the tests found there are really uniformly most powerful among all unbiased tests.

xx)

Ex. 3.32 Testing correlation. (xx first 3-parameter model with (σ1, σ2, ρ), then full

5-parameter binormal model. testing ρ = 0 against ρ > 0. using the theory. xx)

Ex. 3.33 Linear multiple regression and least squares. The celebrated linear multiple

regression model remains a cornerstone success story of theoretical and applied statistics.

It is a tool, or a bag of related tools, for investigating the extent to which certain covariates

x influence the outcomes of certain interest variables Y . The standard formulation of

the model is as follows. The data collected can be organised into (xi, Yi), for individuals

or objects i = 1, . . . , n, where xi = (xi,1, . . . , xi,p)
t is of dimension p and yi of dimension

one. The model then postulates that

Yi = xt
iβ + εi = xi,1β1 + · · ·+ xi,pβp + εi for i = 1, . . . , n,

where the εi are i.i.d. from the normal N(0, σ2). Thus there are p+1 parameters at work

here, the regression coefficients β = (β1, . . . , βp)
t and the error distributiuon standard

deviation σ. – Note that the very classical case of yi = a + bxi + εi, associated with a

scatterplot of (xi, Yi), is a special case; see Ex. 2.34.

(a) With Y the vector of Yi, ε the vector of εi, and X the n × p matrix having

(xi,1, . . . , xi,p) as its row i, show that

Y = Xβ + ε ∼ Nn(Xβ, σ2I),

with I the n× n identity matrix. This is a practical and compact linear algebra version

of the model formulation. We do assume that X is of full rank p, so that the symmetric

matrix XtX is invertible. This amounts to there being at least p linearly independent

covariate vectors in the X matrix; in particular, we must have n ≥ p to identify the βj
coefficients directly from data. [xx but quick pointers to later chapters with Bayes and

to regularisation and to lasso and ridge here. xx]

(b) The least squares estimator β̂ is the minimiser of Q(β) = ‖Y −Xβ‖2 =
∑n
i=1(Yi −

xt
iβ)2. Show that

∑n
i=1(Yi − xt

iβ̂)xi = 0. With Σn the p × p matrix n−1
∑n
i=1 xix

t
i =

n−1XtX, show that

β̂ = (XtX)−1XtY = Σ−1
n n−1

n∑
i=1

xiYi.
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(c) Show that β̂ is unbiased and that its variance matrix can be written σ2(XtX)−1 =

(σ2/n)Σ−1
n .

(d) Show also that β̂ has a multinormal distribution, so that in fact β̂ ∼ Np(β, (σ
2/n)Σ−1

n ).

This is the key result about the least squares estimators. We also need precise information

for estimating σ; see Ex. 3.34.

Ex. 3.34 The residuals and their variance. The setup is an in the previous Ex. 3.33,

the Y ∼ Nn(Xβ, σ2I) linear regression model. Above we focused on the least squared

method and the ensuing properties for the estimators of the regression coefficients, and

found β̂ ∼ Np(β, (σ
2/n)Σ−1

n ). We also need to deal carefully with estimators of σ, the

residual standard deviation, also since we encounter statistics of the type (β̂j − βj)/σ̂.

(a) From the basic Y = Xβ + ε we may define the estimated residuals as

ε̂ = Y −Xβ̂ = (I −H)Y, where H = X(XtX)−1Xt,

the so-called hat matrix, of size n×n. Show that H is symmetric and idempotent, which

means that Ht = H and H2 = H. This also implies (I −H)H = 0.

(b) Now consider the random minimum achieved by the Q(β) which was used in the

least squares operation,

Q0 = min{Q(β) : all β} = Q(β̂) = ‖Y −Xβ̂‖2 =

n∑
i=1

(Yi − xt
iβ̂)2.

The main result, arrived at below, is thatQ0/σ
2 ∼ χ2

m, with degrees of freedomm = n−p,
and that Q0 is independent of β̂. Show first that(

Xβ̂

ε̂

)
=

(
HY

(I −H)Y

)
∼ N2n(0, σ2

(
H, 0

0, I −H

)
).

In particular, these two random vectors are independent; also, Q0 = ‖ε̂‖2 = Y t(I −H)Y

is consequently independent of Xβ̂.

(c) Show that (I −H)X = 0, which implies

ε̂ = (I −H)Y = (I −H)(Y −Xβ) = (I −H)ε

and hence Q0 = εt(I −H)ε. We also reach the simple idenity

‖ε‖2 = εtHε+ εt(I −H)ε,

where the left-hand side is a σ2χ2
n and the two terms on the right-hand side being

independent. Show that the first term on the right-hand side is a σ2χ2
p. Via independence

and a moment-generating function argument show then that Q0 ∼ σ2χ2
n−p. [xx pointer

to Ex. 1.22. might rearrange the sequence of exercises to have mgf before this. xx]

(d) (xx a few things regarding estimating σ. standard version is σ̂2 = Q0/(n−p) ∼ σ2χ2
m/m.

make clear that things we’ve learned for the simple i.i.d. normal setup can be used here

too, without further ado. xx)
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(e) (xx can put in estimation of γ = ctβ things here, or in separate exercise. t distribu-

tions, intervals, tests. and how to predict y0 for a new x0. xx)

Ex. 3.35 Inference for linear multiple regression. [xx to be done. perhaps with a

real data example, or a pointer to a story. in this exercise we show typical and not so

typical inference methods for the linear multiple regression model, using the key results

reached in the previous exercise. confidence intervals, tests, also for σ, for a p quantile

F−1(q |x0) = xt
0β+zqσ, and delta method for things like P (Y ≤ y0 |x0). and prediction.

xx]

(a) (xx typical things first. show that β̂j ∼ N(βj , k
2
jσ

2/n), where k2
j = σj,jn the diagonal

elements of Σ−1
n . from this show tj = (β̂j − βj)/(kj σ̂/

√
n) is a tn−p. then ci for each βj .

and test of βj = 0. also ok for βj − βk etc. xx)

(b) (xx inference for σ. xx)

(c) For a given individual, with covariate vector x0, the outcome Y0 has the distribution

N(xt
0β, σ

2). Consider the inference task for a quantile in this distribution. Show that

the q-quantile becomes γq = xt
0β+ zqσ, with Φ(zq) = q. With estimator γ̂q = xt

0β̂+ zqσ̂,

show that

Wq =
γ̂q − γq
σ̂

=
xt

0(β̂ − β) + zq(σ̂ − σ)

σ̂
=

N(0, xt
0Σ−1

n x0/n) + zq{(χ2
m/m)1/2 − 1}

(χ2
m/m)1/2

.

(xx round off. the point is that Wq can be simulated. also approximated with a normal.

give data example. xx)

(d) (xx prediction, what will Y0 be, at position x0. also P (Y ≤ y0 |x0). xx)

Ex. 3.36 How much of the variance is explained? In the linear regression model, the

extent to which the covariates influence the outcomes may be assessed in several ways,

one of which is to decompose the variance of the outcomes into a covariate part and a

‘remaining variability’ part. Such assessments relate also to ‘signal plus noise’ viewpoints;

how strong is the signal? (xx the below to be polished and illustrated, and with a clearer

link to R2. exact cc(ρ) to come in Ch. 7. xx)

(a) We start out writing the regression model as

Yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi = β0 + xt
iβ + εi for i = 1, . . . , n,

again with the εi seen as i.i.d. N(0, σ2), and further assume that the covariates have been

centred, having their means subtracted, so that
∑n
i=1 xi,j = 0 for j = 1, . . . , p. This

gives β0 the interpretation as the overall mean of the Yi. With Σn = (1/n)
∑n
i=1 xix

t
i

the empirical p × p variance matrix for the xi, show that the least squares estimators

become

β̂0 = Ȳ ∼ N(β0, σ
2/n), β̂ = Σ−1

n (1/n)

n∑
i=1

xiYi ∼ Np(β, (σ
2/n)Σ−1

n ),

and that these two are independent.
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(b) Write µ̂i = β̂0 +xt
iβ̂ for the model based estimate of the outcome at xi. For the sum

of squared residuals, show that Q0 =
∑n
i=1(Yi − µ̂i)2 =

∑n
i=1(Yi − Ȳ )2 − nβ̂tΣnβ̂. In

other words,

Vn =

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

(Yi − µ̂i)2 + nβ̂tΣnβ̂,

a neat decomposition of the full variability of outcomes as a sum of squared residuals

and the covariate part nβ̂tΣnβ̂.

(c) (xx place a little caveat below, regarding interpretation; we need to think about the

population being sampled from. xx) Standard themes for the linear regression model are

developed with analyses carried out conditional on the covariates. Allow now a change

in this narrative, where the xi are seen as having their own covariate distribution, with

mean zero and variance matrix Σn. Show that a randomly selected outcome Yi then has

variance βtΣnβ + σ2. Show that the covariate part of the full variability becomes

ρ =
βtΣnβ

βtΣnβ + σ2
=

λ

λ+ 1
, with λ = βtΣnβ/σ

2.

With σ̃2 = Q0/n (rather than the unbiased σ̂2 = Q0/(n − p − 1)), show that this leads

to

ρ̃ =
β̂tΣnβ̂

β̂tΣnβ̂ + σ̃2
=
Vn −

∑n
i=1(Yi − µ̂i)2

Vn
= 1−

∑n
i=1(Yi − µ̂i)2∑n
i=1(Yi − Ȳ )2

.

This is often called the coefficient of determination, or R2.

(d) To carry out precise inference for ρ, show first that nβ̂tΣnβ̂/σ
2 ∼ χ2

p(nλ); check with

Ex. 1.37. Then show that with λ̂ = β̂tΣnβ̂/σ̂
2, we have

F = nλ̂/p = nβ̂tΣnβ̂/(pσ̂
2) ∼ F (p,m, nλ),

the noncentral F, see Ex. 1.39, with m = n− (p+ 1) the degrees of freedom for σ̂2.

(e) Explain how this may be used to set confidence intervals for λ and hence for ρ.

(f) (xx round off. data example to see how it works. testing β = 0 with a clear F test,

but rather more; a full cc(ρ), with a point mass at zero, etc. new estimator for ρ is the

median confidence estimator C−1( 1
2 ). xx)

Ex. 3.37 Inference for ratios of standard deviations. Suppose two independent samples,

of sizes n1 and n2, come from two populations, with standard deviations σ1 and σ2. From

the empirical standard deviations σ̂1 and σ̂2, form the ratio R = σ̂1/σ̂2, to be used for

inference about the underlying ratio ρ = σ1/σ2.

(a) Suppose first that the two distributions are normal. We then saw in Ex. 1.38 that

R2 = ρ2F , where F ∼ Fm1,m2
, an F distribution with degrees of freedom (m1,m2) =

(n1−1, n2−1). Construct a 95 percent confidence interval for ρ based on this. Also give

a 0.05 level test for the equality hypothesis σ1 = σ2. this gives c.i. for ρ, and tests for

ρ = 1. (xx answer: with P (a ≤ F ≤ b) = 0.95, with (a, b) found from quantiles of the F,

we find [R/b1/2, R/a1/2]. test: accept if a < R2 < b. xx)
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(b) Then consider inference for the ratio ρ outside the assumption of normally distributed

data. From Ex. 3.6, find the representation

R =
σ̂1

σ̂2

.
=
σ1

σ2

1 + (1/n1)1/2( 1
2 + 1

4γ4,1)1/2Nn1

1 + (1/n2)1/2( 1
2 + 1

4γ4,2)1/2Nn2

,

in terms of the kurtoses γ4,1 and γ4,2, where Nn1
and Nn2

are independent variables

tending to standard normals as sample sizes increase. Use the delta method to deduce

that R/ρ ≈d N(1, τ2), with τ2 = (1/n1)( 1
2 + 1

4γ4,1)+(1/n2)( 1
2 + 1

4γ4,2). For normal data,

show that this matches the distributional approximation F 1/2 ≈d N(1, 1/(2n1)+1/(2n2)).

(c) Construct an approximate 95 percent confidence interval for σ1/σ2, valid also outside

normal data. For an application, see the Bach and Reger Stories ii.9–??.

(d) xx

Ex. 3.38 Testing equality of multinormal means. (xx a brief thing, used in Story ii.8,

can point to ML theory too. establish the following, then apply in two-three settings. xx)

Suppose A ∼ Np(a,Σ1) and B ∼ Np(b,Σ2) are independent multinormal data vectors,

with known variance matrices. How can we test a = b? Show that W = (B − A)t(Σ1 +

Σ2)−1(A−B) ∼ χ2
p under the null.

3.C Notes and pointers

(xx confidence intervals. testing. connections. power. Neyman–Pearson. point to

Lehmann. and to later chapters, Ch. 7 for CDs. point to interplay between modelling,

probability calculus, thinking, a bit of philosophy, and practice. xx)

ToDo notes, as of 13-Aug-2023:

Lots, though the chapter is shaping up. There are lots of ‘test θ = θ0 against θ > θ0

prose in exercises, since it’s easiest and cleanest, with NP etc. But we need to say a

couple of times that all of this generalises to θ 6= θ0 etc.

the Lindqvist and Taraldsen things, for simulating from U(x) | {V (x) = v}. do the

handball model from CLP.

Do the bioequivalence: test the H0 that θ is outside [−ε, ε] against the alternative

that it is inside. Diffent type of tests, and different looking power function.

Do sample size things, and efficiency; πn(θ)
.
= Φ(

√
n(θ−θ0)/σ−z0), with informative

derivative φ(0)
√
n/σ at θ0. Efficiency things.

Make an example or two, perhaps with Cauchy again, to see that the confidence

region might not be an interval.

Point to Cox (1958) and also interviews with him regarding conditional stuff.
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Large-sample theory

The broad themes of this chapter are the concepts, details, methods, results, appli-

cations pertaining to three modes of convergence for random variables: convergence

in probability, convergence almost surely, convergence in distribution. The first two

have to do with random variables Xn coming close to some limit X, with increasing

n, typically indexed by sample size; often the limit is merely a constant. The chief

result here, with various extensions and uses, is the Law of Large Numbers, than

the empirical average of a sequence of observations tends to the expected value

of the underlying distribution. The third mode of convergence rather involves the

distribution of Xn coming close to the distribution of some limit X, with the Cen-

tral Limit Theorem, already encountered in Ch. 2, being a prime statement. These

machineries also lead to practically useful approximations; the idea is that a compli-

cated distribution may be approximated by something much simpler. The theory is

developed first for functions of i.i.d. sequences, involving tools of moment-generating

functions and characteristic functions, along with various probability inequalities.

It is then extended to cover cases of independent variables from non-equal distri-

butions, culminating in the famous Lindeberg theorem, giving precise conditions

under which a sum of independent components approaches normality. This is then

used for handling classes of estimators in regression models. The theory is also

used to establish clear limiting normality and related results for classes of minimum

criterion function estimators. Methods and results from this chapter are crucial for

developing the likelihood theory of Ch. 5, and also for several later chapters.

4.A Chapter introduction

In this chapter we study convergence of sequences (Xn)n≥1 of random elements. The

index n typically refers to the sample size, and Xn is some function of the n data points

available. The modes of convergence we study take place as n grows without bounds;

hence the name large-sample theory.

Recall that a random elementX is a function defined on a probability space (Ω,F , P ),

and taking its values in some space X , equipped with an appropriate σ-algebra. When

X ⊆ R we call X a random variable; when X ⊆ Rk for some k ≥ 2, we call it a random

vector; and when X is the space of all continuous functions on the unit interval, for

105
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example, we call X a random or stochastic process. In this chapter we work with con-

vergence of random variables and vectors, with the more involved themes of convergence

of stochastic processes studied in Ch. 9.

Applications of large-sample theory are plentiful in probability and statistics, partly

to understand crucial phenomena better, and partly to provide fruitful and practical

approximations; an estimator or a statistic might have a very complicated exact distri-

bution, but have a simple to use and sometimes accurate large-sample approximation.

We’ve seen aspects of this already, in Chs. 2, 3, but in this chapter we dive into more

details and learn more. The key convergence concepts, with ensuing approximations and

applications, are as follows.

First, if Xn and X are random variables in Rk, defined on the same probability

space, we say that Xn converges to X in probability, written Xn →pr X, if

P (‖Xn −X‖ ≥ ε)→ 0 for each positive ε. (4.1)

Here ‖a − b‖ is simple Euclidean distance, and hence ordinary distance in the one-

dimensional case. Typically the limit X is simply a constant. If Xn is an estimator θ̂n,

for some parameter θ, we say that the estimator is consistent if θ̂n →pr θ0, where θ0 is

the true parameter value. consistency of

an estimatorSecond, a stronger version of convergence is Xn converges to X almost surely, or

with probability one. This means that

N = {ω ∈ Ω: limXn(ω) 6= X(ω)} has probability zero, (4.2)

and we write Xn →a.s. X. It is seen to be the same as P (lim sup ‖Xn − X‖ ≥ ε) = 0

for each positive ε. Again, often limits discussed using this concept are constants, and

we say that an estimator θ̂n is strongly consistent for θ if θ̂n →a.s. θ0, the true value. A the LLN

strong achievement indeed is the strong Law of Large Numbers (LLN), which says that

if X1, X2, . . . are i.i.d. with finite mean ξ, then X̄n = n−1
n∑
i=1

Xi →a.s. ξ, (4.3)

with no further assumptions required. One may readily prove weaker versions of the

LLN, as in Ex. 4.1, but with the development of sharper tools, and separate valuable

results along the way, we reach the strong LLN in Ex. 4.34–4.35. It immediately has

many applications and uses, as we shall see.

The third and statistically speaking most important concept is that of convergence

in distribution, already touched on in Chs. 2-3. If one-dimensional Xn and X have c.d.f.s

Fn and F , we say that Xn converges in distribution to X, or, equivalently, that Fn
converges in distribution to F , if

P (Xn ∈ (a, b])→ P (X ∈ (a, b]) for all continuity points a and b of F. (4.4)

This is also the same as Fn(b) − Fn(a) → F (b) − F (a), for all such intervals. We write

Xn →d X or Fn →d F to indicate this, allowing for simplicity also statements like

Xn →d N(0, 1). The concept generalises to variables in Rk, where we need P (Xn ∈
R) → P (X ∈ R), for all rectangles R for which P (X ∈ ∂R) = 0, where ∂R is the
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boundary of R. The bigger sibling of the LLN is the CLT, which we had occasion to see the CLT

in action already in Chs. 2–3;

if X1, X2, . . . are i.i.d. with variance σ2, then
√
n(X̄n − EX1)→d N(0, σ2), (4.5)

again with no further assumptions needed beyond a finite variance. Below we go con-

siderably further, however, in detail, in extensions, in applications. In particular, with

additional tools and efforts we reach the Lindeberg theorem, with precise necessary con-

ditions for a sum of independent variables from different distributions to approach nor-

mality. Such results are e.g. used to establish approximate normality for estimators in

regression models.

We also use the theory to reach limiting normality and related results for classes of

minimum criterion function estimators, in the set of exercises Ex. 4.47–4.50. These also

pave the way to the more central results for maximum likelihood methods in Ch. 5.

(xx a paragraph with more comments and pointers to later chapters and a few

stories. studies of robustness. multivariate CLT and Lindeberg. Markov chains, Bayes

and CD approximations, processes, martingales for survival analysis. xx)

4.B Short and crisp

Ex. 4.1 Convergence in probability. When working with (4.1) and related quantities it

is clear that tail probability bounds of the Markov and Chebyshov type are useful here,

as seen already in Ex. 2.7, with more to come in Ex. 4.33.

(a) Let Y1, Y2, . . . be i.i.d. random variables with expectation θ and finite variance σ2.

Prove the Law of of Large Numbers (in its weak form, we’ll get to the to strong version

in Ex. 4.34–4.35), namely that Ȳn = n−1
∑n
i=1 Yi →pr θ as n → ∞. More generally,

consider the weighted average θ̂ =
∑n
i=1 wiYi/

∑n
i=1 wi, for nonnegative and fixed weights

wi. Give a condition for consistency of the estimator, in terms of these weights. What

happens for wi = 1/i, and for wi = 1/i1.5?

(b) Suppose Xn →pr a, with a being a constant. Show that if g is a function continuous

at point x = a, then indeed g(Xn)→pr g(a).

(c) Suppose more generally that Xn →pr X, with the limit being a random variable.

Show that if g is a function that is continuous in the set in which X falls, then g(Xn)→pr

g(X).

Ex. 4.2 Convergence in probability for vectors. Consider Xn = (Xn,1, Xn,2) and X =

(X1, X2).

(a) Show that (Xn,1, Xn,2) →pr (X1, X2), by the definition of (4.1), is equivalent to

Xn,1 →pr X1 and Xn,2 →pr X2, that is, ordinary one-dimensional convergence for each

component. Generalise.

(b) Suppose Xn →pr a, in dimension k, with a = (a1, . . . , ak) a constant. If g(x) =

g(x1, . . . , xk) is a function defined in at least a neighbourhood around a, and continuous

at that point, show that g(Xn)→pr g(a).
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Ex. 4.3 Quantiles. Suppose Y1, . . . , Yn are i.i.d. from a distribution with continuous

and strictly increasing c.d.f. F .

(a) For a q ∈ (0, 1), let Qn = Qn(q) be the empirical q-quantile, defined here to be Y([nq]),

the [nq] order statistic. Show that Qn is consistent for the population quantile F−1(q).

(xx comment briefly on different definitions of quantile, but this does not matter here,

differences are small. xx)

(b) Show that the interquartile range, the 0.75 quantile minus the 0.25 quantile, is consis-

tent for the population interquartile range F−1(0.75)−F−1(0.25). Show more generally

that if θ = g(F−1(q1), . . . , F−1(qr)) is any continuous function of a finite number of

quantiles, then θ̂ = g(Qn(q1), . . . , Qn(qr)) is consistent for θ.

Ex. 4.4 Smooth functions of means and quantiles. (xx write down. all the easy con-

sequences. continuous functions of means and quantiles are consistent. more to come.

xx)

Ex. 4.5 Convergence in distribution. Convergence Xn →d X, or equivalently Fn →d F ,

has been defined in (4.4).

(a) Show that the (4.4) statement is equivalent to convergence Fn(x)→ F (x) for each x

at which F is continuous. Show that the set DF of discontinuity points for F is at most

countable.

(b) For dimension two, we say that Xn → X if P (Xn ∈ R) → P (X ∈ R) for each

rectangle R = (a1, b1] × (a2, b2] for which the P (X ∈ ∂R) = 0, where ∂R is the bound-

ary of the rectangle. Express P (X ∈ R) via F . Show that Fn →d F if and only if

Fn(x1, x2)→ F (x1, x2) at each point where F is continuous. Generalise to dimension k.

Ex. 4.6 Convergence in distribution for discrete variables. Assume Xn and X take

values in {0, 1, . . .}, with probabilities pn(j) and p(j), for j = 0, 1, . . ..

(a) Show that Xn →d X if and only if there is corresponding convergence for the point

probabilities, i.e. pn(j)→ p(j) for all j.

(b) With Xn ∼ binom(n, pn), and npn → λ, show that Xn →d Pois(λ).

(c) With Xn ∼ binom(n, p), let Zn = I{Xn ≥ np}. Show that Zn →d Z ∼ binom(1, 1
2 ).

Ex. 4.7 Many small probabilities give a Poisson. (xx previously in Ch2, now moved

here to Ch4. some editing and crossrefing needed. xx) The Law of Small Numbers, der

Gesetz der kleinen Zahlen, says that if we sum a high number of 0-1 variables, with

each having a small probability of 1, then we’re close to a Poisson. [xx point to von

Bortkiewicz (1898), and to Poisson himself. xx]

(a) Suppose Yn is binomial (n, p), with p becoming small with growing n in a way which

has np→ λ. Show that Yn →d Pois(λ).

(b) More generally, suppose X1, . . . , Xn are independent 0-1 Bernoulli variables with

pi = P (Xi = 1). Show that if maxi≤n pi → 0 and
∑n
i=1 pi → λ, then

∑n
i=1Xi →d

Pois(λ).
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(c) Suppose X1, X2, . . . are independent Bernoulli with pi = i/n, and consider Yn(t) =∑
i≤t
√
nXi. Show that Yn(t) →d Pois( 1

2 t
2). The limit is actually a full Poisson process

in t, with independent increments.

(d) Suppose (Xn, Yn) has the trinomial distribution, with parameters (n, p, q), see Ex. 1.4.

Assume now that p, q become small with n, such that np → λ1, nq → λ2. Show that

the correlation betweem Xn and Yn tends to zero, and that (Xn, Yn) →d (X,Y ), where

X and Y are independent and Poisson with parameters λ1, λ2. Generalise to a situation

extending that of point (b); use the multinomial model of Ex. 1.5.

Ex. 4.8 From discrete to continuous. Discrete distributions may have continuous limits.

To understand the why we in (4.5) only require Fn(x) → F (x) to hold for continuity

points of F , in each of the exercises below, find points x at which Fn(x)→ F (x) fails.

(a) Let Xn have distribution P (Xn = j/n) = 1/(n + 1) for j = 0, 1, . . . , n. Show that

Xn →d X, where X has the uniform distribution on the unit interval. With perhaps

similar techniques, consider Xn with distribution P (Xn = j/n) = j/{n(n + 1)/2} for

j = 1, . . . , n. Find its limit distribution.

(b) Suppose X ∼ Pois(λ) and that λ grows. What is the range of values for Yλ =

(X − λ)/λ1/2? Show that Yλ →d N(0, 1).

(c) Let X1, X2, . . . be independent Bernoulli random variables with success probability

p. Only using (4.4), show that
√
n(X̄n− p)} →d X, with X a N(0, p(1− p)) distribution.

You may use Stirling’s formula n! ∼
√

2πn(n/e)n here; see Ex. 4.31.

Ex. 4.9 Maximum of uniforms. Let X1, . . . , Xn be i.i.d. from the uniform distribution

on [0, θ], and let Mn = maxi≤nXi.

(a) Show that Mn →pr θ, that is, the maximum of the observations is consistent for the

unknown endpoint.

(b) Find the limit distribution of Vn = n(θ−Mn), and use this result to find an approx-

imate 90 percent confidence interval for θ.

Ex. 4.10 The Portmanteau theorem. We have taken (4.4) as our definition of conver-

gence in distribution. The theorem proved in the course of this exercise shows that there

are several other possible definitions. A stochastic process, for example, (we’ll meet such

at several occasions in the coming chapters, see e.g., Ch. 9, Ch. 10, and Ch. 15) does

not have a c.d.f., and consequently (4.4) can not be taken as defining convergence in

distribution. On the other hand, the conditions of the Portmanteau theorem that are

equivalent to (4.4) in the case of random variables and vectors, are much more general

in the sense that they can be taken as definitions of convergence in distribution, then

typically called weak convergence, for much more complicated random objects. Over the

coming pages we also prove theorems that could be added to the list of the Portmanteau

theorem, see e.g., Ex. 4.21?? [xx and . . . xx]. Let’s turn to the theorem.

Let Xn and X be random variables with distributions Pn and P , that is, Pn(A) =

Pr{Xn ∈ A} and P (A) = Pr{X ∈ A} (see Ex. A.10 on page 584). In this exercise we

will see that the following five statements are equivalent:
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(1) Xn →d X in the sense of (4.4);

(2) lim inf Pn(A) ≥ P (A) for every open set A;

(3) lim supPn(B) ≤ P (B) for every closed set B;

(4) Pn(C)→ P (C) for every set C that is P -continuous, in the sense that P (∂C) = 0,

where ∂C = C̄ \ C◦ is the boundary of C (the closure minus the interior);

(5) E g(Xn)→ E g(X) for all bounded and continuous real valued functions g.

We prove this theorem through a string of subexercises.

(a) Show that (1) implies (2) by writing A = ∪∞j=1Aj for open sets Aj = (aj , bj), and,

for each j consider interals (a′j , b
′
j ] ⊂ Aj where a′j , b

′
j are among the continuity points for

the disitribution function F of X.

(b) Show that (2) implies (3) using that B is closed if and only if Bc is open.

(c) Show that (3) implies (4), using that the boundary ∂C of any set C is ∂C = C̄ \C◦
where the close C̄ is always closed and the interior C◦ is always open.

(d) Show that (4) implies (5). Since g is bounded, say a ≤ g(x) ≤ b, we can consider

the linear transformation h(x) = (g(x) − a)/(b − a) that takes values in [0, 1] and write

Eh(Xn) =
∫ ∫ 1

0
I{y ≤ h(x)} dy dPn(x) =

∫ 1

0
Pr{h(Xn) ≥ y} dy.

(e) Show that (5) implies (1). You may, for a continuity point x of F , construct contin-

uous and bounded functions that approximate I{y ≤ x} from above and from below.

(f) Additional things to the Portmanteau: (6) E g(Xn) → E g(X) for all continuous

functions that are zero outside a closed and bounded interval. (7) [xx Infinitly smooth

functions. See Billingsley 1968 p. 41. xx] (8) All uniformly continuous functions. (9)

E g(Xn)→ E g(X) for all bounded Lipschitz functions g.

Ex. 4.11 Tightness, Helly, and Prokhorov. Let (Xn)n≥1 be discrete random variables

with distribution Pr(Xn = x) = 1
3 for x = 0, 1

2 , n, and denote their distribution functions

Fn(x) = Pr(Xn ≤ x). The sequence Fn(x) converges pointwise the function

G(x) =


0, x < 0,
1
3 , 0 ≤ x < 1

2 ,
2
3 , x ≥ 1

2 ,

The function G(x) is right-continuous and takes value in [0, 1], but it is not a distribution

function: One third of the probability mass of Fn(x) has escaped to inifinity! The

condition preventing that probability mass runs away to infinity is called tightness. A Tightness

sequence Y1, Y2, . . . of random variables is tight if for any ε > 0 there exists a constant

K so that Pr(|Yn|> K) < ε for all n. You may verify that the sequence Xn above is not

tight.

(a) Show that (i) any random variable Y is tight; (ii) the sequence (Yn)n≥1 is tight if

and only if for any ε > 0 there is a K so that lim supn→∞ Pr{|Yn|> K} < ε; and (iii) if

for some δ > 0 there is an M > 0 and an n0 ≥ 1 so that E |Yn|δ≤M for all n ≥ n0, then

(Yn)n≥1 is tight.
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(b) Show that Y1, Y2, . . . is tight if and only if for each ε > 0 there is an interval (a, b]

such that Pr(Yn ∈ (a, b]) < ε for all n, and that, in terms of the distribution functions

Fn, this is the same as there being points x and y such that Fn(y) < ε and Fn(x) > 1−ε
for all n.

(c) Let Fn be a sequence of distribution functions on the real line, or a subset thereof.

Consider the infinite arrayHelly’s theorem

F1(q1) F2(q1) F3(q1) . . .

F1(q2) F2(q2) F3(q2) . . .

F1(q3) F2(q3) F3(q3) . . .
...

...
...

Since Fn(qk) lies between zero and one for all n and k, each row of this array is bounded,

and, as we know from the Bolzano–Weierstrass theorem, every bounded sequence has

a convergent subsequence. In particular, there is a subsequence n1,1, n1,2, . . . so that

Fn1,k
(q1) has a limit as k → ∞. Call this limit G(q1). Extract a further subsequence

n2,1, n2,2 from n1,1, n1,2, . . . along which Fn2,j
converges to a limit, say G(q2), as j →∞.

Continue like this and argue that the diagonal sequence nk = nk,k of the array

n1,1 n1,2 n1,3 . . .

n2,1 n2,2 n2,3 . . .

n3,1 n3,2 n3,3 . . .
...

...
...

are such that Fnk
(qj) → G(qj) for j = 1, 2 . . . as k → ∞. Define the function F (x) =

inf{G(q) : q > x} and use that the rationals are dense in the reals to show that Fnk
(x)

converges to F (x) as k →∞ for every continuity point x of F . Show that F necessarily

has two of the three defining properties of a distribution function, the exception being

that it might tend to a limit smaller than one when x tends to infinity, greater than zero

when x tends to minus infinity, or both.

(d) Let Yn be a sequence with distribution functions Fn. That tightness ensures that a

converging subsequence Fnk
of Fn tends to a bona fide distribution function is one part

of Prokhorov’s theorem. The other part states that if Yn converges in distribution, thenProkhorov’s

theorem Yn is tight. Use Helly’s theorem to prove the first part, and Ex. 4.10(3) combined with

the tightness of each individual Xn to prove the latter.

(e) Suppose that (Yn)n≥1 is tight, and that ϕn(t) = E exp(itXn) converges to some

function β(t) as n → ∞. Use Prokhorov’s theorem and Ex. 4.18(c) to show that β(t)

must then be characteristic function of some random variable, say Y , and consequently,

Yn →d Y by Ex. 4.21(a).

Ex. 4.12 The continuous mapping theorem. Let X1, X2, . . . and X be k dimensionalContinuous

mapping random vectors, and h : Rk → Rm a function that is continuous on a set C ⊂ Rm where

X falls with probability one.

(a) Suppose that Xn →d X and that C = Rm. Show that h(Xn)→d h(X).
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(b) Suppose that Xn →d X and that C is a proper subset of Rm. Let F be a closed

set. Show the inclusion h−1(F ) ⊂ h−1(F ) ⊂ h−1(F ) ∪ Cc. Now, combine this inclusion

with {h(Xn) ∈ F} = {h(Xn) ∈ h−1(F )} and the Portmanteau theorem to show that

h(Xn)→d h(X).

(c) Suppose that Xn →pr X. Show that h(Xn)→pr h(X). [xx rewrite this, and compare

with Ex. 4.2(b) xx]

Ex. 4.13 Modes of convergence their implications. Here we look at some relationships

between convergence almost surely, in probability, and in distribution.

(a) Almost sure convergence is defined in (4.2). Show that Xn →a.s. X if and only if

P (‖Xk −X‖ < ε for every k ≥ n)→ 1, as n→∞.

(b) Show the following implications.

(i) If Xn →a.s. X then Xn →pr X;

(iii) If E ‖Xn −X‖ → 0 then Xn →pr X;

(iii) If Xn →pr X then Xn →d X.

(c) Find examples to show that the reverse implications in (i)–(iii) do not hold.

Ex. 4.14 The Cramér–Slutsky rules. The utility of the three results in (b), together

known as the Cramér–Slutksy rules, will become abundantly clear as we progress.

(a) Show that if Xn and Yn are sequences of random vectors such that Xn →d X and

Yn → a, for a random variable X and a constant a, then (Xn, Yn)→d (X, a).

(b) Show that if Xn →d X and Yn →pr a, as above, then (i) Xn + Yn →d X + a; (ii) Cramér–Slutsky

XnYn →d Xa; (iii) Xn/Yn →d X/a, provided a 6= 0. Explain why rules (ii) and (iii) also

hold when Yn and a are matrices.

(c) Let Y1, . . . , Yn be i.i.d. random variables EY1 = µ and Var(Y1) = σ2. Let σ̂2
n =

1(n− 1)
∑n
i=1(Yi − Ȳn)2 with Ȳn = n−1

∑n
i=1 Yi. Show that

√
n(Ȳn − µ)/σ̂n →d N(0, 1)

Ex. 4.15 A few counterexamples. [xx to what. Perhaps move and expand this exercise.

Yes. Must be done xx]

(a) Make an example where Xn →d X and Yn →d Y , but Xn + Yn does not converge in

distribution to X + Y .

(b) Make an example where Xn converges to 0 in probability, but EXn does not converge

to 0.

(c) Let Z be uniform(0, 1), and set X1 = 1, X2 = I[0,1/2)(Z), X3 = I[1/2,1)(Z), X4 =

I[0,1/4)(Z), X5 = I[1/4,1/2)(Z), . . ., and so on. Find the probability limit of Xn. Does Xn

converge almost surely to this limit?

Ex. 4.16 Scheffé’s lemma. Suppose Yn and Y have densities fn and f .
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(a) If fn(y)→ f(y) for each y, show that
∫
|fn− f |dy → 0, i.e. there is L1 convergence.

Show from this that Yn →d Y . This is called Scheffé’s lemma. Scheffé’s lemma

(b) For the t distribution, show that tν →d N(0, 1) as ν increases. Compute actually∫
|fν − φ|dy, numerically, for a range of ν values. Detect in this way that degrees of

freedom equal to 2.299 is halfway between the Cauchy, i.e. ν = 1, to normal, i.e. ν =∞.

This piece of statistical trivia has a certain statistical relevance in Hjort (1994). – Show

also that tν →d N(0, 1) in a perhaps simpler way, using the Cramér–Slutsky rules.

(c) [xx a couple of simple examples here, where fn → f . xx]

(d) If Yn and Y have densities fn and f , and Yn →d Y , we should expect fn → f . This

is not alway happening, however. Consider the case of Fn(y) = y + (1/n) sin(nπy). Plot

the Fn and its density fn, for some n. Show that Yn →d unif, but that fn(y) does not

converge to 1 for all y.

Ex. 4.17 Moment generating functions. [xx calibrate with Ex. 1.20 and 1.21 in Ch. 2;

perhaps we place all the mgf basics there. xx] The moment generating function of a

random variable X is defined as M(t) = E etX . In this exercise we will see that if a

random variable X has a moment generating function that is finite in some interval

around zero, then all its moments are finite, that is, E |X|p<∞ for p = 0, 1, 2, . . ..

(a) Suppose that there are numbers s < 0 < t such that M(s) and M(t) are both finite.

Use the convexity of the exponential function to show that for any t0 ∈ [s, t], M(t0) is

also finite.

(b) Let s, t be as in (a), and define t0 = min(−s, t). Study the sum M(−t0) +M(t0) and

conclude that E |X|2k < ∞ for k = 0, 1, 2, . . .. Finally, with an application of Jensen’s

inequality (for concave functions this time, see Ex. 1.19(c)), conclude that E |X|2k+1<∞
for k = 0, 1, 2, . . . as well.

(c) Consider, for example, the log-normal distribution to conclude that a random variable

having finite moments of all orders, does not imply that the moment generating function

of that random variable is finite in some interval around zero.

Ex. 4.18 Characteristic functions. In some cases it is possible to show convergence

in distribution directly from the definition in (4.4), or directly from one of the charac-

terisations given in the Portmanteau theorem. Using the latter is often quite hard, as

all the Portmanteau statements involve showing something for all functions or sets of a

certain type. The utility of characteristic functions derives from the fact that instead of

demonstrating E g(Xn) → E g(X) for all bounded and continuous functions g, we only

need to show it for one function g. The characteristic function of a random variable X

is defined as

ϕ(t) = E exp(itX) = E cos(tX) + iE sin(tX),

with i =
√
−1 the complex unit, and t ∈ R.

(a) Show that the characteristic function always exists, and that it is uniformly contin-

uous.
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(b) Show that if Z ∼ N(0, 1), then its characteristic function is ϕZ(t) = exp(− 1
2 t

2), and

that if X ∼ N(µ, σ2) its characteristic function is ϕX(t) = exp(itµ− 1
2 t

2σ2).

(c) Assume that Xn →d X. Show that ϕn(t) = E exp(itXn)→ ϕ(t) = E exp(itX). The

marvellous thing with characteristic functions is that the converse of this also holds, as

we will see in Ex. 4.20 and 4.21.

Ex. 4.19 Characteristic functions. Moments and derivatives [xx introtext here xx]

(a) For m = 0, 1, 2, . . . define rm(x) = exp(ix)−
∑m
k=0(ix)k/k!, and let r−1(x) = exp(ix).

Convince yourself that rm(x) = rm−1(x)− (ix)m/m!, and that rm(x) = i
∫ x

0
rm−1(y) dy

for x > 0 and rm(x) = −i
∫ 0

x
rm−1(y) dy for x < 0. Show that |r0(x)| ≤ min(2, |x|), and

proceed by induction to show that

|exp(ix)−
m∑
k=0

(ix)k

k!
| ≤ 2|x|m

m!
∧ |x|

m+1

(m+ 1)!

for m = 0, 1, 2, . . ..

(b) From the inequality in (a) we see that for all t such that limm→∞|t|m E |X|m/m! = 0,

the characteristic function of X can be expressed as

ϕ(t) =

∞∑
k=0

(it)k

k!
EXk. (4.6)

Show that (4.6) holds if E exp(|tX|) < ∞, and that this latter inequality holds if the

moment generating function M(t) = E exp(tX) <∞ for all t.

(c) Provided (4.6) holds, the moments of X can be read off from ϕ(k)(0) = ikEXk. Show

that {ϕ(t+h)−ϕ(t)}/h−E {iX exp(itX)} → 0 as h→ 0, provided E |X|<∞. Proceed

inductively to show that ϕ(k)(t) = ikE {Xk exp(itX)} as long as E |X|k <∞.

(d) [xx might include some from Nils stk4090 Ex. 59–60 pp. 39–41, or rewrite to be more

in line with that exercise xx]

Ex. 4.20 Uniqueness of characteristic functions. The characteristic function ϕ(t) of a

random variable X uniquely determines its distribution. That is, if two random variables

have identical characteristic functions, then their distributions are identical too. In this

exercise, we work with real-valued random variables, but the results generalise to higher

dimensions.

(a) LetX be any random variable, with cumulative distribution function FX(x) and char-

acteristic function ϕX(t), but nothing assumed about its density. Add a little Gaußian

noise to X,

Uσ = X + σZ, with Z ∼ N(0, 1),

with σ > 0 and Z is independent of X. Then Uσ has a density, even if X does not have

one. Our intention is to let σ → 0, to come back to X. Show that Uσ has cumulative

distribution function and density of the form

Fσ(u) =

∫
Φ((u− x)/σ) dFX(x), and fσ(u) = (1/σ)

∫
φ((u− x)/σ) dFX(x),
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where Φ(z) =
∫ z
−∞ φ(x) dx is the standard normal distribution function, and φ(x) the

standard normal density.

(b) Show that E
∫

exp{it(X − u) − 1
2 t

2σ2} dt = 2πfσ(u), which by Fubini’s theorem,

yields the following expression for the density of Uσ

fσ(u) =
1

2π

∫
ϕX(t) exp(−itu− 1

2 t
2σ2) dt,

and, consequently, that for a < b,

P{Uσ ∈ [a, b]} = Fσ(b)− Fσ(a)

=
1

2π

∫
exp(−itb)− exp(−ita)

−it
ϕX(t) exp(− 1

2 t
2σ2) dt.

(c) Derive the general inversion formula, FX(b)−FX(a) = limσ→0{Fσ(b)−Fσ(a)}, valid

for all continuity points a, b (a < b).

(d) Assume that X and Y are random variables with identical characteristic functions.

Show that X and Y must be equal in distribution.

(e) If X has an integrable characteristic function ϕX , that is, if
∫
|ϕX(t)|dt < ∞, show

that then X has a continuous density fX given by fX(x) = (1/2π)
∫

exp(−itx)ϕX(t) dt.

Ex. 4.21 Lévy’s continuity theorem. We have seen that characteristic functions are

deserving of their name in that they uniquely determine the distribution of a random

variable (Ex. 4.20(d)). In particular, if Z1, . . . , Zn are independent random variables,

then ϕn(t) = E exp(it
∑n
j=1 Zj) =

∏n
j=1 E exp(itZj), and the product on the right

uniquely characterises the distribution of the sum
∑n
j=1 Zj . Lévy’s continuity theorem

says that pointwise convergence of characteristic functions is equivalent to convergence

in distribution.

(a) Let X1, X2, . . . and X be random variables with characteristic functions ϕ1, ϕ2, . . .

and ϕ. Assume that ϕn(t) → ϕ(t). Let Z1, Z2, . . . and Z be standard normal random

variables independent of X1, X2, . . . and X, respectively. For σ > 0, and use the densities

from Ex. 4.20(b) combined with Ex. 4.10(f) to show that Xn+σZn →d X+σZ as n→∞.

Conclude that Xn →d X as n→∞ by letting σ → 0.

(b) It is crucial for the argument in (a) that the limit ϕ is indeed a characteristic function.

It turns out that if ϕn(t) converges pointwise to some function β(t) that is not assumed

to be a characteristic function, but that is continuous at zero, then β(t) is necessarily

the characteristic function of some random variable. We prove this through a string of

exercises. Start by using Fubini’s theorem to show that if X has characteristic function

ϕ and cumulative distribution function F , then∫ ε

−ε
{1− ϕ(t)} dt = 2ε

∫ (
1− sin(xε)

xε

)
dF (x).

In particular, the integral of ϕ(t) on a symmetric interval around zero is really a real

number, that is, the complex component disappears. Deduce that

1

ε

∫ ε

−ε
{1− ϕ(t)} dt ≥ 2

∫
|xε| ≥c

(
1− sin(xε)

xε

)
dF (x) ≥ 2(1− 1/c) Pr{|X| ≥ c/ε},
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with the value c = 2 yielding the inequality given above.

(c) For the case of X being a standard normal, check the precision of the tail inequality

(the answer appears to be that it’s rather unsharp). From ϕ(t) = 1− 1
2 t

2σ2 + o(t2), for

a random variable with zero mean and variance σ2, work out that Pr{|X| ≥ 2/ε} ≤
(1/3)σ2ε. Explain why this is blunter, as in less sharp, that with for example the

Chebyshov inequality.

(d) [xx this ex must be rewritten, in view of Ex. 4.11(a) and Ex. 4.11(e)]If we know have

a collection of random variables, where their characteristic functions have approximately

the same level of smoothness around zero, then we should get tightness, a guarantee

that there is no runaways with mass escaping from the crowd. Assume that X1, X2, . . .

have characteristic functions ϕ1, ϕ2, . . ., and that ϕn(t) → β(t), with β(t) a function

continuous at zero. For a given ε′ > 0, find ε > 0 such that |1 − ϕ(t)| ≤ ε′ for |t| ≤ ε.

Show that

lim sup
n→∞

Pr{|Xn| ≥ 2/ε} ≤ 1

ε

∫ ε

−ε
{1− β(t)} dt ≤ 2ε′.

We’ve hence found a broad interval, namely [−2/ε, 2ε], inside which each Xn lies, with

high enough probability. This is called tightness of the Xn sequence.

(e)

Ex. 4.22 Proving the CLT (under some restrictions). Let X1, X2, . . . be i.i.d. with

distribution F , and assume for simplicity that the mean is zero.

(a) Show that if the moment generating function exists in a neighbourhood around zero,

then M(t) = 1 + 1
2σ

2t2 + o(t2) as t→ 0, where σ is the standard deviation of X1.

(b) Show that
√
nX̄n = n−1/2

∑n
i=1Xi has moment generating function of the form

Mn(t) = M(t/
√
n)n = {1 + 1

2σ
2t2/n+ o(t2/n)}n,

and conclude that the CLT holds.

(c) (xx nils pushes an earlier thing from Ch2 to this place; then we edit and prune and

clean. xx) Consider a variable Y , with moment-generating function M(t) = E exp(tY ),

assumed to be finite in at least a neighbourhood around zero. We have seen in Ex. 1.21

that EY r = M (r)(0). Write ξ and σ2 for the mean and variance of Y . Show that

M(t) = 1+ξt+o(h), for |t| small. Taking a Taylor expansion to the next step, show that

M(t) = 1 + ξt+ 1
2 (ξ2 + σ2)t2 + o(t2). Deduce also that logM(t) = ξt+ 1

2σ
2t2 + o(t2).

(d) We may also take the expansion to the third order, but it is simpler and more

insightful to proceed from Y = ξ + Y0, with Y0 having mean zero. Show that

M(t) = exp(tξ) E exp(tY0) = exp(tξ){1 + 1
2σ

2t2 + 1
6γ3t

3 + o(|t|3)},

where γ3 = E (Y − ξ)3.
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(e) Consider Y1, . . . , Yn i.i.d. from a distribution with mean zero and moment-generating

function M(t) being finite around zero. Show that Zn =
√
nȲ has

Mn(t) = E exp(tZn) = M(t/
√
n)n

= {1 + 1
2σ

2t2/n+ 1
6γ3t

3/n3/2 + o(|t|3/n3/2)}n.

Show from this that under the assumptions given, logMn(t) = 1
2σ

2t2 + 1
6γ3t

3/
√
n +

o(1/
√
n). Explain why this is a proof of the CLT (via criteria given in Ex. 1.21, with

attention to certain further details in Ch 3 xx).

(f) (xx round off, point to CLT, identify remainder term with skewness. xx)

Ex. 4.23 Improving on the weak LLN. Let X1, X2, . . . be i.i.d. with finite mean ξ. We

have seen in Ex. 4.1 that the LLN holds, in probability, if the distribution has a finite

variance. Here we get rid of the finite variance condition.

(a) Show that the characteristic function for Xi satisfies ϕ(t) = 1 + iξt+ o(t) as t→ 0.

Also show that its derivative exists, with ϕ′(t) = E iX exp(itX); in particular ϕ′(0) = iξ.

(b) Show that X̄n →d ξ, and use Ex. 4.13 to argue that we now have the weak LLN,

also for distributions with infinite variance, as long as the mean is finite.

Ex. 4.24 Proving the CLT (again). As we saw in Ex. 4.17, if one is assuming that a

random variable has a moment generating function, then one is effectively assuming that

all its moments are finite, a rather restrictive condition. The characteristic function, on

the other hand, always exists, so proving the CLT using characteristic functions is gives a

more unified and elegant proof than when using moment generating functions, as above.

(a) Show that if X has finite mean ξ, then its characteristic function satisfies ϕ(t) =

1 + iξt + o(t) as t → 0. Also, its derivative exists, with ϕ′(t) = E iX exp(itX), and in

particular ϕ′(0) = iξ.

(b) Show similarly that if X has finite variance σ2, then

ϕ(t) = 1 + iξt− 1
2 (ξ2 + σ2)t2 + o(t2) as t→ 0.

(c) If X1, X2, . . . are i.i.d. with mean zero and finite variance σ2, then show that Zn =√
nX̄n = n−1/2

∑n
i=1Xi has characteristic function of the form

ϕn(t) = {1− 1
2σ

2t2/n+ o(1/n)}n.

Prove the CLT from this.

Ex. 4.25 Approximate variances and the delta method, II. (xx point back to simpler

start version, in Ex. 2.11. xx) We often meet variables of the form say Z = g(Y1, . . . , Yp)

or similar, where the Yi have normal or approximately normal distributions. If g is a

linear function, say g(y) = c0 + c1y1 + · · ·+ cpyp, then first of all the mean is transformed

in the same fashion, with EZ = g(EY ) = c0 + c1EY1 + · · · + cpEYp, and secondly the

distribution of Z is normal as long as (Y1, . . . , Yp) is multinormal. This exercise concerns
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vertain valid and useful approximations, along with limit theorems. Basically, even

though the mean of exp(Y ) is not equal to exp(EY ), it might be a valid approximation

if Y has a small variance. Similarly, as we shall see, if Y is approximately normal, with

a small variance, then also exp(Y ) is approximately normal, and so on.

(a) Suppose A is a random variable with mean a and finite variance, and that g(y) is

smooth in a neighbourhood around a. Use the Taylor approximation

g(y) = g(a) + g′(a)(y − a) + 1
2g
′′(a)(y − a)2 +O(|y − a|3),

valid for y close to a, to show that

E g(A)
.
= g(a) + 1

2g
′′(a)VarY, Var g(Y )

.
= g′(a)2 VarY,

and indicate the sizes of the error terms involved.

(b) Suppose Zn =
√
n(An − a) →d Z ∼ N(0, τ2), say. Translated to the setting above,

we have An = a + Zn/
√
n + εn, with Zn →d Z and

√
nεn →pr 0. Let again g(y) be

a function smooth in a neighbourhood of a. Applying the previous point, show that

g(An) = g(a) + g′(a)Zn/
√
n+ ε′n, where ε′n is so small that

√
nε′n →pr 0. Show that this the delta

methodimplies

√
n{g(An)− g(a)} →d g

′(a)Z ∼ N(0, g′(a)2τ2).

This is called the delta method. We also have the useful approximation Var g(An)
.
=

g′(a)2 VarAn.

(c) If
√
n(An − a)→d N(0, 1), find out what happens to

√
n{exp(An)− exp(a)} and to√

n(A3
n − a3).

(d) In extension of the above we have the multidimensional delta method, with ensuing

variance approximations. Suppose
√
n(An−a)→d Z, for variables An and Z, and vector

a, of dimension p. Assume g(y) = g(y1, . . . , yp) is defined in a neighbourhood around

a = (a1, . . . , ap)
t, with a continous derivative or gradient there. Show that

√
n{g(An)− g(a)} →c c

tZ = c1Z1 + · · ·+ cpZp,

where c = ∂g(a)/∂a is the gradient vector, with components ∂g(a)/∂aj , evaluated in

position a. If in particular Z is multinormal, say Z ∼ Np(0,Σ), then
√
n{g(An) −

g(a)} →d N(0, τ2), with τ2 = ctΣc.

Ex. 4.26 The delta method outside root-n terrain. (xx to come. not always
√
n(Xn −

a)→d N(0, τ2) terrain. different limits, different speeds. xx)

Ex. 4.27 Stretching the delta method. (xx to be filled in. with
√
n(Xn − a) →d V ,

we have Zn =
√
n{g(Xn) − g(a)} →d g

′(a)V for a fixed g(x). here we consider Zn =√
n{gn(Xn) − gn(a)}. with g′′n(a) = o(

√
n) we may still have the right approximation.

example: Zn =
√
n{exp(cnXn)− 1}. xx)
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Ex. 4.28 Bernshtĕın and Weierstraß. [xx point out the affinity between this exercise

and Ex. ??. xx] In c. 1885, Karl Weierstraß proved one of the fundamental and insightful

results of approximation theory, that any given continuous function can be approximated

uniformly well, on any finite interval, by polynomials; see also Hveberg (2019). A genera-

tion or so later, such results had been generalised to so-called Stone–Weierstraß theorems,

stating, in various forms, that certain classes of functions are rich enough to deliver uni-

form approximations to bigger classes of functions. This is useful also in branches of

probability theory. Here we give a constructive and relatively straightforward proof of

the Weierstraß theorem, involving so-called Bernshtĕın polynomials. Let g : [0, 1] → R
be continuous, and construct

Bn(p) = Ep g(Xn/n) =

n∑
j=0

g(j/n)

(
n

j

)
pj(1− p)n−j for p ∈ [0, 1],

where Xn ∼ binom(n, p). Note that Bn(p) is a polynomial of degree n.
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Figure 4.1: The given non-polynomial function g(p) (full black curve), along with

approximating Bernshtĕın polynomials, of order 10, 20, . . . , 90, 100.

(a) Show that Bn(p) →pr g(p), for each p. Then show that the convergence is actually

uniform. In some detail, for ε > 0, find δ > 0 such that |x−y| < δ implies |g(x)−g(y)| < ε

(which is possible, as a continuous function on a compact interval is always uniformly

continuous). Then show

|Bn(p)− g(p)| ≤ ε+ 2M P (|Xn/n− p| ≥ δ),
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with M a bound on |g(x)|. Show from this that indeed maxp |Bn(p)− g(p)| → 0.

(b) Consider the marvellous function

g(x) = sin(2πx) + exp(1.234 sin3√x)− exp(−4.321 cos5 x2)

on the unit interval. Compute the Bernshtĕın polynomials of various orders, and display

these in a diagram, alongside the curve of g. Construct a version of Figure 4.1, which

does this for n = 10, 20, . . . , 90, 100. How high n is needed for the maximum absolute

difference to creep below 0.01?

(c) Let now g(x, y) be an arbitrary function on the unit simplex, {(x, y) : x ≥ 0, y ≥
0, x+ y ≤ 1}. Construct a mixed polynomial Bn(x, y) of degree n such that it converges

uniformly to g on the simplex.

(d) xx

Ex. 4.29 The Borel–Cantelli lemma. (xx note: decide when cleaning whether this

should be in MiniPrimer chapter or here. xx) Let A1, A2, . . . be events, in a relevant

probability space, with probabilities pi = P (Ai). Consider Ai.o. = ∩i≥1 ∪j≥i Aj , the

full-sequence event corresponding to the Ai occurring infinitely often.

(a) Let N be the total number of occurrences of the Ai. Show that EN =
∑∞
i=1 pi.

(b) Assume
∑∞
i=1 pi is convergent. Show that P (Ai.o.) = 0. – So sooner or later, there

will be a finite (but random) n, such that none of the Ai will ever occur, for i > n.

(c) Assume in addition that the Ai are independent. Show that if
∑∞
i=1 pi is divergent,

then P (Ai.o.) = 1. – In particular, for the case of independent events, there can’t be say

a 50 percent chance that there will be infinitely many occurrences.

(d) Consider independent Bernoulli 0-1 variables Xi with P (Xi = 1) = pi. What is

the probability for having infinitely many Xi = 1, for pi = 1/i0.99, for pi = 1/i, for

pi = 1/i1.01?

(e) Let X1, X2, . . . be i.i.d. from the unit exponential distribution. Will there be infinitely

many cases with Xi ≥ 0.99 log i, with Xi ≥ log i, with Xi ≥ 1.01 log i?

(f) Let X1, X2, . . . be i.i.d. standard normal. Show first that

P (Xi ≥ a) = 1− Φ(a)
.
= φ(a)/a,

in the sense that the ratio between the exact and the approximate quantities tends to

1. (xx this is the Mills ratio. xx) Show that there will be infinitely many cases with

|Xi| ≥ (2 log i)1/2.

(g) (xx one or two more. new records, P (Rn = 1) = 1/n. xx)

Ex. 4.30 Proving the CLT (yet again). We have proven the CLT for i.i.d. random

variables two times: Under some moment restrictions in Ex. 4.22, and in a more unified

manner in Ex. 4.24. In this exercise we look at a proof that is, in a sense, more direct

from the Portmanteau theorem. For this proof of the CLT, the result from Ex. ???? is

used actively.
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(a) Suppose that X1, X2 . . . are i.i.d. random variables with mean zero and unit variance,

and let Z1, Z2, . . . be independent standard normal random variables. Define Xn,i =

Xi/
√
n and Zn,i = Zi/

√
n for i ≥ 1. For n1/2X̄n →d N(0, 1) (xx this a bit clearer, emil

xx), why is it sufficient to show that

E g(

n∑
i=1

Xn,i)→ E g(

n∑
i=1

Zn,i),

for all infinitely differentiable functions g with compact support?

(b) For integers 1 ≤ a, b ≤ n, let Xa:b =
∑b
j=aXn,i if a < b, and let Xa:b = 0 if a > b.

Convince yourself of the following,

g(X1:n)− g(Z1:n) =

n∑
k=1

{g(X1:k + Z(k+1):n)− g(X1:(k−1) + Zk:n)}.

(c) Recall that by Taylor’s theorem, if the function g is differentiable at y, then there is

a function h, such that

g(x+ y)− g(y) = g′(y)x+ 1
2g
′′(y)x2 + h(x+ y)x2,

with limx→0 h(x+ y) = 0. Let now g be an infinitely continuously differentiable function

with compact support. Explain why there exists a K <∞, and δ > 0 such that for any

ε > 0,

|g(x+ y)− g(x)− g′(y)x+ 1
2g
′′(y)x2|≤ εx2

when |x|≤ δ, and

|g(x+ y)− g(x)− g′(y)x+ 1
2g
′′(y)x2|≤ Kx2

otherwise.

(d) Show that for each k = 1, . . . , n,

E g(X1:k + Z(k+1):n)− g(X1:(k−1) + Zk:n) = E rn,k(X) + E rn,k(Z), (4.7)

where

rn,k(X) ≤ ε

n
X2
k +

K

n
X2
kI|Xk|≥

√
nδ.

(e) Please conclude, and you will have shown the CLT for i.i.d. random variables yet

again.

Ex. 4.31 Proving the Stirling formula. The approximation formulathe Stirling

approximation

n!
.
= nne−n

√
2πn, in the sense of lim

n→∞

n!

nn exp(−n)(2πn)1/2
= 1,

is a famous one, named after J. Stirling (1692–1770) (xx though stated earlier by A. de

Moivre xx). Here we shall prove this formula via the CLT for Poisson variables.

(a) If Xn ∼ Pois(n), show that Zn = (Xn − n)/
√
n→d Z, a standard normal.
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(b) Show that with ε small,∑
n≤j≤n+ε

√
n

j − n√
n

exp(−n)
nj

j!

.
=

1

(2π)1/2
ε,

and attempt to prove Stirling from this. Show also that

E max(0, Zn) =
∑
j≥n

j − n√
n

exp(−n)
nj

j!
→ E max(0, Z),

that the left hand side may be written
√
n exp(−n)nn/n!, and that the right hand side

is 1/(2π)1/2. Deduce Stirling from this. As part of your solution, show that
∑
j≥n(j −

n)p(j, n) = np(n, n).

(c) (xx a bit more. xx)

Ex. 4.32 Characterisations of variables with finite mean. For certain technical needs

we need characterisations of the tails of a distribution with finite mean.

(a) Show that if X ≥ 0, with distribution function F , then EX =
∫∞

0
{1 − F (x)}dx.

Show also that EX2 =
∫∞

0
{1− F (x1/2)} dx.

(b) Show more generally that for any X,

EX =

∫ 0

−∞
F (x) dx+

∫ ∞
0

{1− F (x)} dx.

(c) If X has finite mean, show that
∑∞
i=1(1/i2)

∫
(−i,i) x

2 dF (x) <∞.

(d) Upon examining the arguments needed to prove the previous point, one learns that

this is an if-and-only-if result. More generally, attempt to prove that

E |X|m <∞ if and only if

∞∑
i=1

1

i2

∫
(−i,i)

|x|m+1 dF (x) <∞.

Ex. 4.33 Further tail bound inequalities. In Ex. 2.7 we learned about the Markov and

Chebyshov inequalities; here we work out further tail bounds for our toolboxes.

(a) If X has mean ξ, and a finite fourth moment, show that P (|X − ξ| ≥ ε) ≤ E |X −
ξ|4/ε4. With X1, . . . , Xn i.i.d. from this distribution, show that P (|X̄n − ξ| ≥ ε) ≤
K4/(n

2ε2), for a suitable positive constant K4. When is this a sharper result than that

of the Chebyshov inequality? Generalise to higher moments. (xx mention von Bahr. his

results imply that for any r for which E |Xi|r is finite, there is a constant Kr such that

P (|X̄n − ξ| ≥ ε) ≤ Kr/(n
rεr). xx)

(b) Suppose X has a finite moment-generating function M(t) = E exp(tX), as per

Ex. 1.20. Show that

P (X ≥ a) ≤ q(a) = min{t : exp(−ta)M(t)}.

Writing M(t) = exp{K(t)}, show that this leads to q(a) = exp{K(ta) − ata}, where ta
is the solution to K ′(ta) = a.
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(c) For X ∼ N(0, 1) and a positive, show that P (x ≥ a) ≤ exp(− 1
2a

2). Show that this is

indeed sharper than the tail bound 1/a2, from the simpler Chebyshov inequality, for all

a > 0.

(d) For X ∼ N(0, 1) and a positive, show that

P (|X| ≥ a) is smaller than each of
1

a2
,

3

a4
,

15

a6
, 2 exp(− 1

2a
2).

(xx a bit more here, rounding it off. more inequalities in Ch. 4. xx)

(e) (xx here or later, perhaps after the mgf things. we also do the expo, which is simpler

than the χ2. xx) Let X ∼ χ2
m, which has mean and variance m and 2m. Consider

pm(a) = P (X ≥ m+ am1/2). Show that

pm(a) ≤ min{t : (1− 2t)−m/2

exp{t(m+ am1/2)}
} = (1 + a/m1/2)m/2 exp(− 1

2am
1/2).

Compare this bound both with bounds from the Markov inequality, and with the exact

limit of pm(a), as m grows.

(f) Let X1, X2, . . . be i.i.d. with mean zero and variance one, so that
√
nX̄n →d N(0, 1).

Assume its moment-generating function M(t) = exp{K(t)} is finite. Show that

P (
√
nX̄n ≥ a) ≤ M(t/

√
n)n

exp(ta)
= exp{nK(t/

√
n)− ta},

for each t. (xx then a bit more. tail inequality. not too far from good bound exp(− 1
2a

2).

briefly mention and point to large deviations theory. xx)

(g) (xx the Jensen too: Eh(X) ≥ h(EX), when h is convex. a few applications. show

(E |X|r)1/r is increasing in r. calibrate with Ex. 1.19, which should perhaps land here.

xx)

(h) (xx round off. xx)

Ex. 4.34 The Strong Law of Large Numbers: the basics. (xx to be cleaned. xx) Suppose

X1, X2, . . . are i.i.d. from a distribution with finite E |Xi|. Then the mean ξ = EXi exists,

and we are aiming to prove the strong LLN of (4.3), that the event

A = {X̄n → ξ} = ∩ε>0 ∪n0≥1 ∩n≥n0
{|X̄n| ≤ ε}

has probability equal to one hundred percent. We may for simplicity and without loss of

generality take ξ = 0 below.

(a) Show that A is the same as ∩N≥1∪n0≥1∩n≥n0
{|X̄n| ≤ 1/N}, and deduce in particular

from this that A is actually measurable – so it does make well-defined sense to work with

its probability.

(b) Show that if P (AN ) = 1 for all N , then P (∩N≥1AN ) = 1 – if you’re fully certain

about a countable number of events, then you’re also fully certain about all of them,

jointly. This is actually not true with a bigger index set: if X ∼ N(0, 1), then you’re 100

percent sure that Bx = {X is not x} takes place, for each single x, but from this does it

not follow that you should be sure about ∩all xBx. Explain why.
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(c) Show that P (A) = 1 if and only if P (Bn0) → 0, for each ε > 0, where Bn0 =

∪n≥n0
{|X̄n| ≥ ε}. In words: for a given ε, the probability should be very low that there

is any n ≥ n0 with |X̄n| ≥ ε.

(d) A simple bound is of course P (Bn0) ≤
∑
n≥n0

P{|X̄n| ≥ ε}, so it suffices to show,

if possible, under appropriate conditions, that
∑
n≥1 P{|X̄n| ≥ ε} is a convergent series.

With finite variance σ2, show that the classic simple Chebyshov bound, see Ex. 2.7, does

not solve any problem here.

(e) (xx calibrate better with Ex. 2.7. xx) Show, however, that if the fourth moment is

finite, then

P{|X̄n| ≥ ε} ≤
1

ε4
E |X̄n|4 ≤

c

ε4

1

n2
,

for a suitable c. So under this condition, which is moderately hard, we’ve proven the

strong LLN.

(f) One may squeeze more out of the chain of arguments below, which we indicate here,

without full details. Assume E |Xi|r is finite, for some r > 2, like r = 2.02. Then one

may show, via arguments in von Bahr (1965), that the sequence E |
√
nX̄n|r is bounded.

This leads to the bound

P{|X̄n| ≥ ε} ≤
1

(
√
nε)r

E |
√
nX̄n|r,

and these form a convergent series. We have hence proven (modulo the von Bahr thing)

that the strong LLN holds for finite E |Xi|2+ε, an improvement over the finite E |Xi|4
condition. – To get further, trimming away on the conditions until we are at the Kol-

mogorovian position of only requiring finite mean, we need more technicalities; see the

following Ex. 4.35.

Ex. 4.35 The Strong Law of Large Numbers: nitty-gritty details. This exercise goes

through the required extra technical details, along with a few intermediate lemmas,

to secure a full proof of the full LLN theorem: as long as E |Xi| is finite, the infinite

sequence of sample means X̄n will with probability equal to a hundred percent converge

to ξ = EXi.

(a) We start with Kolmogorov’s inequality: Consider independent zero-mean variables

X1, . . . , Xn with variances σ2
1 , . . . , σ

2
n, and with partial sums Si = X1 + · · ·+Xi. Then

P{max
i≤n
|Si| ≥ ε} ≤

VarSn
ε2

=
1

ε2

n∑
i=1

σ2
i .

Note that this is a much stronger result than the special case of caring only about |Sn|,
with P{|Sn| ≥ ε} ≤ VarSn/ε

2, which is the Chebyshov inequality. To prove it, work

with the disjoint decomposition

Ai = {|S1| < ε, . . . , |Si−1| < ε, |Si| ≥ ε} and A = ∪ni=1Ai = {max
i≤n
|Si| ≥ ε}.
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Show that ES2
n ≥ ES2

nI(A) =
∑n
i=1 ES2

nI(Ai), that

ES2
nI(Ai) = E (Si + Sn − Si)2I(Ai) ≥ ε2P (Ai),

and that this leads to the inequality asked for.

(b) Consider a sequence of independentX1, X2, . . . with means zero and variances σ2
1 , σ

2
2 , . . ..

Show that if
∑∞
i=1 σ

2
i is convergent, then

∑∞
i=1Xi is convergent with probability 1. – It

suffices to show that the sequence of partial sums Sn = X1 + · · · + Xn is Cauchy with

probability 1. Show that this is the same as

lim
n→∞

P
[
∪i,j≥n{|Si − Sj | ≥ ε}

]
= 0 for each ε > 0.

Use the Kolmogorov inequality to show this.

(c) A quick example to illustrate this result is as follows. Consider X = X1/10+X2/100+

X3/1000+ · · · , a random number in the unit interval, with the Xi independent, and with

no further assumptions. Show that X exists with probability 1.

(d) Prove that if
∑∞
i=1 ai/i converges, then ān = (1/n)

∑n
i=1 ai → 0. To show this,

consider bn =
∑n
i=1 ai/i, so that bn → b for some b. Show an = n(bn − nn−1), valid also

for n = 1 if we set b0 = 0, and which leads to
∑n
i=1 ai = nbn − b0 − b1 − · · · − bn−1.

(e) From the above, deduce that if X1, X2, . . . are independent with means ξ1, ξ2, . . .

and variances σ2
1 , σ

2
2 , . . ., and

∑∞
i=1 σ

2
i /i

2 converges, then X̄n − ξ̄n →a.s. 0. Here ξ̄n =

(1/n)
∑n
i=1 ξi.

(f) Use the above to show that if X1, X2, . . . are independent with zero means, and all

variances are bounded, then indeed X̄n →a.s. 0. Note that this is a solid generalisation

of what we managed to show in (xx calibrate xx) – first, the distributions are allowed

to be different (not identical); second, we have landed at a.s. convergence with the mild

assumption of finite and bounded variances, whereas we there needed the harsher condi-

tions of finite fourth moments.

(g) We’re close to the Pole, ladies and gentlemen. For i.i.d. zero mean variablesX1, X2, . . .,

split them up with the little trick

Xi = Yi + Zi, with Yi = XiI(|Xi| < i), Zi = XiI(|Xi| ≥ i).

We have X̄n = Ȳn + Z̄n, so it suffices to demonstrate that Ȳn →a.s. 0 and Z̄n →a.s. 0

(since an intersection of two sure events is sure). Use the Borel–Cantelli lemma in concert

with Ex. 4.32, to show that only finitely many Zi are non-zero, and use previous results

to demonstrate Ȳn − ξ̄n →a.s.→ 0 and ξ̄n → 0, where ξ̄n is the average of ξi = EYi.

(h) So we’ve managed to prove the Strong LLN, congratulations. Attempt also to prove

the interesting converse that if E |Xi| =∞, then the sequence of sample means is pretty

erratic indeed:

P{lim sup
n→∞

X̄n =∞} = 1, P{lim inf
n→∞

X̄n = −∞} = 1.

Simulate a million realisations from the density f(x) = 1/x2, for x ≥ 1, in your nearest

computer, display the sequence of X̄n on your screen, and comment.
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Ex. 4.36 Yes, we converge with probability 1. We’ve proven that the sequence of

empirical means converges almost surely to the population mean, under the sole condition

that this mean is finite. This half-automatically secures almost sure convergence of

various other natural quantities, almost without further efforts.

(a) Suppose X1, X2, . . . are i.i.d. with finite variance σ2. Show that the classical empirical

standard deviation σ̂ = {
∑n
i=1(Xi − X̄n)2/(n − 1)}1/2 converges a.s. to σ. Note again

that nothing more is required than a finite second moment.

(b) Suppose the third moment is finite, such that the skewness γ3 = E {(X − ξ)/σ}3 is

finite. Show that γ̂3,n = (1/n)
∑n
i=1(Xi − X̄n)3/σ̂3 is strongly consistent for γ3.

(c) Then suppose the fourth moment is finite, such that the kurtosis γ4 = E {(X −
ξ)/σ}4 − 3 is finite. Construct a strongly consistent estimator for this kurtosis.

(d) Assume that (X1, Y1), (X2, Y2), . . . is an i.i.d. sequence of random pairs, with finite

variances, and define the population correlation coefficient in the usual fashion, as ρ =

cov(X,Y )/(σ1σ2). Show that the usual empirical correlation coefficient

Rn =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

{
∑n
i=1(Xi − X̄n)2}1/2{

∑n
i=1(Yi − Ȳn)2}1/2

converges with probability one hundred percent to ρ.

(e) Formulate and prove a suitable statement regarding almost sure convergence of

smooth functions of means.

Ex. 4.37 Glivenko–Cantelli theorem. For i.i.d. observations Y1, . . . , Yn, we form the

empirical c.d.f. as in Ex. 2.27, with Fn(t) = n−1
∑n
i=1 I(Yi ≤ t). Since this is just a

binomial ratio, we know from the Law of Large Numbers that Fn(t) →a.s. F (t), for

each t. It is a remarkable fact that this convergence also takes place uniformly, with

probability 1. This is the Glivenko–Cantelli theorem: with Dn = maxt |Fn(t) − F (t)|,
the max taken over all t in the domain in question, we have P (Dn → 0) = 1. This means

that regardless of any strange or complicated aspects of the distribution F , with enough

data one will be able to learn these. See also Ex. 9.10 for more information about the

speed with which Dn → 0. Glivenko–

Cantelli

(a) Choose t1 < · · · < tm, creating a finite number of cells [tj , tj+1), where we take

t0 = −∞ and tm+1 = ∞. With Am,j the event that Fn(tj) → F (tj), argue that

P (∩mj=1Am,j) = 1.

(b) Consider any t in the cell [tj , tj+1). Writing Dn(t) = Fn(t)− F (t), use monotinicity

of Fn and F to show that

Dn(tj)− {F (tj+1)− F (tj)} ≤ Fn(t)− F (t) ≤ Dn(tj+1) + F (tj+1 − F (tj).

Deduce that

max
tj≤t<tj+1

|Dn(t)| ≤ Bm + Cm,

where Bm = max1≤j≤m |Dn(tj)| and Cm = max1≤j≤m{F (tj+1)− F (tj)}.
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(c) Show that P (lim supDn ≤ Cm) = 1.

(d) For each ε > 0, show that a partition into cells can be arranged, with high m if

required, so that Cm ≤ ε. Conclude that P (Dn → 0) = 1.

(e) Choose some moderately complicated normal mixture, of the type f =
∑k
j=1 pjNµj , σ

2
j );

see Ex. 1.51. Then simulate a high number n of data from this distribution, and read off

Dn = maxt |Fn(t) − F (t)|. Check out how high n must be to have Dn ≤ 0.01, say, in a

few situations.

Ex. 4.38 The Liapunov and Lindeberg theorems: main story. (xx to be edited and

polished. xx) Let X1, X2, . . . be independent zero-mean variables with at the outset dif-

ferent distributions F1, F2, . . . and hence different standard deviations σ1, σ2, . . .. Below

we also need their characteristic functions ϕ1, ϕ2, · · · . The question is when we can rest

assured that the normalised sumLiapunov and

Lindeberg

theorems

Zn = (X1 + · · ·+Xn)/Bn =

n∑
i=1

Xi

/( n∑
i=1

σ2
i

)1/2

really tends to the standard normal, as n increases.

(a) As an introductory useful lemma, demonstrate the following. With a1, a2, . . . a

sequence of numbers coming closer to zero, we have
∏n
i=1(1 + ai)→ exp(a) provided (1)∑n

i=1 ai → a; (2) maxi≤n |ai| → 0; and (3)
∑n
i=1 |ai| stays bounded. It may be helpful

to show first that

log(1 + x) = x− 1
2x

2 + 1
3x

3 − · · · = x+K(x)x2,

with K(x) is a continuous function such that |K(x)| ≤ 1 for |x| ≤ 1
2 , and K(x) → − 1

2

when x→ 0. These statements are valid also when the ai are the x are complex numbers

inside the unit ball, in which case the logarithm is the natural complex extension of the

real logarithm.

(b) Show that Zn has characteristic function

κn(t) = E exp(itZn) = ϕ1(t/Bn) · · ·ϕn(t/Bn).

(c) (xx check this, and calibrate with other exercises. show that

| exp(ix)− 1− ix− 1
2 (ix)2 − . . .− (ix)m/m!| ≤ |x|m+1/(m+ 1)!.

xx)

(d) We know that ϕi(s)
.
= 1− 1

2σ
2
i s

2 for small s, so the essential idea is to write

κn(t) =

n∏
i=1

{1− 1
2σ

2
i t

2/B2
n + εn,i(t)}

and not give up until one has found conditions that secure convergence to the desired

exp(− 1
2 t

2). In view of the lemma of (a), this essentially takes (1)
∑n
i=1 εn,i(t) → 0;
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(2) maxi≤n σ
2
i /B

2
n → 0 and maxi≤n |εn,i(t)| → 0; and (3)

∑n
i=1 |1 − ϕi(t/Bn)| staying

bounded. Show that

|ϕi(s)− (1− 1
2σ

2
i s

2)| =
∣∣∣ ∫ {exp(isx)− 1− isx− 1

2 (isx)2} dFi(x)
∣∣∣

≤
∫
| exp(isx)− 1− isx− 1

2 (isx)2|dFi(x)

≤ 1
6 |s|

3 E |Xi|3.

(e) This leads to the uslovie L�punova version of the Lindeberg theorem: show that

if the variables all have finite third order moments, with Bn →∞ and

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣3 → 0,

then κn(t) → exp(− 1
2 t

2), which we know is equivalent to the glorious Zn →d N(0, 1).

This is (already) a highly significant extension of the CLT. If the Xi are uniformly

bounded, for example, with Bn of order
√
n, which would rather often be the case, then

the uslovie L�punova holds. It is also possible to refine arguments and methods to

show that

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2+δ

→ 0, for some δ > 0,

is sufficient for limiting normality.

(f) The issue waits however for even milder and actually minimal conditions, and that

is, precisely, the Lindeberg condition:

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for all ε > 0.

Show that if the Lyapunov condition is in force, then the Lindeberg condition holds (so

Lindeberg assumes less than Lyapunov).

(g) (xx push this to Notes. xx) Inlow (2010) has shown how one can prove the usual CLT

without the technical use of characteristic and hence complex functions. Essentially, he

writes the Xi in question as Yi + Zi with Yi = Xi I{|Xi| ≤ ε
√
n} and Zi = Xi {|Xi| >

ε
√
n}, after which ‘ordinary’ moment-generating functions may be used for the part

involving the Yi, yielding the normal limit, supplemented with analysis to show that the

part involving the Zi tends to zero in probability. – It is a non-trivial matter to extend

Inlow’s arguments, from the CLT to the Lindeberg theorem, but this is precisely what

is done in Stoltenberg (2019). Check that note, on the book website, and make sure you

understand its main tricks and steps.

Ex. 4.39 The Lindeberg theorems: nitty-gritty details. (xx to be cleaned and polished.

xx) The essential story, regarding Lyapunov and Lindeberg, has been told in the previous

exercise. Here we tend to the smaller-level but nevertheless crucial remaining details, in
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order for the ball to be shoven across the finishing line after all the preliminary work. You

may also check partly corresponding details in Stoltenberg (2019). Again, let X1, X2, . . .

be independent, with distributions F1, F2, . . ., zero means, standard deviations σ1, σ2, . . .,

and characteristic functions ϕ1, ϕ2, . . .. The creature studied is

Zn =
X1 + · · ·+Xn

(σ2
1 + · · ·+ σ2

n)1/2
=

n∑
i=1

Xi

Bn
,

with B2
n =

∑n
i=1 σ

2
i . We assume the Lindeberg condition, that

Ln(ε) =

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}→ 0 for all ε > 0.

(a) Show that Bn → ∞, and that αn = maxi≤n(σ2
i /B

2
n) → 0. Show further that this

entails

|ϕi(t/Bn)− 1| ≤
∫
| exp(itx/Bn)− 1− itx/Bn|dFi(x)

≤ 1
2 t

2

∫
(x/Bn)2 dFi(x) ≤ 1

2 t
2αn,

so all ϕi(t/Bn) are eventually inside radius say 1
2 of 1. We are hence in a position to

take the logarithm and work with

κn(t) = log E exp(itZn) =

n∑
i=1

logϕi(t/Bn)

etc.; see the start lemma of the preceding exercise.

(b) In continuation and refinement of arguments above, show that rn(t) = ϕi(t/Bn) −
(1− 1

2σ
2
i t

2/B2
n) can be bounded, as follows:

|rn(t)| =
∣∣∣ ∫ {exp(itx/Bn)− 1− itx/Bn − 1

2 (itx/Bn)2} dFi(x)
∣∣∣

≤
∫
| exp(itx/Bn)− 1− itx/Bn − 1

2 (itx/Bn)2|dFi(x)

≤
∫
|x|/Bn≤ε

1
6

|t|3|x|3

B3
n

dFi(x) +

∫
|x|/Bn>ε

(
1
2

|t|2|x|2

B2
n

+ 1
2

|t|2|x|2

B2
n

)
dFi(x)

≤ 1
6 |t|

3ε
σ2
i

B2
n

+ t2 E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε}.
(c) Show that this leads to

n∑
i=1

∣∣ϕi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n)
∣∣ ≤ 1

6 |t|
3ε+ t2 Ln(ε),

and via the start lemma of the previous exercise that this secures what we were after,

that
∏n
i=1 ϕi(t/Bn) → exp(− 1

2 t
2) and hence triumphantly Zn →d N(0, 1), under the

Lindeberg condition only.
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Ex. 4.40 Limiting normality of linear combinations of i.i.d. variables. Let ε1, ε2, . . . be

i.i.d. from some distribution with mean zero and finite variance σ2. For a sequence of

multiplicative constants a1, a2, . . ., consider

Zn =

∑n
i=1 aiεi
Bn

=

n∑
i=1

(ai/Bn)εi, with B2
n =

n∑
i=1

a2
i ,

which has mean zero and variance 1. The question is what should be demanded of the

ai sequence, to ensure that Zn →d N(0, 1) (even if the εi distribution might be looking

say skewed and multimodal and strange).

(a) Let Dn = maxi≤n |ai|/Bn. Writing G for the distribution of εi, show that

n∑
i=1

E
∣∣∣aiεi
Bn

∣∣∣2I(∣∣∣aiεi
Bn

∣∣∣ ≥ δ) ≤ n∑
i=1

a2
i

B2
n

E ε2
i I(Dn|εi| ≥ δ) ≤

∫
|u|≥δ/Dn

u2 dG(u).

(b) Conclude that Zn →d N(0, 1) provided Dn → 0.

(c) Under a variety of setups, one actually has Dn → 0, which is hence not at all a strict

condition. Verify that the condition holds, and hence limiting normality, in the following

cases: (i) ai = 1 (which corresponds to the plain CLT); (ii) all |ai| inside some positive

[b, c] interval; (iii) ai = i; (iv) ai = i2 (and generalise); (v) ai = 1/
√
i. Show however

that the condition does not hold for ai = 1/i.

(d) Another important case to understand well is when the ai can be considered an

i.i.d. sequence, drawn from their own distribution. Show that Dn →pr 0 if the ai distri-

bution has finite variance. (xx nils thinks this is if and only if, actually. what happens

with Zn if the ai are drawn from say the 1/|x|2 distribution, for |x| ≥ 1? xx)

(e) xx

Ex. 4.41 Characteristic functions for vector variables. With X = (X1, . . . , Xk)t a

random vector, in dimension k, we define its characteristic functions as

ϕ(t1, . . . , tk) = E exp(ittX) = E exp{i(t1X1 + · · ·+ tkXk)}

for t = (t1, . . . , tk)t.

(a) Show that if the components are independent, then ϕ(t1, . . . , tk) = ϕ1(t1) · · ·ϕk(tk),

in terms of the individual characteristic functions.

(b) Show for the multinormal case, where X ∼ Nk(ξ,Σ), that ϕ(t) = exp(ittξ − 1
2 t

tΣt).

(c) (xx spell out basics for ϕn(t) → ϕ(t) as equivalent to Xn →d X. inversion formula.

xx)

Ex. 4.42 The Cramér–Wold device. Suppose Xn and X are random variables in Rk.

(a) Show that Xn →d X if and only if atXn →d a
tX for each a, i.e. if and only if all linear

combinations converge. This is the Cramér–Wold theorem. (xx proof via characteristic

functions, so need to set up this properly first. xx)
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(b) This very useful device, for proving convergence in distribution for random vectors,

can now be used to prove the multivariate CLT: Suppose X1, X2, . . . are i.i.d. with mean

ξ and variance matrix Σ. Show that
√
n(X̄n − ξ)→d Nk(0,Σ).

(c) Let X1, X2, . . . be independent random vectors in dimension k, with finite positive

definite variance matrices Σ1,Σ2, . . .. When will

Zn = (Σ1 + · · ·+ Σn)−1/2(X1 + · · ·+Xn)→d Nk(0, Ik)?

(xx give clear conditions. the multidimensional Lindeberg theorem. for each a, need∑n
i=1 a

tXi/(
∑n
i=1 a

tΣia)1/2 →d N(0, 1). to be used for regression models in Ch5 and

later. give sets of easier conditions for the general Lindeberg to hold. xx)

Ex. 4.43 Limiting normality in linear regression. The aim here is to show and appreciate

that the classical coefficient estimators in linear regression setups are still approximately

normal, even when the error terms distribution is not normal. (xx pointer to other results

in Ch. 5. xx)

(a) We first deal with a simple setup with a single regression coefficient. Suppose yi =

xiβ + εi for i = 1, . . . , n, with covariates xi and error terms εi being i.i.d. from a zero-

mean distribution with finite variance σ2. Show that the estimator minimising Qn(β) =∑n
i=1(yi − xiβ)2 is β̂ =

∑n
i=1 xiyi/M

2
n, where M2

n =
∑n
i=1 x

2
i . Show further that β̂ is

unbiased with variance σ2/M2
n. (xx point to least squares, see Ex. 2.33, and more. xx)

(b) Then consider Zn = Mn(β̂ − β). Show that it has zero mean and variance σ2, and

that it can be written
∑n
i=1(xi/Mn)εi.

(c) Deduce from Ex. 4.40 that β̂ is approximately normal, even if the εi are not normal,

provided merely that Dn = maxi≤n |xi|/Mn → 0. If in particular (1/n)
∑n
i=1 x

2
i stays

bounded, or perhaps has a finite limit, then the natural condition is (1/
√
n) maxi≤n |xi| →

0.

(d) Then consider the general linear regression model, yi = xt
iβ + εi, with the xi being

p-dimensional covariate vectors and β a p-dimensional vector of regression coefficients.

(xx here point to LinReg exercise which we perhaps should move from Ch1 to Ch2. xx)

For the least squares estimator we have

β̂ = Σ−1
n (1/n)

n∑
i=1

xiyi, with Σn = n−1
n∑
i=1

xix
t
i.

It is unbiased with variance matrix (σ2/n)Σ−1
n , assumed to have full rank. Assume

Σn → Σ, a full rank matrix. Show that Zn =
√
n(β̂ − β) →d Np(0,Σ), under the

condition Rn = (1/
√
n) maxi≤n ‖xi‖ → 0.

(e) Assume now that the xi are drawn i.i.d. from a distribution over the covariate space,

with finite variance matrix. Show that Rn →pr 0.

(f) (xx spell out, just a bit, that confidence intervals and tests, worked out with the

finest precision under exact normality the yi ∼ N(xt
iβ, σ

2), work very well, even without

the normality. xx)
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Ex. 4.44 Limiting normality for multinomials. (xx simple basic limits for p̂j = Nj/n,

and delta method. illustration for N̂ = n1,·n·,1/n1,1 in the problem with missing n0,0. so

we refer to this exercise in the Karl Pearson chi-squared story, rather than doing these

things there. xx) Consider the multinomial setup of Ex. 1.5, with (Y1, . . . , Yk) counting

the number of events of type 1, . . . , k in n independent experiments, each time with

probabilities p = (p1, . . . , pk)t.

(a) Show that the relative frequencies p̂j = Yj/n are consistent, with
√
n(p̂j − pj) →d

N(0, pj(1− pj)). Show more generally that there is full joint convergence in distribution

here; Xn =
√
n(p̂ − p) →d Z ∼ Nk(0,Σ), where Σ is the matrix with elements σj,` =

pjδj,` − pjp`. It may be written Σ = D − ppt with D diagonal with elements pj . Verify

that this is consistent with
∑k
j=1 Zj = 0.

(b) For γ = g(p1, . . . , pk) any smooth function of the relative frequencies, with natural

estimator γ̂ = g(p̂1, . . . , p̂k), show that
√
n(γ̂ − γ) →d N(0, τ2), with τ2 = ctΣc =

ctDc−(ctp)2, where c = ∂g(p)/∂p. Check what this says, for the case of γ = p1 + · · ·+pk.

(c) Consider (X,Y, Z) being trinomial (n, p, q, r). With p̂ = X/n, q̂ = Y/n, r̂ = Z/n, find

the limit distribution for γ̂ = p̂/(q̂r̂)1/2, as well as for δ̂ = 2 arcsin(p̂1/2)− 2 arcsin(q̂1/2).

(d) (xx one more thing. xx)

Ex. 4.45 When the 00 box is hidden. Consider a 2 × 2 table setup with counts

N0,0, N0,1, N1,0, N1,1, corresponding to Ni,j counting the cases of (X = i, Y = j), for

i, j = 0, 1, for two factors X and Y . We take the four counts to be a multinomial vector

with probabilities p0,0, p0,1, p1,0, p1,1. Assume now that the 00 box is hidden, hence also

the total number N = N0,0 +N0,1 +N1,0 +N1,1; one has observed counts n0,1, n1,0, n1,1,

but not the n0,0 in question. How can one estimate the hidden n0,0, and then in its turn

N? (xx link to Story iii.9, with further information, using likelihood theory. we make a

Srebrenica exercise too, with Brunborg et al. (2003). and to Guatemala Story iii.9, with

three sources, and hidden n0,0,0. point to Lum et al. (2013), and also to Petersen (1896)

for the estimator. also Brunborg et al. (2003), inside Story iii.9. check notation: N∗ for

Petersen 1896, then N̂ for ML in later exerciss and in story. xx)

(a) Assume in this exercise that factors X and Y are independent, with P (X = 1) = p =

p1,· and P (Y = 1) = q = p·,1; we use ‘·’ notation to indicate that the index in question

is being summed over. Show that

p0,0 = (1− p)(1− q), p0,1 = (1− p)q, p1,0 = p(1− q), p1,1 = pq.

(b) Argue that n1,·n1,·/N
2 and n1,1/N are both valid estimates of p1,1. Discuss condi-

tions under which N∗ = n1,·n1,·/n1,1 is a reasonable estimator of N .

(c) The N is unknown, but we may still study the usual ratios p̂i,j = Ni,j/N . Show that

there is joint convergence in distribution, say N1/2(p̂i,j − pi,j) →d Ai,j , as N increases,

with the Ai,j forming a four-dimensional mean zero normal. Give its variance matrix.
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(d) Under independence, show that (N∗−N)/N1/2 = N1/2(N∗/N − 1) has limit distri-

bution

U = (1/p)(A1,0 +A1,1) + (1/q)(A0,1 +A1,1)− {1/(pq)}A1,1

= {pA0,1 + qA1,0 + (p+ q − 1)A1,1}/(pq).

This is a normal (0, τ2); show that indeed τ2 = (1 − p)(1 − q)/(pq). How can this be

used to form a confidence interval for N? (xx pointer again to more on this in Story iii.9,

with profiled likelihoods. xx)

(e) Show that the N∗ leads to the natural estimator p̂ = n1,1/n1,· for p. Find its

approximate distribution, and assess how much is lost in precision by not knowing N .

(xx check also with the implied n∗0,0 = N∗ − (n0,0 + n0,1 + n1,0). xx)

(f) The setup and methods above can be used in a variety of setups, for estimating the

sizes of populations based on incomplete surveys; the N∗ estimator above goes back to

Petersen (1896), estimating the number of fish based on capture-recapture surveys. Carry

out a few simulation experiments, as follows. There are fish {1, . . . , N} in your pond.

Your first catch, with fish being caught as in a binomial setup with probability p1, gives

the index set A1; your captured fish are marked and released in the pond. Similarly your

second catch, with catch probability p2, gives index set A2. By counting the numbers

n1,0, n0,1, n1,1 in the associated Venn diagram, estimate the total number of fish N . (and

your analysis should work without knowing p1, p2). Check if your 95 percent confidence

interval captures the real N . (xx note: in R we may use intersect, union, setdiff.

xx)

(g) (xx don’t know yet if we should include the case of three surveys, or leave it to

`prof(N) analysis in Ch 5. but we can ask for analysis of the estimator

n∗0,0,0 =
n1,0,0n0,1,0 + n1,0,0n0,0,1 + n0,1,0n0,0,1

n1,1,0 + n1,0,1 + n0,1,1
,

used in Lum et al. (2013). xx)

Ex. 4.46 Stochastic Opr and opr symbols.

Ex. 4.47 Minimum criterion function estimators, I. (xx should we bother enough to

change from F to G here, for data generating mechanism. but we use φ = g(θ) here

and there for focus parameters. xx) For observations Y1, . . . , Yn from some distribution

F , consider a parameter θ0 = θ(F ) defined as the minimiser of the function H(θ) =

EF h(Y, θ), for a suitable h(y, θ). It is assumed that θ0 thus defined, which may also be

multidimensional, is the unique minimiser. The empirical version of H(θ) is Hn(θ) =

(1/n)
∑n
i=1 h(Yi, θ), so a natural estimator for θ0 is θ̂ = argmin(Hn). In fact many

important estimators are of this or related types, perhaps minimising somewhat more

complicated random functions; cf. the broad maximum likelihood themes of Ch. 5 (xx

and more xx). In exercises below we shall develop clear results for how the minimum

criterion function estimators behave, under sets of natural assumptions, but the present

exercise is meant to illustrate the basic construction via different types of examples.minimum

criterion

function

estimators
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(a) Explain that Hn(θ) can be written
∫
H(y, θ) dFn(y), with Fn the empirical distribu-

tion, having mass 1/n at each datapoint; see Ex. 2.27. Explain why Hn(θ)→pr H(θ) for

each θ, and find the limit distribution of
√
n{Hn(θ)−H(θ)}. What we need, tended to in

exercises to follow, are conditions under which θ̂ = argmin(Hn) tends to θ0 = argmin(H),

along with a limit distribution.

(b) A few examples, for the case of one-dimensional Yi, are as follows. (i) With h(y, θ) =

(y− θ)2, show that θ0 = EF Yi, with θ̂ = Ȳn, the sample mean. (ii) Consider h(y, ξ, σ) =

(y − ξ)2 + {y2 − (ξ2 + σ2)}2. Show that (ξ0, σ0) must be (EF Y, sdF (Y )), the true mean

and standard deviation for Y . (iii) More generally, if h(y, θ) = {r(y) − θ}tV {r(y) − θ},
for some r(y) = (r1(y), . . . , rp(y)) and a symmetric positive definite matrix V , show that

θ0 = EF r(Y ). (iv) Try h(y, θ) = [exp{c(y− θ)} − 1− c(y− θ)]/c2. Draw 100 datapoints

from a normal N(θ, 1), with θ of your choice, and estimate θ in this minimum Hn fashion,

for a few values of the balance parameter c. Show that c close to zero corresponds to the

mean.

(c) Consider h0(x) = x arctanx − 1
2 log(1 + x2), and define θ0 as the minimiser of

EF h0(Y − θ). Show that θ̂, the minimiser of Hn(θ) = (1/n)
∑n
i=1 h0(Yi − θ), is also

the unique solution to
∑n
i=1 arctan(Yi − θ) = 0. (xx so connection from minimum diver-

gence estimator to M estimator. round off. xx)

(d) Consider h(y, ξ, τ) = p(τ) + 1
2 (y− ξ)2/τ2, where p(τ) is a smooth increasing function

of τ > 0. Find a recipe for computing the estimates (ξ̂, τ̂) associated with the criterion

function (1/n)
∑n
i=1 h(Yi, ξ, τ). Check in particular the case of p(τ) = log τ .

(e) (xx briefly, make the connection to moment estimators. h(y, θ) = {y − m(θ)}2
minimised for m(θ0) = EY , or θ0 = m−1(EY ). also for vector case. and briefly to

quantile fitting estimators too. xx)

(f) The L2 distance between the data generating density f and a parametrically modelled

fθ is

D(f, fθ) =

∫
(f − fθ)2 dy =

∫
f2
θ dy − 2

∫
ffθ dy + a(f),

where a(f) does not depend on θ. Use this to motivate what we may call the minimum

L2 estimator θ̂, the minimiser of Dn(θ) =
∫
f2
θ dy − 2(1/n)

∑n
i=1 f(Yi, θ). Simulate 100

detapoints from a Gam(a, b), where you choose (a, b) as you wish, and estimate these

using this method. Carry out a similar simple experiment with 100 datapoints drawn

from a normal, i.e. estimate the mean and standard deviation using the minimum L2

method. (xx pointer to BHHJ method. xx)

Ex. 4.48 Minimum criterion function estimators, II. After having motivated and

worked through particular instances of the minimum criterion function estimators, in

Ex. 4.47, we now return to the general case, aiming to demonstrate limiting normal-

ity, finding recipes for large-sample approximations in the process. So θ0 = θ0(F ) is

the minimiser of H(θ) = EF h(y, θ), and θ̂ is its estimator, the minimiser of Hn(θ) =∫
h(y, θ) dFn(y). We shall employ the following regularity conditions: (i) The true
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θ0 = θ0(F ) is an inner point in its parameter space inside Rp; thus for each given

s = (s1, . . . , sp)
t, the An(s) is well-defined for all large enough n. (ii) The h(y, θ) is

smooth in θ, in a neighbourhood around θ, with three derivatives, say h′(y, θ) (a vector,

with components h′a), h′′(y, θ) (a matrix, with components h′′a,b), h
′′′(y, θ) (a collection

of third derivatives h′′′a,b,c). (iii) The matrix J = EF h
′′(Y, θ0) is finite and positive defi-

nite. (iv) The first derivative h′(Y, θ0) has finite variance matrix K. (v) The third order

derivatives h′′′a,b,c(y, θ) have finite means in a neighbourhood around θ0.

(a) A key idea is to work with the following random function. Show that

An(s) = n{Hn(θ0 + s/
√
n)−Hn(θ0)}

=

n∑
i=1

{h(Yi, θ0 + s/
√
n)− h(Yi, θ0)} = U t

ns+ 1
2s

tJns+ rn(s),

with Un = (1/
√
n)
∑n
i=1 h

′(Yi, θ0), Jn = (1/n)
∑n
i=1 h

′′(Yi, θ0). Show that Un has mean

zero and tends to U ∼ Np(0,K), and that Jn →pr J . Also, for the remainder term show

that |rn(s)| ≤ Cn‖s‖3/
√
n, with Cn bounded in probability.

(b) Explain first that the minimiser of An is αn =
√
n(θ̂ − θ0), where we shall also

study the overall minimum An,min = An(αn) below. Let Bn(s) = U t
ns + 1

2s
tJns be

the quadratic approximation to An, with minimiser βn and overall minimum Bn,min =

min{Bn(s) : all s}. Show that

βn = −J−1
n Un →d −J−1U ∼ Np(0, J

−1KJ−1),

Bn,min = − 1
2U

t
nJ
−1
n Un →d − 1

2U
tJ−1U.

So things are simple and clear for the quadratic approximation Bn; we need to show that

the same results obtain for the real thing, the An.

(c) Supposing |rn(s)| ≤ δ for all s in a subset S, show from An = Bn + rn that

|min
s∈S

An(s)−min
s∈S

Bn(s)| ≤ δ for s ∈ S.

We next establish that αn cannot be far away. Show that when ‖s‖ ≥ cn1/8, Bn(s) ≥
Dnn

1/4, with Dn positive and bounded in probability; and that when ‖s‖ ≤ cn1/8,

then |rn(s)| ≤ En/n
1/8, with En also bounded in probability. Show from this that

αn = Opr(n
1/8), and that An,min −Bn,min →pr 0.

(d) Then consider Bn a certain distance away from the minimum. For given small ε,

show that for v with ‖v‖ ≥ ε, we have

Bn(βn + v) = Bn,min + 1
2v

tJnv ≥ Bn,min + 1
2jnε

2,

where jn is the smallest eigenvalue of Jn. Show then that the event Ωn, where An(βn +

v) ≥ Bn,min + 1
4jnε

2 for all v with ‖v‖ ≥ ε, must have P (Ωn) → 1. Prove from these

established statements that αn − βn must tend to zero in probability. Conclude that

√
n(θ̂ − θ0) →d −J−1U ∼ Np(0, J

−1KJ−1),

2n{Hn(θ0)−Hn(θ̂)} →d W = U tJ−1U.
(4.8)
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(e) (xx note: i have avoided pointing to continuity of argmin functional in C([−c, c]p)
space and the like, but worked directly with the quadratic approximation. xx)

Ex. 4.49 Profiling a minimum criterion function, I. For data Y1, . . . , Yn from some

distribution F , we have in Ex. 4.47 considered estimating a parameter θ0 = argmin(H),

for H(θ) = EF h(Y, θ), by minimising the criterion function Hn(θ) = (1/n)
∑n
i=1 h(Yi, θ).

For a focus parameter φ = g(θ), a smooth function of θ = (θ1, . . . , θp), it is useful to

work with the associated profile function profiling a

criterion

function
Hn,prof(φ) = min{Hn(θ) : g(θ) = φ}.

(a) As an introductory illustration, consider estimating the parameters (a, b) of a Gamma

distribution via minimum L2, as in Ex. 4.47. Simulate 100 datapoints from a gamma;

compute (â, b̂); and compute and display also the profile function Hn,prof(µ) for the mean

parameter µ = a/b.

(b) From the full model, with ensuing minimum criterion function estimator θ̂, show

that the consequent φ̂ = g(θ̂) becomes normal. With setup and notation as Ex. 4.47,

prove indeed that
√
n(φ̂ − φ0) →d c

tJ−1U , with c = ∂g(θ0)/∂θ, and that the limit is a

zero-mean normal with variance ctJ−1KJ−1c. Show also that this φ̂ is identical to the

minimiser of the profile function.

(c) In other words we already know the basic story for any focus parameter estimator

φ̂, thanks to the delta method. It is however fruiful to work with representations and

approximations stemming from examining the associated profile function. With methods

from Ex. 4.47, show that

n{Hn(θ̂ + s/
√
n)−Hn(θ̂)} = 1

2s
tJns+ rn(s), with rn(s) = Opr(‖s‖3/

√
n).

For the profiling, therefore, we must minimise this expression over all s such that g(θ) =

g(θ̂ + s/
√
n) = φ. With g(θ) = φ̂ + ctns/

√
n + Op(‖s‖2/n), here writing cn = ∂g(θ̂)/∂θ,

the essence is to minimise 1
2s

tJns under ctns =
√
n(φ − φ̂) = x, say. Show, perhaps

via Lagrange multiplicator methods, that this minimum becomes 1
2x

2/ctnJ
−1
n cn = n(φ̂−

φ)2/ctnJ
−1
n cn. Fill in more details to prove that with φ0 = g(θ0) the true parameter in

question,

2n{Hn,prof(φ0)−Hn,prof(φ̂)} = n(φ̂− φ0)2/ctnJ
−1
n cn + opr(1)

→d (ctJ−1U)2/ctJ−1c ∼ kχ2
1,

with k = ctJ−1KJ−1c/ctJ−1c.

(d) (xx to be cleaned. this lemma is for profiling w.r.t. a 1-dimensional φ = cts. xx)

For a quadratic function A(s) = 1
2s

tJs, for a positive definite J , we are to examine the

minimum of A(s) over all s with cts = x. Show that the result is 1
2x

2/ctJ−1c. (xx nils

sketching the solution: xx) Lagrange: 1
2s

tJs− λ(cts− x), Js = λc, s0 = λJ−1c, leading

to cts0 = λctJ−1c = x. The minimum becomes 1
2λ

2ctJ−1c = 1
2x

2/ctJ−1c.
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(e) (xx to be polished. lifting the above to φ = Cθ. xx) For a p0 × p matrix C and an

x of dimension p0, work out the minimum of 1
2s

tJs over all s with Cs = x. Show that

this becomes 1
2x

t(CJ−1Ct)−1x (xx nils sketching the solution. xx) Lagrange: 1
2s

tJs −
λt(Cs − x), derivative, Js = Ctλ, s0 = J−1Ctλ, implying CJ−1Ctλ = x. this leads to

λ = (CJ−1Ct)−1x. nice: minimum becomes

1
2λ

tCJ−1Ctλ = 1
2x

t(CJ−1Ct)−1CJ−1Ct(CJ−1Ct)−1x = 1
2x

t(CJ−1Ct)−1x.

(xx we should find the following from this: with φ = g(θ) = (φ1, . . . , φp0),

n(Hn,min,narr −Hn,min,wide)→d
1
2U

tJ−1C(CtJ−1C)−1CtJ−1U.

round off. xx)

(f) (xx then an illustration of this. and pointer to Wilks. and pointer to regression

versions of these methods and results; the Yi need not at all be i.i.d. xx)

Ex. 4.50 Profiling a criterion function, II. In Ex. 4.47, 4.48, 4.49 we have considered

parameters defined as minimisers of functions H(α) = EF h(Y, α), and developed the

basic theory for the associated minimum criterion function estimators. We now consider

situations where some of the components of the argmin(H) parameter are specified. Such

occur when one tests for lower-dimensional structure, etc. This invites setting up the

following framework, with a wide model having α = (θ, γ) of length p + q, and the

narrow model considered has (θ, γ0), with θ unknown but γ = γ0 fixed. Estimators (θ̂, γ̂)

in the wide model minimise Hn(θ, γ) =
∫
h(y, θ, γ) dFn(y) whereas θ̃ for the narrow

model minimises Hn(θ, γ0) =
∫
H(y, θ, γ0) dFn(y). The theory developed in the previous

exercises mentioned holds for the wide and the narrow models, separately, and below we

postulate that the regularity conditions (i)–(v) put up in Ex. 4.48 are in force. Efforts of

linear and matrix algebra are required in order to handle these models jointly, however.

Define therefore

Jwide = EF
∂2H(Y, θ0, γ0)

∂α∂αt
=

(
J00 J01

J10 J11

)
with inverse J−1

wide =

(
J00 J01

J10 J11

)
,

where J00 = Jnarr is of size p × p, etc. There is similarly a (p + q) × (p + q) matrix

Kwide, with submatrices K00,K01,K10,K11, the variance matrix of U = (U t
0, U

t
1)t, the

first derivative ∂H(Y, θ0, γ0)/∂α. (xx where do we first speak of transpose xt, and the

cumbersomeness of x = (xt
1, x

t
2)t? xx)

(a) The following developements are under the γ = γ0 constraint, so α0 = (θ0, γ0) is the

true parameter, determined by the distribution F . Argue that(√
n(θ̂ − θ0)√
n(γ̂ − γ0)

)
→d −J−1

wide

(
U0

U1

)
,
√
n(θ̃ − θ0)→d −J−1

00 U0.

Show also, again using results reached earlier, that

n{Hn,wide −Hn(θ0, γ0)} →d − 1
2U

tJ−1
wideU,

n{Hn,narr −Hn(θ0, γ0)} →d − 1
2U

t
0J
−1
00 U0,
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with Hn,wide = Hn(θ̂, γ̂) and Hn,narr = Hn(θ̃, γ0). Deduce that

Wn = 2n(Hn,narr −Hn,wide)→d W = U tJ−1
wideU − U

t
0J
−1
00 U0. (4.9)

Show that this limit variable has mean Tr(J−1
wideKwide)− Tr(J−1

00 K00).

(b) (xx clean and simplify this. xx) We tend to a few matrix and submatrix identities

here, as they come in handy for some of the technical arguments below. The q×q matrix

J11 has an important role, here and actually later (xx point to Ch11 xx); show that

Q = J11 = (J11 − J10J
−1
00 J01)−1 (4.10)

Similarly, we have J00 = J−1
00 +J−1

00 J01QJ10J
−1
00 . Show also that J00−J−1

00 = J01J10J
−1
00 ,

J10 = −QJ10J
−1
00 . (xx point to Claeskens and Hjort (2008b, Section 5.4) and to Ch11.

xx)

(c) We now use the structure of Kwide to transform (U0, U1) to (U0, V ), with V =

U1−K10K
−1
00 U0, the point being that U0 and V become independent. Work through the

details of(
U0

V

)
=

(
U0

U1 −K10K
−1
00 U0

)
∼ Np+q(0,

(
K00 0

0 K11 −K10K
−1
00 K01

)
).

Show also that the variance of V is the same as (K11)−1 (xx check with care xx).

(d) With this transformation, work out the following formula for W , in terms of the

independent U0 and V (xx check all this xx):

W = U t
0(J00 − J−1

00 )U0 + (V +K10K
−1
00 U0)tQ(V +K10K

−1
00 U0)

+2U t
0J

01(V +K10K
−1
00 U0)

= V tQV + U t
0(J00 − J−1

00 +K−1
00 K01QK10K

−1
00 + 2 J01K10K

−1
00 )U0

+U t
0(J01 +K−1

00 K01Q)V + V t(J10 +QK10K
−1
00 )U0.

(e) There are additional informative and insightful representations of the W above. Start

by showing
√
n(γ̂ − γ0)→d −Z, where

Z = J10U0 + J11U1

= J10U0 +Q(V +K10K
−1
00 U0) = QV + (J10 +QK10K

−1
00 )U0,

Show that Z ∼ Nq(0,Σ11), with Σ = J−1KJ−1 the sandwich matrix. The point is now

to demonstrate that W above is identical to W ′ = ZtQ−1Z. Verify first that its mean

Tr(Q−1Σ11) is identical to the formula found above for EW . Work out that

W ′ = [QV + (J10 +QK10K
−1
00 )U0]tQ−1[QV + (J10 +QK10K

−1
00 )U0]

= V tQV + U t
0(J01 +K−1

00 K01Q)Q−1(J10 +QK10K
−1
00 )U0

+U t
0(J01 +K−1

00 K01Q)V + V t(J10 +QK10K
−1
00 )U0.
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Prove W = W ′ by by checking the separate terms. One needs to verify that A = A′, in

A = J00 − J−1
00 +K−1

00 K01QK10K
−1
00 + J01K10K

−1
00 +K−1

00 K01J
10,

A′ = (J01 +K−1
00 K01Q)Q−1(J10 +QK10K

−1
00 ).

(xx nils cleans and checks all of this. xx)

(f) (xx special case J = K: show that W ∼ χ2
q. what about K = cJ , do we have

W ∼ χqq? xx)

(g) (xx give an example. can simulate from limit distribution. clarify connections to the

case of narrow model p − 1, wide model p, i.e. profiling over a 1-dimensional φ = g(θ).

xx)

Ex. 4.51 Minimisers of convex processes, I. We have seen useful constructions, methods,

and results for minimum criterion function estimators in Ex. 4.47 and 4.49. There are

issues worth refining and generalising, however. The regularity conditions required for the

Taylor expansion based arguments to go fully through are a bit cumbersome, and there

are important constructions where the criterion function h(t, θ) in H(θ) = EF h(Y, θ) is

not smooth. Here we give the basics for how matters simplify, with weaker conditions, if

the criterion function is convex.

(a) From pointwise to uniform: Suppose An(s) is a sequence of convex random functions

defined on an open convex set S of Rp, which convergences in probability to some A(s),

for each s ∈ S. Show that the convergence is automatically uniform; maxs∈S |An(s) −
A(s)| →pr 0.

(b) Nearness of argmins: Suppose An(s) is convex and is approximated by Bn(s). Let

αn and βn be the argmins of An and Bn. Then there is a probabilistic bound on how far

these minimisers can be from each other: show that

P (||αn − βn‖ ≥ δ) ≤ P{∆n(δ) ≥ 1
2hn(δ)},

where

∆n(δ) = sup
‖s−βn‖≤δ

|An(s)−Bn(s)| and hn(δ) = inf
‖s−βn‖=δ

Bn(s)−Bn(βn).

(c) Basic corollary: Suppose An(s) is convex and can be represented as 1
2s

tJs + U t
ns +

Cn+rn(s), where J is symmetric and positive definite, Un is stochastically bounded, Cn is

arbitrary, and rn(s)→pr 0 for each s. For the approximation Bn(s) = 1
2s

tJs+U t
ns+Cn,

show that βn = −J−1Un is its argmin. Then demonstrate that their minimisers as

well as their minima are close. Specifically, show (i) that αn − βn →pr 0; and (ii) that

An,min −Bn,min →pr 0.

(d) Show that if in addition Un →d U , then αn →d −J−1U , and that Bn,min − Cn as

well as An,min−Cn tend to − 1
2U

tJ−1U . These two statements are what we worked hard

for in Ex. 4.48, 4.50 see (4.8)–(4.9), now obtained in a simpler fashion and with weaker

smoothness assumptions, though bought with the extra convexity condition.
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(e) Prove the following modest but useful generalisation of the above: the statements

continue to hold if a random matrix Jn replaces V , provided Jn →pr J .

Ex. 4.52 Minimisers of convex processes, II. The framework worked with now is as in

Ex. 4.47 and 4.49, with Y1, . . . , Yn being i.i.d. from some F , a possibly multidimensional

parameter θ0 defined as the minimiser of H(θ) =
∫
h(y, θ) dF (y), with estimator θ̂ the

minimiser of the criterion function Hn(θ) =
∫
h(y, θ) dFn(y) = (1/n)

∑n
i=1 h(Yi, θ). Here

we put in one more condition, however, that h(y, θ) is convex in θ. The point is that

this both simplifies various technical arguments, via methods of Ex. 4.51, and allows for

nonsmooth criterion functions.

(a) With h(t, µ) = |y − µ|, show that µ0 = med(F ), the median, with µ̂ = Mn, the

sample median. More generally, for some q ∈ (0, 1), consider

hq(y, µ) = q(y − µ)+ + (1− q)(µ− y)+ =

{
q(y − µ) if y ≥ µ,
(1− q)(µ− y) if y ≤ µ.

Show that µ0 = F−1(q), the q quantile.

(b) For an α ≥ 1, consider the parameter θ0 being the minimiser of EF |Y − θ|α. Show

that the criterion function indeed is convex, and that the special cases α = 1 and α = 2

correspond to the median and the mean, respectively.

(c) We now work through regularity conditions ensuring control over the behaviour of

such estimators. Part of the point is that we avoid needing smooth derivatives in θ.

Suppose that

h(y, θ0 + ε)− h(y, θ0) = D(y)tε+R(y, ε),

for a D(y) with mean zero under F , and that

E {h(Y, θ0 + ε)− h(Y, θ0)} = ER(Y, ε) = 1
2ε

tJε+ o(‖ε‖2) as ε→ 0

for a positive definite J . Assume furthermore that the variance matrix K = VarF D(Y ) is

finite and that VarR(Y, ε) = o(‖ε‖2). Show that
√
n(θ̂−θ0) = −J−1(1/

√
n)
∑n
i=1D(Yi)+

opr(1). In particular, it tends to Np(0, J
−1KJ−1). Show also that

Wn(θ0) = 2n{Hn(θ0)−Hn(θ̂)} →d U
tJ−1U,

and explain how this may be used to find a confidence region for θ0.

(d) The median: Suppose Y1, . . . , Yn are i.i.d. from a distribution F with a density f

positive at the median µ. For the median criterion function |y − µ|, show that

|y − (µ+ ε)| − |y − µ| = D(y)t+R(y, ε),

with D(y) = I(y ≤ µ)− I(y > µ) and

R(y, ε) =

{
2{ε− (y − µ)} I(µ ≤ y ≤ µ+ ε) if ε > 0,

2{(y − µ)− ε} I(µ+ t ≤ y ≤ µ) if ε < 0,

with R(y, 0) = 0. Verify from this that ER(Y, ε) = f(µ)ε2 + o(ε2) and ER(Y, ε)2 =

(4/3)f(µ)|ε|3 + o(|ε|3). Deduce that
√
n(Mn − µ)→d N(0, 1/{4f(µ)2}).
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(e) Generalise to the case of µq = F−1(q), with Qn,q = F−1
n (q) the empirical q quantile.

Show in fact that

Zn(q) =
√
n(Qn,q − µq) = −f(µq)

−1
√
n{Fn(µq)− q}+ εn(q),

where εn(q)→pr 0 for each q. Derive from this that the limit is a N(0, q(1− q)/f(µq)
2).

(xx point back to sample quantiles things from Ch2. also Ch9. but here easier with

different tools, and we get a nice representation. xx)

(f) Let ξα be the minimiser of E |Yi−ξ|α, with estimator Mn,α minimising
∑n
i=1 |Yi−ξ|α.

Show that

√
n(Mn,α − ξα)→d N(0, τ2

α) with τ2
α =

E |Y − ξα|2(α−1)

{(α− 1) E |Y − ξα|α−2}2
.

(xx if distribution is symmetric, the ξα is the same for each α. check τα for α ∈ [1, 2],

the range from median to mean, for the normal, for the Laplace, perhaps the tν . check

carefully the thing with α→ 1. xx)

Ex. 4.53 Minimisers of processes, III. (xx to be done. lifting minimum criterion func-

tion estimators, with profiling, under smoothness or via convexity, from non-i.i.d., to

regression type situations. xx) minimising
∑n
i=1 h(yi, θ, xi). having ML in regression in

mind.

(a) (xx setup: θ̂ minimising Hn(θ) =
∑n
i=1 h(yi, xi, θ), where Yi |xi follows f(yi |xi, θ).

ergodic assumption, that all averages (1/n)
∑n
i=1 p(xi) have limits

∫
p(x) dQ(x). again

we do

An(s) = n{Hn(θ0 + s/
√
n)−Hn(θ0)} = U t

ns+ 1
2Jns+ rn(s),

with Un = (1/
√
n)
∑n
i=1 h

′(yi, xi, θ0) and Jn = (1/n)
∑n
i=1 h

′′(yi, xi, θ0). now need Lin-

deberg for Un, with Kn = (1/n)
∑n
i=1 Varh′(yi, xi, θ0) → K. with regularity conditions

on smoothness, we again have
√
n(θ̂−θ0) = −J−1

n Un+opr(1) and An,min →d − 1
2U

tJ−1U .

subtle things here, when going for least false. there is a least false θ0,n depending on

x1, . . . , xn, so we reach results for
√
n(θ̂ − θ0,n). applications to regression estimators

later on. again, point to ML in Ch5. xx)

Ex. 4.54 Minimum criterion function estimators in practice. (xx to be done suitably.

the point is to explain that we need estimating J and K. something for profiling. when

we come to Ch5 theory, we point to this exercise for basics. xx) In previous exercises we

have learned that θ̂, the minimiser of Hn(θ) = (1/n)
∑n
i=1 h(Yi, θ), is a natural estimator

for θ0, the minimiser of EF h(Y, θ), and that its distribution approaches normality. In

order to use such results in practice, for setting confidence intervals, etc., we need to

estimate the two crucal matrices J = EF h
′′(Y, θ0) and K = VarF h

′(Y, θ0).

(a) Consider first, in general terms, some function p(y, θ) with finite mean in a neighbour-

hood of the true θ0, with θ̂ an estimator of θ0. Explain first that pn = (1/n)
∑n
i=1 p(Yi, θ0)

tends to p0 = EF p(Y, θ0). The best we may do for estimating p0 in practice is p̂n =

(1/n)
∑n
i=1 p(Yi, θ̂). Show that if |p(y, θ0 + ε) − p(y, θ0)| ≤ M(y)‖ε‖, for all small ‖ε‖,

for some function M(y) with finite mean, then indeed p̂n →pr p0.
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(b) Give conditions under which the natural estimators

Ĵ = (1/n)

n∑
i=1

h′′(Yi, θ̂) and K̂ = (1/n)

n∑
i=1

h′(Yi, θ̂)h
′(Yi, θ̂)

t

are consistent for J and K. Deduce that when such hold, the empirical sandwich matrix

Σ̂ = Ĵ−1K̂Ĵ−1 is consistent for Σ = J−1KJ1.

(c) Explain how confidence intervals for the components of θ may be read off from this.

More generally, for any focus parameter φ = g(θ), with estimator φ̂ = g(θ̂), show that

φ̂±1.96 κ̂/
√
n is an approximate 95 percent interval for φ, where κ̂2 = ĉtĴ−1K̂Ĵ−1ĉ, and

ĉ = ∂g(θ̂)/∂θ.

(d) To illustrate how this machinery works in practice, simulate 100 points from the

standard normal, and then estimate the two normal parameters (ξ, σ) via minimum L2,

as in Ex. 4.47. Explain that this means minimising the criterion function

Hn(ξ, σ) =

∫
f(y, ξ, σ)2 dy − 2

n

n∑
i=1

f(yi, ξ, σ) =
1
2/π

1/2

σ
− 2

n

n∑
i=1

1

σ
φ
(yi − ξ

σ

)
Carry out this minimisation using e.g. nlm in R, a non-linear minimisation algorithm,

which finds both (ξ̂, σ̂) and the Hessian Ĵ . Compute also K̂, and find confidence intervals

for ξ, for σ, and for p(y0) = P (Y ≥ y0), with say y0 = 1.00.

(e) (xx profiling too, to illustrate, for p(y0). again handled by the general theory. inter-

vals need k = ctJ−1KJ−1c/ctJ−1c. xx)

(f) Change one or two of your simulated datapoints to somewhat far-off values, e.g. y99 =

d and y100 = d, with d = 5.00 (which indeed is really far off for the standard normal).

Observe what then happens to the ordinary ML estimators, and compare with what

happens with the minimum L2 estimators. The point is the the minimum L2 method is

much more robust than the ML method.

Ex. 4.55 Showing convergence in two steps. (xx needs xref and calibration, depending

on how it is presented and where applications follow. it is valid for any metric space with

distance d(x, y), not merely Rk. xx) Suppose one wishes to prove that Xn →d X, but

that technical issues make it easier to first prove that an approximation to Xn converges

to an approximation to X. With a suitable extra condition this might suffice.

(a) For the approximations An,k to Xn and Ak to X, suppose (i) that An,k →d Ak, for

each k, and (ii) that Ak →d X as k →∞. In addition, assume that

lim supP (d(Xn, An,k) ≥ ε) = 0 for each ε > 0.

Show that Xn →d X.

(b) (we find a simple application or two here, before we use the two-step method in

bigger setups. xx)
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Ex. 4.56 A CLT for 1-dependent variables. (xx decide later if these few should be

pushed to Ch. 12. xx) Consider a stationary sequence Y1, Y2, . . ., with mean zero and

variance one, being 1-dependent. Stationarity means (Y1, . . . , Yr) having the same dis-

tribution as (Yi+1, . . . , Yi+r), for any i and block lengths r, and 1-dependence means

that Yi, Yi+1 may be dependent, but Y1, . . . , Yi is independent of Yi+2, Yi+3, . . .. This

exercise reaches a CLT for
∑n
i=1 Yi, representing a genuine extension of the usual CLT

and Lindeberg theorems from independence.

(a) Writing ρ = corr(Yi, Yi+1), show that (1/k)Var(Y1 + · · ·+Yk) = 1+2(1−1/k)ρ which

then goes to 1 + 2ρ for increasing k.

(b) For a given block length k, split Y1 + · · ·+ Yn into [n/k] blocks, and write block j of

these as Uj + Vj , with Uj as sum of k − 1 consecutive observations and Vj the last one

of that block. Write then

Zn = (1/
√
n)

n∑
i=1

Yi = (1/
√
n)
([n/k]∑
j=1

Uj +

[n/k]∑
j=1

Vj + En

)
,

with En any extra left after the k[n/k] variables captured in these first [n/k] blocks.

(c) Explain why U1, U2, . . . are independent, so that the usual CLT applies to these.

Show that (1/
√
n)
∑[n/k]
j=1 Uj →d N(0, τ2

k ), with τ2
k = (1/k)Var (Y1 + · · ·+ Yk−1).

(d) Then use Ex. 4.55 to prove that (1/
√
n)
∑n
i=1 Yi →d N(0, 1 + 2ρ), i.e. a CLT for

1-dependent variables.

(e) Assume X1, X2, . . . are i.i.d. with mean zero and variance one. Consider Zn =

(1/
√
n)(X1X2 +X2X3 + · · ·+Xn−1Xn). Show that Zn →d N(0, 1). Show also that

Z ′n = (1/
√
n)

n−1∑
i=1

(Xi − X̄n)(Xi+1 − X̄n)

has the same limit distribution, where X̄n as usual is the sample mean.

Ex. 4.57 A CLT for m-dependent variables. In natural generalisation of Ex. 4.56,

consider a stationary m-dependent sequence Y1, Y2, . . ., with mean zero and variance σ2.

There is accordingly potential dependence among Y1, . . . , Ym, but for any i, (Y1, . . . , Yi)

is independent of (Yi+m+1, . . . , Yn).

(a) Writing cov(Yi, Yj) = σ2ρ(|j − i|), with the autocorrelation function ρ(·), show first

that in general terms,

(1/n) Var
( n∑
i=1

Yi

)
= σ2

{
1 + 2

n∑
j=1

(1− j/n)ρ(j)
}
.

Then show that for the case of m-dependence, for any k ≥ m, we have (1/k) Var(Y1 +

· · ·+ Yk)→ σ2{1 + 2
∑m
j=1 ρ(j)},
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(b) Extend arguments and techniques from Ex. 4.56 to show that (1/
√
n)
∑n
i=1 Yi tends

to a zero-mean normal with variance σ2{1 + 2ρ(1) + · · ·+ 2ρ(m)}.

(c) (xx a bit on how the acf works for an i.i.d. sequence:
√
nρ̂(j)→d N(0, 1), for each j.

xx)

Ex. 4.58 Local asymptotics. The CLT and Lindeberg machineries yield normal limits

and hence approximations in situations where independent observations come from given

models. It is sometimes useful to extend such results to situations where observations

stem from distributions close to, but not equal to, the postulated start models. The

standard
√
n speed of convergence for the CLT and relatives leads naturally to the notion

of O(1/
√
n) neighbourhoods. If there is limiting zero-mean normality of variables like√

n(θ̂− θ0), under a relevant null model at θ0, then such variables typically have limiting

non-zero-mean normal limits at such O(1/
√
n) alternatives.

(a) A simple setup illustrating such ideas is the following. Suppose X1, . . . , Xn are

i.i.d. from a distribution with mean ξ + δ/
√
n and variance σ2

n = σ2 + d/n. Consider

then Zn =
√
n(X̄n − ξ). Use the Lindeberg theorem, or a triangular version of the CLT,

to demonstrate that Zn →d N(δ, σ2).

(b) (xx for Ch. 5, an exercise with
√
n(θ̂ − θ0) →d N(bδ, J−1), when data stem from

f(y, θ0) + δ/
√
nh(y). natural special case: f(y, θ0, γ0δ/

√
n). xx)

(c) xx

Ex. 4.59 Approximate normality when combining information sources. (xx this is a nils

rant, so far. it needs intro sentences. the point is partly that yes, Lindeberg gives us

limiting normality of sums, but we also need consistent variance estimators. xx) To illus-

trate the general themes, in a situation exhibiting these general components, consider the

following setup. There are Poisson parameters θ1, . . . , θk, with associated independent

Poisson observations yj,, . . . , yj,mj
for θj , leading to θ̂j = ȳj = (1/mj)

∑mj

`=1 yi,`. The

object is to make inference for the linear combination φ = atθ =
∑k
j=1 ajθj , for which

we use the estimator φ̂ = atθ̂ =
∑k
j=1 aj θ̂j , with variance

B2
k = Var φ̂ =

k∑
j=1

a2
jθj/mj .

(a) For Y ∼ Pois(θ), show that E (Y − θ)3 = θ, and that this implies that its skewness is

1/θ1/2. Show also that with Y1, . . . , Ym i.i.d. from this distribution, we have E (Ȳ −θ)3 =

θ/m, with skew(Ȳ ) = 1/(mθ)1/2. Thus the skewness tends to zero, indicating limiting

normality, as long as with θ, or m, or both, grow.

(b) Show furthermore that

skew(φ̂) = E
( φ̂− φ
Bk

)3

=

∑k
j=1 a

3
jθj/mj

(
∑k
j=1 a

2
jθj/mj)3/2

.

(xx then some Lindeberg things here, understanding when this tends to zero, leading to

Zk,0 = (φ̂− φ)/Bk →d N(0, 1). play a bit with aj ,mj . xx)
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(c) (xx then wish to find a case where variance is not well enough estimated. xx) We

estimate the variance using B̂2
k =

∑k
j=1 a

2
j θ̂j/mj . To make inference for φ we need not

merely the result of (b), but also relative consistency of the variance estimate. Show that

Vk = B̂2
k/B

2
k has mean 1 and variance

VarVk =

∑k
j=1 a

4
jθj/m

2
j

(
∑k
j=1 a

2
jθj/mj)2

.

(xx rigging the game so that Zk,0 →d N(0, 1), but not Zk. As a special case to consider,

take a common mj = m0 for all sample sizes, aj = j, and assume θj = 1/j. What

happens to Bk, B̂k, Vk, and the natural ratio Zk = (φ̂− φ)/B̂k? xx)

(d) (xx then find the typical behaviour of Vk, to ensure also Zn = (φ̂−φ)/B̂k →d N(0, 1).

make connections to chapter 4 stuff on deviance and wilks. the Wilks thing is close to

Z2
n. xx)

Ex. 4.60 Limiting normality of the sample variance matrix. (xx can be better placed,

inside Ch 3. results are used for Ex. 5.38. xx) Consider i.i.d. vectors Y1, . . . , Yn from the

multinormal Np(ξ,Σ), first with known mean vector ξ, which we for convenience then

set to zero. The estimated variance matrix is Σ̂ = (1/n)
∑n
i=1 YiY

t
i .

(a) Write σj,k for the elements of the p × p matrix Σ, and σ2
j for σj,j , the variance of

component j of Yi. Show that its estimator is σ̂2
j = (1/n)

∑n
i=1 Y

2
i,j , and that it has the

distribution of σ2
jχ

2
n/n. Show also that

√
n(σ̂j,j − σj,j) → Mj,j , with this limit having

the N(0, 2σ4
j ) distribution.

(b) Using first the one-dimensional CLT, show that
√
n(σ̂j,k − σj,k) has a normal limit

Mj,k, and find its variance.

(c) Then show that there is convergence in distribution of the full matrix, say
√
n(Σ̂ −

Σ)→d M , with M = (Mi,j)i,j=1,...,p multinormal with zero means, and that

cov(Mi,j ,Mk,l) = σi,kσj,l + σi,lσk,j .

(d) Assume Σ has full rank p. Show that limiting normality for Σ̂ implies limiting

normality for Σ̂−1, and that in fact
√
n(Σ̂−1 − Σ−1) →d M

∗ = −Σ−1MΣ−1. Writing

σj,k for the elements of Σ−1, show that cov(M∗i,j ,M
∗
k,l) = σi,kσj,l + σi,lσj,k.

(e) In case of an unknown mean vector, one uses the sample variance matrix Σ̃ = (n −
1)−1

∑n
i=1(Yi − Ȳ )(Yi − Ȳ )t. Show that

√
n(Σ̃ − Σ̂) →pr 0, where Σ̂ = n−1

∑n
i=1(Yi −

ξ)(Yi − ξ)t uses the ξ. Deduce that
√
n(Σ̃ − Σ) →d M and

√
n(Σ̃−1 − Σ−1) →d M

∗ =

−Σ−1MΣ−1, i.e. with the same limits as above.

(f) (xx something to round if off. perhaps dimension 2. mention the Wishart distri-

bution, but here we derive limits without knowing or using that. also, not lost at sea

outside multinormality, but the covariance structure for the limit M becomes much more

complicated. xx)
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Ex. 4.61 Summing geometrically many terms. Suppose Y1, Y2, . . . are i.i.d. with mean

zero, variance σ2, and moment-generating function M0(t). With P (N = n) = (1−p)n−1p

for n ≥ 1, i.e. a geometric distribution, consider Zp = p1/2(Y1 + · · · + YN ), with the Yi
being independent of N .

(a) Show first that the generating function for N is E sN = ps/{1 − (1 − p)s} for |s| <
1/(1− p); see Ex. 1.42. Show that Zp has variance σ2, and that its moment-generating

function may be written

Kp(t) = E exp(tZp) = pM0(p1/2t)/{1− (1− p)M0(p1/2t)}.

(b) Then use M0(t) = 1 + 1
2σ

2t2 + o(|t|2) to demonstrate that as p→ 0, with increasing

number of terms EN = 1/p, we have Kp(t)→ 1/(1− 1
2σ

2t2) for |t| <
√

2/σ. This shows

that Zp →d Lσ, the Laplace distribution with standard deviation σ, see Ex. 1.27.

(c) For the particular case of a sum of randomly many normal terms, let the Yi be

i.i.d. standard normal. Show what Zp |N ∼ N(0, pN), and that pN →d Expo(1) as

p→ 0. Explain how this matches Ex. 1.27.(c).

(d) (xx one or two further illustrations, with Laplace limit of p1/2(Y1 + · · ·+ YN ). with

Yi = Qi− 1, Poisson, we learn p1/2(VN −N)→d L, where VN ∼ Pois(N). similarly with

p1/2(WN −N), where WN |N ∼ χ2
N , randomly many degrees of freedom. xx)

(e) (xx something to simulate, to illustrate the cusp behaviour at the centre. with the

Yi having mean ξ and variance 1, we have

p1/2(Y1 − ξ + · · ·+ YN − ξ) = p1/2N(Ȳ − ξ) = (pN)1/2N1/2(Ȳ − ξ)→d L1.

this gives different inference for ξ, and different predictions for Ȳ , than what we’re used to

from normal terrain. we’re also in scale mixtures of normal terrain, with random variance

tending to a unit exponential. i’ll look for variations. i do like the pN →d Expo(1), since

it gives the cool cusp in the limit for Zp, but other variations for pN →d V are ok too.

xx)

(f) (xx just ranting away a bit until things settle. xx) More generally, with Y1, Y2, . . .

being i.i.d. with zero mean and unit variance, consider

Zp = p1/2(Y1 + · · ·+ YN ) = (pN)1/2N1/2ȲN ,

with N having a distribution such that pN →d V , say, as p → 0. From the CLT,

N1/2ȲN →d N(0, 1), so this amounts to a situation with a normal limit, but a random

variance, as in X |V ∼ N(0, V ) but V random. Here E exp(tX) = E exp( 1
2 t

2V ) =

M0( 1
2 t

2), where M0(u) = E exp(uV ) is the mgf for V . Also, X has density

f̄(x) =

∫
φ(x/v1/2)(1/v1/2) dH(v),

with H the distribution of V . – The special case above amounts to N ∼ geom(1/p),

where pN tends to the unit exponential, and where X gets the Laplace distribution. For
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another case, consider N |λ ∼ Pois(λ/p), and with λ having its own distribution with

mean and variance λ0 and τ2
0 , say. Show that E pN = λ0 and that Var pN → τ2

0 . Also

consider the special case for this setup where λ ∼ Gam(a, b). From

E {exp(−spN) |λ} = exp[−(λ/p){1− exp(−sp)}]

deduce

E exp(−spN) =
1

[1 + (1/b)(1/p){1− exp(−sp)}]a
→ 1

(1 + s/b)a
,

and that pN →d Va,b, another Gam(a, b). With the construction above, the normal scale

mixture variable X has mgf 1/(1− 1
2 t

2/b)a, and density

f̄(x) =

∫
φ(x/v1/2)(1/v1/2)

ba

Γ(a)
va−1 exp(−bv) dv.

This is a Laplace, for a = 1. (xx but different, and interesting, for other a. round this

off. xx)

(g) (xx i think we can use these tools to form a full Laplace process, for BNP use or

otherwise. we should tune in to a Zp(t) = p1/2(Y1 + · · ·+YN(t)), with a clever N(t). will

look at N(t) being a negative binomial process with mean t/p. nils thinks this works: (i)

λ ∼ Gam(1, b), with mean λ0 = 1/n. (ii) N |λ ∼ Pois(λ/p). write down E (pN |λ) and

Var (pN |λ), then unconditional mean and variance for pN . (iii) find limit in distribution

of pN . (iv) study Zp = p1/2
∑N
i=1 Yi, close to (pN)1/2 times a normal, etc. (v) make it

into a full Laplace process, by having λt ∼ Gam(1, bt). xx)

Ex. 4.62 Maximum sample value of exponentials and the Gumbel distribution. (xx nils

reorganises some of these exercises which need tidying up. i now start with the gumbel

and the maximum of exponentials, before taking up other gumbel related matters. xx)

We define the Gumbel distribution on the real line by its cumulative distribution functionthe Gumbel

distribution G0(u) = exp{− exp(−u)}.

(a) Show that G0 is indeed a cumulative distribution function, that its density is g0(u) =

exp{−u− exp(−u)}, and that its Laplace transform is L0(s) = E exp(−sU) = Γ(1 + s),

in terms of the gamma function.

(b) Use properties of the gamma function to show that the mean and variance of the

Gumbel distribution is γe and π2/6, where γe = 0.5772... is the Euler constant. Thethe Euler–

Mascheroni

constant
latter has several equivalent definitions, among which is that Hn − log n → γe, where

Hn = 1 + 1/2 + · · ·+ 1/n is the partial sum of the divergent harmonic series.

(c) With U having the Gumbel distribution, show also that its mode is 0 and that its

median is − log(log 2) = 0.367. Find an expression for the q-quantile G−1
0 (q). Show that

P (−1.097 ≤ U ≤ 2.970) = 0.90.

(d) The Gumbel distribution turns up in various contexts concerning extreme values.

The simplest such case is as follows: let X1, . . . , Xn be i.i.d. from the unit exponential

model, with Mn = maxi≤nXi their maximum. Show that Mn− log n→d U , the Gumbel

distribution.
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(e) We may learn more about the distribution of Mn via first investigating the spacings.

With X(1) < · · · < X(n) being the order statistics, let D1 = X(1), D2 = X(2) − X(1),

up to Dn = X(n) − X(n−1). We have seen via Ex. 1.12 and 2.22 that the spacings are

independent (for this special case of the exponential), with Di ∼ Expo(n− i+ 1). Show

that this leads to the representation

X(n) = D1 + · · ·+Dn = V1/1 + V2/2 + · · ·+ Vn/n,

with V1, . . . , Vn being i.i.d. and unit exponential.

(f) Show from this that Mn has mean Hn
.
= log n+ γe and variance

∑n
i=1 1/i2, tending

to π2/6. This is agreement with the Gumbel limit for Mn − log n.

(g) Show that Mn−Hn →d U − γe, the zero-mean version of the Gumbel. Deduce from

this that

lim
n→∞

E exp{−s(Mn −Hn)} =

∞∏
i=1

exp(s/i)

1 + s/i
= Γ(1 + s) exp(γes).

This infinite-product form of the gamma function is actually equivalent to a famous

formula by Weierstraß. Show also that

∞∑
i=1

{s/i− log(1 + s/i)} = γes+ log Γ(1 + s) =

∞∑
j=2

(−1)j
ζ(j)

j
sj ,

valid for |s| < 1, where ζ(j) = 1 + 1/2j + 1/3j + · · · is Riemann’s zeta function, at j.

(xx two more sentences. here we derive these deep mathematical facts from a simple

convergence in distribution result; could also go the other way, if we start with gamma

function knowledge. xx)

(h) Yet another fruitful perspective on what we’ve learned above is in terms of an infinite

sum of smaller and smaller exponentials. Consider independent exponentials W1,W2, . . .,

where Wi ∼ Expo(i), i.e. with mean 1/i. Show that W =
∑∞
i=1(Wi − 1/i) is finite, with

probability one, and that its distribution is that of U − γe, the zero-mean Gumbel.

Ex. 4.63 Weibull and Gamma maxima. The basic result of Ex. 4.62, concerning the

maximum of a sample of exponentials, leads to limit distribution results also for maxima

from other distributions.

(a) Suppose that X1, . . . , Xn are i.i.d. from the Weibull distribution, with cumulative

function F (x) = 1 − exp{−(x/a)b}, for certain parameters (a, b). With Mm the sample

maximum, show that (Mn/a)b − log n tends to the Gumbel distribution.

(b) In two minutes, simulate n = 1000 values from the Weibull with (a, b) = (1, 1
2 ).

Guess in advance how large Mn will be, using the representation Mn = a(log n+Un)1/b,

where Un tends to the Gumbel.

(c) Similarly consider the Gamma distribution with parameters (a, b) = (2, 1), where the

cumulative can be expressed as F (x) = 1 − exp(−x)(1 + x), see Ex. 1.9. With Mn the

maximum of a sample of size n from this distribution, show that Mn− log(1+Mn)− log n

tends to the Gumbel distribution. What is the approximate median for the Mn?
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(d) More generally, suppose F (x) = 1− exp{−A(x)}, with A(x) the cumulative hazard

rate, and let again Mn be the maximum value from a sample of size n. Show that

A(Mn)− log n tends to the Gumbel.

Ex. 4.64 Maximum of independent geometric variables. Let T have the geometric

waiting time distribution with parameter p, i.e. with point probabilities (1 − p)t−1p for

t = 1, 2, . . .. We write T ∼ geom(p) to indicate this distribution; see Ex. 1.15.

(a) Show that V = pT has mean 1 and variance 1 − p. Show also that if p → 0, then

V = pT tends to the unit exponential in distribution. Give an approximate formula for

the median of a geometric distribution with small p.

(b) Now suppose V1, . . . , Vn are independent geometric waiting times with parameter

1/n, hence with mean value n. With Zn = max(V1, . . . , Vn) the time until all waiting

times have been completed, show that (Zn − n log n)/n→d U , the Gumbel.

(c) Deduce from this that

ns
n∏
i=1

(i/n) exp(−s/n)

1− (i/n) exp(−s/n)
→ Γ(1 + s).

Use the Stirling formula, see Ex. 4.31, to give an approximation to
∑n
i=1 log{1−(i/n) exp(−s/n)}.

(d) (xx one more thing here. xx)

Ex. 4.65 Collecting cards: how long time? (xx nils will reorganise this a bit, after the

abels taarn things. plan is basic things T1 + · · · + Tn here, Gumbel limit, a bit more in

next exercise, this being Ch4. then likelihood things in Story iv.6 about estimating n

from Vr = T1+· · ·+Tr, time to having seen r different cards. then story about estimating

n from observed Vr. xx) Consider a deck of n cards, with X1, X2, . . . independent draws

from these, i.e. uniform on {1, . . . , n}. How many such random draws are necessary,

before you have seen all n cards? – There are several reformulations of this card collecting

problem, and with other metaphors. You may think of a fair die, with n faces, and ask

how many times you need to roll it until you’ve seen all faces.

(a) Show that the time needed, until we have seen all n cards, can be represented as

Vn = T1 + · · · + Tn, where Ti is geometric with parameter pi = (n − i + 1)/n. Hence

ETi = n/(n− i+ 1), and the card finding process is easy in the beginning, then steadily

harder. We may also re-order the Ti to Vn = T ′1 + · · ·+T ′n, where T ′i ∼ geom(i/n), which

for some purposes is an easier representation.

(b) Let (N1, . . . , Nn) be the number of times cards 1, . . . , n have been seen, in the course

of z independent random draws from the deck. Show that this is a multiomial with

count z and probabilities (1/n, . . . , 1/n); in particular, Ni ∼ binom(z, 1/n). Show that

the correlation between Ni and Nj is −1/(n− 1).

(c) Show also that another representation of Vn is as max(W1, . . . ,Wn), where Wi is

the first time Ni ≥ 1. Show that Wi ∼ geom(1/n), with mean n. These are however
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dependent, so the Gumbel limit result of Ex. 4.64 does not immediately apply. Show

that the correlation between Wi and Wj is small, however, namely − 1
2/(n−1), indicating

that (Vn−n log n)/n should converge to the Gumbel, even with these waiting times being

dependent. (xx polish wording here. xx)

(d) (xx nils will coordinate and calibrate this with what is placed in Ex. 1.15. xx) For

Ti, with distribution (1− pi)t−1pi for t = 1, 2, 3, . . ., show that

ETi =
1

pi
, VarTi =

1− pi
p2
i

, E (Ti − 1/pi)
3 =

(1− pi)(2− pi)
p3
i

,

so the skewness of Ti is E (Ti − 1/pi)
3/σ3

i = (2− pi)/(1− pi)1/2.

(e) Show that

EVn = n(1 + 1/2 + · · ·+ 1/n) = nHn
.
= n(γ + log n),

using Ex. 4.62. Show also that

VarVn =

n∑
i=1

(n2

i2
− n

i

)
.
= n2(π2/6)− n(γ + log n).

(f) (xx limit of skewness. not zero. xx) Now consider

Un =
Vn − EVn
(Var vn)1/2

, Un,0 =
Vn − n(γ + log n)

nπ/
√

6
,

and show that Un − Un,0 →pr 0. Show further that

EU3
n =

∑n
i=1 E (Ti − pi)3

(VarZn)3/2

.
=

2n3
∑n
i=1(1/i3) +O(n2)

n3π3/63/2
→ 2 · 1.2021

π3/63/2
= 1.1396.

(g) So we’re outside limiting normality; show indeed that the Lindeberg condition cannot

hold here. (xx limit distribution. other things. xx)

(h) With U ′n = (Vn − n log n)/n = T̄n − log n, show that

E exp(−sU ′n) = exp(s log n)

n∏
i=1

E exp{−(s/n)Ti}

= ns
n∏
i=1

(i/n) exp(−s/n)

1− (1− i/n) exp(−s/n)
.

Then show that U ′n →d U . (xx hmm, have not landed this properly yet, but can be cool

story. and if we prove U ′n →d U in some other way, we are automatically deriving the

side consequence

An(s) =

n∏
i=1

{1− (i/n) exp(−s/n)} .= ns exp(−n− s)(2πn)1/2

Γ(1 + s)
,

or
n∏
i=1

{exp(s/n)− (i/n)} .= ns exp(−n)(2πn)1/2

Γ(1 + s)
,

which for s = 0 is Stirling. need a bit more work. xx)
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(i) It is also useful to find the distribution of Gn(v) = P (Vn ≤ v) explicitly. Argue that

Vn ≤ v is equivalent to A1 ∩ · · · ∩ An, where Ai is the event that i is seen in the course

of the first z attempts. With Bi = Aci its complement, that i has not been seen during

these first v attempts. use this to deduce that

1−Gn(v) = P (B1 ∪ · · · ∪Bn)

=

(
n

1

)
P (B1)−

(
n

2

)
P (B1 ∩B2) +

(
n

3

)
P (B1 ∩B2 ∩B3)− . . .

=

n∑
j=1

(−1)j−1

(
n

j

)
(1− j/n)v,

for v ≥ n. Use algebra to also derive

gn(v) = P (Vn = v) =

n∑
j=1

(−1)j−1

(
n− 1

j − 1

)
(1− j/n)v−1 for v ≥ n.

Use xn−1 + xn + · · · = xn−1/(1− x) for |x| < 1 to derive the identity

n−1∑
j=1

(−1)j−1

(
n

j

)
(1− j/n)n−1 = 1.

(j) Use the case (T1 = 1, . . . , Tn = 1) to derive

n∏
i=1

(i/n) =
n!

nn
=

n−1∑
j=1

(−1)j−1

(
n− 1

j − 1

)
(1− j/n)n−1,

and argue that these expressions are close to exp(−n)(2πn)1/2, by the Stirling approx-

imation. Show via arrangements of this formula that
∑n
j=0(−1)j

(
n
j

)
jn = n!. (xx

−4 · 1 + 6 · 16− 4 · 81 + 256 = 24, etc. xx)

(k) (xx pointer here to a different story, where we estimate n based on how long time it

took us to reach level r, i.e. Wr = T1 + · · · + Tr. it might be a CD story with Cr(n) =

Pn(Wr < Wr,obs) + 1
2Pn(Wr = Wr,obs). how many Italians in my neighbourhood? xx)

Ex. 4.66 The 2nd largest, 3rd largest, etc., for exponentials. Let as in Ex. 4.62

X1, . . . , Xn be i.i.d. from the unit exponential model. For the largest observation we

saw there that X(n) − log n → U , the Gumbel distribution with c.d.f. exp{− exp(−u)}.
Here we shall work with the 2nd largest, the 3rd largest, etc.

(a) For a positive, consider Wa, with density

ga(w) = Γ(a)−1 exp{−aw − exp(−w)} (4.11)

on the real line. Show that Va = exp(−Wa) has the gamma distribution with parameters

(a, 1), and that the Laplace transform becomes E exp(−tWa) = Γ(a + t)/Γ(a). The

Gumbel distribution is the case of a = 1, so we may consider (4.11) a generalised Gumbel.
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Figure 4.2: For n = 100, the dashed curves are densities for order statistics 98, 99, 100

for i.i.d. exponentials, computed via the limits log n+Wi for i = 1, 2, 3. The full curves

are empirical densities based on having simulated 104 outcomes for each.

(b) Deduce that Wa = log(1/Va) has mean −ψ(a) and variance ψ′(a). (xx pointer to

digamma function. approximations: ψ(a)
.
= log a − 1

2 (1/a), ψ′(a)
.
= 1/a − 1

2 (1/a2), for

growing a. xx)

(c) With order statistics X(1) < · · · < X(n), consider Wn,i = X(n−i+1) − log n, for given

i; the case i = 1 is Wn,1 = X(n) − log n already considered in Ex. 4.62. Show that

P (X(n−i+1) − log n ≤ w) = P (U(n−i+1) ≤ 1− (1/n) exp(−w)),

in terms of the order statistics for the uniform.

(d) Use the Beta connection of Ex. 2.20 to deduce that the density of Wn,i may be

written

gn,i(w) = be(1− (1/n) exp(−w), n− i+ 1, i)(1/n) exp(−w)

in terms of the Beta density with parameters (n− i+ 1, i). Take the limit to prove that

Wn,i →d Wi.

(e) (xx something to round this off, an approximation for say the 3rd largest. also

point to the representation X(n−i+1) = D1 + · · · + Dn−i+1 with scaled exponentials.

Figure 4.2 shows that the theory works well for n = 100. the figures features kernel
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density estimates, using methods of Chapter 13. can make a Story out of this. insurance

company cares for these most extreme outcomes. xx)

Ex. 4.67 Nonnormal limits. (xx polish this. point to process version, with more results

for hitting times, etc., in Ch. 9. xx) Normally limits are normal, but not always. Here

we shall indeed work with variables with mean zero and variance one, where the sample

averages have nonnormal limits. The basic construction is as follows. Let U1, U2, . . . be

i.i.d., with mean zero and variance one, and with moment-generating function M0(s) =

E exp(sUi) finite in a neighbourhood around zero; in particular, all moments for the Ui
are finite. Let independently of these J1, J2, . . . be independent Bernoulli variables with

P (Ji = 1) = 1/i, P (Ji = 0) = 1− 1/i. Then form

Zn =
1√
n

n∑
i=1

Ji
√
i Ui =

n∑
i=1

Ji
√
i/nUi.

A picture to have in mind is that most of the terms will be zero, with non-zero contri-

butions becoming both more rare and more big as time proceeds.

(a) Show that there will with probability one be infinitely many Ji = 1, i.e. non-zero

terms in the Zn sum as n grows.

(b) Show that the terms Ji
√
iUi have mean zero and variance one; hence also the nor-

malised sample average Zn has mean zero and variance one. Find also an expression for

the kurtosis κn = EZ4
n − 3 of Zn, and show that κn → 1

2a4, where a4 = EU4
i . Compare

this to what we are ‘used to’ from the Lindeberg theorem.

(c) We already know that if Zn has a limit distribution, it can’t be normal. Working

with the moment-generating function, show that

Mn(t) = E exp(tZn) =

n∏
i=1

[
1 +

1

i
{M0(t

√
i/n)− 1}

]
,

for all t around zero for which M0(t) is finite.

(d) Show that

n∏
i=1

[
1 +

1

i
{M0(t

√
i/n)− 1}

]
→ exp

{∫ 1

0

M0(t
√
x)− 1

x
dx
}
.

Work first with Special Case One, where we let Ui have the simple symmetric two-point

distribution P (Ui = 1) = P (Ui = −1) = 1
2 . Find the limiting kurtosis for Zn in this case.

Show that M0(s) = 1
2e
s + 1

2e
−s = 1 + (1/2!)s2 + (1/4!)s4 + · · · , and use this to find an

infinite-sum expression for the limit of Mn(t). Have you now proved that Zn has a limit

distribution?

(e) Then work with Special Case Two, where the Ui have a double exponential distri-

bution, of the form f(u) = 1
2

√
2 exp(−

√
2|u|) on the real line (the

√
2 factor is there to

ensure variance one). Find the moment-generating function M0(s) for the Ui, and then

the moment-generating function M(t) for the limit distribution of Zn.
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(f) For most cases, regarding the distribution for the Ui, it is hard to learn the explicit

distribution for Zn (even in cases where there might be a clear distribution for its limit).

For Special Case Two, however, find the explicit distribution for Zn, for any given n.

Ex. 4.68 Characterisations of the normal and the Cauchy. There are many character-

isation theorems in probability theory, results saying that appropriate assumptions or

properties fully characterise certain distributions- Here we give a few such, using char-

acteristic functions. (xx check with care. xx)

(a) Suppose F is a distribution, symmetric around zero, such that if X and Y are

independent from this distribution, then (X + Y )/
√

2 has the same distribution. Prove

that the distribution is normal.

(b) Suppose F is a distribution, symmetric around zero, such that if X and Y are

independent from this distribution, then (X + Y )/2 has the same distribution. Prove

that the distribution is a Cauchy.

(c) (xx one more. xx)

Ex. 4.69 Limiting normality of rank sums statistics. (xx to be edited and polished;

nils rant so far. we put it in if it looks smooth enough, and with a brief pointer to Story

v.5. point to Swensen (1983). xx) In a population of n individuals, followed on some

continuous scale, a subgroup of interest, of size m, has ranks X1, . . . , Xm. These form

a randomly selected subset of size m from {1, . . . , n}, with all such
(
n
m

)
subsets equally

likely. The rank sum Zn = X1 + · · ·+Xm is the Wilcoxon statistic.

(a) Explain that one may write Zn =
∑n
i=1 iJi, where the 0-1 variables Ji are such that

precisely m of them are 1, and with all
(
n
m

)
subsets of such 1s being equally likely. Find

E Ji, VarJi, cov(Ji, Jj) for j 6= i. Writing p = m/n for the sample ratio, show using

either of the representations
∑m
i=1Xi or

∑n
i=1 iJi that

EZn = 1
2m(n+ 1)

.
= 1

2n
2p, VarZn = (1/12)(n+ 1)m(n−m)

.
= (1/12)n3p(1− p).

(b) We aim indeed at showing limiting normality of Zn here, with both n and m becoming

larger, with m/n→ p. Explain that this must mean

(Zn − 1
2n

2p)/n3/2 →d N(0, (1/12)p(1− p)).

We cannot use CLT or Lindeberg for studying Zn, since the Xi are dependent, as are the

Ji. Consider however a different parallel setup, involving independent Bernoulli variables

J∗1 , . . . , J
∗
n with P (J∗i = 1) = p = m/n. Explain that the distribution of Zn is the same

as the distribution of Z∗n =
∑n
i=1 iJ

∗
i given

∑n
i=1 J

∗
i = m. Show now that(

An
Bn

)
=

(
(1/
√
n)
∑n
i=1(i/n)(J∗i − p)

(1/
√
n)
∑n
i=1(J∗i − p)

)
→d

(
A

B

)
∼ N2(

(
0

0

)
,

(
1/3, 1/2

1/2, 1

)
).

(c) Find the distribution of A | (B = b), and show in particular that A | (B = 0) ∼
N(0, 1/12). This gives a clear limiting normality statement for Z∗n, conditional on
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∑n
i=1 J

∗
i = m, and nicely solves our Wilcoxon problem; show that it corresponds pre-

cisely to the (Zn− 1
2n

2p)/n3/2 limiting statement above. (xx some extra care needed. but

an easy and instructive way to show normality for Wilcoxon, and also for other related

variables. to illustrate, find limiting normality for X
1/2
1 + · · ·+X

1/2
m =

∑n
i=1 i

1/2Ji. xx)

(d) (xx if we manage: also a link via the uniform order statistic process, and to integrals

of sal-and-pepper processes, with Wn =
∫ 1

0
([ns]/n) dCn(s), with the dCn(s) being ds or

0 with probabilities p and 1− p, but conditional on the random region
∫ 1

0
dCn(s) being

p = m/n. if we’re lucky there is a limit expressible as integral or Brownian bridge, for

Ch9. nils will attempt to fix this and at least make the idea more precise. xx)

Ex. 4.70 Leftovers Ch4. (xx just a preliminary little station for things that could be

put in, perhaps even inside other exercises, in Ch4 xx)

(a) somewhere: suppose (Xn, Yn) →d (X,Y ), a binormal zero-mean limit. Show that

Xn | (|Yn| ≤ ε) →d X | (|Y | ≤ ε), for each ε > 0, and that X | (|Y | ≤ ε) →d X | (Y = 0)

as ε → 0. Use Ex. 4.55 to put up a condition securing Xn | (|Yn| ≤ εn) →d X | (Y = 0)

for εn going to zero (at a certain rate?).

(b) Consider a distribution for Xi with mean zero and variance σ2, where we indeed

know that
√
nX̄n →d N(0, σ2). Suppose Xi also has an integrable characteristic function

ϕ(t), implying by Ex. 4.20 the existence of a smooth density f for Xi and also a density

fn for
√
nX̄n. Show that

fn(z) = 1/(2π)

∫
exp(−itz)ϕ(t/

√
n)n dt→ σ−1φ(σ−1z),

i.e. that there is convergence not merely for the cumulatives, but for the densities too.

Suppose next that Xi is discrete, without a continuous density; for a concrete example,

consider Xi = ±1 with equal probabilities, and for which ϕ(t) = cos t. Then Zn =
√
nX̄n

does not have a density, but we may add a little Gaussian noise, to form Z∗n =
√
nX̄n+δn,

with δn ∼ N(0, ε2
n). Show that Z∗n has density

f∗n(z∗) = 1/(2π)

∫
exp(−itz∗)ϕ(t/

√
n)n exp(− 1

2ε
2
nt

2) dt,

and that this again converges to the normal density σ−1φ(σ−1z∗) provided merely that

εn → 0.

(c) We may use the same trick also in the vector case. Specifically, with a p-dimensional

Xi having zero mean and covariance matrix Σ, show (i) that if Xi has an integrable

characteristic function, then the density for Zn =
√
nX̄n tends to the Np(0,Σ) density;

and (ii) that if Xi is discrete, without a density, then Z∗n =
√
nX̄n + δn, with some small

Gaussian added noise Np(0, ε
2
nΣ) with εn → 0, has a density f∗n(z∗) which tends to the

same Np(0,Σ) density.

(d) Suppose (An, Bn)t →d (A,B)t, a zero-mean binormal. If there is also density conver-

gence, with (An, Bn) having density fn(a, b) tending to the appropriate binormal density

f(a, b), show that An | (|Bn| ≤ εn) tends to A | (B = 0), as long as εn → 0. Show that
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the same limiting distribution statement holds also when (An, Bn) has a discrete distri-

bution, using the ‘adding small Gaussian noise to get densities’ trick. (xx emil: check the

arguments here; does this save our Wilcoxon problem, with stable convergence implied

by the regularity assumptions of the CLT and Lindeberg? xx)

4.C Notes and pointers

(xx to come. we point to certain famous things from the past: Kolmogorov (1933),

Lindeberg (1922), Borel and Cantelli. tail bounds. emil’s extension of the Inlow (2010)

paper, from CLT to Lindeberg. more on Lindeberg and the history of CLT developments

in Cramér (1976), also see Schweder (1980, 1999). xx)

[xx for Scheffé: see Scheffé (1947), but also Kusolitsch (2010), who explains that the

result is a special case of results published by F. Riesz in 1928. see also what Scheffe

says in his paper about comments he got from Morse. xx]

(xx When Jarl Waldemar Lindeberg was reproached for not being sufficiently active

in his scientific work, he said, ‘Well, I am really a farmer’. And if somebody happened

to say that his farm was not properly cultivated, his answer was, ‘Of course my real job

is to be a mathematics professor’. Hundred years ago!, i.e. in 1920, he published his

first paper on the CLT, and in 1922 he generalised his findings to the classical Lindeberg

Theorem, with the famous Lindeberg Condition, securing limiting normality of a sum of

independent but not identically distributed random variables. He did not know about

L�punov’s earlier work, and therefore not about uslovie L�punova, the Lyapunov

condition, which we treat below as a simpler-to-reach condition than the more general

one of Lindeberg. Other luminaries whose work touch on these themes around the 1920ies

and beyond include Paul Lévy, Harald Cramér, William Feller, and, intriguingly, Alan

Turing who (allegedly) won the war and invented computers etc. xx)

(xx point to a couple of characterisation theorems books, kagan linnik rao, one more.

xx)

(xx for Notes: The little log(1 + x) lemma is stated, proven, and used in Hjort

(1990b, Appendix). xx)

(xx the material is from Hjort and Pollard (1993) and Hjort (1986a). xx)

ToDo notes, of 13-Aug-2023.

Clean and calibrate. Include a couple of classic nonparametric test procedures, like

Wilcoxon, the sign test, more, to showcase the use of Lindeberg things to show limiting

normality of such statistics too. point to Hjort and Pollard (1993) and Hjort (1986a).

Include some non-normal limits. Can take µ̂∗ = {1− c(Dn)}µ̂narr + c(Dn)µ̂wide from

model selection. And point to n2/5 rates for f estimation.



I.5

Likelihood inference

Consider the joint density of a dataset Y from a parametric model, say ffull(y, θ).

The likelihood function, a fundamental concept in parametric inference, is just this

density, but seen as a function of θ, with y fixed at the observed dataset yobs.

In this chapter we go through the fundamental likelihood inference methods, in

particular with results for the maximum likelihood estimator, the maximiser of

the likelihood. Parts of the theory follow readily from results reached in Ch. 4 for

general minimum criterion function estimators, with the criterion function seen to be

related to to the Kullback–Leibler divergence. The likelihood methods are practical

and versatile, as is demonstrated in several exercises, also for say non-standard

regression models. With models outside the most familiar ones, inference analysis

essentially flows from being able to programme the log-likelihood function. Further

material connected to likelihood theory are Cramér–Rao information inequalities,

Wilks theorems, influence functions, and certain flexible robustification methods.

Crucially, the theory developed does not in general presuppose that the parametric

model worked with is correct, so results are established outside model conditions.

(xx perhaps there is room for empirical likelihood. xx)

5.A Chapter introduction

A fundamental concept in parametric statistical inference is that of the likelihood function,

most often worked with on logarithmic scale, i.e. via the log-likelihood function. Suppose

in general terms that a model for observations Y , perhaps a vector or a data matrix,

can be expressed as ffull(y, θ), the full or simultaneous model density, in terms of the

model parameter θ = (θ1, . . . , θp)
t, of dimension say p. Then the likelihood function is

L(θ) = ffull(yobs, θ), viewed as a function of the model parameters, with y held fixed at

the observed value yobs. Similarly the log-likelihood function islog-likelihood

function

`(θ) = log ffull(yobs, θ). (5.1)

When Y is a vector Y1, . . . , Yn of independent observations, perhaps with separate model

densities f1(y1, θ), . . . , fn(yn, θ), as in a multitude of regression setups, we have log-

likelihood `n(θ) =
∑n
i=1 log fi(yi,obs, θ). This chapter is about the long list of basic

157
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statistical tools, methods, results, applications, associated with the likelihod and log-

likelihood functions (with yet more to come in Chs. 6 and 7, with Bayesian methods and

with confidence distributions). A fundamental quantity is the maximum likelihood (ML) the ML

estimatorestimator, the θ̂ = θ̂(yobs) maximising the likelihood function (equivalent to maximising

the log-likelihood function). Via our exercises a full, versatile, very fruitful theory is

being developed, built around the maximum likelihood estimator, enabling statistical

inference for model parameters, functions thereof, assessing lower-dimensional models,

prediction of future outcomes, comparing models, etc. (xx two more paragraphs, also

pointing to Stories. highlight the versatility and broad usefulness; the theory works

and can be applied also for the not yet invented models. we include basic material for

empirical likelihood too. xx)

[xx calibrate with what’s in the abstract. telling the readers about the themes to

be worked with. Likelihood, estimators, tests, confidence, approximate multinormality,

Wilks theorems and tests, power. lots of uses. Occasionally we can deduce the exact

distributions, of ML estimators and test statistics, but more broadly we rely on large-

sample approximations to normal and chi-squared distributions. we also include a few on

empirical likelihood, drawing on Hjort et al. (2009, 2018). ‘Learning outcome’: you can

now construct your own parametric models, fit them via ML, and have clear inference

for any focus parameter. So versality! xx]

(xx ToDo, mainly nils: do ML regression outside models, for linear, logistic, Poisson,

a bit more; spell out sandwich estimation; Wilks profiling gives kχ2
1, etc. clean the

expofamily exercises. do ML and Wilks from smooth representations, as opposed to

deriving it from the regularity conditions things. if we include cc(φ), then need to have

this on board in one exercise. xx)

5.B Short and crisp

Ex. 5.1 Log-likelihood for the binomial. You throw your perhaps not perfectly balanced

die n = 60 times, and the number of times you have a ‘1’ is y = 8.

(a) Draw the log-likelihood function for the probability θ = P (having a ‘1’), and show

that its maximum occurs at θ̂ = 8/60. In the same diagram, draw the log-likelihood

function for the case of having observed y = 12, and comment.

(b) With a general y from the binomial (n, θ), set up the log-likelihood function `n(θ),

and show that its maximiser is θ̂ = y/n. Find also an expression for Ĵ = −`′′n(θ̂), the

sharpness of the peak.

Ex. 5.2 The likelihood and log-likelihood functions. Consider the one-parameter model

with density f(y, θ) = exp(−θy1/2)θ/(2y1/2) for y > 0, and assume n = 12 data points

have been observed:

0.233 0.334 0.067 0.148 0.007 0.639 0.017 0.298 0.030 0.120 0.061 0.063

(a) Write down the log-likelihood function `n(θ), and show that it is maximised at

θ̂ = 1/Wn, with Wn = (1/n)
∑n
i=1 y

1/2
i . Find also a formula for the Hessian at the

maximum position, Ĵ = −`′′n(θ̂).
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Figure 5.1: Left panel: The log-likelihood function `n(θ) for the simple n = 12 dataset

of Ex. 5.2. The maximum is attained at θ̂ = 2.803. The blue bars indicate the 90

percent confidence interval coming from standard ML estimation theory, see Ex. 5.7, and

is [1.472, 4.134]. The true value behind the data, θ0 = 3.33, is indicated as the red bar.

Right panel: as for the left, but now with the bigger data set of n = 100 datapoints, from

the same distribution, where the first 12 are as above. The minus second derivative Ĵ

at the ML position has increased from 1.527 to 11.103, causing the ML based confidence

interval to become considerably tighter, and is [2.507, 3.494].

(b) Find the limit distribution of
√
n(Wn − 1/θ), using the central limit theorem, and

use the delta method to find that the limit distribution of
√
n(θ̂ − θ) is N(0, θ2).

(c) Let θ0 denote the true parameter underlying the data. Theory to come in later

exercises (xx xref xx) says that the distribution of θ̂, though not normal itself, can be

approximated with a N(θ0, 1/Ĵ) (at least when sample size n is moderate or large). Show

that this agrees fully with the limit distribution result reached above. Show further that

this leads to approximate confidence intervals of the type θ̂ ± z0/Ĵ
1/2 = θ̂(1 ± z0/

√
n),

with z0 the appropriate normal quantile. We’ve actually simulated these few data points

above from the model, with true parameter θ0 = 3.33. Construct a version of Figure 5.1,

left panel.

(d) In general the ML estimator might have a complicated distribution (though it is

approximately normal, as we have seen here). In this particular model its precise distri-

bution may be worked out, however; show that θ̂ ∼ θ (2n)/χ2
2n. Use this to find a precise

90 confidence interval for θ, and compare to the approximation given above.

(e) To simulate data from this model, show that Yi is equal in distribution to (Vi/θ0)2,

with the Vi i.i.d. from the unit exponential. Make a computer programme to simulate

n points from the f(y, θ0) model, and which then finds the log-likelihood function, the

ML estimator, and the approximate 90 percent confidence interval, as above. Run such a

programme for say 88 more points, forming a bigger dataset with n = 100 datapoints, and
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comment on what you find. Produce a version of Figure 5.1, right panel. Comment on

the main features here, including that Ĵ becomes bigger with more data, yielding sharper

confidence intervals. We would usually plot the log-likelihood and related aspects, as the

confidence distributions (xx pointer xx) for a shorter range of parameter values than in

this right panel, but we here choose to plot using the same range for both n = 12 and

n = 100.

Ex. 5.3 The maximum likelihood estimator. [xx we work through some examples,

setting up the `n(θ), find the ML, brief comments, no hard theory yet. but we make a

little point of being fully able do deal with
√
n(θ̂ − θ) in situations where the ML is a

smooth function of sample averages, with more general theory to come below. xx]

(a) With y1, . . . , yn from the normal model N(µ, σ2), write down the log-likelihood func-

tion. Find the ML estimator for σ when µ is a known value, and find also the ML

estimators (µ̂, σ̂) in the case where both parameters are unknown.

(b) Suppose Yi ∼ Pois(wiθ), with known exposure times wi, and that the observations

are independent, for i = 1, . . . , n. Write down the log-likelihood function, find the ML

estimator, and find its mean and variance.

(c) Let Y1, . . . , Yn be i.i.d. from the uniform model on [0, θ], with θ the unknown endpoint.

Set up the likelihood function and find the ML estimator.

(d) (xx one more. xx)

Ex. 5.4 Maximum likelihood for the Beta and Gamma models. Consider the Beta and

Gamma two-parameter models, with densities

be(y, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1 and g(y, a, b) =

ba

Γ(a)
ya−1 exp(−by),

for y ∈ (0, 1) and y > 0, respectively. The task is in each case to estimate the parameters

based on an i.i.d. sample Y1, . . . , Yn.

(a) We start with the Beta distribution, see Ex. 1.23, where we in particular have found

formulae for the mean and variance in terms of (a, b). With empirical mean and variance

ȳ and σ̂2, show how (a, b) can be fitted by solving the two equations ȳ = EY and

σ̂2 = VarY . With solutions (âm, b̂m) for these moment estimators, and assuming the

Beta model is correct, explain how you can find limit distributions of
√
n(âm−a, b̂m−b).

(b) Write down the log-likelihood function, say `n(a, b). Show that the ML estimators

(â, b̂) are the solutions to the two equations

n−1
n∑
i=1

log Yi = ψ(a)− ψ(a+ b), n−1
n∑
i=1

log(1− Yi) = ψ(b)− ψ(a+ b),

where ψ(x) = ∂ log Γ(x)/∂x is the so-called digamma function. There are no explicit

formulae here, but the two equations may be easily solved numerically. Explain how

the limit distribution for
√
n(â− a, b̂− b) may be found, via the two-dimensional central
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limit theorem. – Here it turns out (i) that the ML estimators are more precise than the

moment estimators, and (ii) that finding the limit distribution is rather easier via the

general results about ML behaviour to be turned to in Ex. 5.6, 5.7.

(c) Then turn attention to the two-parameter Gamma model, where arguments and

results will be similar. Show that the mean and variance are a/b and a/b2, and find

moment estimators âm, b̂m based on this. Find the limit distribution of
√
n(âm−a, b̂m−b)

using Ex. 2.10.

(d) Then write down the log-likelihood function, take derivatives, and show that the ML

estimators (â, b̂) are the solutions to the two equations

Ȳ = a/b, n−1
n∑
i=1

log Yi = ψ(a)− log b.

Explain how the limit distribution of
√
n(â − a, b̂ − b) may be obtained. Again, this is

rather easier via the general recipes to be worked with in Ex. 5.7; also, we shall again

find that ML estimators are more precise than the moment estimators.

(e)

Ex. 5.5 Score functions and the Fisher information matrix. Consider a parametric

model with density f(y, θ) with respect to some measure µ, where θ = (θ1, . . . , θp)
t, the

parameter of the model is contained in some open parameter space Θ. Introducescore function

u(y, θ) = ∂ log f(y, θ)/∂θ and i(y, θ) = ∂2 log f(y, θ)/∂θ∂θt,

called the score function, with p components, and the observed function, a p× p matrix.

These partial derivatives are assumed to exist and, for the maximum likelihood theory

below, they must be continuous; [xx check this with Nils xx] note that this concerns

smoothness in the parameter θ, not necessarily smoothness in y. We also that assumeFisher

information

regularity

conditions

the support for the distribution, the smallest closed set for which the density is positive,

does not depend on θ. Cases falling outside such assumptions are, e.g., the uniform on

an unknown interval [0, θ]. Finally, we assume that
∫
f(y, θ) dµ(y) can be differentiated

under the integral sign with respect to each coordinate of θ.

(a) Show that the score function has mean zero, that is

Eθ u(Y, θ) =

∫
f(y, θ)u(y, θ) dµ(y) = 0.

Let nextthe Fisher

information

matrix K(θ) = Varθ u(Y, θ) and J(θ) = −Eθ i(Y, θ),

and show that indeed J(θ) = K(θ), the so-called Bartlett identity. This matrix is often

called the Fisher information matrix for the model. It provides a measure of how much

information about a parameter a data set provides. Note that the calculation of both

J(θ) and K(θ) is taking place under the assumption that the model is actually correct.the Bartlett

identity
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(b) For the exponential model, with density θ exp(−θy), find the score function, and

compute the Fisher information function in two ways. The second (derivative) way of

computing the Fisher information here was quite simple. In fact, show that −i(y, θ) =

K(θ) for all exponential families with the natural parametrisation, see Ex. 1.57.

(c) For the normal N(ξ, σ2) model, show that the score function can be expressed as

u(y, ξ, σ) =

(
1
σ (y − ξ)/σ

1
σ{(y − ξ)

2/σ2 − 1}

)
=

1

σ

(
z

z2 − 1

)
,

writing z = (y − ξ)/σ, which is a standard normal when y comes from the model.

Demonstrate that the Fisher information matrix becomes

J(ξ, σ) = Varξ,σ u(Y, ξ, σ) =

(
1/σ2 0

0 2/σ2

)
.

(d) (xx Check with a few more of your favourite parametric models, where you find the

score function and the information function, and where then formulae for both J(θ) and

the variance matrix K(θ) of the score function, verifying that they are the same. ask for

poisson, for binomial with parametrisation p = exp(θ)/{1 + exp(θ)}, geometric. xx)

(e) If Y has the uniform distribution on [0, θ], which of the regularity conditions listed

above fail? In this situation, one might try to define the Fisher information to be 1/θ2.

Assuming that this is indeed the Fisher information, use the Cramér–Rao lower bound

to derive a contradiction.

(f) Above it was assumed that we could pass the derivative under the integral sign.

Here is a lemma: Let g(y, θ) be a function depending on a one-dimensional parameter θ, Derivative

under the

integral sign
and µ a measure on the measurable space in which y lives. If ∂g(y, θ)/∂θ exists and is

continuous in θ for all y and all θ in an open interval Θ0 of the parameter space; there

is an integrable function k(y) dominating |∂g(y, θ)/∂θ| ≤ k(y) for all θ ∈ Θ0; and if∫
g(y, θ) dµ(y) exists on Θ0, then

d

dθ

∫
g(y, θ) dµ(y) =

∫
∂

∂θ
g(y, θ) dµ(y).

You may combine the fundamental theorem of calculus and the dominated converge

theorem to prove this lemma.

Ex. 5.6 Maximum likelihood asymptotics with log-concave likelihood. (xx edit with care.

regularity condition on R. point to expofamily. xx) Suppose Y1, . . . , Yn are i.i.d. from a

density f(y, θ) where log f(y, θ) is concave in θ for each y; the θ = (θ1, . . . , θp) is allowed

to be multidimensional. Let `n(θ) be the log-likelihood, with ML estimator θ̂. log-concave

density

(a) Show first that `n is concave. To start with mild conditions, assume merely that

log f(y, θ0 + ε)− log f(y, θ0) = D(y)tε+R(y, ε), (5.2)

for a D(y) with mean zero, and that ER(Y, ε) = 1
2ε

tJε+o(‖ε‖2) as ε→ 0 for some posi-

tive definite J , along with VarR(Y, ε) = o(‖ε‖2). Show via the convexity driven methods
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of Ex. 4.51 and 4.52 that
√
n(θ̂−θ0) = J−1Un+opr(1), where Un = (1/

√
n)
∑n
i=1 u(Yi, θ0).

Deduce the two fundamental results

Zn =
√
n(θ̂ − θ0)→d Np(0, J

−1),

Wn = 2{`n,max − `n(θ0)} →d χ
2
p.

(5.3)

Show that consistency of the ML estimator for θ0 is a simple consequence of the first

statement.

(b) Work through the details for the case of the Laplace distribution with f(y, θ) =
1
2 exp(−|y − θ|). The point is that with log-concavity, we reach the required results of

(5.3) even without needing full smoothness in the parameter; here the score function is

not defined for all values, etc. Usually, though, the D(y) is the score function u(y, θ0) =

∂ log f(y, θ0)/∂θ and J = J(θ0) is the variance matrix of this score function, i.e. the

Fisher information matrix, evaluated at the true position in the parameter space.

(c) (xx a couple of illustrations. for each, find the limit distribution of
√
n(θ̂ − θ0).

the poisson. gamma. beta. normal. also something like Yi ∼ Pois(eiθ), with different

exposures wi, the point is non-i.i.d. nils does this after mild extra editing for Ex. 4.51

and 4.52, with a bit of Lindeberg too. xx)

(d) (xx to polish. xx) something nontrivial I. can do

f(y, θ) = (1/k) exp{(y − θ) arctan(y − θ)}/{1 + (y − θ)2}1/2,

which has log-density (y − θ) arctan(y − θ)− 1
2 log{1 + (y − θ)2} and nice score function

arctan(y − θ). something nontrivial II. and f = (1/k) exp(−|y − θ|1.5).

Ex. 5.7 Behaviour of the maximum likelihood estimator, under model conditions. (xx

quite a bit of cleaning required here; point back to Ex. 5.6; use Ex. 4.47 and 4.49. make

it part of the narrative how this leads to superuseful versatile tools; any model, any

focus parameter, we find limiting normality etc. this goes for the next exercise too.

xx) Whereas classes of models actually lead to concave log-likelihoods, many others are

outside that nice class. Here we deal with general smooth parametric models, establishing

versions of (5.3) also outside log-concavity. Let Y1, . . . , Yn be independent from the same

density f(y, θ), where θ = (θ1, . . . , θp)
t. Assuming two smooth derivatives, let as in

Ex. 5.5 u(y, θ) and i(y, θ) be the score function and information function. The log-

likelihood is `n(θ) =
∑n
i=1 log f(Yi, θ), with first order derivative Un(θ) =

∑n
i=1 u(Yi, θ),

and second order derivative In(θ) =
∑n
i=1 i(Yi, θ), a p × p matrix. The ML estimator

θ̂ = θ̂n based on the first n observations maximises `n(θ) and is also a solution to

Un(θ̂) = 0.

(a) Assume that the model is correct for a certain true parameter point θ0. Show that

n−1`n(θ) converges with probability 1 to a function C(θ) which attains its maximum

value for θ = θ0. This suggests that the maximiser θ̂n of n−1`n(θ) should tend with

probability 1 to the maximiser θ0 of the limit function. – A rigorous proof requires

certain regularity conditions to hold. Try to construct such a proof and see what kind of

conditions would suffice. [xx is this all we say concerning the consistency of maximum

likelihood estimators? xx]



164 Likelihood inference

(b) Maximising `n(θ) is of course the same as minimising −
∑n
i=1 log f(Yi, θ), a crite-

rion function in the language of Ex. 4.47 and 4.49. Establish hence the link from the

present likelihood framework to the setup of these exercises, and use results from these

to establish the two fundamental results of (5.3), i.e. without log-concavity. Put up a

set of sufficient regularity conditions, perhaps utilising the efforts of Ex. 4.48. Note that

the Bartlett identity, that the two matrices J and K of 5.5 are identical, under model

conditions, plays a role here.

(c) Argue for the delta method consequence of the above: if φ = g(θ) is some parameter

of interest, a smooth function of the basic model parameter vector, then φ̂ = g(θ̂) is the

ML estimator, and
√
n(φ̂ − φ) →d c

tJ(θ0)−1U ∼ N(0, τ2), with τ2 = ctJ(θ0)−1c. Here

c = ∂g(θ0)/∂θ. Explain how this may be used to form confidence intervals for φ.

(d) How can you test the hypothesis θ1 = θ0
1, where θ0

1 is a specified value? Also give an

approximate 90 percent confidence interval for θ1.

(e) Recall that if X ∼ Np(µ,Σ), then (X−µ)tΣ−1(X−µ) is χ2 distributed with p degrees

of freedom; see Ex. 1.33. Construct an approximate 90 percent confidence ellipsöıd for

the unknown parameter vector. Can you prove that your chosen region has the minimal

possible volume, among all asymptotic 90 percent confidence regions for θ?

Ex. 5.8 Differentiability in quadratic mean. The key to proving asymptotic normality

of the maximum likelihood estimator for the log-concave densities in Ex. 5.6 was the

assumption that log f(y, θ0 +ε)− log f(y, θ0) = htD(y)+R(y, ε), where D(y) and R(y, ε)

satisfy the conditions specified in (a) of that exercise. This raises the question of what

conditions are needed for such an expansion of the log likelihood ratio to hold.

(a) Suppose that θ 7→ log f(θ, y) is three times continuously differentiable for every

y. Assume that u(θ, y) is square integrable, that J(θ0) exists and is nonsingular, and Classical

maximum

likelihood

conditions

that the third derivative of log f(θ, y) is bounded by some integrable function k(y) (not

depending on θ). Provided that θ̂n is consistent for θ0 you may now Taylor expand

0 = Un(θ̂n) around θ0 to show that
√
n(θ̂n − θ0) = J(θ0)−1n−1/2Un(θ0) + op(1). Do it.

(b) Retain the classical assumptions from (a), except the consistency assumption (as it

plays no role here). Show that the expansion in (5.2) of Ex. 5.6(a) holds.

(c)

(d)

Ex. 5.9 Wilks theorems, I. (xx more rydding required, for a couple of versions of Wilks,

but here we do the first crucial thing, with χ2
1 for a one-dimensional focus parameter,

still under model conditions. we exploit Ex. 4.47 and 4.49 fully and get the essential

things for free. xx) In Ex. 5.6 and 5.7 we have seen that ML estimation is a special

case of minimum criterion function estimation, as handled in Ex. 4.47 (xx and other Ch4

exercises xx). Methods and results from Ex. 4.48 and 4.51 led readily to the basic results

(5.3), under appropriate conditions. There are further fruits within easy reach, however,

via the profiling constructions of Ex. 4.49 and 4.50. Assume i.i.d. observations Y1, . . . , Yn
follow a parametric model f(y, θ), of dimension p, with log-likelihood function `n(θ).
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(a) For a smooth focus parameter φ = g(θ) = g(θ1, . . . , θp), define the profile log-

likelihood profile function and associated deviance functionlog-likelihood

profile, deviance

function
`n,prof(φ) = max{`n(θ) : g(θ) = φ}, Dn(φ) = 2{`n,max − `n(φ)}.

Show, under regularity conditions akin to those of the exercises pointed to, thatDn(φ0)→d

χ2
1 at the true θ0, where φ0 = g(θ0). This is called the Wilks theorem (or perhaps a

Wilks theorem, there being several such, of varying generality, see below). Note thatWilks theorem

the Bartlett identity plays a role here, in that the two matrices in the sandwich matrix

J−1KJ−1, in the notation of Ex. 4.49 and 4.50, are equal, under model conditions.

(b) An important consequence of the Wilks theorem is that confidence intervals can be

constructed from the profile and deviance. Show that

In = {φ : Dn(φ) ≤ γ1,α} has Pθ(In)→ α,

with γ1,α = Γ−1
1 (α) the appropriate χ2

1 quantile. The Wilks theorem hence allows con-

struction of confidence intervals, at any given level, for any focus parameters. (xx about

the large-sample equivalence to φ̂± 1.645 κ̂/
√
n. xx)

(c) More generally, looking and testing for lower-dimensional structure, consider the

setup of Ex. 4.50, with a parameter vector α = (θ, γ) of dimension p + q. We think in

terms of a wide model, with these p + q parameters being free, and a narrow model of

dimension p, where γ = γ0, a prespecified value. With (θ̂, γ̂) the ML estimator in the

wide model, and (θ̃, γ0) the ML estimator in the narrow model, define the log-likelihood

maxima `max,wide = `n(θ̂, γ̂) and `max,narr = `n(θ̃, γ0). Use results from the exercises

pointed to to show that

Wn = 2(`max,wide − `max,narr)→d W = χ2
q.

This could start from the representation W = ZtQ−1Z found there, and then using

Z ∼ Nq(0, Q).

(d) (xx more. examples. round off. testing H0 that γ = γ0. freedom of parametrisation.

point to outside model too. xx)

Ex. 5.10 ML asymptotics under model conditions: applications. (xx cleaning required,

and more of the directly useful up front; we estimate parameters and have confidence,

almost automatically, via normality and delta method. xx) Results reached in Ex. 5.7

are central in applied statistics. The versatile ML machinery allows the statistician to

construct good estimators for even complicated functions of parameters in new models,

and to supplement these estimators with confidence intervals, tests, etc. We will also see

that the general ML asymptotics results may be used to verify what we already knew,

so to speak, regarding estimators in the more familiar models. (xx check all this to make

sure that we don’t become repetitive. xx)

(a) Let Y be binomial (n, p). Even before you find a formula for the ML estimator for

p, show that
√
n(p̂− p)→ N(0, p(1− p)). By all means, show also that p̂ = Y/n.
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(b) In a similar vein, study the classic case of Y1, . . . , Yn being i.i.d. from the normal

(ξ, σ2). Using the Fisher information matrix found in Ex. 5.5, show that the ML es-

timators ξ̂ and σ̂ must be independent, in the limit, with approximate distributions

N(ξ, σ2/n) and N(σ, 1
2σ

2). Remarkably, these results follow from the ML apparatus even

without or before knowing any formulae for the estimators, and without or before know-

ing any finite-sample theory for these. As we know (xx crossref here xx) there is exact

independence here, and the distribution for ξ̂ is exactly correct, for each n.

(c) (xx something with Gam(a, b), and approximate distribution for µ̂, estimator for the

median µ = µ(a, b). illustrate also Wilks. which can be used without explicit formulae.

xx)

(d) (xx the Weibull F (t) = 1− exp{−(t/a)b}. perhaps an earlier exercise where we find

J(a, b). xx)

(e) (xx perhaps something moderately unusual here. xx)

Ex. 5.11 Wald tests. (xx something here, re Wald tests, used e.g. in regression models.

p-value. more on power for the two variations with two nevnere. xx)

Ex. 5.12 ML machinery in practice, I. (xx put in: nice if explicit formulae may be found,

but we do manage quite well without. xx) The aim of the present exercise is to showcase

how the general maximum likelihood theory can be applied also in new situations, perhaps

with models outside the usual repertoire. Even with a freshly invented model one may

fit parameters, read off approximate standard deviations, construct confidence intervals,

test hypotheses, as long as the log-likelihood can be programmed. The machinery also

applies to any interest functions of the model parameters, via the delta method. It is to be

noted that general-purpose numerical optimisation methods and algorithms, along with

routines for computing gradients and Hessians, i.e. first and second order derivatives, are

wondrously helpful here, essentially with only modest extra efforts needed beyond having

programmed the log-likelihood.

Of course methods also apply for standard models, where there might be pack-

ages or established routines accomplishing the fitting and testing, but the spirit for the

modern statistician should be that of building and trying out also new models for new

purposes. This might be even more important for regression type models, where similar

programming and implementation schemes work; see Ex. 5.29.

We build our present illustrations around the following dataset, with n = 201 time-

to-failure measurements for certain machine parts, taken from the SAS User’s Guide

Ch. 44. We shall fit the data to the gamma and Weibull models, and also to a three-

parameter extension of these, which we call the gamma-Weibull model.

[1] 620 470 260 89 388 242 103 100 39 460 284 1285 218 393 106

[16] 158 152 477 403 103 69 158 818 947 399 1274 32 12 134 660

[31] 548 381 203 871 193 531 317 85 1410 250 41 1101 32 421 32

[46] 343 376 1512 1792 47 95 76 515 72 1585 253 6 860 89 1055

[61] 537 101 385 176 11 565 164 16 1267 352 160 195 1279 356 751

[76] 500 803 560 151 24 689 1119 1733 2194 763 555 14 45 776 1

[91] 1747 945 12 1453 14 150 20 41 35 69 195 89 1090 1868 294



5.B. Short and crisp 167

[106] 96 618 44 142 892 1307 310 230 30 403 860 23 406 1054 1935

[121] 561 348 130 13 230 250 317 304 79 1793 536 12 9 256 201

[136] 733 510 660 122 27 273 1231 182 289 667 761 1096 43 44 87

[151] 405 998 1409 61 278 407 113 25 940 28 848 41 646 575 219

[166] 303 304 38 195 1061 174 377 388 10 246 323 198 234 39 308

[181] 55 729 813 1216 1618 539 6 1566 459 946 764 794 35 181 147

[196] 116 141 19 380 609 546

(a) Consider the three-parameter density function

f(y, a, b, c) = k(a, b, c)ya−1 exp(−byc) for y > 0.

Prove that the normalisation constant must be k(a, b, c) = cba/c/Γ(a/c). Show that

c = 1 gives the Gam(a, b) distribution, and that the special case a = c corresponds to

c.d.f. F (y) = 1− exp(−byc), which is a Weibull (though with a different parametrisation

than with Ex. 1.40). Due to these special cases we may call this three-parameter family

the gamma-Weibull distribution. Prove also the mean formula

EY =
Γ(a/c+ 1/c)

Γ(a/c)

1

b1/c
,

and verify that mean formulae for the gamma and the Weibull indeed are special cases.

(xx nils notes: a/b for c = 1 and Γ(1 + 1/c)/b1/c for a = c, the weibull case. xx)
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Figure 5.2: For the time-to-failure data, left panel shows log-likelihood profile func-

tions for the mean µ, via the Gam(a, b) model, the Weibull (b, c) model, and the three-

parametric (a, b, c) model. In the right panel, these are transformed to confidence curves

via the Wilks theorem (xx pointer back xx), where e.g. 95 percent intervals can be read

off. These are in essential agreement here.

(b) First read the data into your computer suitably. It helps accurate numerics to scale

them with a factor of e.g. 1/100; in the scripts below this is what we call yy. Show

that the following little script succeeds in computing the log-likelihood for the Gam(a, b)

model:
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logL1 = function(para)

{

a = para[1]

b = para[2]

aux = (a-1)*log(yy)-b*yy + a*log(b) - lgamma(a)

sum(aux)

}

To maximise the log-likelihood, along with the Fisher information matrix Ĵ = −∂2`n(θ̂)/

∂θ ∂θt, it is practical to use the general-purpose non-linear minimisation algorithm nlm

in R. Define the function minuslogL1 as -logL1, and then use

starthere1 = c(1,1)

fit1 = nlm(minuslogL1,starthere1,hessian=T)

ML1 = fit1$estimate

Jhat1 = fit1$hessian

se1 = sqrt(diag(solve(Jhat1)))

show1 = cbind(ML1,se1)

Carry out this scheme, and explain what the different steps involve and achieve; some-

times a bit of fiddling might be required with the start point starthere1 to secure con-

vergence of the numerical iterative minimisation procedure. Read off both ML estimates

(â, b̂) and approximate 95 percent confidence intervals for them. Test the hypothesis that

the data are actually from the simpler exponential model.

(c) For any focus parameter µ = µ(θ) of the model parameters, the delta method says

that the approximate variance of µ̂ml = µ(θ̂ml) is κ̂2 = d̂tĴ−1d̂, with d̂ = ∂µ(θ̂)/∂θ.

To illustrate the general machinery, consider the mean µ = EY , which for the gamma

model is the simple a/b. Here partial derivatives etc. are easily found, but to explain the

general practical principle start by defining the function mu1 = function(para) as a/b,

and then carry out

mu1hat = mu1(ML1)

der1 = grad(mu1,ML1)

kappa1 = sqrt( t(der1) %*% solve(Jhat1) %*% der1 )

where grad is available via the library numDeriv. Construct a 95 percent interval for the

mean using this. Modify your code to similarly find estimate and interval for the median.

(d) Having accomplished the above for the gamma model, modify your code to handle

also the Weibull model, with F (y) = 1− exp(−byc). Find ML estimates, their estimated

standard deviations, test exponentiality; then find estimates and intervals for the mean

and the median. Part of the intended experience here is that passing from one model to

another often does not take many extra efforts, as results flow from having programmed

the log-likelihood.

(e) There are packages and routines available handling the gamma and Weibull models,

but perhaps not our three-parameter extension. Programme the appropriate `n(a, b, c),

then find ML estimates (â, b̂, ĉ), along with estimates and confidence intervals for the

mean and median. For these tasks it is indeed helpful to have an explicit formula for
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the normalisation constant k(a, b, c), but it is useful for other models and situations to

learn that one may manage without, via numerical integration routines, typically in the

format of integrate(g,0,Inf)$value. For the learning experience, redo the fitting of

the (a, b, c) model without using the k(a, b, c) formula.

(f) (xx flex your ML machinery programming muscles by attempting one or two more

models. may take F (y, θ, a, b) = Be(1− exp(−θy), a, b). xx)

(g) The methods and programmes above lead to confidence intervals of the first-order

large-sample approximation type, say µ̂ ± 1.96 κ̂. Supplement your efforts by program-

ming also the log-profile-likelihood functions, `n,prof(µ) = max{`n(θ) : µ(θ) = µ}, for the

three models. Here you are helped by having explicit formulae for the µ. Construct a

version of Figure 5.2, left panel. The profiles are in good agreement hee, and the three-

parameter model does not lead to any significant increase over the two two-parameter

models. Then construct a version of the confidence curves in the right panel, as follows.

With D(µ) = 2{`n,max − `n,prof(µ)} the deviance, explain that D(µ) ≈d χ2
1, at the true

position in the parameter space, via the Wilks theorem. Deduce that cc(µ) = Γ1(D(µ))

has the uniform distribution, and that the random set {µ : cc(µ) ≤ 0.95} has probabil-

ity 0.95 of covering the true value. We return at length to such confidence curves and

distributions in Ch. 7.

(h) (xx also to be put in, but briefly: the data fit well to each of the models here, and

the above at-the-model variance calculations work fine. but do the outside-the-model

sandwich things too. also: do wilks. xx)

(i) (xx round off. a figure. point to AIC things. and to Ex. 5.29, where the lifting from

i.i.d. to general parametric regression models turns out to be relatively modest. rather

similar confidence intervals for the mean here. simple first-order to the left; Wilks based

to the right. xx)

low up low up

gamma(a,b) 3.931 5.342 3.996 5.421

weibull (b,c) 3.923 5.368 3.992 5.459

three-para (a,b,c) 3.964 5.321 4.019 5.382

Ex. 5.13 The empirical correlation coefficient, I. (xx Rn studied under binormality.

xx) For i.i.d. data pairs (Xi, Yi), the famous empirical correlation coefficient is

Rn =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

{
∑n
i=1(Xi − X̄)2}1/2{

∑n
i=1(Yi − Ȳ )2}1/2

. (5.4)

Here we find the the limit distribution of Rn under binormality.

(a) Assume first that the (Xi, Yi) pairs are from a zero-mean binormal with variances 1

and correlation ρ ∈ (−1, 1); see Ex. 1.29. Use results from Ex. 1.30, including Yi |Xi ∼
N(ρXi, 1 − ρ2), to derive expressions for EX2

i Y
2
i , EX3

i Yi, EXiY
3
i . Use these to show

that (xx check this xx)

Σ = Var

 X2
i

Y 2
i

XiYi

 =

 2, 2ρ2, 2ρ

2ρ2, 2, 2ρ

2ρ, 2ρ, 1 + ρ2

 .
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Use the CLT to argue thatAnBn
Cn

 =
√
n

 n−1
∑n
i=1X

2
i − 1

n−1
∑n
i=1 Y

2
i − 1

n−1
∑n
i=1XiYi − ρ

→d

AB
C

 ∼ N3(0,Σ).

With Rn,0 = Cn/(AnBn)1/2, use the delta method to show that
√
n(Rn,0 − ρ) →d Z =

− 1
2ρA−

1
2ρB + C, and that in fact Z ∼ N(0, (1− ρ2)2).

(b) Then generalise to the situation where the (Xi, Yi) pairs are i.i.d. from a zero-mean

binormal, with standard deviations σ1, σ2 and correlation ρ. Show that we still have√
n(Rn,0 − ρ)→d N(0, (1− ρ2)2).

(c) Here we have found the the limit distribution for
√
n(Rn,0−ρ) directly, by representing

Rn,0 as a smooth function of three averages, then using the CLT and the delta method.

Another route is a follows. Show first that Rn,0 is the ML estimator for ρ, in this

three-parameter zero-mean binormal setup. Find the Fisher information matrix J =

J(σ1, σ2, ρ) and its inverse.

(d) Then go one step further, to the full five-parameter binormal situation, with unknown

means ξ1, ξ2, standard deviations σ1, σ2, and correlation ρ. Argue first that we must

have
√
n(Rn,1− ρ)→d N(0, (1− ρ2)), where Rn,1 is as in (5.4) but using ξ1, ξ2 instead of

(X̄, Ȳ ). Then, finally, show the Real Thing, that
√
n(Rn − ρ) must have the same limit

distribution.

(e) Argue that if h(ρ) is a smooth function, then
√
n{h(Rn) − h(ρ)} →d h′(ρ)(1 − variance

stabilising

transformation
ρ2) N(0, 1). Show that with the clever choice ζ = 1

2 log{(1 + ρ)/(1 − ρ)} the variance is

being stabilised, and
√
n(ζ̂ − ζ) →d N(0, 1), where ζ̂ = 1

2 log{(1 + Rn)/(1 − Rn)}. This

is called Fisher’s zeta. Show that ζ̂ ± 1.645/
√
n becomes an approximate 90 percent

confidence interval for ζ, and transform this to an approximate 90 percent confidence

interval for ρ. Fisher’s zeta

(f) For the full five-parameter binormal model, find ML estimators for ξ1, ξ2, σ1, σ2, ρ,

and show in particular that ML estimator for ρ is in fact Rn. Argue from the Cramér-

Rao lower bounds of Ex. 5.16 that we for large n cannot do better than the standard

deviation (1− ρ2)/
√
n achieved by Rn. Assume however that it is known that σ1, σ2 are

equal to a common σ. What are now the ML estimators for σ and ρ, say σ∗ and ρ∗?

How much is won, when estimating ρ, by knowing that σ1 = σ2?

Ex. 5.14 The empirical correlation coeffcient, II. (xx Rn studied outside binormalilty.

xx) Here we use some of the arguments of Ex. 5.13 to find the limit distribution of the

empirical correlation Rn of (5.4) also outside binormality. Assume (X1, Y1), . . . , (Xn, Yn)

are i.i.d. pairs from a distribution with means ξ1, ξ2, standard deviations σ1, σ2, and

correlation ρ. Write aj,k = EU ji V
k
j for cross moments of the standardised Ui = (Xi −

ξ1)/σ1 and Vi = (Yi − ξ2)/σ2, where it is assumed that fourth order moments a4,0 and

a0,4 are finite.
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(a) Show that
√
n(Rn−Rn,0)→pr 0, where Rn,0 is as Rn, but using the real ξ1, ξ2 instead

of their estimators X̄, Ȳ . Show also that the distribution of Rn and Rn,0 must depend

on ρ but not on ξ1, ξ2, σ1, σ2. We may hence carry out our large-sample investigation

with the standardised (Ui, Vi) rather than the (Xi, Yi). Work withAnBn
Cn

 =

 √n(n−1
∑n
i=1 U

2
i − 1)√

n(n−1
∑n
i=1 V

2
i − 1)√

n(n−1
∑n
i=1 UiVi − ρ)

 ,

and show that (An, Bn, Cn)t →d (A,B,C)t ∼ N3(0,Σ), for the variance matrix Σ of

(U2
i , V

2
i , UiVi)

t. Spell out the elements of this matrix, using the aj,k. Check that this

agrees with the Σ of Ex. 5.13 under binormality.

(b) Then show that
√
n(Rn − ρ)→d Z = − 1

2ρA−
1
2ρB + C, and give an expression for

the limit distribution variance τ2. Explain how τ may be estimated from the data, and

how this leads to confidence intervals of the type Rn ± 1.96 τ̂ /
√
n for ρ.

(c) (xx perhaps a dataset, doing ρ both under binormality and without that assumption.

xx)

(d) (xx perhaps something with working out τ2 for a case of dependent but not binormal

(X,Y ), requiring a4,0, a0,4, a3,1, a1,3, a2,2. can take X = Φ(X0), Y = Φ(Y0), with (X0, Y0)

binormal. point to copulae. xx)

Ex. 5.15 Cramér–Rao lower bounds for estimators. A certain basic and classic in-

equality provides a lower bound for the variance of any unbiased estimator of a given

parameter. There are various versions and generalisations, some of which we go through

here. Inequalities of the type encountered here are sometimes called ‘information in-

equalities’, as they may be used to define and analyse how much information there can

be in a finite set of data.

(a) To begin simply, suppose Y is an observation from the density f(y, θ), assumed

smooth in its one-dimensional parameter. Let u(y, θ) = ∂ log f(y, θ)/∂θ be the score

function, with finite variance, by definition equal to the Fisher information, J(θ) =∫
f(y, θ)u(y, θ)2 dy. Let T = T (Y ) be any estimator unbiased for θ, and assume that

f(y, θ) satisfies the conditions of Ex. 5.5(f). From Eθ T =
∫
T (y)f(y, θ) dy = θ, use

the conditions on f(y, θ) to deduce that (d/dθ)
∫
T (y)f(y, θ)u(y, θ) dy = 1. Show that

covθ (T, u(Y, θ)) = 1, and, consequently 1 ≤ Varθ T Varu(Y, θ), from which the we get

one-dimensional classic Cramér–Rao inequality

Varθ T ≥ 1/J(θ).

(b) It is easy to generalise the above to the more interesting case of having more obser-

vation than one. Suppose Y1, . . . , Yn are i.i.d. from the parametric model f(y, θ). Show

that the arguments above still hold, essentially since Y = (Y1, . . . , Yn) can be considered

a single datum from the model with joint density f(y1, θ) · · · f(yn, θ). Show that the

score function now becomes

u(y1, . . . , yn, θ) = (∂/∂θ)

n∑
i=1

log f(yi, θ) =

n∑
i=1

u0(yi, θ)
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writing for emphasis u0(y, θ) = ∂ log f(y, θ)/∂θ for the score function for a single ob-

servation. Deduce that the combined Fisher information for the full sample is Jn =

Varθ u(Y1, . . . , Yn) = nJ0, with J0 = Varθ u0(Yi, θ) the information in a single observa-

tion.

(c) Show from this that if T = T (Y1, . . . , Yn) is an unbiased estimator for θ, then Cramér–Rao

lower bound

Varθ T ≥
1

nJ0(θ)
=

1/J0(θ)

n
.

This says that there is a clear limit to how well one might estimate a parameter in a

model, with n observations. If you’re not entirely satisfied with Varθ T = 0.10, say,

and wish for variance 0.05 instead, then shell out more money to get twice as many

observations.

(d) Show more generally that if T = T (Y1, . . . , Yn) is an estimator for θ, with mean

Eθ T = θ + b(θ), i.e. with a certain bias b(θ), then

Varθ T ≥
1

n

{1 + b′(θ)}2

J0(θ)
.

In particular, show that there’s a lower bound on the mean squared error for any estimator

(i.e. not merely the unbiased ones):

mse(θ) = E {T (Y1, . . . , Yn)− θ}2 ≥ (1/n){1 + b′(θ)}2/J0(θ) + b(θ)2.

(e) Go through the following examples, in each case finding the score function, the infor-

mation J0(θ), and the lower bound for any unbiased estimator of the model parameter.

(i) y is binomial (n, θ). (ii) y is Poisson θ. (iii) y is normal (θ, σ2), with σ known. (iv) y

is normal (θ, σ2), with θ known, and σ to be estimated. Comment on the implications

of your findings.

Ex. 5.16 Cramér–Rao bounds for the multidimensional case. (xx put in here, suitably,

that we’re learning that ML achieves the best possible accuracy, for large n. xx) In

generalisation of the above situation to the case of multiparameter models, assume first

that y is a single observation from the model f(y, θ), with θ = (θ1, . . . , θp) of dimension

p. Let u0(y, θ) = ∂ log f(y, θ)/∂θ be the score function, for such a single y, with the p×p
Fisher information matrix J0(θ) = Varθ u0(Y, θ) assumed positive definite.

(a) Assume that T = T (Y ) is an unbiased estimator of θ, which also means that

Eθ Tj(Y ) = θj for each component j. Deduce from Eθ T =
∫
T (y)f(y, θ) dy that

(∂/∂θ) Eθ T =

∫
T (y)f(y, θ)u0(y, θ)t dy = I,

the p× p identity matrix.

(b) Then work out that

Varθ {T − J0(θ)−1u0(Y, θ)} = Eθ {T − J0(θ)−1u0(Y, θ)}{T − J0(θ)−1u0(Y, θ)}t
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van be expressed as Varθ T − J0(θ)−1. We have then shown a multidimensional version

of the Cramér–Rao inequality, that

Varθ T ≥ J0(θ)−1.

(c) Generalise the above to the case of n i.i.d. observations Y1, . . . , Yn from the model.

Show that the information matrix for the full data set becomes

Jn(θ) = Varθ
∂ log{f(Y1, θ) · · · f(Yn, θ)}

∂θ
= nJ0(θ),

and that for any unbiased estimator T = T (Y1, . . . , Yn) of θ, we must haveCramér–Rao

lower bound,

matrix case Varθ T ≥ {nJ0(θ)}−1 = (1/n)J0(θ)−1.

Here A ≥ B, or A−B ≥ 0, means that A−B is nonnegative definite, which is equivalent

to ctAc ≥ ctBc for all c. In particular, ai,i ≥ bi,i for all diagonal elements, but we do not

necessarily have ai,j ≥ bi,j outside the diagonal.

(d) Also other estimators for θ deserve to be studied, even when they are not exactly

unbiased. We start with a single observation Y from f(y, θ), with score function u0(y, θ)

as above, and then generalise to n observations afterwards. Assume therefore that T =

T (Y ) is such that

Eθ T =

∫
T (y)f(y, θ) dy = θ + b(θ) =

θ1 + b1(θ)
...

θp + bp(θ)

 ,

for suitable bias functions b1(θ), . . . , bp(θ), perhaps not far from zero. Show that

(∂/∂θ) Eθ T =

1 + ∂b1(θ)/∂θ
...

1 + ∂bp(θ)/∂θ

 =

∫
T (y)f(y, θ)u0(y, θ)t dy.

Then work with Varθ [T − {I + b′(θ)}J0(θ)−1u0(Y, θ)] to demonstrate that

Varθ T ≥ {I + b′(θ)}J0(θ)−1{I + b′(θ)}t.

(e) Generalise to the case of n i.i.d. observations, to reach

Varθ T ≥ (1/n){I + b′(θ)}J0(θ)−1{I + b′(θ)}t.

(f) xx a bit more to round it off. an example or two. CR lower bound not always

attained, in some models only for growing n, but that’s ok. i make a separate point that

the arguments also lead to bounds of type

Varθ T ≥ {J1(θ) + · · ·+ Jn(θ)}−1,

in cases with different situations or types of information sources, for the same θ. tie it

all to the large-sample ML results. xx
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Ex. 5.17 The Kullback–Leibler distance, from one density to another. For two densities

g and f , defined on a common support, the Kullback–Leibler distance, interpreted to be

‘from the first density to the second’, isthe Kullback–

Leibler

distance

d(g, f) =

∫
g log

g

f
dy.

It is an important concept and tool for communication and information theory, and also

for probability theory and statistics. In particular, it turns out that the KL distance

is intimately connected to maximum likelihood, to the most well-used model selection

method AIC (the Akaike Information Criterion, see Ch. 11), etc.

(a) The log(g/f) term will be both positive and negative, in different parts of the domain.

Show nevertheless that indeed d(g, f) ≥ 0, and that d(g, f) = 0 only when the two

densities are equal a.e. The ‘a.e.’ is a measure theoretic little standard miniphrase,

meaning ‘almost everywhere’, i.e. the set where g(y) 6= f(y) is so small that it has

Lebesgue measure zero (the integral does not change its value if the integrand function

changes its value in a finite number of points, or, for that matter, if g(y) somewhat

artificially should change its value in every rational number). Try to prove nonnegativity

via Jensen’s inequality.

(b) A useful way of proving nonnegativity, since it opens a little door to certain gener-

alisations, is as follows. Write first

d(g, f) =

∫ {
g log

g

f
− (g − f)

}
dy,

and then show that the function which for fixed g is equal to A(u) = g log(g/u)− (g−u),

has its minimum position at u = g, where Amin = A(g) = 0.

(c) For two normal densities, N(a, 1) and N(b, 1), show that the KL distance becomes
1
2 (b − a)2. Prove also the somewhat more general result, that with g ∼ N(ξ1, σ

2) and

f ∼ N(ξ2, σ
2), the KL distance is 1

2 (ξ2 − ξ1)2/σ2.

(d) Find the KL distance from one Poisson to another.

(e) The KL distance is also perfectly well-defined and meaningful in higher dimension.

Show that the KL distance from Np(ξ1,Σ) to Np(ξ2,Σ) can be expressed as 1
2δ

2, where the

Mahalanobis

distance
δ = {(ξ2 − ξ1)tΣ−1(ξ2 − ξ1)}1/2 is the so-called Mahalanobis distance between the two

populations.

(f) For several of these examples we find KL distances being symmetric, between the

two densities in question, but this is not true in general. Compute the KL distance from

N(ξ, σ2
1) to N(ξ, σ2

2), and compare to the reciprocal case.

(g) Consider a parametric density f(y, θ), with score function u(y, θ) and information

matrix J(θ) = Varθ u(y, θ). Show that

d(f(·, θ), f(·, θ + ε)) = 1
2ε

tJ(θ)ε+O(ε3).
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(h) Start from d(g, f) = −
∫
g log{1 + (f/g− 1)} dy, for densities which are not far from

each other, and use Taylor expansion to find

d(g, f) ≈ 1
2

∫
g(f/g − 1)2 dy = 1

2

(∫
f2/g dy − 1

)
.

(xx some words indicating that the root-KL might have an easier interpretation. xx)

(i) (xx a bit of text, more than a question. xx) As noted the KL distance is not symmetric,

so ‘distance’ has a direction. In various statistical setups it makes sens to interpret

d(g, f) as the the distance from ‘home density g’ to ‘approximation candidate f ’. As

also becoming clear from examples above, it’s somehow quadratic in nature, so when

numbers are involved, measuring the KL distances, it would typically make more sense

to give their square roots, as with {d(g, fθ)}1/2, the degree of closeness of the parametric

approximant fθ to the ground truth g.

Ex. 5.18 What is the maximum likelihood aiming for? (xx the following to be reworked,

in view of generalities above, from Ch4 exercises on minimum criterion function estima-

tors. xx) Assume independent observations Y1, Y2, . . . become available, from a certain

data generating mechanism g, the envisaged true but typically unknown data density.

With a parametric model fθ, with fθ(y) = f(y, θ), what it the ML method aiming for?

We learn here that there is a clear answer, intimately connected to the Kullback–Leibler

distance from truth to approximation. We learn also elsewhere that ML is interrelated

with KL, as with the AIC of Ch. 11.

(a) Consider the usual log-likelihood function `n(θ) =
∑n
i=1 log f(yi, θ). The framework

of Ex. 5.7 (xx and one more xx) involved the assumption that the model was actually

correct, and then we saw that the ML estimator θ̂ is consistent for the true parameter

θ0. Now there is no ‘true parameter’, however. But show that

Cn(θ) = n−1`n(θ)→pr C(θ) = Eg log f(Y, θ) =

∫
g log fθ dy for each θ.

Note that this involves the Kullback–Leibler distance, since d(g, fθ) =
∫
g log g dy−C(θ).

Under reasonable regularity conditions [xx which we’ll be coming back to, where? xx],

it will then be the case that the maximiser of Cn, which is the ML estimator θ̂, will tend

to the maximiser θ0 of C, which is also the minimiser of the KL distance d(g, fθ) – we do

assume that there is precisely one such minimiser. Attempt to formalise such regularity

conditions, going from (i) Cn(θ)→pr C(θ) for each θ to (ii) argmax(Cn)→pr argmax(C).

(b) So we’ve uncovered what goes on in the mindset of the ML operator – it aims for

the least false parameter, the θ0 minimising the Kullback–Leibler distance d(g, fθ). The

principle itself does not say or claim to say how well this might be working, as the size

of the minimal distanceleast false

parameter value

dmin = min
all θ

d(g, fθ) = d(g, f(·, θ0))

will depend on both g and the parametric family being used.
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(c) Suppose data Y1, Y2, . . . are recorded on the positive halfline, from some underlying

density g. Suppose that the exponential model θ exp(−θy) is being used. What is the

ML estimator θ̂ aiming for?

(d) Assume independent data Y1, Y2, . . . stem from some density g on the line, with finite

mean ξ0 and standard deviation σ0. Using the normal model N(ξ, σ2), show that

d(g, f(·, ξ, σ)) =

∫
g log g dy + log σ + 1

2

σ2
0 + (ξ − ξ0)2

σ2
,

and that this is being minimised, over all (ξ, σ) pairs, for precisely ξ = ξ0 = EY and

σ = σ0 = (VarY )1/2.

Ex. 5.19 KL approximation. (xx to be edited. xx) For the following cases the point

is to set up a data generating density g, and then check how well a certain parametric

family f(y, θ) does the approximation job. For each case, this tells us how well the ML

can do its job, with enough data. For the various cases, find the minimiser, i.e. the best

approximation; find the minimum square-root distance d(g, f(·, θ0))1/2 (since this gives a

better picture than on the KL scale itself); and plot the true g alongside the parametric

approximant.

(a) Let g = 0.33 N(−1, 1) + 0.67 N(1, 1). Find the best normal approximation.

(b) Let g be a Gamma with parameters (2.22, 3.33). Find the best Weibull approximant,

and also the best log-normal approximant. Similarly, start with a Weibull distribution,

with parameters say (3.33, 2.22), and find the best Gamma distribution approximation.

(c) Let g = 0.95 Expo(1) + 0.05 Expo(0.01), which roughly means that about 5 percent

of the data come from a distribution which much higher mean than the mainstream

exponential data. Find the best exponential model approximation, and also the best

Gamma and Weibull approximations. Display the true g and these three best parametric

approximations in the same diagram.

(d) Suppose data really come from N(0.333, σ2
1), with σ1 = 1.111, where a statistician fits

the simpler N(0, σ2) model. First, find out what happens to the ML estimator. Secondly,

illustrate ‘what goes on’ by drawing e.g. ten samples of size n = 50 from the true density,

and then display the ten versions of n−1`n(σ), along with its limit C(σ). Comment on

your findings.

(e) (xx one more. round off. xx)

Ex. 5.20 Behaviour of the maximum likelihood estimator, under agnostic conditions.

(xx to be restructured and simplified, in view of Ch4 things. we get results readily.

xx) Luckily, it might be fair to say, ML estimation still manages to make sense, even

when the parametric model employed is not 100 percent correct. Statistics would have

been a somewhat different discipline, with lower ambition level and bragging rights,

if all its methods had a Red Warning Flag on top of all papers and algorithms and

applications, saying ‘can only be used if the model is perfect’. The aim here is to uncover

and understand more of what happens with the ML estimator, in the case that the true

density g is outside the {fθ : θ ∈ Ω} in question.
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(a) Let Y1, . . . , Yn be independent realisations from an underlying g, with θ̂ the ML

estimator. We have seen that θ̂ →pr θ0, the least false parameter value, as judged by the

Kullback–Leibler distance d(g, fθ). With terms and notation from Ex. 5.7, establish that

the score function has mean zero, at this true parameter value, Eg u(Y, θ0) = 0. Explain

in detail why this generalises a corresponding result for the ‘under the model’ case.

(b) Under model conditions, certain essential things could be told using only one matrix,

namely Fisher’s information matrix J = J(θ). Now we are in need of as many as two

matrices, it turns out. Define

J = −Eg i(Y, θ0) = −
∫
g(y)

∂2 log f(Y, θ0)

∂θ∂θt
,

K = Varg u(Y, θ0) =

∫
g(y)u(y, θ0)u(y, θ0)t dy,

assumed to be finite and positive definite. These are identical under model conditions.

Now use the machinery of minimum criterion function estimators (xx pointer Ch4 xx)

to establish that Un = (1/
√
n)∂`n(θ0/∂θ tends to a U ∼ Np(0,K), along with the two

fundamental results

Zn =
√
n(θ̂ − θ0)→d J

−1U ∼ Np(0, J
−1KJ−1),

Wn = 2{`n,max − `n(θ0)} →d U
tJ−1U.

(5.5)

These are the appropriate generalisations of (5.3) to situations outside model conditions.

In particular, the limit distribution now has the sandwich matrix J−1KJ−1 instead of the

simple J(θ0)−1. Also, the quadratic form W = U tJ−1U does not have a χ2
p distribution,

outside model conditions; show that its mean is p∗ = Tr(J−1K).

(c) (xx also put in here: using efforts of Ch4 to read off limits for Dn(φ) = 2{`n,max −
`n(φ)}, extending the χ2

1 results. xx)

(d) (xx well, we put this in Ch4 already, see Ex. 4.54, and point to this here. xx)

Consider a function h(y, θ), with finite mean h0 = Eθ0 h(Y, θ0) at position θ0. It is clear

that ĥ = n−1
∑n
i=1 h(Yi, θ̂) →pr h0 under natural conditions. Show that if |h(y, θ0 +

ε)− h(y, θ0)| ≤M(y)|ε|, for all small |ε|, for some function M(y) with finite mean, then

indeed ĥ→pr h0.

(e) Natural estimators for J and K, needed for estimating the sandwich from data, are

Ĵ = − 1

n

n∑
i=1

∂2 log f(Yi, θ̂)

∂θ∂θt
and K̂ =

1

n

n∑
i=1

u(Yi, θ̂)u(Yi, θ̂)
t.

Give conditions under which Ĵ and K̂ are consistent for J and K. This is what we need

to have a consistent estimator for the sandwich matrix J−1KJ−1.

Ex. 5.21 Examples of agnostic ML operations. It is useful to go through a list of special

cases, to see how the agnostic ML theory pans out in practice. Note that convergence

to the normal Np(0, J
−1KJ−1) takes place in general, model after model after model

(including those you might invent next week), without any need for working with explicit

formulae for the ML estimators etc.
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(a) For the exponential model θ exp(−θy), show that the score function is u(y, θ) =

1/θ − y, that its least false parameter value is θ0 = 1/ξ0, in termas of the true mean

ξ0 = EY . Show that
√
n(θ̂ − θ0) has limit distribution N(0, σ2

0θ
4
0), where σ2

0 is the true

variance. Show that this generalises the ‘usual result’ derived under model conditions.

(b) Then do the normal: assume data follow some density g, and the normal N(ξ, σ2)

model is used. We already know that the least false parameters are ξ0 and σ0, the

true mean and standard deviation (i.e. even if g is far from the normal). Assume that

the fourth moment is finite, so that skew = EZ3 and kurt = EZ4 − 3 are finite, with

Z = (Y −EY )/sd(Y ) = (Y − ξ0)/σ0; see Ex. 2.10. Working with the score function, and

the second order derivatives, show that

J =
1

σ2
0

(
1, 0

0, 2

)
and K =

1

σ2
0

(
1, γ3

γ3, 2 + γ4

)
.

(c) For the ML estimators ξ̂ and σ̂, show from this that(√
n(ξ̂ − ξ)√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1, 1

2γ3
1
2γ3,

1
2 + 1

4γ4

)
).

Note that this is a ‘rediscovery’ of what we found in Ex. 2.10 and 2.13, but here we

managed to find the limit distribution fully without knowing (or caring) about the exact

expressions for the ML estimators.

(d) (xx one more case to come here. xx)

Ex. 5.22 A log-likelihood function process. Consider i.i.d. observations Y1, . . . , Yn from

some density g, with a model f(y, θ) fitted via ML. Thus θ̂ maximises the log-likelihood

function θ. It is fruitful to work the random function

An(s) = `n(θ0 + s/
√
n)− `n(θ0).

(a) Simulate a sample of n = 25 points from the exponential model with θ0 = 3.33.

Compute and display the An(s) function. Then do this with say ten different samples,

from the same model and the same n, and display the ten An curves in a diagram.

(b) (xx then point back to earlier general efforts, to get main points across. An(s) →d

U ts− 1
2s

tJs. argmax to argmax, max to max. xx)

(c) (xx to be altered. xx) Go back to your ten simulated versions of An(s) for the

exponential case, where the true θ0 = 3.33. Use the above results to test the hypothesis

that θ = 4.44.

Ex. 5.23 Extending theory and methods to regression setups, I. Above we have dealt

with likelihood methods, involving ML estimation, limit distributions under and outside

model conditions, the Wilks theorem for profiled log-likelihoods, broadly valid for all

smooth parametric models, etc. – but after all under simple i.i.d. conditions. Crucially,

most of these concepts, methods, and results extend to classes of general regression
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models. Here we go through the various steps to see how the scene broadens and to learn

the appropriate extensions for concepts, techniques, and results.

Consider in general terms regression data of the form (xi, Yi), with xi a covariate

vector, of length say p, thought to influence the main outcome Yi. We assume here that

the Yi are independent given the covariates. Let f(yi |xi, θ) be a suitable density for yi
given xi, with score function u(yi |xi, θ) = ∂ log f(yi |xi, θ)/∂θ and information function

i(yi |xi, θ) = ∂2 log f(yi |xi, θ)/∂θ∂θt. The θ could comprise both regression coefficients

and parameters describing the shape of the distributions. In this exercise we assume that

the model holds, with θ0 denoting the true parameter, an inner point in the parameter

spoace. We also postulate the ergodic condition, that averages over covariates stabilise,ergodic

conditions with increasing sample size; formally, for each bounded h(x), there is a well-defined limit

h0 =
∫
h(x) dQ(x) for n−1

∑n
i=1 h(xi), for an appropriate distribution Q on the covariate

space. (xx can discuss this a little bit more. most often we do not see or need Q, beyond

its postulated existence. xx)

(a) First of all, there is a log-likelihood function, also in these regression setups, `n(θ) =∑n
i=1 log f(yi |xi, θ). The ML estimator θ̂ is its maximiser, satisfying also Un(θ̂) = 0, with

Un(θ) =
∑n
i=1 u(yi |xi, θ). Secondly, to extend theory and results for the i.i.d. case, see

Ex. 5.7, we need to understand n−1/2Un(θ0) = n−1/2
∑n
i=1 u(Yi |xi, θ0). Show that it has

mean zero and variance matrix Jn = n−1
∑n
i=1 J(xi), where J(xi) = Varθ0u(Yi |xi, θ0).

We have Jn → J , under ergodic conditions. Give Lindebeberg type conditions under

which Un(θ0)→d U ∼ Np(0, J).

(b) Extend techniques from Ex. 5.7 to deduce that
√
n(θ̂ − θ0) →d Np(0, J

−1), in this

general regression setting, under these Lindeberg type conditions. Show also that the

observed Fisher information matrixobserved Fisher

information

matrix Ĵn,full = −∂2`n(θ̂)/∂θ∂θt, (5.6)

i.e. the Hessian mastrix associated with the maximisation of the log-likelihood, satisfies

Ĵn = (1/n)Ĵfull →pr J . Deduce from this that θ̂ ≈d Np(θ0, Ĵ
−1
full).

(c) Next make clear that the log-likelihood function process An(s) = `n(θ0 + s/
√
n) −

An(θ0), a natural extension of the process studied in Ex. 5.22, has the same limiting

behaviour as in that earlier i.i.d. setup, with a random limit function A(s) = U ts− 1
2s

tJs.

Explain how the basic
√
n(θ̂ − θ0)→d Np(0, J

−1) follows from this.

(d) (xx rounding this off. the point is that i.i.d. results all extend to the broad regression

cases. xx)

Ex. 5.24 Linear regression revisited. (xx edit and clean. xx) Consider the linear

regression model of Ex. 3.33, with Yi |xi ∼ N(xt
iβ, σ

2), for which exact finite-sample

theory has been well developed. We now take another look at this classical model, with

the general likelihood tools.

(a) For the log-likelihood, show that `n(β, σ) = −n log σ− 1
2Q(β)/σ2− 1

2n log(2π), with

Q(β) =
∑n
i=1(yi−xt

iβ)2 Show that the ML estimator for β is the least squares estimator

β̂, given in the exercise mentioned, and that σ̂ = (Q0/n)1/2, with Q0 = Q(β̂) the

minimum of Q(β).
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(b) Show that the score function becomes

u(yi |xi, β, σ) =

(
(1/σ2)(yi − xt

iβ)xi
−1/σ + (1/σ3)(yi − xt

iβ)2

)
=

(
(1/σ)εixi

(1/σ)(ε2
i − 1)

)
in terms of εi = (yi−xt

iβ)/σ, which are independent standard normals under the model.

With (β0, σ0 the true parameters, deduce that the (p + 1) × (p + 1) Fisher information

matrix becomes

Jn = (1/n)

n∑
i=1

Varβ0,σ0
u(Yi |xi, β0, σ0) = (1/σ2

0)diag(Σn, 2),

with Σn = (1/n)
∑n
i=1 xix

t
i = (1/n)XtX. Show also that the observed Fisher informa-

tion matrix becomes Ĵn,full = (n/σ̂2)diag(Σn, 2).

(c) (xx then on to what likelihood theory implies for β̂ and σ̂. the Jn and Ĵn. a tn−p
vs. approximate normality. we reproduce the β̂ distribution, and come close for σ̂2. xx)

Ex. 5.25 Logistic regression. Consider binary outcome data, where the values 0-1 for

Yi are influenced by a covariate vector xi, of dimension say p. The logistic regression

model takes the probabilities to be

pi = P (Yi = 1 |xi) = H(xt
iβ) =

exp(xt
iβ)

1 + exp(xt
iβ)

for i = 1, . . . , n, (5.7)

with H(u) = exp(u)/{1 + exp(u)} the so-called logistic transform.

(a) Show that H(u) = p means u = H−1(p) = log{p/(1− p)}, so that the model can be

represented as log{pi/(1− pi)} = xt
iβ.

(b) Show that P (Yi = y |xi) = pyi (1− pi)1−y, for the two outcomes, and deduce that the

log-likelihood function can be written

`n(β) =

n∑
i=1

{yi log pi + (1− yi) log(1− pi)} =

n∑
i=1

[
yix

t
iβ − log{1 + exp(xt

iβ)}
]
.

Show from this that the estimation equation, giving rise to the ML estimator β̂, is∑n
i=1(yi − pi)xi = 0, and that

Jn,full(β) = −∂
2`n(β)

∂β∂βt
=

n∑
i=1

pi(1− pi)xixt
i =

n∑
i=1

H(xt
iβ){1−H(xt

iβ)}xixt
i.

(c) Show that, under model conditions, β̂ ≈d Np(β, Ĵ
−1
n,full/n), where Ĵn,full = Jn,full(β̂)

is the observed Fisher information matrix (the Hessian matrix of minus the normalised

log-likelihood function, at the ML position). It is assumed here to be positive definite,

which in particular requires n ≥ p.

(d) Consider an individual, perhaps outside the dataset, with covariate vector x0. Show

that xt
0β̂ is approximately a normal (xt

0β, x
t
0Ĵ
−1
n,fullx0), and use this to construct a confi-

dence interval for p(x0) = P (Y0 = 1 |x0).
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Ex. 5.26 Poisson regression. (xx to be spelled out. µi = exp(xt
iβ), approximate nor-

mality, delta method thing. xx) Consider independent count data y1, . . . , yn, influenced

by covariate vectors x1, . . . , xn. The Poisson regression model, in its standard form, takes

Yi ∼ Pois(µi), with µi = exp(xt
iβ).

(a) Show that the log-likelihood function becomes

`n(β) =

n∑
i=1

{−µi + yi log(µi)} =

n∑
i=1

{yixt
iβ − exp(xt

iβ)},

and that the equations
∑n
i=1{yi − µi(β)}xi = 0 define the ML estimators.

(b) Show that −∂2`n(β)/∂β∂β2 =
∑n
i=1 µixix

t
i, with the observed Fisher information

matrix Ĵn,full =
∑n
i=1 µ̂ixix

t
i, where µ̂i = exp(xt

iβ̂).

(c) For a case with covariate vector x0, estimate the associated expected count µ0 =

exp(xt
0β), and construct a confidence interval.

Ex. 5.27 A heteroscedastic linear regression model. (xx edit and clean. xx) In various

linear regression type applications for (xi, yi) data the linear mean assumption can be

reasonable, whereas the variance might not be taken constant across covariates. Consider

therefore the model with independent Yi | (xi, wi) ∼ N(xt
iβ, σ

2
i ), for i = 1, . . . , n, with

covariate vectors xi of length p and variance related covariates wi of length q, influencing

σi = σ exp(γtwi). These wi could be a subset of the xi or functions thereof. It is

convenient to normalise these such that w̄ = (1/n)
∑n
i=1 wi = 0, which also means that

σ is the standard deviation for an average individual, with wi equal to w̄.

(a) (xx log-likelihood. score function. Jn and Ĵn. approximations. pointers. xx) Show

that the log-likelihood function can be written

`n(β, γ) = −n log σ − 1
2 (1/σ2)Q(β, γ), with Q(β, γ) =

n∑
i=1

(yi − xt
iβ)2

exp(2wt
iγ)

.

Show that minimising Q(β, γ) over β, for fixed γ, takes place for

β̂(γ) =
{ n∑
i=1

xix
t
i

exp(2γtwi)

}−1 n∑
i=1

xiyi
exp(2γtwi)

.

Demonstrate that this leads to the profiled log-likelihood `n,prof(γ) = −n log σ̂(γ)− 1
2n,

where σ̂(γ)2 = Q0(γ)/n, with Q0(γ) = Q(β̂(γ), γ) the minimum sum of squares. Deduce

from this that a recipe for finding the ML estimators consists in (i) minimising Q0(γ)

over γ, yielding γ̂; (ii) reading off β̂ = β̂(γ̂) and σ̂ = σ̂(γ̂).

(b) (xx calibrate this with Wilks things. xx) Is it worthwhile, turning from classic linear

regression, to include the extra layer of variance heterogeneity sophistication? Show that

the log-likelihood-ratio test becomes that of comparing Dn = 2n log{σ̂(0)/σ̂(γ̂)} to the

χ2
q, in which σ̂(0)2 = Q0(0)/n is the standard estimator for σ2 under variance constancy.
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(c) For the p + q + 1-parameter model, with parameters β, γ, σ, show that the score

function becomes

u(yi |xi) =

 (1/σ2)(yi − xt
iβ)xi/ exp(2γtwi)

−wi + (1/σ2)(yi − xt
iβ)2wi/ exp(2γtwi)

−1/σ + (1/σ3)(yi − xt
iβ)2/ exp(2γtwi)

 =

(1/σ)εixi/ exp(γtwi)

(1/σ)(ε2
i − 1)wi

(1/σ)(ε2
i − 1)

 ,

in terms of εi = (yi − xt
iβ)/{σ exp(γtwi)}. Show from this that the normalised Fisher

information matrix becomes Jn = (1/σ2
0)diag(Σn(γ0),Mn, 2), at the true parameters

(β0, γ0, σ0), in terms of Σn(γ) = (1/n)
∑n
i=1 xix

t
i/ exp(2γtwi) andMn = (1/n)

∑n
i=1 wiw

t
i .

(d) (xx check if Ĵn,full has these off-diagonal zeroes, or if it only holds for the information

calculus. spell out nice behaviour for ML estimators. γ̂ ≈d Nq(γ, (σ
2/n)M−1

n ). xx)

(e) (xx round off. confidence for µ(x0, w0), xt
0β̂±1.96 σ̂ exp(γ̂tw0). pointer to Story iv.4.

xx)

Ex. 5.28 A generalised Poisson distribution. For a count variable Y , consider the model

with point probabilities

f(y, λ, γ) = k(λ, γ)−1λy/(y!)γ for y = 0, 1, 2, . . . ,

where k(λ, γ) is the normalisation constant
∑∞
y=0 λ

y/(y!)γ . For γ = 1 we’re back to

ordinary Pois(λ), with k(λ, 1) = exp(λ). This two-parameter generalised Poisson model

is from Schweder and Hjort (2016, Examples 4.18, 8.16).

(a) Pick some λ, and compute and display curves of the mean ξ(λ, γ) and the variance-

to-mean ratio ρ(λ, γ), for an interval of γ around 1. Show that this ratio is decreasing

in γ; hence γ < 1 indicates overdispersion and γ > 1 underdispersion, relative to the

Poisson. Also show that the mean of log(Y !) is decreasing in γ.

(b) Show that the distribution is of the exponential family form, and that the suffi-

cient statistics, after having observed a sample Y1, . . . , Yn, is T =
∑n
i=1 Yi and U =∑n

i=1 log(Yi!). Show also that the joint distribution of these two must take the form

gn(t, u) = exp{t log λ− uγ − rn(λ, γ)}hn(y1, . . . , yn),

for appropriate functions rn and hn.

(c) For an observed sample Y1, . . . , Yn, to test the Poisson assumption, against overdis-

persion, show that the optimal test is to reject when U is sufficiently small, given T = t.

In other words, with level the classic 0.05, for example, we reject when U ≤ u0(t), where

u0(t) is the 0.95 quantile of the distribution of U given T = t, computed at γ = 1,

i.e. under Poisson conditions. (xx this needs more care; distribution of U | (T = t) needs

a formula or two, so we see that U significantly small indicates γ < 1. xx)

(d) There is no table or simple formula for the distribution of U | (T = t), but show that it

depends on γ, but not λ. Show that under γ = 1, (Y1, . . . , Yn) | (T = t) is a multinomial

with count t and probabilities (1/n, . . . , 1/n). Explain then how the distribution of

U | (T = t) may be simulated under Poisson conditions.
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(e) (xx give them a dataset. nils checks the football matches dataset. decide later if this

is a Story or an exercise. xx)

Ex. 5.29 ML machinery in practice, II. (xx nils starts ranting. point back to Ex. 5.12.

nils needs to calibrate with Ex. 5.28. make the point that some famous models are part

of standard packages, as with glm in R, but that we can attach also fresh new models.

xx) We have seen the ML machinery in practice in Ex. 5.12, for i.i.d. models, where the

central message is that as long as one can programme the log-likelihood function, one

may often apply generic optimisation algorithms to find ML estimates, their standard

errors, find confidence intervals for focus parameters, test hypotheses, etc. The aim of

the present exercise is to showcase how essentially the same machinery works also for

regression models, whether these are part of the standard statistical repertoire or are

freshly invented with new twists and ingredients. The main reason for this is that the

central parts of ML theory extend from i.i.d. to regression models, as we have seen in

(xx point to exercises xx).

Our illustration will be in terms of the following relatively simple and small dataset,

pertaining to y, the number of different bird species living on páramos on fourteen islands

outside Ecuador. The task is to attempt to understand how y is influenced by x1,

the distance from Ecuador, in km; and x2, the area, in thousands of square km (and

perhaps on yet other covariates not taken on board here). The grander purposes relate

to understanding biological variation and to prediction of species abundance on other

islands.

x1 x2 y x1 x2 y

1 0.036 0.33 36 8 0.958 0.14 13

2 0.234 0.50 30 9 0.995 0.05 17

3 0.543 2.03 37 10 1.065 0.07 13

4 0.551 0.99 35 11 1.167 1.80 29

5 0.773 0.03 11 12 1.182 0.17 4

6 0.801 2.17 21 13 1.238 0.61 18

7 0.950 0.22 11 14 1.380 0.07 15

(a) For the birds-on-islands dataset, first carry out ordinary Poisson regression, taking

yi ∼ Pois(µi) with µi = exp(β0 + β1xi,1 + β2xi,2). Show indeed that β1 is significantly

negative, that β2 is significantly positive, and give interpretations of these initial findings;

cf. columns 1:3 in the table.

(b) We then pass to the extended Poisson regression model introduced in Ex. 5.28, taking

distribution

f(yi, µi, γ) = k(µi, γ)−1µyii /(yi!)
γ for yi = 0, 1, 2, . . . ,

with normalisation constant k(µi, γ) =
∑∞
y=0 µ

y
i /(y!)γ . Write up a script for the log-

likelihood function `2(β0, β1, β2, γ), in the style of what is carried out in Ex. 5.12. The

following works – here we have used X = cbind(one,x1,x2), with one the vector of 1,

and pp = ncol(X); put an aux = 0*(1:n) in preparation; and made an initial script for

k(µ, γ):
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logL2 <- function(para)

{

beta = para[1:pp]

gam = para[(pp+1)]

mu = exp(X %*% beta)

for (i in 1:nn)

{aux[i] = -mu[i]+yy[i]*log(mu[i])-gam*lgamma(yy[i]+1) - log(k(c(mu[i],gam)))}

sum(aux)

}

Maximise the log-likelihood, with steps similar to those in Ex. 5.12, and reproduce

columns 4:6 in the table. Deduce that an approximate 90 percent interval for the γ

parameter is [0.187, 0.949], indicating overdispersion compared to Poisson. Also carry

out log-likelihood-profiling, computing `2,prof(γ), for a somewhat more accurate 90 per-

cent interval, using (xx point to wilks theorem exercise xx).

model M1 model M2 model M3

estim se ratio estim se ratio estim se ratio

beta0 3.429 0.139 24.597 1.941 0.806 2.410 1.927 0.805 2.393

beta1 -0.814 0.151 -5.400 -0.472 0.216 -2.181 -0.506 0.236 -2.144

beta2 0.312 0.072 4.347 0.181 0.089 2.031 1.567 0.705 2.224

gam 0.568 0.232 2.450 alpha0 -0.232 0.388 -0.597

alpha1 0.320 0.078 4.098

(c) The dispersion parameter γ is perhaps not quite constant, across the different is-

lands. A finer model worth working through takes γi = exp(α0 + α1wi), with wi =

(xi,2 − x̄2)/sd(x2), i.e. the normalised x2. This helps stable numerics and eases the in-

terpretaion of α0 and α1. Now programme the appropriate log-likelihood function, say

`3(β0, β1, β2, α0, α1). Find ML estimates and their estimated standard deviations, and

produce a version of columns 7:9 of the table. Give an interpretation of these results.

(d) For the three models, record the attained log-likelihood maxima, say `1,max, `2,max,

`3,max; these are found as easy byproducts of the maximisation algorithms in the first

place. Compare Models 1, 2, 3, via Wilks testing (xx point xx). Compute also Pearson

type chi-squared statistics, of the type W =
∑n
j=1(yj − ŷj)2/ŷj over the n = 14 islands,

where ŷj = nf̂j(yj) is the estimated yj for the model considered. It will be seen, also

via AIC and other model selection criteria in Ch. 11, that the five-parameter Model 3

is the best one here. To check for differences, produce a version of Figure 5.3, with the

estimated probabilities f̂1, f̂2, f̂3, for a few positions (x1,0, x2,0) in the covariate space.

This particular figure has ‘big island, far from Ecuador’ to the left and ‘small island,

close to Ecuador’ to the right.

(e) (xx just a few more things, then round off. main point is again to showcase the

versatility and relative ease of the ML theory, via the log-likelihood function. compute

logL maxima, carry out Wilks testing; model M3 is best here. it also wins AIC. Show a

figure with f̂1, f̂2, f̂3, plotted for say y = 0, 1, . . . , 40. use this to explain which features

are not well captured by the simple poisson. can also take poisson-gamma overdisperson

model, from Ex. 5.26. from yi |µi ∼ Pois(µi) and then µi ∼ Gam(µi/τ, 1/τ); τ small
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Figure 5.3: Estimated probability distributions f̂1, f̂2, f̂3, for the number of bird species

on two imagined islands, based on models 1 (simple Poisson), 2 (extended Poisson, with

one γ), 3 (extended Poisson, with γi). Left panel: (x1, x2) taken to be their max values,

i.e. big island, far from Ecuador; right panel: (x1, x2) at the min values, i.e. small island,

close to Ecuador. The full black curves are for the five-parameter f3, the best model.

corresponds to ordinary poisson. but the dispersion model worked with above has the

abiity to reflect both under- and overdispersion. we have Ex. 1.16, and ought to have

more here in Ch5. xx)

Ex. 5.30 We can do things. (xx very tentative, but nils wishes to include a couple of

things in the spirit of ‘here is a natural but not off-the-shelf model, and we can estimate

parameters etc. xx)

(a) One records the number of a certain event, say per week, over a time period. Suppose

most of these counts are Poisson-like, with some parameter θ, but that a fraction come

from another Poisson with a higher parameter. A model for such data is that Yi stems

from the mixture distribution (1 − p) Pois(θ) + pPois(cθ), with c > 1. (i) Find the

mean and variance for this distribution. (ii) Generate such a dataset, say y1, . . . , yn with

n = 250, θ = 10, cθ = 20. Taking first c = 2 known, estimate the parameters (p, θ), along

with confidence intervals. (iii) Using the same data, now with c unknown, estimate all

three parameters, with confidence intervals. Briefly investigate how much is earned in

precision for estimating (p, θ) when c is known compared to it being unknown.

(b) (xx one or two more points in this spirit. putting up log-likelihood and then max-

imising etc. xx)

Ex. 5.31 Extending theory and methods to regression setups, II. (xx then outside model

conditions. xx)

Ex. 5.32 Logistic regression, II. (xx nils ranting on a bit; to be cleaned later. building

on Ex. 5.25 but now analysis outside model conditions. xx)
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(a) When the parametric form of the model cannot be trusted, characterise the under-

lying least false model parameter β0,n for which the ML estimator is aiming. Then show

that β̂ ≈d N(β0,n,Σn/n), with sandwich matrix Σn = Ĵ−1
n K̂nĴ

−1
n , with

Ĵn = (1/n)

n∑
i=1

p̂i(1− p̂i)xixt
i, K̂n = (1/n)

n∑
i=1

(yi − p̂i)2xix
t
i.

(b) For a new individual, or object, with covariate vector x0, explain that xt
0β̂ ≈d

N(xt
0θ, τ̂

2
0 /n), where τ̂2

0 = xt
0Ĵ
−1x0, and use this to form a 90 percent confidence interval

for the associated P (Y0 = 1 |x0).

(c) Consider the important special case of a single xi recorded for Yi, where we write the

model equation as pi = H(a + bxi), corresponding to 2-size vectors (1, xi)
t in the more

general notation used above. Show that (â, b̂) are the solutions to

n∑
i=1

(yi − pi) = 0,

n∑
i=1

(yi − pi)xi = 0,

and that

Jn(a, b) =

n∑
i=1

exp(a+ bxi)

{1 + exp(a+ bxi)}2

(
1, xi
xi, x

2
i

)
(d) (xx we point to an illustration. xx)

Ex. 5.33 The exponential family class and ML. [xx exercises on the exponential family

class and maximum likelihood estimation here. Pointers to Ex. 1.57–?? . Noen subopp-

gaver som passer best here. Skriv dem inn. xx]

(a) Show that the ML estimator θ̂ is the unique solution to the equation T̄ = ξ(θ), or T̄j =

ξj(θ1, . . . , θp) for j = 1, . . . , p. (xx brief comment on optimisers and equation solvers; each

sensible algorithm will find the ML, and its Hessian matrix Ĵn = −(1/n)∂2`n(θ̂)/∂θ∂θt =

J(θ̂).

(b) (xx about
√
n{T̄n− ξ(θ)} →d N(0, J(θ)), and about

√
n(θ̂− θ)→d N(0, J(θ)−1). xx)

(c) (xx we’ll see later where to put what. this is the start about understanding the

c/n bias of ML for exponential class models. xx) Suppose Y1, . . . , Yn are i.i.d. from an

exponential family model f(y, θ) = exp{θtT (y)−k(θ)}h(y), leading to the ML estimator

θ̂, solving T̄ = ξ(θ), with ξ(θ) = Eθ T = ∂k(θ)/∂θ. Here ξ(θ) = (ξ1(θ), . . . , ξp(θ))
t, with

length p, the dimension of θ = (θ1, . . . , θp)
t.

Write θ̂ = A(T̄ ), with A the inverse function of ξ; ξ(θ) = t is equivalent to θ = A(t).

With θ0 the true parameter value, write ξ0 = ξ(θ0). Use Taylor expansion to derive

θ̂j = Aj(ξ0) +A′j(ξ0)t(T̄ − ξ0) + 1
2 (T̄ − ξ0)tA′′j (ξ0)(T̄ − ξ0) +Opr(1/n

3/2),

for components j = 1, . . . , p. Show first from this that
√
n(θ̂ − θ0)→d Np(0,Σ), with Σ = A′(ξ0)tJ(θ0)A′(ξ0),

and that Σ = J(θ0)−1. (xx check details and formalisation here. we use A(ξ(θ)) = θ and

find matrix identity. xx)



5.B. Short and crisp 187

(d) Then show that E θ̂j = cj/n+ o(1/n) with

cj = 1
2Tr{A′′j (ξ0)J(θ0)}.

(e)

Ex. 5.34 Influence functions. [xx this exercise to be used in Ch. 9. xx] For a distribution

function F , consider some associated parameter, say θ = T (F ), with T the appropriate

functional mapping the distribution to the parameter value in question. Examples include

the mean, the standard deviation, the skewness, a quantile, a threshold probability. The

influence function for θ = T (F ) is a very useful quantity, as we shall see. It is defined as

IF(F, y) = lim
ε→0

(1/ε){T ((1− ε)F + εδ(y))− T (F )}. (5.8)

Here δ(y) is the measure putting full mass 1 at the point y, and (1 − ε)F + εδ(y) the

consequent mixture distribution. A variable Yε drawn from this mixture is from F with

probability 1− ε and is equal to y with probability ε.

(a) Consider θ(F ) = EF h(Y ) =
∫
h(y) dF (y), the mean of h(Y ). Show that IF(F, y) =

h(y) − θ(F ). In particular, the influence is bounded when h is, but unbounded e.g. in

the case of the plain mean h(y) = y, which signifies a potential lack of robustness of this

mean parameter functional θ = EF Y .

(b) Then consider the class of smooth functions of means. For mean type parame-

ters γ1 = EF h1(Y ), . . . , γk = EF hk(Y ), let θ = T (F ) = A(γ1(F ), . . . , γk(F )), where

A(u1, . . . , uk) is smooth in a neighbourhood of (γ1(F ), . . . , γk(F )). Show that this pa-

rameter has influence function

IF(F, y) = c1(F ) IFγ1(F, y) + · · ·+ ck(F ) IFγk(F, y)

= c1(F ){h1(y)− γ1(F )}+ · · ·+ ck(F ){hk(y)− γk(F )},

with cj(F ) is the partial derivative ∂A(u1, . . . , uk)/∂uj , evaluated at (γ1(F ), . . . , γk(F )).

(c) Writing µF = EF Y for the mean, show for the variance parameter σ2
F = EF Y

2−µ2
F

that its influence function becomes

IF(F, y) = −2µF (y − µF ) + y2 − EF Y
2 = (y − µF )2 − σ2

F .

Then for the standard deviation parameter σ(F ) itself, show that its influence function

becomes

IFσ(F, y) = 1
2 (1/σF ){(y − µF )2 − σ2

F }.

(d) For a given parametric family f(y, θ), consider the ML functional T (F ), mapping

a given F with density f to the least parameter value θ0 = θ0(F ), the minimiser of

the information distance KL(f, f(·, θ)), or the maximiser of
∫

log f(y, θ) dF (y). With

Fn the empirical distribution of the data, placing probability 1/n on each data point,

cf. Ex. 2.27, Show that T (Fn) is the ML estimator, and that its influence function becomes

IF(F, y) = J−1u(y, θ0).
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(e) (xx the median and the quantile. smooth function of quantiles and means. and

something more involved too. interquartile range. MAD statistic. xx)

Ex. 5.35 An estimator represented via its influence function. Consider an i.i.d. se-

quence Y1, Y2, . . . from F , with θ = T (F ) a parameter of interest. It may be estimated

nonparametrically using θ̂ = T (Fn), with Fn the empirical distribution. Here we work

towards a representation of θ̂ − θ = T (Fn)− T (F ) in terms of the influence function.

(a) Consider the case of θ = A(γ(F )), where γ(F ) = EF h(Y ) =
∫
hdF . Show that

θ̂ = T (Fn) is equal to A(h̄), with h̄ =
∫
hdFn = n−1

∑n
i=1 h(yi). Assuming A(u)

smooth, with two derivatives, show that

θ̂ = A(γ0) +A′(γ0)(h̄− γ0) + 1
2A
′′(γ0)(h̄− γ0)2 + opr(1/n),

with γ0 = γ(F ). Deduce that E θ̂ = θ+ 1
2A
′′(γ0)τ2/n+o(1/n), in terms of τ2 = Varh(Yi),

and that θ̂ − θ = n−1
∑n
i=1 IF(F, yi) + b/n+ opr(1/

√
n), where b = 1

2A
′′(γ0)τ2.

(b) Generalise to the case of T (F ) = A(γ1(F ), . . . , γp(F )) being a smooth function of sev-

eral means, as studied also in Ex. 5.34, with γj(F ) =
∫
hj dF . Show that E θ̂ = θ+b/n+

o(1/n), with b = 1
2Tr(A′′(γ0)K), with K the variance matrix of (h1(Yi), . . . , hp(Yi))

t,

and A′′(γ0) the second order derivative matrix of A, computed at γ0. Show that

θ̂ − θ = T (Fn)− T (F ) = n−1
n∑
i=1

IF(F, Yi) + b/n+ εn, (5.9)

with εn = opr(1/
√
n), i.e. small enough to have

√
nεn →pr 0. Show

(c) The powerful representation (5.9) actually holds quite generally, as long as T (F ) is

a moderately smooth functional (xx find refs, Shao (1991), Jullum and Hjort (2017) xx),

though with no easy general formula for the bias component b/n. Deduce that
√
n(θ̂−θ)

has the limit distribution N(0, κ2), with κ2 the variance of IF(Yi, θ); and with the bias

part b/n disappearing in this normal limit. [xx give reference, with easy conditions, or

we might write out the basics. xx]

(d) Use the above to find the limit distribution of
√
n(σ̂ − σ). This gives a new and

partly simpler proof of things proved in Ex. 2.12.

(e) xx

Ex. 5.36 Leave-one-out statistics. (xx to come here, after influence functions. make

sure ML is board too, with IF(y) = J−1u(y, θ0). delta method on top of this. jackknife

and cross-validation approx for AIC. xx) Consider a parameter functional T (F ) with

influence function IF(F, y), so that the representation (5.9) holds for θ̂ = T (Fn), based

on observations y1, . . . , yn.

(a) Let θ̂(i) be the estimator in question computed for the dataset where yi is pushed

out, with θ̂jack = (1/n)
∑n
i=1 θ̂(i) their average again. From the above representation,

deduce E θ̂ = θ+ b/n+o(1/n) and E θ̂(i) = θ+ b/(n−1)+o(1/n). (xx work from this: to

b̂jack/n = (n−1)(θ̂jack− θ̂). and from this to nθ̂−(n−1)θ̂jack as bias corrected estimator.

xx)



5.B. Short and crisp 189

(b) For numbers a1, . . . , an with average ā, show that the average of those remaining

after having pushed out ai can be presented as

ā(i) =
1

n− 1

∑
j 6=i

aj =
(n− 1)ā− (ai − ā)

n− 1
= ā− ai − ā

n− 1
.

(c) Let θ̂(i) be the estimator in question computed for the dataset where yi is pushed

out. Show that (xx care here xx)

θ̂(i)
.
= θ̂ − (n− 1)−1IF(Fn, yi)

(xx point is to give what is practical for cross-validation things and then the AIC con-

nection. xx)

(d) Show that

Σn =

n∑
i=1

(θ̂(i) − θ̂)(θ̂(i) − θ̂)t .
= (1/n2)

n∑
i=1

IF(Fn, yi) IF(Fn, yi)
t,

and argue that this is a natural estimator of the variance matrix for θ̂. (xx make con-

nections to other ways of estimating this; all first order the same. so we can handle both

bias and variance and approximate normality simply by leave-one-out things. xx)

Ex. 5.37 0-1 regression from modelling in covariate space, I. In classical logistic regres-

sion, see Ex. 5.25, one models P (Yi = 1 |xi) directly, as a function of the covariate vector

xi, without considering how these xi actually behave, in the two implicit groups Yi = 0

and Yi = 1; in statistical language, all the xi have been conditioned upon. Such models

may however also be derived from working with the distributions of x of the two types.

(a) Suppose there are two groups of covariates, group 0, where x follow density f0, and

group 1, where the x follow density f1. Assume also that these two groups have prior

group probabilities π0 and π1. Show that

P (Yi = 1 |x) =
π1f1(x)

π0f0(x) + π1f1(x)
=

(π1/π0)f1(x)/f0(x)

1 + (π1/π0)f1(x)/f0(x)
=

exp{R(x)}
1 + exp{R(x)}

.

Deduce that if log{f1(x)/f0(x)} is linear in x, we have derived the logistic regression

equation from the models of f0 and f1.

(b) Consider the one-dimensional case, with f0 ∼ N(ξ0, σ
2) and f1 ∼ N(ξ1, σ

2). Show

that

R(x) = log(π1/π0) + log{f1(x)/f0(x)}
= {(ξ1 − ξ0)/σ2}(x− 1

2 (ξ0 + ξ1)) + log(π1/π0).

Deduce that this is logistic regression P (Y = 1 |x) = H(a+ bx), with

b =
ξ1 − ξ0
σ2

and a = log
π1

π0
− 1

2 (ξ1 + ξ0)b = log
π1

π0
− 1

2

ξ2
1 − ξ2

0

σ2
.
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(c) Suppose there are group-wise data, x0,1, . . . , x0,n0 from group 0 and x1,1, . . . , x1,n1

from group 1. Assume for simplicity here that π0 and π1 are known, and that data have

been generated with group sizes reflecting these, so that π0 = n0/n and π1 = n1/n, with

n = n0 +n1 the total sample size. Take now b̂ = (ξ̂1− ξ̂0)/σ̂2, where ξ̂0 = x̄0 and ξ̂1 = x̄1

are data averages, and σ̂2 = (n0/n)σ̂2
0 + (n1/n)σ̂2

1 , combining the two sample variances.

Show that
√
n(ξ̂0 − ξ0) →d (σ/π

1/2
0 )N0,

√
n(ξ̂1 − ξ1)→d (σ/π

1/2
1 )N1,

√
n(σ̂2 − σ2) →d π

1/2
0

√
2σ2M0 + π

1/2
1

√
2σ2M1 =

√
2σ2M,

with N0, N1,M0,M1 independent standard normals. Deduce that

√
n(̂b− b)→d N(0, τ2) with τ2 =

1

π0π1σ2
+

2(ξ1 − ξ0)2

σ4
.

(d) With â = log(π1/π0) − 1
2 (ξ̂0 + ξ̂1)̂b, complement the above result by finding the

joint limit distribution for (
√
n(â − a),

√
n(̂b − b)). Then find the limit distribution of

â+ b̂x0, for some given x0. (xx the point is to compare the variance with that of ã+ b̃x0,

from logistic regression. how much do we earn? some rough notes, to be checked and

simplified, and compared to the vector case later. the main point is to compare with

plain logistic regression for a+ bx0. xx) First, show that
√
n(d̂− d) →d σ(N1/π

1/2
1 −N0/π

1/2
0 ),

√
n( 1

2 ξ̂0 + 1
2 ξ̂1 − ξ̄) →d

1
2σ(N0/π

1/2
0 +N1/π

1/2
1 ),

√
n(σ̂2 − σ2) →d

√
2σ2M.

From this, for b̂ = d̂/σ̂2 estimating b = d/σ2, show that
√
n(̂b− b)→d (1/σ)(N1/π

1/2
1 −N0/π

1/2
0 )−

√
2(d/σ2)M

and show that its limit variance can be expressed as

τ2
0 = (1/σ2){1/(π0π1) + 2δ2},

with δ2 = d2/σ2 the squared Mahalanobis distance. Next, with â = log(π1/π0)− 1
2 (ξ̂0 +

ξ̂1)̂b, show that
√
n(â− a) →d − 1

2bσ(N0/π
1/2
0 +N1/π

1/2
1 )

−ξ̄{(1/σ)(N1/π
1/2
1 −N0/π

1/2
0 )−

√
2(d/σ2)M}.

Deduce that for any given x0,
√
n(â+ b̂x0 − a− bx0) →d (x0 − ξ̄)/σ (N1/π

1/2
1 −N0/π

1/2
0 )

−(x0 − ξ̄)
√

2(d/σ2)M − 1
2 (d/σ)(N0/π

1/2
0 +N1/π

1/2
1 ).

Show that its limit variance becomes

τ2 =
(x0 − ξ̄)2

σ2

( 1

π0π1
+ 2δ2

)
+

δ2

4π0π1
− x0 − ξ̄

σ

d

σ
(1/π1 − 1/π0).

(xx again, the crux is to show that this is smaller than the corresponding variance from

plain logistic regression. xx)
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(e) (xx check these things. also simulations. and compare with the variance of b̂ml from

logistic regression. the covariate modelling approach wins, but not by so much. more.

show that the simpler logistic regression estimators (ã, b̃) have large-sample variance

matrix J−1/n, with

J =

∫
H(a+ bx){1−H(a+ bx)}{π0f0(x) + π1f1(x)}

(
1, x

x, x2

)
dx.

round off. xx)

(f) (xx include something here, but not too long, about f0 ∼ N(ξ0, σ
2
0) and f1 ∼

N(ξ1, σ
2
1), different σ parameters. Show that this leads to logistic regression in x, x2.

a bit on comparing the estimation schemes. xx)

Ex. 5.38 0-1 regression from modelling in covariate space, II. Here we extend the setting

and generalise results reached in Ex. 5.37, from the one-dimensional to the multidimen-

sional case. Let again the group probabilities be π0 and π1, and suppose the covariate

vector x has group distributions Np(ξ0,Σ) and Np(ξ1,Σ),

(a) Show that this again leads to logistic regression P (Yi = 1 |x) = H(a+ btx), with

b = Σ−1(ξ1 − ξ0) and a = log(π1/π0)− 1
2 (ξt

1Σ−1ξ1 − ξt
0Σ−1ξ0)

and H the logistic transform (5.7). Show that we also have

a = log(π1/π0)− ξ̄tb = log(π1/π0)− ξ̄tΣ−1d,

where d = ξ1 − ξ0 and ξ̄ = 1
2 (ξ0 + ξ1). The logistic regression method, with (ã, b̃), has

large-sample precision J−1/n, with

J =

∫
H(a+ btx){1−H(a+ btx)}{π0f0(x) + π1f1(x)}

(
1, xt

x, xxt

)
dx.

(b) (xx rough notes just now. xx) We next should learn how b̂ = Σ̂−1(ξ̂1 − ξ̂0) fares

compared to the b̃ from logistic regression. First, with d = ξ1 − ξ0, show that

√
n(d̂− d)→d (1/π

1/2
1 )Σ1/2N1 − (1/π

1/2
0 )Σ1/2N0 ∼ {1/(π0π1)1/2}Σ1/2N,

with N0, N1 denoting independent draws from Np(0, Ip), and N also having that distribu-

tion; the limit variance here is hence 1/(π0π1) Σ. Second, with Σ̂ = (n0/n)Σ̂0 +(n1/n)σ̂1,

show via results of Ex. 4.60 that

√
n(Σ̂− Σ)→d π

1/2
0 M0 + π

1/2
1 M1 = M,

whereM is a zero-mean normal matrix with a certain covariance structure for cov(Mi,j ,Mk,l),

given there, and independent of N . From that same exercise,
√
n(Σ̂−1−Σ−1)→d M

∗ =

−Σ−1MΣ−1, with covariance structure cov(M∗i,j ,M
∗
k,l) = σi,kσj,l + σi,lσj,k for indexes

i, j, k, l. Finally, from the joint convergence of Σ̂−1 and d̂, derive

√
n(̂b− b)→d M

∗d+ (π0π1)−1/2Σ−1/2N.
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(c) (xx then round this off with something informative regarding how much we earn by

using active modelling of the two group distributions, compared to jumping to logistic

regression. we should compare variances of xt
0b̂ and xt

0b̃, under model conditions. i don’t

know yet if this gain is larger for p ≥ 2 than for p = 1. we have

√
n(xt

0b̂− xt
0b)→d x

t
0M
∗d+ (π0π1)−1/2xt

0Σ−1/2N.

Show that this is a N(0, τ2), with variance

τ2 = xt
0Σ−1x0 d

tΣ−1d+ (xt
0Σ−1d)2 + (π0π1)−1xt

0Σ−1x0.

a bit more. the point is to show this is smaller than that of xt
0(J−1)11x0. xx)

(d) (xx if we manage, with not too complicated answers: joint convergence
√
n(â − a)

and
√
n(̂b − b), with â = log(π1/π0) − 1

2 (ξ̂0 + ξ̂1)tΣ̂−1d̂. xx) let’s see. The crux of the

matter is ξ̄tb. Show that( √
n(d̂− d)√

n( 1
2 ξ̂0 + 1

2 ξ̂1 − ξ̄)

)
→d

(
(1/π

1/2
1 )Σ1/2N1 − (1/π

1/2
0 )Σ1/2N0

1
2 (1/π

1/2
0 )Σ1/2N0 + 1

2 (1/π
1/2
1 )Σ1/2N1

)
=

(
U

V

)
,

where U, V are jointly multinormal with zero means, VarU = 1/(π0π1) Σ, VarV =
1
4/(π0π1) Σ, cov(U, V ) = 1

2 (1/π1−1/π0)Σ. Also, U is the same variable as was expressed

as (π0π1)−1/2Σ1/2N above. Deduce that

√
n(( 1

2 ξ̂0 + 1
2 ξ̂1)tb̂− ξ̄tb)

.
= ξ̄t

√
n(̂b− b) +

√
n( 1

2 ξ̂0 + 1
2 ξ̂1 − ξ̄)

tb

→d ξ̄
t(M∗d+ Σ−1U) + V tb,

and from this that (√
n(â− a)√
n(̂b− b)

)
→d

(
−ξ̄t(M∗d+ Σ−1U) + V tb

M∗d+ Σ−1U.

)
(e) For any given x0, show that

√
n(â+ xt

0b̂− a− xt
0b)→d (x0 − ξ̄)t(M∗d− Σ−1U) + V tb.

(xx this is a N(0, τ2), and the point is to compare this variance with that for ã + xt
0b̃,

from the Fisher information matrix limit J . this needs tidying but i think

τ2 = (x0 − ξ̄)tΣ−1(x0 − ξ̄){(π0π1)−1 + dtΣ−1d}+ {(x0 − ξ̄)tΣ−1d}2

+ 1
4 (π0π1)−1btΣb− (1/π1 − 1/π0)(x0 − ξ̄)tΣ−1Σb

= (x0 − ξ̄)tΣ−1(x0 − ξ̄){(π0π1)−1 + δ2}+ {(x0 − ξ̄)tΣ−1d}2

+ 1
4 (π0π1)−1δ2 − (1/π1 − 1/π0)(x0 − ξ̄)tΣ−1d,

with δ2 = (ξ1 − ξ0)tΣ−1(ξ1 − ξ0) the Mahalanobis distance between the two group dis-

tributions.
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Ex. 5.39 Logistic regression with two Beta groups. In the setting of Ex. 5.37, where

group densities f0(x) and f1(x) for the covariate vector leads to

P (Yi = 1 |x) =
exp{R(x)}

1 + exp{R(x)}
with R(x) = log

π1f1(x)

π0f0(x)
,

suppose for a different type of situation that the x is one-dimensional and inside the unit

interal, and that f0 ∼ Beta(a0, b0) and f1 ∼ Beta(a1, b1).

(a) Show that this leads to

P (Yi = 1 |x) =
exp{α+ β1 log x+ β2 log(1− x)}

1 + exp{α+ β1 log x+ β2 log(1− x)}
,

with β1 = a1 − a0 and β2 = b1 − b0; also, find a formula for α. This is logistic regression

in log x and log(1− x).

(b) There are now two (and even more) estimation schemes, for getting at α, β1, β2. The

first is via direct modelling estimation scheme, using ML for the x0,i data from group 0

and the x1,i data from group 1, to reach β̂1 = â1 − â0 and β̂2 = b̂1 − b̂0. The second

is via logistic regression, disregarding the modelling of f0 and f1. Set up a simulation

experiment, with group probabilities π0, π1, sample sizes n0 = nπ0, n1 = nπ1, and Beta

distributions with (a0, b0) = (c0ξ0, c0(1− ξ0)) and (a1, b1) = (c1ξ1, c1(1− ξ1)), centred at

ξ0, ξ1. Compare the two estimation methods, for some choices of these parameters.

(c) Your simulations should show that one earns a lot from separate modelling of the

group densities, in this case, when it comes to precision of α, β1, β2, under model condi-

tions. Comment further on the pluses and minuses here.

(d) Extend the situation above to the case of two covariates x1, x2, taken independent

and Beta distributed, with parameters say (a0, b0) and (c0, d0) for group 0, and (a1, b1)

and (c1, d1) for group 1. Show that this leads to a logistic regression formula in terms of

log x1, log(1 − x1), log x2, log(1 − x2). Use again simulation to show that there is much

to gain by exploiting these group densities, compared to the usual logistic regression.

(e) xx

Ex. 5.40 0-1 regression from modelling in covariate space, III. (xx nils is ranting on

a bit, we’ll see what can be included and also whether we could write a shortish paper

on this. xx) Consider again 0-1 type outcome data, where also the available covariates

x1, . . . , xk are 0-1. The theme is to see modelling in the x space might improve on the

dafault logistic regression.

(a) For a binomial Y ∼ binom(n, p) we know
√
n(p̂−p)→d N(0, p(1−p)), where p̂ = Y/n.

Now transform to p = H(θ) = exp(θ)/{1 + exp(θ)}, or θ = H−1(p) = log{p/(1 − p)}.
Show that

√
n(θ̂ − θ)→d N(0, τ2), where τ2 =

1

p(1− p)
=
{1 + exp(θ)}2

exp(θ)
. (5.10)
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(b) Assume x1, . . . , xk are independent 0-1 variables, with parameters p0 = (p0,1, . . . , p0,k)

for group 0 and p1 = (p1,1, . . . , p1,k) for group 1. We transform these logistically to

θ0 = (θ0,1, . . . , θ0,k) and θ1 = (θ1,1, . . . , θ1,k). Show that

f1(x) =

k∏
j=1

{(1− p1,j)
1−xjp

xj

1,j} =

k∏
j=1

exp(θ1,jxj)

1 + exp(θ1,j)
,

with a corresponding formula for f0(x). Show from this that

P (Yi = 1 |x) =
π1f1(x)

π0f0(x) + π1f1(x)
=

exp{R(x)}
1 + exp{R(x)}

,

with

exp{R(x)} =
π1

π0

k∏
j=1

1 + exp(θ0,j)

1 + exp(θ1,j)

k∏
j=1

exp{(θ1,j − θ0,j)xj}.

Argue that this hence is logistic regression in x1, . . . , xk, but with more knowledge behind

the coefficients in H(a+ b1x1 + · · ·+ bkxk).

(c) For bj = θ1,j − θ0,j , estimated bu b̂j = θ̂1,j − θ̂0,j , show that

√
n(̂bj − bj)→d N1,j/π

1/2
1 −N0,j/π

1/2
0 ,

where N0,j and N1,j are independent zero-mean normals with variances τ2
0,j and τ2

1,j , as

per (5.10) above.

(d) (xx then comes comparing these variances, and also for the crucial â + b̂tx0, with

those from logistic regression. xx) The direct logistic regression method leads to esti-

mating p(x) = H(a + b1x1 + · · · + bkxk) via the direct binary log-likelihood function,

i.e.
∑n
i=1{yi log pi + (1− yi) log(1− pi)}. Here (

√
n(ã− a),

√
n(̃b− b))→d Nk+1(0, J−1),

with

J =
∑
all x

p(x){1− p(x)}{π0f0(x) + π1f1(x)}
(

1, xt

x, xxt

)

=
∑
all x

π0f0(x)
exp(a+ btx)

1 + exp(a+ btx)

(
1, xt

x, xxt

)
.

The sum extends over all 2k possible outcomes for x = (x1, . . . , xk)t. This may be

computed numerically, for given θ0, θ1. (xx round off. xx)

(e) (xx point also to the very conservative approach of modelling 2k + 2k probabilities

separately. xx)

Ex. 5.41 Two-group classification. (xx a little rant, perhaps to be placed in Ch. 16,

or in Ch. 6, but it has relevance to binary regression. xx) Two groups, probabilities π0

and π1, with feature vectors having densities f0 and f1 from 0 and 1. In this exercise we

assume that these two class densities are known; in practice they need to be estimated

from training data.
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(a) Suppose an object comes from group g, and our decision after seeing its x is ĝ. Let

the loss function be of symmetric 0-1 type, L(g, ĝ) = I(ĝ 6= g). Show that the optimal

Bayes solution is to claim ‘1’ if p(x) ≥ 1
2 and ‘0’ if p(x) < 1

2 , where

p(x) = P (g = 1 |x) =
π1f1(x)

π0f0(x) + π1f1(x)
.

Show that this is equivalent to claiming ‘1’ if R(x) = π1f1(x)/{π0f0(x)} ≥ 1.

(b) Show that the two group-conditional error rates, using this optimal classifier, is

err0 = P (saying 1 | g = 0) =

∫
A

f0 dx,

err1 = P (saying 0 | g = 1) =

∫
Ac

f1 dx,

with A the set {x : R(x) ≥ 1}. Deduce that the total optimal error rate, seen if this

classifier is used for a high number of cases, is

err = π0 err0 + π1 err1 =

∫
A

π0f0 dx+

∫
Ac

π1f1 dx.

(c) Then work out that

I =

∫
|π1f1 − π0f0|dx = 2

∫
A

(π1f1 − π0f0) dx− (π1 − π0),

and from this that

err = π1 −
∫
A

(π1f1 − π0f0) dx = 1
2 −

1
2I.

In other words, 1
2 + 1

2

∫
|π1f1 − π0f0|dx is the success rate, P (ĝ = g). In particular, for

the balanced case of π0 = π1 = 1
2 , show that err = 1

2 −
1
4

∫
|f1− f0|dx, with success rate

1
2 + 1

4

∫
|f1 − f0|dx.

(d) (xx more. Mahalanobis distance. mild but important extension to losses L0,1 and

L1,0. E {L(g, 0) |x} = L1,0(1 − p(x)) and E {L(g, 1) |x} = L0,1p(x). tidy up here. wish

to see methods like ‘say 1 if p(x) ≥ 0.90’. xx)

(e) xx

Ex. 5.42 Estimating in a Weibull model. Suppose Y1, . . . , Yn are i.i.d. from the one-

parameter model with P (Yi ≤ y) = 1− exp(−yθ) for y ≥ 0.

(a) Set up a formula for the log-likelihood function. Find the limit distribution for√
n(θ̂− θ). (xx this needs: f(y, θ) = exp(−yθ)θyθ−1, with log −yθ + log θ+ (θ− 1) log y,

then score function

u(y, θ) = 1/θ + log y − yθ log y = (1/θ)(1 + log v − v log v),

in terms of v = yθ, a unit exponential. xx)
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(b) (xx Analyse the log-likelihood-ratio function. no simple sufficient statistic. check

wilks approximation. confidence interval, tests. xx)

(c) xx

Ex. 5.43 Estimating in the Cauchy location model. Consider the Cauchy density model

f(y, θ) = (1/π){1 + (y − θ)2}−1; see Ex. 1.13.

(a) Show that the score function becomes

u(y, θ) = ∂ log f(y, θ)/∂θ = 2(y − θ)/{1 + (y − θ)2},

and hence that the Fisher information can be expressed as J(θ) = Var {2X/(1 + X2)},
with X a unit Cauchy, with density (1/π)(1 + x2)−1.

(b) We have seen in Ex. 1.13 that X can be represented as U/V , with U and V inde-

pendent standard normals. Write U = R cos θ and V = R sin θ, to get to

2X/(1 +X2) = 2 cos θ sin θ,

with θ uniform on [0, 2π]. Then show that J(θ) = 1
2 . With i.i.d. data Y1, . . . , Yn from

the Cauchy model, show for the ML estimator that
√
n(θ̂ml − θ)→d N(0, 2).

(c) xx

Ex. 5.44 Three tests for the Cauchy location parameter. Continuing the study of the

Cauchy model, from Ex. 5.43, let X1, . . . , Xn be i.i.d. from thid Cauchy location model,

with density (1/π)/{1 + (x− θ)2}, and suppose one needs to test θ0 vs. θ 6= 0.
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Figure 5.4: Power functions for three tests for the Cauchy location model, based on An
(black, full), Bn (red, slanted), Dn (blue, dotted) of Ex. 5.44. The sample sizes are n = 5

(left panel) and n = 10 (right panel). Note that the θ scale is different in the two panels;

from n = 5 to n = 10, the three powers have increased.
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(a) Show that the log-likelihood function is

`n(θ) =

n∑
i=1

[
− log{1 + (xi − θ)2}

]
,

modulo a constant. Show, via concrete data examples of size e.g. n = 5, that the log-

likelihood function can have more than one maximum, i.e. several bumps. Hence one

needs to compute the ML estimator θ̂ with numerical care. (xx calibrate here, where is

what. xx) Show that
√
n(θ̂ − θ) →d N(0, τ2), with τ =

√
2. (xx compare with median,

from Ch2 exercise. xx)

(b) For testing the null, at level say 0.05, three choices are as follows: (i) Compute

An =
√
nθ̂/τ , and reject when |An| ≥ an, the 0.95 point in the null distribution of

|An|. (ii) Compute Bn =
√
nθ̂/τ̂ , and reject when |Bn| ≥ an, the 0.95 point in the null

distribution of |Bn|; here τ̂2 = −(1/n)∂2`n(θ̂)/∂θ is the normalised Hessian associated

with the maximisation procedure for finding θ̂. (iii) Compute Dn = 2{`n,max − `n(0)},
and reject when Dn ≥ dn, the 0.95 point in the null distribution of Dn. Show that

an → 1.96, bn → 1.96, dn → Γ−1
1 (0.95) = 1.962, as n increases. For our power analysis

below we have used exact non-asymptotic values of an, bn, dn, however, computed via

simulations. (xx a bit more: need perhaps n ≥ 30 for asymptotics to have kicked in

properly. xx)

(c) We may now compute the associated power functions

πA,n(θ) = Pθ(|An| ≥ an), πB,n(θ) = Pθ(|Bn| ≥ bn), πD,n(θ) = Pθ(Dn ≥ dn),

via simulation. Produce a version of Figure 5.4, where we have used n = 5 and n = 10.

With these two n, and with 105 simulations for the null distributions, we arrived at

2.959, 2.387 for an, 2.981, 2.291 for bn, 2.1442, 2.0122 for dn.

(d) (xx round off, some comments. moral: direct
√
nθ̂/τ loses to the less direct

√
nθ̂/τ̂ ,

even though τ is a known quantity, for the main area around the null value. but it does

win, over the Bn and Dn, at a certain distance away from the null, where the power

is high for all competitors. deviance test a bit better than the others, for the main

neighbourhood. also: more equal powers with n = 10 than with n = 5, etc. xx)

(e) xx

Ex. 5.45 An average power optimality property. (xx we shall see how this pans out, and

how it can be best told. make connection to BIC of Ch. 11. xx) Suppose Y1, . . . , Yn are

i.i.d. from a smooth parametric model f(y, θ), where we need to test θ = θ0, a given value,

against θ 6= θ0. In general there is no uniformly most powerful test. We have seen in

Ex. 3.16, however, that there is a well-defined test maximising the weighted average power

π̄n =
∫
πn(θ) dw(θ), with πn(θ) the power at position θ and dw(θ) a given probability

measure on the alternative region, here θ 6= θ0. This optimal strategy is to use the

Neyman–Pearson Lemma for the marginal density f̄(y1, . . . , yn) =
∫ ∏n

i=1 f(yi, θ) dw(θ).
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(a) Let `n(θ) be the log-likelihood function, with θ̂ the ML estimator, and write also f0

for the model at the null value θ0. Show that the Neyman–Pearson ratio can be expressed

as

Rn =
f̄(y1, . . . , yn)

f0(y1, . . . , yn)
=

∫
exp{`n(θ)− `n(θ0)} dw(θ)

= exp{`n(θ̂)− `n(θ0)}
∫

exp{`n(θ)− `n(θ̂)} dw(θ).

(b) For θ close to θ̂, use Taylor expansion to get

`n(θ)− `n(θ̂)
.
= − 1

2n(θ − θ̂)tJn(θ − θ̂),

with Jn = −(1/n)∂2`n(θ̂)/∂θ∂θt the normalised Hessian matrix at the max point.

(c) The optimal test consists in rejecting when Rn is above its null distribution threshold.

Show that the above leads to

Rn
.
= exp( 1

2Dn)(2π)p/2|nJn|1/2w(θ̂),

2 logRn
.
= Dn − p log n+ log |Jn|+ p log(2π) + 2 logw(θ̂).

Here Dn = 2{`n,max − `n(θ0)} is the Wilks or log-likelihood-ratio test statistic, with its

χ2
p limiting null distribution.

(d) Conclude that the Dn test is an approximation to the maximum averaged power

test, alsmost regardless of the weighting measure.

(e) (xx round this off. example. xx)

Ex. 5.46 Finding the ML estimate via simulation. We have seen in Ex. 1.57 that if Y

comes from a model of the form f(y, θ) = exp{θtT (y)−k(θ)}h(y), then the ML estimate

is the solution to ξ(θ) = Eθ T (Y ) = tobs, where tobs = T (yobs). To find θ̂, for a given

dataset, there are various options. If the equation is easy to work with, one solves it; in

many other situations, one may programme the log-likelihood function, and throw it to

an optimiser. There is a third option, however, described now.

(a) Suppose that there is no easy way of solving ξ(θ) = tobs, and that the log-likelihood

function cannot be worked with, perhaps because the k(θ) is too complicated or impos-

sible to compute. Suppose however that one may simulate outcomes for each θ. With

a high number B of outcomes Y ∗, for a given θ, explain why ξ̂(θ) = (1/B)
∑B
j=1 T (Y ∗j )

is a good (but simulation based) estimate of ξ(θ). Explain also how one can assess its

variance. Argue furthermore that this may be used to solve ξ̂(θ) = tobs, as a simulation

based estimate of the real ML estimate.

(b) Work through the following simple illustration of this principle. Let Y1, . . . , Yn be

i.i.d. N(0, σ2). Show that the log of the joint likelihood is −n log σ − 1
2nTn/σ

2, with

Tn = (1/n)
∑n
i=1 y

2
i , and that the ML estimator admits the exact formula σ̂ = T

1/2
n .

Here we pretend that we are not clever enough to do this bit of mathematics, and that
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Figure 5.5: The estimated A(σ) = Eθ Tn, from 103 simulated outcomes of Tn at each σ,

to see when it is equal to tn,obs = 1.333.

we neither are clever enough to programme the log-likelihood function – so we tend to

simulations instead. Assume n = 10 and that we observe tn,obs = 1.333. Simulate say

103 outcomes of Tn for each σ, to compute A(σ) = Eσ Tn. Construct a version of Figure

5.5. Read off the consequent simulation based estimate σ∗, and compare it to the ecact

ML estimate σ̂obs.

(c) (xx one more example, to make it interesting. point to magis squares Story vi.3,

where we have a subquestion on estimating λ from an MCMC run. xx)

(d)

Ex. 5.47 The density power divergence estimation method. (xx to be edited and short-

ened, but with an example somewhere. we get main results from Ch4 exercises. xx)

Here we work through the basics of a robustification method, which can be applied for

most models to produce estimation and inference less influenced by extreme and perhaps

erroneous data values, when compared with the plain ML. The method involves raising

the density function f(y, θ) to some power a, as one of its ingredients. In the literature it

is sometimes called the BHHJ divergence method, from its inventors Basu et al. (1998),

Jones et al. (2001), or the density power divergence method.

(a) For a density g, in what follows to be seen as the true underlying data-generating
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model, consider measuring the distance to an approximate fθ(y) = f(y, θ) density as

da(g, fθ) =

∫ {
f1+a
θ −

(
1 +

1

a

)
gfaθ +

1

a
g1+a

}
dy, (5.11)

with a a positive tuning parameter. Show that da(g, fθ) ≥ 0, and that the distance is

zero only when g = fθ a.e.

(b) Use Taylor expansion for faθ and ga for small a, to demonstrate that the integrand

in (5.11) may be written

fθ − g + g log(g/fθ)− a(g − fθ) log fθ + 1
2ag{(log g)2 − (log fθ)

2}+O(a2).

Hence show that for a small, we have da(g, fθ) = KL(g, fθ) + O(a), with the Kullback–

Leibler distance
∫
g log(g/fθ) dy, assuming that the functions g log fθ, fθ log fθ, g(log fθ)

2,

g(log g)2 have finite integrals.

(c) Suppose Y1, . . . , Yn are i.i.d. from some unknown g, and that we wish to estimate θ

by making the distance da(g, fθ) small. The point is now that the third term of da does

not depend on θ, and that we may accurately estimate the two first, using

Hn(θ) =

∫
f(y, θ)1+a dy − (1 + 1/a)n−1

n∑
i=1

f(yi, θ)
a. (5.12)

Show indeed that Hn(θ) is an unbiased estimator of the two first terms of da(g, fθ), and

give an expression for its variance. We call the minimiser θ̂ of Hn(θ) the BHHJ estimator.

(d) (xx basic theory. sandwich matrix. xx)

(e) (xx examples. xx)

(f) (xx influence function, IF(G, y) = J−1
a {f(y, θ0)a − ξa}. this is typically bounded in

y. xx)

Ex. 5.48 Gamma regression. (xx a few versions of gamma regression. also ‘doubly

linear’, in two parameters. this could mean Yi ∼ Gam(ai, bi) with ai = exp(xt
iβ) and

bi = exp(zt
iγ). xx)

Ex. 5.49 Log-linear mixing of densities. (xx don’t know yet how this pans out in the

end, but i write down things, before they converge. xx) Consider a density model f(y, θ),

where a certain parameter value θ0 has some prior credit. There may then be a choice

between using f(y, θ0) and f(y, θ̂), the latter using the ML estimate, based on i.i.d. data

Y1, . . . , Yn. Rather than merely choosing one of them, perhaps via a test procedure or a

model selection rule, it might be fruitful to consider the intermediate model

f̂(y, λ) = f(y, θ0)1−λf(y, θ̂)λ/Rn(λ), where 0 ≤ λ ≤ 1,

and Rn(λ) is the required normalisation value
∫
f(y, θ0)1−λf(y, θ̂)λ dy. The endpoints

λ = 0 and λ = 1 correspond to the null model and the ML estimated model, respectively.
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(a) Show that the derivative of Rn(λ), at the endpoints 0 and 1, can be written

R′n(0) = −d(f(·, θ0), f(·, θ̂)), R′n(1) = d(f(·, θ̂), f(·, θ0)),

in terms of the Kullback–Leibler distance d(g, f) discussed in Ex. 5.17 and later on. In

particular, the Rn(λ) has negative derivative at the start and positive derivative at the

end.

(b) One idea for choosing the λ is to use the pseudo-log-likelihood function, constructed

as if f(y, θ̂) were a known density, with only λ unknown. Show that this leads to `∗n(λ) =

λSn − n logRn(λ), with Sn =
∑n
i=1{log f(yi, θ̂)− log f(yi, θ0)}. Show in particular that

`∗n(0) = 0, that `∗n(1) = Sn, and that the derivative at zero is positive. Show also that

`∗n is concave.

(c) To more easily see the behaviour of the `∗n(λ), consider the exponential family case

described in Ex. 1.57, with f(y, θ) = exp{θtT (y)− k(θ)}h(y). Show that

Sn = n
[
(θ̂ − θ0)tT̄ − {k(θ̂)− k(θ0)}

]
and that this actually is identical to nR′n(1). Hence deduce that the scheme above does

not really lead to a new estimator, but back to the ML density f(y, θ̂).

(d) (xx a bit more, with Bayes; perhaps the full exercise is to land in Ch. 6. xx)

Consider a setup with two known densities f0 and f1, and then the log-linear mixing

models f(y, λ) = f0(y)1−λf1(y)λ/R(λ). With a prior π0(λ) for the mixing parameter,

over [0, 1], show that the posterior density becomes proportional to π0(λ) exp(λSn), with

Sn =
∑n
i=1 log{f1(yi)/f0(yi)}. In particular, with a uniform prior for λ, show that

π(λ |data) =
exp(λSn)

{exp(Sn)− 1}/Sn
for λ ∈ [0, 1].

(e) If data really come from f0, show that P (λ ∈ [0, 0.01] |data) → 1, with probability

1; if data instead really come from f1, show that P (λ ∈ [0.99, 1] |data)→ 1.

(f) (xx there is perhaps hope for the semiparametric construction f̂(y) = f0(y)1−λ

fn(y)λ/Rn(λ), resembling the Hjort–Glad estimator, see Hjort and Glad (1995). xx)

Ex. 5.50 Nonlinear regression. (xx calibrate this with both classic linear regression

and what we’ve said with genereal regression models. xx) Consider in general terms

the model with independent yi ∼ N(mi(β), σ2) for i = 1, . . . , n, wherethe means mi(β)

are perhaps nonlinear functions of an appropriate vector prarameter β, involving also

covariates.

(a) Show that the log-likelihood function becomes −n log σ− 1
2Qn(β)/σ2, with Qn(β) =∑n

i=1{yi−mi(β)}2. Show that the ML estimator for β is the minimiser of Qn, and that

σ̂2 = Qn(β̂)/n.

(b) Show that the normalised Fisher information matrix becomes

Jn(β, σ) =
1

σ2

(
Σn 0

0 2

)
, with Σn = n−1

n∑
i=1

m∗i (β)m∗i (β)t,

in which m∗i (β) = ∂mi(β)/∂β.
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(c) Deduce that
√
n(β̂ − β)→d N(0, σ2Σ−1), under Lindeberg type conditions, where σ

is the limit of Σn. (xx more here. also the case with different normalisation, for the time

series cyclic thing. xx)

Ex. 5.51 Estimating cycle length. Consider the model with mean structure mi =

a cos(2πi/ω + φ), common in time series models, with ω related to the length of a cycle.

Assume first that a, φ are known. Work out the asymptotics for the ML estimator ω̂.

(xx answer: it is surprisingly sharp. xx) Then assume all three parameters need to be

estimated. (xx again: ω can be estimated with high precision i think. xx)

(a) For the case of known a, φ, and cycle length ω estimated by minimising Qn(ω) =∑n
i=1{yi − a cos(2πi/ωφ)}2, show that

n3/2(ω̂ − ω)→d

√
6

2π
ω2σ

a
N(0, 1).

Ex. 5.52 ML behaviour under local alternatives, I. Consider a parametric density f(y, θ)

for observations Y1, . . . , Yn. Assume however that these do not precisely follow the model,

but rather a density in its vicinity. What can we deduce for the behaviour of the ML

estimator θ̂? (xx results are useful for local power etc., and also for FIC in Ch 11, see

Ex. 5.53. xx)

(a) Assume the real state of affairs is a density fn(y) = f(y, θ0)+δh(y)/
√
n. Use notation

and the same line of arguments as in Ex. 5.7 to show that

√
n(θ̂ − θ0) = {−n−1In(θ0)}−1n−1/2Un(θ0) + opr(1).

Show next that n−1/2Un(θ0) has mean bδ, with b =
∫
h(y)u(y, θ0) dy, and variance matrix

J +O(1/n). Use the Lindeberg theorem to infer that n−1/2Un(θ0)→d Np(bδ, J).

(b) Show also that −n−1In(θ0) →pr J , i.e. even when the true density fn is O(1/
√
n)

away from f(y, θ0). Conclude that
√
n(θ̂ − θ0)→d Np(J

−1bδ, J−1).

(c) (xx invent a simple illustration. point to local power things already in Ch 3. xx)

Ex. 5.53 ML behaviour under local alternatives, II. (xx point here to FIC of Ch. 11.

xx) As a useful special case of the above, assume that a certain narrow model with

density f0(y, θ) is used, with dimension p, but that the reality is that data come from a

wider model, needing an extra parameter γ of dimension q. Suppose indeed that the real

density is ftrue(y) = f(y, θ0, γ0 + δ/
√
n), where setting γ = γ0 in the p + q-dimensional

model f(y, θ, γ) gives us back the f0(y, θ) model. For this wider model, introduce score

vector component u0(y) = ∂ log f(y, θ0, γ0)/∂θ and u1(y) = ∂ log f(y, θ0, γ0)/∂γ. We

also need to introduce

J =

(
J00 J01

J10 J11

)
with inverse J−1 =

(
J00 J01

J10 J11

)
,

the (p+q)×(p+q) Fisher information matrix for the wider model, with inverse, computed

at the position (θ0, γ0).
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(a) The q × q submatrix Q = J11 will serve a crucal role, here and in the building of

Focused Information Criteria in Ch. 11, so we give it its own name, the Q matrix. By

multiplying out JJ−1 = Ip+q, show the following.

Q = J11 = (J11 − J10J
−1
00 J01)−1, J01 = −J−1

00 J01Q.

(b) Show now that(
Un,0
Un,1

)
=

(
n−1/2

∑n
i=1 u0(Yi)

n−1/2
∑n
i=1 u1(Yi)

)
→d

(
U0

U1

)
∼ Np+q(

(
J01δ

J11δ

)
,

(
J00 J01

J10 J11

)
).

We also write Un,0 =
√
nŪ0, Un,1 =

√
nŪ1. With θ̂narr the ML estimator in the narrow

model, show that

√
n(θ̂narr − θ0) = J−1

00

√
nŪn,0 + opr(1)→d J

−1
00 U0 ∼ Np(J

−1
00 J01δ, J

−1
00 ).

(c) Next consider ML estimation in this wide model, with (θ̂wide, γ̂wide). Show that(√
n(θ̂wide − θ0)√
n(γ̂wide − γ0)

)
→d J

−1

(
U0

U1

)
∼ Np+q(

(
0

δ

)
, J−1).

In particular, note that

Dn =
√
n(γ̂ − γ0)→d D ∼ Nq(δ,Q). (5.13)

(d) So how do narrow model estimation and wide model estimation pan out, when

it comes to some given focus parameter? Consider such a φ = φ(θ, γ), with true value

φtrue = φ(θ0, γ0 +δ/
√
n). The two estimators under consideration are φ̂narr = φ(θ̂narr, γ0)

and φ̂wide = φ(θ̂wide, γ̂wide). Show that

√
n(φ̂narr − φtrue) →d N(ωtδ, τ2

0 ),√
n(φ̂wide − φtrue) →d N(0, τ2

0 + ωtQω),
(5.14)

featuring

τ2
0 = (∂µ∂θ )tJ−1

00
∂µ
∂θ and ω = J10J

−1
00

∂µ
∂θ −

∂µ
∂γ ,

with these partial derivatives computed at the null position (θ0, γ0).

(e) So when is narrow model estimation still best, even if that model might be somewhat

wrong? Narrow model means bias but smaller variance; wide model means lower bias

but higher variance. This bias-variance trade-off is nicely captured in the (5.14) limits.

Show that the limit risks, mean squared errors for the limit distributions, are

msenarr = τ2
0 + (ωtδ)2 and msewide = τ2

0 + ωtQω.

Conclude that narrow is best, provided |ωtδ| ≤ (ωtQω)1/2.

(f) (xx more here, rounding it off, with a bit of commentary, an exercise finding the

tolerance radius,
√
n|γ − γ0| ≤ κ for one-extra-para case, it is sample-size dependent as

it should, make sure regression models mentioned properly too, pointing to FIC things

for Ch. 11. xx)
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Ex. 5.54 ML behaviour under local alternatives, III. (xx to come here, nils hoping to

make it not long and not complicated. to be used in Ch7 and some stories. starting

point: y ∼ N(θ, 1), where we know θ ≥ 0. then ML is θ̂ = y I(y ≥ 0), and with a positive

probability of being zero. then
√
n(ȳn − δ/

√
n) in the case of θ = δ/

√
n. then general

ML and profiled, aiming for Dn =
√
n(γ̂ − γ0) when γ = γ0 + δ/

√
n and we have γ ≥ γ0

a priori. consequences also for log-likelihood-ratio. xx)

Ex. 5.55 Proving the Wilks theorem. (xx as of 13-Aug-2023, we need an opprydning and

editing and cleaning and outpushing in the various Wilks things in this chapter. here nils

klipper inn points for proving the Wilks, to be calibrated with other material, proofs,

profiling, uses. xx) Suppose Y1, . . . , Yn are i.i.d., where two models are considered: a

narrow one, namely f0(y, θ), with θ of dimension p; and a wide one, namely f(y, θ, γ),

needing a further parameter vector γ of dimension q. We need the narrow model to be

inside the wide one, so we assume that there is a γ0 for which f0(y, θ) = f(y, θ, γ0). We

assume that γ0 is an inner point in its parameter domain. We wish to construct a test for

the hypothesis H0 that the narrow model holds, and this is equivalent to testing γ = γ0.

Let `n(θ, γ) be the log-likelihood function for the wide model, which also means

`n(θ, γ0) is the log-likelihood function in the narrow model. Let (θ̂, γ̂) be ML estimates

in the wide model and (θ̃, γ0) ML estimates in the narrow model. Assuming that H0 is

in force, with density f(y, θ0, γ0) for the appropriate θ0, we already know the principal

answers regarding limit distributions for
√
n(θ̂ − θ0, γ̂ − γ0) and

√
n(θ̃ − θ0) separately,

but now we need to study them jointly, which calls for accurate representations and for

linear matrix algebra to sort things out. Let the (p + q) × (p + q) information matrix

J = J(θ0, γ0) and its inverse be partitioned into blocks:

J =

(
J00 J01

J10 J11

)
and J−1 =

(
J00 J01

J10 J11

)
.

(a) Here and (xx point to later settings xx) the matrixQ = J11 serves a special role. Show

via matrix manipulations of JJ−1 = I = J−1J that Q = J11 = (J11 − J10J
−1
00 J01)−1,

similarly that J00 = (J00 − J01J
−1
11 J10)−1, and that J01 = −J−1

00 J01J
11.

(b) Show that there is simultaneous convergence in distribution(√
n(θ̂ − θ0)√
n(γ̂ − γ0)

)
→d

(
A

B

)
= J−1

(
U

V

)
and

√
n(θ̃ − θ0)→d C = J−1

00 U,

where (
U

V

)
∼ Np+q(0, J) and hence

(
A

B

)
= J−1

(
U

V

)
∼ Np+q(0, J

−1).

Show in particular that Bn =
√
n(γ̂ − γ0)→d B ∼ Nq(0, Q) under the narrow model.

(c) Do Taylor expansion around (θ̂, γ̂) to show that

n∑
i=1

{log f(Yi, θ̂, γ̂)− log f(Yi, θ̃, γ0)} = 1
2n

(
θ̂ − θ̃
γ̂ − γ0

)t

J∗n

(
θ̂ − θ̃
γ̂ − γ0

)
+ εn,
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where the J∗n matrix tends to J in probability and εn →pr 0. Hence conclude that

∆n = 2(`max,wide − `max,narr)→d ∆ =

(
A− C
B

)t(
J00 J01

J10 J11

)(
A− C
B

)
,

provided the narrow model holds, i.e. under H0.

(d) It remains to establish that the limiting variable ∆ has the advertised nice chi squared

distribution. This is not obvious from its expression above – but do it by first discovering

A − C = −J−1
00 J01B and then plugging in to simplify the expression for ∆. The result

is ∆ = BtQ−1B, which is a χ2
q. – A rephrasing of this important result is as follows: If

M0 is a model contained in a bigger M1 model, then twice the difference of maximised

log-likelihoods, which is also by definition the deviance distance from the narrow model to

the wider model, goes under the narrow model conditions to χ2
df , with df = dim(M1)−

dim(M0).

(e) xx should do local power too, under fn(y) = f(y, θ0, γ0 + δ/
√
n). i think that

Bn =
√
n(γ̂ − γ0)→d B ∼ Nq(δ,Q), and that

∆n →d ∆ = BtQ−1B ∼ χ2
q(δ

tQ−1δ).

also, of separate interest: the log-LR ∆n test is asymptotically equivalent to ∆′n =

Bt
nQ̂
−1Bn = n(γ̂ − γ0)tQ̂−1(γ̂ − γ0)→d B

tQ−1B. write this out. xx

(f) (xx extension to regression models. xx)

Ex. 5.56 Wilks Theorem for k-dim subsets of p-dim parameter space. (xx perhaps a

Leftover; check with that is part of intro exercises about Wilks, via efforts of Ch4. xx)

Material on Wilks Theorems is not ‘naturally completed’ before we also come to and

include the lifting from dimension 1 to dimension k, so to speak. The basic story is

simple to summarise, though not necessarily easy to prove with all the required steps,

also since there are different versions and setups. The main story, at any rate, is as

follows. Suppose we have n observations from a model f(y, θ), perhaps with regression

parameters etc. Here θ is ‘the full parameter vector’, belonging to a parameter region Ω,

in say p-dimensional space. Then there’s a well defined log-likelihood function, say

`n(θ) =

n∑
i=1

log fi(yi, θ).

Suppose one is interested in testing whether θ ∈ Ω0 a subset of lower dimension k < p;

perhaps this corresponds to having θj = 0 for p − k of the components. Then we may

define and compute

`max,all = max{`n(θ) : θ ∈ Ω} and `max,H0 = max{`n(θ) : θ ∈ Ω0},

the maximised log-likelihood values under the full model and under the hypothesis H0

that θ lies in this smaller space. Maxing over a bigger space yields a bigger number than

maxing the same function over a small space. Then consider

∆n = 2(`max,all − `max,H0
).
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Then the splendidly useful Wilks theorem, going all the way back to his 1938 paper, says

that under H0 conditions,

∆n →d χ
2
df , with df = p− k.

This is often presented, and made easier to remember and to use, by ‘counting the degrees

of freedom’ as the dimension a priori minus the dimension under the hypothesis.

(a) Assume the H0 in question is the simple one of θ = θ0, so Ω0 is a single point, of

dimension zero. Verify that the Wilks theorem then is the same as what we’ve seen

earlier, e.g. from Ex. 5.22 [xx and one more? xx].

(b) Assume next that H0 corresponds to φ = h(θ) = φ0, with h(θ) a smooth one-

dimensional function. Note that saying h(θ) = φ0 amounts to characterising a (p − 1)-

dimensional subspace of Ω. Verify that the general Wilks theorem above then corresponds

to what we’ve worked with in the previous few exercises, with the deviance function, its

limiting χ2
1 distribution at the hypothesised value, etc.

(c) (xx a bit more. xx)

Ex. 5.57 Minimum divergence estimators. (xx leftover: perhaps fully covered by things

in Ch4. as of 13-Aug-2023, a little nils rant, which might be formalised and polished into

something useful and generic, with M estimation and other schemes as special cases, also

BHHJ. xx) Consider in general terms some discrepancy measure d(g, fθ), interpreted as

the distance from density g to some parametric approximation fθ. Suppose further that

with observed data Y1, . . . , Yn from g, there is a connection from such a discrepancy to

an empirical Qn(θ). We take this to mean that Qn(θ)→pr Q(θ), with Q(θ) and d(g, fθ)

having the same minimiser, the least false parameter value θ0. We call the minimiser

θ̂ = θ̂n of θ a minimum divergence estimator. (xx the above not fully written out yet.

xx)

(a) To motivate further work below, establish that maximum likelihood estimation is

actually a special case: with Qn(θ) = −`n(θ)/n, show that the limit becomes Q(θ) =

−
∫
g log fθ dy, which is a constant away from the KL distance. A more general theory

for minimum divergence estimators hence subsumes ML estimation as a special case.

s

(b) Consider the first and second order derivatives Q′n(θ) = ∂Qn(θ)/∂θ and Q′′n(θ) =

∂2Qn(θ)/∂θ∂θt. Assume (i) that Un =
√
nQ′n(θ0) →d U and (ii) that Q′′n(θ0) →pr J .

Use Taylor expansion

0 = Q′n(θ̂) = Q′n(θ0) +Q′′n(θ0)(θ̂ − θ0) + εn,

where εn goes sufficiently quickly to zero in probability, to show that under regularity

conditions,

√
n(θ̂ − θ0) = −Q′′n(θ0)Un + ε′n →d −J−1U.
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It might as easy for nils-emil to work with the process

Hn(s) = n{Qn(θ + s/
√
n)−Qn(θ0)}

= U t
ns+ 1

2s
tQ′′n(θ0)s+ ε′′n →d H(s) = U ts+ 1

2s
tJs.

From this, show the two basic results, (i) that
√
n(θ̂−θ0)→d −J−1U , (ii) that n{Qn(θ0)−

Qn,min} →d
1
2U

tJ−1U .

(c) Recreate the basic ML estimation method results from this.

(d) (xx then to M-estimation, a couple of examples, including arcus tangens estimator.

xx)

(e) (xx then to BHHJ. xx)

5.C Notes and pointers

[xx CR bound: In its simplest form, the inequality goes back to Cramér (1946) and Rao

(1945). xx]

[xx least false: a term invented by Hjort, Hjort believes, see Hjort (1986b, 1992),

and now used somewhat frequently in the literature. xx]

Read more about risk functions in DeGroot (1970).

[xx check and calibrate what’s here and what’s in Ch. 7, regarding CD things. xx]

(xx point to Hjort (2008), re ML and least false etc. xx)





I.6

Bayesian inference and computation

In frequentist parametric inference, there is a fixed underlying true parameter value,

say θ0, and methods aim at estimating this value, perhaps along with confidence

regions or testing. Bayesian inference is radically different, conceptually and opera-

tionally. It starts with a prior distribution for the model parameter θ, and proceeds

via Bayes theorems to produce the posterior distribution, of the full θ or of relevant

focus parameters. Thus ‘not knowing θ well’ is expressed in terms of probability

distributions. This chapter goes through these concepts and operations, including

also computational schemes to simulate outcomes from the posterior distributions.

[xx pointers to Ch. 7, 15. xx]

6.A Chapter introduction

The Bayesian paradigm is to formulate uncertainty about model parameters through

probability distributions. If the pre-data uncertainty is a prior density π(θ), this is

updated to the post-data posterior density π(θ |data), via the Bayes theorems.

Consider for illustration and clarification the classical coin flipping experiment, with

θ the probability of ‘head up’. With n independent flips we have Y ∼ binom(n, θ). The

frequentist postulates that there is an underlying true θ0, uses perhaps the estimator

θ̂ = Y/n, reaches the 95 percent interval In = θ̂ ± 1.96 {θ̂(1 − θ̂)}/
√
n, etc. The key

property here us Pθ0(θ0 ∈ In) = 0.95; so In is a random interval, covering the true θ0

in 95 percent of actual cases. The Bayesian viewpoint is strikingly different, starting

with a prior density π(θ) to reflect what might be considered understanding of θ before

the first flip. Post flipping, the Bayesian has reached π(θ | y) ∝ π(θ)f(y, n, θ), with the

binomial likelihood. This may e.g. be used to construct a 95 percent posterior interval

Jn for θ, with P (θ ∈ Jn | y) = 0.95. The Bayesian is then not interested in ‘independent

repeated experiments’, but just in the data at hand. She is also allowed the statistical

luxury of putting prior knowledge into the analysis; if it can be considered known that θ

must be close to 0.50, with values outside [0.40, 0.60] less likely than 2 percent, that can

effectively be utilised in Bayesian analysis, but not so easily in frequentist analysis.

In this chapter we go through the basics of such constructions and methods, con-

ceptually and operationally. We also uncover conditions under which the frequentist and

209
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Bayesian might actually (approximately) agree, in their final inference statements. The

two 95 percent intervals In and Jn in the previous paragraph will e.g. tend to be very

similar, at least with increasing n.

An attractive feature of Bayesian analysis is that the answer, to a sufficiently well-

posed inference question, is crystal clear, without having to study competing meth-

ods, carrying out performance and comparison analyses, etc. Essentially, if you give a

Bayesian (i) a model, (ii) data, (iii) a list of possible actions, and (iv) a loss function,

there is a Master Recipe for the very best action.

Modern Bayesian statistics has flourished since around 1980, partly through com-

puter power and algorithms, making calculations possible that would have been too hard

for previous generations. The operational goal is often to be able to generate samples

from the posterior distribution, and we give methods for accomplishing this, including

Markov Chain Monte Carlo (MCMC).

(xx two more paragraphs to come. action space, loss function, Master Recipe is to

minimise posterior expected loss, and pointers to Bayesian nonparametrics in Ex. 15.

xx)

6.B Short and crisp

Ex. 6.1 Poisson data with gamma priors. This exercise illustrates the basic prior

to posterior updating mechanism in a simple Poisson setting. Suppose Y1, Y2, . . . are

i.i.d. Poisson with unknown mean θ.

(a) Recall definition and properties of the Gamma distribution from Ex. 1.9. In the

present Bayesian context, let θ ∼ Gam(a, b). The prior mean and variance are a/b = θ0

and a/b2 = θ0/b. In particular, low and high values of b signify high and low variability,

respectively. Explain how (a, b) may be set from values of prior mean and prior variance.

To exemplify, if these are (5.5, 7.7), find (a, b).

(b) With a single observation Y which is Pois(θ) given θ, show that θ | y ∼ Gam(a +

y, b+ 1).

(c) Then suppose there are repeated observations y1, . . . , yn, being i.i.d. ∼ Pois(θ) for

given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior before

observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gam(a+ y1 + · · ·+ yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gam(0.1, 0.1) and that the Poisson data are

6, 8, 7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 6.1 in your computer, plotting

the six first curves p(θ |dataj), where dataj is y1, . . . , yj , along with the prior density.

Complement with another figure also including updated densities 7, 8, 9, 10, for the four

last observations, and comment. Also compute the ten Bayes estimates θ̂j = E(θ |dataj)

and the posterior standard deviations, for j = 1, . . . , 10.
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Figure 6.1: Seven curves are displayed, corresponding to the Gam(0.1, 0.1) intial prior

density for the Poisson parameter θ, along with the six first updates following each of

the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.

(e) The mathematics turned out to be rather uncomplicated in this situation, since

the Gamma continuous density matches the Poisson discrete density so nicely. Suppose

instead that the initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior

distributions, Bayes estimates and posterior standard deviations also in this case, and

compare with what you found above.

Ex. 6.2 The Master Recipe for finding the Bayes solution. Due to the importance of

Bayes solutions we start by showing how to derive them. (xx more rydding here, re intro

here and intro text above, also to be calibrated with Ch 7. need to define L(θ, a), an

action space, etc. xx)

(a) Show that the posterior density of θ, that is, the distribution of the parameter given

the data, takes the form

π(θ | y) = m(y)−1fθ(y)π(θ),

where m(y) is the required integration constant
∫

Θ
fθ(y)π(θ) dθ. This is Bayes’ theorem,

and we typically write π(θ | y) ∝ π(θ)fθ(y), which reads ‘posterior is proportional to prior

times likelihood’.

(b) Show also that the marginal distribution of the data y is m(y).
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(c) Show that the Bayes risk may be expressed as

BR(a, π) = Eθ Eπ [L(θ, a(Y )) |Y ] =

∫
Y

{∫
Θ

L(a(y), θ)π(θ | y) dθ

}
m(y) dy.

The inner integral, or ‘inner expectation’, is Eπ {L(θ, a(y)) |Y = y}, that is, the expected

loss given data.

(d) Show then that the optimal Bayes strategy, the one minimising the Bayes risk, is

achieved by using

â = argmin g = the value minimising g,

where g = g(a) is the expected posterior loss,

g(a) = Eθ {L(θ, a) | y}.

The function g is evaluated and minimised over all a, for the given data y. This is the

Bayes recipe.

Ex. 6.3 Some loss functions and their associated Bayes rules. The Master Recipe of

Ex. 6.2 is completely general, and can be applied in new and complicated situations,

as long as we have data, a model, a prior for the unknowns, and a loss function. In

the Bayesian setup finding or evaluation the posterior distribution of the parameters is

always important, carrying separate weight, but if clear decisions are needed one needs

also the loss function, say L(θ, a). Here we go through a short list of commonly used loss

functions.

(a) For estimating a one-dimensional θ, with squared error loss L(θ, a) = (a− θ)2, show

that the Bayes estimator is θ̂B = E (θ | y), the posterior mean.

(b) If the loss function is L(θ, a) = w(θ)(a− θ)2, show that the Bayes estimator is

θ̂B =
E {w(θ)θ |data}
E {w(θ) |data}

.

In particular, when estimating a positive θ using loss (a − θ)2/θ, show that the Bayes

estimator is 1/E {(1/θ) |data}.

(c) Consider the natural absolute loss function, L(θ, a) = |a − θ|. Show that the Bayes

solution becomes the posterior median, i.e. θ̂B = G−1( 1
2 |data), where G(θ |data) is the

posterior cumulative distribution function.

(d) Suppose one needs the joint estimation of several parameters, say all of θ = (θ1, . . . , θp),

via the loss function L(θ, a) = (a− θ)tM(a− θ), for an appropriate full-rank symmetric

matrix M . Show that the Bayes solution again is the posterior mean, but now for the

full vector, i.e. E (θ |data). In particular, the Bayes solution does not depend on the M

matrix, though the actual posterior expected loss, and the Bayes risk, do.
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(e) In the previous subquestions the framework has been that of estimating a one-

dimensional θ. Check that you understand how these results and insights, for the Bayes

solutions, change when the situation is changed to that of estimating a focus parameter,

say φ = g(θ1, . . . , θp), a function of the full model parameter.

Ex. 6.4 How many streetcars in San Francisco? (xx to be done. unknown number: N .

likelihood (1/N)n I(y1 ≤ N, . . . , yn ≤ N), for n numbers observed. first 203, then also

157, 222. different priors. create your own. find N̂ and 90 percent interval. xx)

Ex. 6.5 A Bayesian take on hypothesis testing. Assume the model parameter θ is either

in Ω0, which we may call the null hypothesis, or not, i.e. in its complement Ωc0. Suppose

also that the statistician needs to make a decision, either to reject the null, or to accept

it. This is the basic framework of hypothesis testing, see (xx point to Ch 2 stuff xx), but

we now consider this problem from a Bayesian viewpoint.

(a) The decision space is {accept, reject}. For the loss function, take L(θ, accept) equal

to 0 or L0, if θ is inside or outside Ω0, and L(θ, reject) equal to 0 or L1, if θ is outside or

inside Ω0. Show that

E {L(θ, accept) |data} = L0 p(data), E {L(θ, reject) |data} = L1 {1− p(data)},

where p(data) = P (θ ∈ Ωc0 |data), the probability that the null is wrong, as measured by

the Bayesian posterior distribution.

(b) Deduce that one should reject the null when the probability p(data) for its falseness

is sufficiently overwhelming, namely when p(data) ≥ L1/(L0 + L1). – If this threshold

is 0.95, for example, show that this corresponds to L1/L0 = 19. Briefly discuss ways of

assigning losses L0 and L1.

(c) (xx complete this: decision space {accept, reject,doubt}, with a certain fixed cost

Ld for the doubt option, associated with further efforts for getting more data. expected

losses given data are L0p, L1(1− p), Ld. which is smallest? xx)

(d) xx

Ex. 6.6 Which subset does the model parameter belong to? Consider a setup with data

from a model with model parameter θ inside its region Ω. Suppose you need to take

one of five different possible decisions, D1, . . . , D5, and that these are related to where

the underlying parameter θ is positioned; if θ ∈ Ωj the best decision would be Dj , for

j = 1, . . . , 5. Here the Ωj are disjoint and their union is the full parameter region.

(a) Suppose the loss function L(θ,Dj) is 0 if θ ∈ Ωj and 100 if θ /∈ Ωj . Show that

E {L(θ,Dj) |data} = 100{1 − pj(data)}, where pj(data) = P (θ ∈ Ωj |data). Hence

show that the optimal Bayes strategy is to take the decision associated with the highest

posterior probability pj(data).

(b) Assume there in addition is a ‘doubt option’, associated with a doubt cost Ld = 10;

this could e.g. mean planning for getting further data. With decision space {D1, . . . , D5,doubt},
what is now the Bayesian strategy?
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(c) Generalise the previous setup, and results, to the case where the costs associated

with reaching the wrong decision are not equally balanced, say L(θ,Dj) = ci,j , if θ ∈ Ωi,

for i = 1, . . . , 5, with ci,i = 0 but the other ci,j positive.

Ex. 6.7 The binomial-beta setup. Let Y given θ be a binomial (n, θ), and for θ take a

Beta(a, b) prior, see Ex. 1.25. There we worked with the marginal distribution of Y , and

looked at certain properties, but here our aims are Bayesian.

(a) Show that θ | y ∼ Beta(a + y, b + n − y). – This is the main and always crucial

updating step, getting from the prior to the posterior. In the present case the step is an

easy one, since there is only one unknown parameter, and since the product of the prior

and the likelihood takes an easy form. Give a description of the posterior also for the

not quite so standard case where the prior for θ is uniform on [0.30, 0.70].

(b) Going back to the Beta(a, b) prior again, show that the Bayes estimator, under

squared error loss, is

θ̂B =
a+ y

a+ b+ n
= (1− wn)θ0 + wny/n,

where θ0 = a/(a + b) is the prior mean and wn = n/(a + b + n). For the case of a

uniform prior, show that this leads to (y + 1)/(n + 2). Compute the risk functions

r(θ) = Eθ (θ̂ − θ)2, for the classic frequentist Y/n and for the this (Y + 1)/(n+ 2), and

find the interval where the latter is better than the former.

(c) Show that the posterior variance becomes

Var (θ | y) =
θ̂B(1− θ̂B)

n+ a+ b+ 1
.

(d) If Y is from the binomial (n, θtrue) model, show that Y/n and the Bayes estimator

θ̂B are large-sample equivalent, with
√
n(Y/n − θ̂B) →pr 0. Deduce that they have the

same limit distribution.

Ex. 6.8 The multinomial-Dirichlet setup. Here we extend the setup and result of

binomial-Beta, to the case of three or more categories. We start with Y = (Y1, . . . , Yk)

which for given p = (p1, . . . , pk) is a multinomial (n, p1, . . . , pk). For p we take the

Dir(a1, . . . , ak) prior. For details regarding the multinomial and the Dirichlet, see Ex. 1.5

and 1.24.

(a) Show the important and useful result that (p1, . . . , pk) | (y1, . . . , yk) ∼ Dir(a1 +

y1, . . . , ak + yk).

(b) Show that the Bayes estimator under squared error loss becomes

p̂i,B = E (pi |data) =
ai + yi
a+ n

= (1− wn)p0,i + wn(yi/n)

for i = 1, . . . , k, with prior means p0,i = ai/a, with a = a1 + · · · + ak, and weight

wn = n/(a+ n).
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(c) Find also the posterior variance and posterior correlation between pi and pj-

(d) (xx just a bit more. xx)

Ex. 6.9 Gott würfelt nicht. For the multinomial-Dirichlet setup of Ex. 6.8, we reached

the posterior characterisation p |data ∼ Dir(a1 + y1, . . . , ak + yk). The importance of

this lies in the easy usefulness of simulations, where the posterior distribution of any

functions of (p1, . . . , pk) may be read off.

(a) Explain how you may simulate e.g. 105 vectors p = (p1, . . . , pk) from the posterior

distribution, using the characterisation from Ex. 1.24. Concretely, show that one may use

p1 = G1/G, . . . , pk = Gk/G, with independent G1 ∼ Gam(a1 + y1), . . . , Gk ∼ Gam(ak +

yk), and sum G = G1 + · · ·+Gk.

(b) Suppose you throw a certain and perhaps not entirely standard die 30 times and

have counts (2, 5, 3, 7, 5, 8) of outcomes 1, 2, 3, 4, 5, 6. Use either of the priors (i) ‘flat’,

Dir(1, 1, 1, 1, 1, 1); (ii) ‘symmetric and more confident’, Dir(3, 3, 3, 3, 3, 3); (iii) ‘unwilling

to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), for the probabilities (p1, . . . , p6), to assess the

posterior distribution of each of the following quantities (xx how do we do aligning here

xx):

α = p6/p1, β = (1/6)

6∑
j=1

(pj − 1/6)2,

γ = (1/6)

6∑
j=1

|pj − 1/6|, δ = (p4p5p6)1/3/(p1p2p3)1/3.

For each of α, β, γ, δ, and for each of the priors, give the 0.05, 0.50, 0.95 quantile points,

from 105 simulations from the posterior distributions. You should also plot the posterior

densities, for each of the four quantities noting the extent to which the prior influences

the results.

(c) For the case of α = p6/p1, exact numerical simulation is possible, without simulation.

Do this, and compare with the answers reached via simulation.

(d) (xx polish and xref to mixtures. xx) The above priors are slightly artificial in this

context, since they do not allow the explicit possibility that the die in question is plain

boring utterly simply a correct one, i.e. that p = p0 = (1/6, . . . , 1/6). The priors used

hence do not give us the possibility to admit that ok, then, perhaps ρ = 1, α = 0, β = 0,

γ = 1, after all. This motivates using a mixture prior which allows a positive chance for

p = p0. Please therefore redo the Bayesian analysis above, with the same (2, 5, 3, 7, 5, 8)

data, for the prior 1
2 δ(p0) + 1

2 Dir(1, 1, 1, 1, 1, 1). Here δ(p0) is the ‘degenerate prior’ that

puts unit point mass at position p0. Compute in particular the posterior probability that

p = p0, and display the posterior distributions of ρ, α, β, γ.

(e) xx
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Ex. 6.10 The normal prior and posterior with normal data. Here we go through the

basic steps and results for situations with normal data and normal priors for unknown

mean parameters. More elaborate constructions and technical issues are needed when

there in addition are unknown parameters in the variance and covariance structure, to

be pursued in Ex. 6.11, 6.12.

(a) There are things to think through and to learn from, by working through this very

simple setup first. (i) For a single observation Y assume it comes from the N(ξ, σ2),

and take σ as known; (ii) for the unknown mean ξ assume it comes from the prior

N(ξ0, τ
2
0 ), with specified prior parameters ξ0, τ0. Show that this leads to a binormal joint

distribution for parameter and observation,(
ξ

Y

)
∼ N2(

(
ξ0
ξ0

)
,

(
τ2
0 , τ2

0

τ2
0 , τ

2
0 + σ2

)
).

(b) Use general conditioning results from Ex. 1.30 to infer that

ξ | y ∼ N(ξ0 + w(y − ξ0), wσ2), with w = τ2/(τ2 + σ2).

So w and 1 − w are the weights given to the data-based estimate y and the prior guess

ξ0, respectively. Also, w is the reduction factor with which the variance of the prior-free

estimator Y , from σ2 to wσ2.

(c) An easy but important extension is to the case of a full sample Y1, . . . , Yn from the

N(ξ, σ2) distribution, independent given the ξ, again with σ taken known and the normal

prior N(ξ0, τ
2
0 ) for the unknown mean. Show that Ȳ = (1/n)

∑n
i=1 Yi is sufficient (xx

xref here xx), and that (
ξ

Ȳ

)
∼ N2(

(
ξ0
ξ0

)
,

(
τ2
0 , τ2

0

τ2
0 , τ

2
0 + σ2/n

)
).

Show from this that

ξ |data ∼ N(ξ0 + wn(ȳ − ξ0), wnσ
2/n), with wn =

τ2

τ2 + σ2/n
=

nτ2

nτ2 + σ2
.

Again, wn is both the weight given to the data-based estimate and the factor with which

the neutral estimator’s variance is reduced, from σ2/n to wnσ
2/n. Note that wn → 1;

discuss how this may be seen as ‘the data wash out the prior’.

(d) Discuss the case of a ‘flat prior’, where τ is taken large, for ξ ∼ N(ξ0, τ
2).

(e) In addition to having a coherent updating machine, changing the prior to the poste-

rior, for each new data point, the Bayesian structure implies positive dependence among

the observations. From E (Yi | ξ) = ξ, Var (Yi | ξ) = σ2, E (YiYj | ξ) = ξ2, show that

EYi = ξ0, VarYi = σ2 + τ2
0 , cov(Yi, Yj) = τ2

0 , corr(Yi, Yj) =
τ2
0

σ2 + τ2
0

,

Show also that Var Ȳn = σ2/n+ τ2
0 , and discuss what this means for large n.
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(f) Prove first the convenient formula

v(ξ − ξ0)2 + n(ξ − ȳ)2 = (v + n)(ξ − ξ∗)2 + dn(ȳ − ξ0)2,

where

ξ∗ =
vξ0 + nȳ

v + n
and dn =

vn

v + n
= (v−1 + n−1)−1,

which also may be written and interpreted via 1/dn = 1/v + 1/n.

(g) Show that with any prior p(ξ) for ξ, the marginal density of (Y1, . . . , Yn) can be

written

f̄(y1, . . . , yn) =

∫
(2π)−n/2σ−n exp

{
− 1

2

1

σ2

n∑
i=1

(yi − ξ)2
}
p(ξ) dξ.

For the case of N(ξ0, τ
2
0 ) worked with above, let first Q0 =

∑n
i=1(yi− ȳ)2, and verify thatcheck all of this

with care ∑n
i=1(yi − ξ)2 = Q0 + n(ξ − ȳ)2. Writing for mathematical convenience 1/τ2 = v/σ2,

show that

f̄(y1, . . . , yn) =
1

(2π)n/2
1

σn
exp(− 1

2Q0/σ
2)
( v

v + n

)1/2

exp{− 1
2dn(ȳ − ξ0)2/σ2},

where dn = (1/n+ 1/v)−1.

(h) With the marginal density seen as a function of the two fine-tuning parameters

(ξ0, τ
2
0 ), find the maximum marginal likelihood estimators ξ̂0 and σ̂.

(i) We record two matrix identities here, as they will come in handy both here and on

later occasions. For a square and invertible A, show that

(A+ xxt)−1 = A−1 − cA−1xxtA−1, with c = 1/(1 + xtA−1x);

also, that |A+ xxt| = |A|(1 + xtA−1x).

(j) Argue directly that Y = (Y1, . . . , Yn)t must be multinormal, with Y ∼ Nn(ξ01,

σ2In + τ2
0 11t), with 1 the vector (1, . . . , 1)t; the variance matrix has σ2 + τ2

0 on the

diagonal and τ2
0 outside. Show that this agrees with the marginal density formula reached

above.

Ex. 6.11 The gamma-normal prior and posterior. Let data y1, . . . , yn for given param-

eters ξ and σ be i.i.d. N(ξ, σ2). We have seen in Ex. 6.10 that when σ may be taken as

a known quantity, then the canonical class of priors for ξ is the normal one. When both

parameters are unknown, however, as in most practical encounters, a more elaborate

analysis is called for.

(a) Show that the likelihood function may be written as being proportional to

Ln(ξ, σ) = exp
[
−n log σ − 1

2

1

σ2
{Q0 + n(ξ − ȳ)2}

]
,

where ȳ = (1/n)
∑n
i=1 yi and Q0 =

∑n
i=1(yi − ȳ)2.
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(b) With any given prior p(ξ, σ), explain how you may set up a Metropolis type MCMC

to draw samples from the posterior distribution. Try this out in practice, using the prior

that takes ξ and log σ independent and uniform on say [−5, 5] and [−10, 10], with data

that you simulate for the occasion from a N(2.345, 1.2342), with n = 25. Note that this

approach does not need more mathematical algebra as such, apart from the likelihood

function above.

(c) There is however a popular and convenient conjugate class of priors for which poste-

rior distributions become particularly clear, with the appropriate algebraic efforts. These

in particular involve placing a Gamma prior on the inverse variance λ = 1/σ2. Say that

(λ, ξ) has the gamma-normal distribution with parameters (a, b, ξ0, v), and write this as

(λ, ξ) ∼ GN(a, b, ξ0, v),

provided λ = 1/σ2 ∼ Gam(a, b) and ξ |σ ∼ N(ξ0, σ
2/v). Show that the prior can be

expressed as

p(λ, ξ) ∝ λa−1λ1/2 exp
[
−λ{b+ 1

2v(ξ − ξ0)2}
]
.

What is the unconditional prior variance of ξ?

(d) Using the identity from Ex. 6.10(f), show that if the prior is (λ, ξ) ∼ GN(a, b, ξ0, v),

then

(λ, ξ) |data ∼ GN(a+ 1
2n, b+ 1

2Q0 + 1
2dn(ȳ − ξ0)2, ξ∗, v + n).

(e) The special case of a ‘flat prior’ for ξ, corresponding to letting v → 0 above, is

particularly easy to deal with. Show that then

(λ, ξ) |data ∼ GN(a+ 1
2n, b+ 1

2Q0, ȳ, n).

Find the posterior mean of σ2 under this prior.

(f) (xx an illustration here. we ask readers to fix the GN prior according to wishes for σ

and for ξ |σ. perhaps cigarette consumption per state data, data in 2.B. we ask for more

than merely ξ and σ inference, could e.g. ask for P (Y ≥ y0), and for prediction. xx)

(g) (xx same data, but with the uninformative version of the GN prior. discuss differences

in results and interpretation. xx)

Ex. 6.12 The gamma-normal induced marginal model. (xx edit intro sentences. Y1, . . . , Yn
are i.i.d. from the N(ξ, σ2), given these two parameters. xx) For the direct Bayesian

use one only needs the prior to posterior computation, in this case from the initial

GN(a, b, ξ0, v) to the updated GN given in Ex. 6.11, and one somehow bypasses the

marginal density f̄(y1, . . . , yn) of the data, the likelihood with the parameters (ξ, σ) in-

tegrated out according to the prior. On occasion this marginal distribution is important,

however, and also finds use as a model in its own right, for positively dependent data.

(a) (xx first things with ξ ∼ N(ξ0, τ
2
0 ), known σ. two ways of computing and seeing

f̄(y1, . . . , yn). do marginal moments and correlations. xx)
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(b) xx

(c) Then the GN(a, b, ξ0, v) gamma-normal prior for (λ, ξ), as with Ex. 6.11. Show first

that the likelihood times the prior, Ln(λ, ξ)p(λ, ξ), can be expressed as

λn/2

(2π)n/2
exp[− 1

2λ{Q0 + n(ξ − ȳ)2}] ba

Γ(a)
λa−1(vλ)1/2 exp[−λ{b+ 1

2v(ξ − ξ0)2}].

Then integrate out the ξ to get

1

(2π)n/2
ba

Γ(a)
λa+n/2−1

( v

v + n

)1/2

exp{−λ(b+ 1
2Q0 + 1

2dn(ȳ − ξ0)2},

with dn = (1/v + 1/n)−1 as per Ex. 6.11. Show then that this leads to the marginal

density being

f̄(y1, . . . , yn) = (2π)−n/2
( v

v + n

)1/2 ba

Γ(a)

Γ(a+ n/2)

{b+ 1
2Q0 + 1

2dn(ȳ − ξ0)2}a+n/2
.

(d) xx

Ex. 6.13 The gamma-multinormal prior for linear regression models. The aim of the

present exercise is to generalise the Gamma-Normal conjugate prior class above to the

linear-normal regression model. The model is the very classical one (xx xref here xx)

where

yi = xi,1β1 + · · ·+ xi,kβk + εi = xt
iβ + εi for i = 1, . . . , n,

with the εi taken i.i.d. N(0, σ2). Write X for the n× k matrix of covariates (explanatory

variables), with xi = (xi,1, . . . , xi,k) as its ith row, and use y and ε to indicate the vectors

of yi and εi. Then

y = Xβ + ε ∼ Nn(Xβ, σ2In)

is a concise way to write the full model.

(a) Show that the likelihood function may be written as being proportional to

Ln(β, σ) = σ−n exp
{
− 1

2

1

σ2

n∑
i=1

(yi − xt
iβ)2

}
= σ−n exp

[
− 1

2

1

σ2
{Q0 + n(β − β̂)tMn(β − β̂)}

]
,

in which

Mn = (1/n)XtX = n−1
n∑
i=1

xix
t
i and β̂ = (XtX)−1Xty = M−1

n n−1
n∑
i=1

xiyi.

Also,

Q(β) = ‖y −Xβ‖2 = Q0 + n(β − β̂)tMn(β − β̂),

with Q0 =
∑n
i=1(yi−xt

iβ̂)2 the minimum value of Q over all β. Note that β̂ is the classical

least squares estimator (and the ML estimator), which in the frequentist framework is

unbiased with variance matrix equal to σ2(XtX)−1 = (σ2/n)M−1
n . This is the basis of

all classical methods related to the widely popular linear regression model.
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(b) Let p(β, σ) be any prior for the (k + 1)-dimensional parameter of the model. Set up

formulae for a Metropolis type MCMC algorithm for drawing samples from the posterior

distribution of (β, σ).

(c) In spite of the possibility of solving problems via MCMC (or perhaps acceptance-

rejection sampling), as with the previous exercise it is very much worthwhile setting up

explicit formulae for the case of a certain canonical prior class. Write

(λ, β) ∼ GNk(a, b, β0,M0)

to indicate the gamma-normal prior where

λ = 1/σ2 ∼ Gam(a, b) and β |σ ∼ Nk(β0, σ
2M−1

0 ).

Show that this prior may be expressed as

p(λ, β) ∝ λa−1λk/2 exp
[
−λ{b+ 1

2 (β − β0)tM0(β − β0)}
]
.

(d) When multiplying the prior with the likelihood it is convenient to use the following

linear algebra identity about quadratic forms, which you should prove first. For sym-

metric and invertible matrices A and B, and for any vectors a, b, x of the appropriate

dimension,

(x− a)tA(x− a) + (x− b)tB(x− b) = (x− ξ)t(A+B)(x− ξ) + (b− a)tD(b− a),

where ξ = (A + B)−1(Aa + Bb) (a weighted average of a and b) and D is a matrix for

which several equivalent formulae may be used:

D = A(A+B)−1B = B(A+B)−1A

= A−A(A+B)−1A = B −B(A+B)−1B = (A−1 +B−1)−1.

(e) Prove that if (λ, β) has the GNk(a, b, β0,M0) prior, then

(λ, β) |data ∼ GNk(a+ 1
2n, b+ 1

2Q0 + 1
2 (β̂ − β0)tDn(β̂ − β0), β∗,M0 + nMn),

where

β∗ = (M0 + nMn)−1(M0β0 + nMnβ̂) and Dn = M0(M0 + nMn)−1nMn.

This characterisation makes it easy to simulate a large number of (β, σ) from the posterior

distribution and hence to carry out Bayesian inference for any parameter of quantity of

interest.

(f) Note the algebraic simplifications that result when the M0 in the prior is chosen as

being proportional to the covariate sample variance matrix, i.e. M0 = c0Mn. Show that

then

β∗ =
c0β0 + nβ̂

c0 + n
and Dn =

c0n

c0 + n
.

In this connection c0 has a natural interpretation as ‘prior sample size’.
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(g) A special case of the above, leading to simpler results, is that where β has a flat,

non-informative prior, corresponding to very large prior variances, i.e. to M0 → 0. Show

that with such a prior,

(λ, β) |data ∼ GNk(a+ 1
2n, b+ 1

2Q0, β̂, nMn).

The prior is improper (infinite integral), but the posterior is proper as long as β̂ exists,

which requires XtX to have full rank, which again means at least k linearly independent

covariate vectors, and, in particular, n ≥ k.

(h) Go again to the dataset 2.B, for illustration and for flexing your operational muscles.

For y use the lung cancer column of deaths per 100,000 inhabitants and for x use the

number of cigarettes sold per capita. Your task is to carry out Bayesian analysis within

the linear regression model

yi = α+ βxi + εi for i = 1, . . . , 44,

with εi taken i.i.d. N(0, σ2). Specifically, we wish point estimates along with 95% cred-

ibility intervals for (i) each of the three parameters α, β, σ; (ii) the probability that

y ≥ 25.0, for a country with cigarette consumption x = 35.0; (iii) the lung cancer death

rates y45 and y46, per 100,000 inhabitants, for countries with cigarette consumption rates

x45 = 10.0 (low) and x46 = 50.0 (high). You are to carry out such inference with two

priors:

. First, the informative one which takes 1/σ2 a gamma with 0.10 and 0.90 quantiles

for σ equal to 1.0 and 5.0, and α and β as independent normals (15.0, (2.0σ)2) and

(0.0, (2.0σ)2), given σ.

. Then, the simpler and partly non-informative one that takes a flat prior for (α, β)

and the less informative one for σ that uses 0.10 and 0.90 prior quantiles 0.5 and

10.0.

Finally, compare your results from those arrived at using classical frequentist methods.

Ex. 6.14 Mixture priors. Suppose data Y come from a model f(y, θ), where different pri-

ors π1(θ), . . . , πk(θ) can be used, each leading to posterior distributions π1(θ | y), . . . , πk(θ | y).

(a) For each of these possible priors (and hence possible posteriors), show that there is

a representation fj(y, θ) = πj(θ)f(y, θ) = πj(θ | y)f̄j(y), where f̄j(y) =
∫
f(y, θ)πj(θ) dθ

is the marginal density of Y , associated with the πj(θ) prior.

(b) Suppose now that a full mixture prior is assigned to θ, of the type π(θ) = p1π1(θ) +

· · · + pkπk(θ), with probabilities p1, . . . , pk summing to 1. Show that this can be in-

terpreted as θ is drawn from prior j with probability pj . Show also that the marginal

distribution of Y can be expressed as f̄(y) =
∑k
j=1 pj f̄j(y).

(c) Then show that the posterior distribution for θ becomes

π(θ | y) = p∗1π1(θ | y) + · · ·+ p∗kπk(θ | y),

with revised prior probabilities p∗j = pj f̄j(y)/
∑k
j′=1 pj′ f̄j′(y) for the different types of

priors.
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(d) Suppose Y ∼ binom(n, θ), and that the prior used for θ is 0.15 Beta(2, 10)+0.70 Beta(15, 15)+

0.15 Beta(10, 2). Draw this prior in a plot. With n = 100, compute the posterior proba-

bilities p∗1, p
∗
2, p
∗
3, and draw the posterior distribution for θ, along with the prior, for each

of the cases y = 12, y = 48, y = 91.

(e) (xx revisit the Gott würfelt nicht, Ex. 6.9. do a mixture prior, perhaps 0.50 Dir(1, 1, 1, 1, 1, 1)+

0.50 Dir(s, s, s, s, s, s), where s is quite big, reflecting the possibility that the die is per-

fectly fair with probabilities equal to or very close to (1/6, 1/6, 1/6, 1/6, 1/6, 1/6). xx)

(f) Generalise the above to the situation where π(θ) =
∫
πα(θ) dG(α) is a mixture of

πα(θ) priors, with dG(α) a fully general probability measure over the space of hyper-

parameter α. The α coud be a parameter belonging to a finite set, matching the setup

above, or a full continuous mixture. Show that the posterior can be represented as

π(θ | y) =
∫
πα(θ | y) dG(α |data), where dG(α |data) is the posterior for the hyperpa-

rameter, and πα(θ | y) is the posterior for θ in the setup where α is fixed and known.

(g) xx

Ex. 6.15 (xx a simple intro one-para illustration.) (xx about here: a simple but real

illustration that for almost any one-parameter model, we may carry out Bayes inference,

with modest numerical efforts; bigger models need bigger tools, to be pointed to. xx)

Ex. 6.16 The Jeffreys prior. (xx to come. with examples. π0(θ) ∝ |J(θ)|1/2. Beta( 1
2 ,

1
2 )

for the binomial. but a different one for the Geometric, even though the likelihoods are

the same. also do the multinomial, where it is Dir( 1
2 , . . . ,

1
2 ). xx)

Ex. 6.17 A simple model for deviations from uniformity. This exercise illustrates how

we can carry out Bayesian analysis for almost any given one-parameter model, via simple

numerical techniques; bigger models need bigger tools, as we come back to (xx where

xx). Consider the model

f(y, θ) = 1 + θ(y − 1
2 ) for y ∈ [0, 1].

(a) Show that this indeed defines a bona fide model, for θ ∈ [−2, 2], and with c.d.f. F (y, θ) =

y + 1
2θ(y

2 − y). Show that the Fisher information is

J(θ) =

∫ 1/2

−1/2

x2

1 + θx
dx.

(xx perhaps more, a formula. xx)

(b) Compute and display the Jeffreys prior.

(c) Take θtrue = 0.333, simulate say n = 100 points from the model, and give a graph

for the log-likelihood function. Compute the ML and an approximate 90 percent interval

for θ via the methods of Chapter 5.

(d) Then, with a uniform prior on [−2, 2], compute and display the posterior distribution

for θ.
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(e) Using a fine grid, e.g. with grid length 0.0001, sample say 105 points from the posterior

distribution. From these, provide 0.05, 0.50, 0.95 quantiles. (xx just a bit more; round

off; point away. xx)

Ex. 6.18 The linex loss function. When estimating a one-dimensional θ with a θ̃, the

most traditional loss function is that of squared error, (θ̃ − θ)2, which in particular is

symmetric, treating over- and underestimation as equally important. A more flexible

loss function is the so-called linex loss, with

Lc(θ, θ̃) = exp{c(θ̃ − θ)} − 1− c(θ̃ − θ).

The c is fine-tuning loss parameter, for the statistician to set, balancing over- against

underestimation. Note that both positive and negative values of c are allowed here.

(a) Show that the Lc is always nonnegative. Show that c > 0 means penalising overes-

timation more than underestimation, and vice versa for c < 0. For small |c|, show that

Lc(θ, θ̃)
.
= 1

2c
2(θ̃−θ)2, getting back to squared error loss. The constant in front is immate-

rial for evaluating and comparing loss and risk, and one may use L∗c(θ, θ̃) = Lc(θ, θ̃)/(
1
2c

2)

to have a smoother transition to the c = 0 case of squared error loss.

(b) Show that the expected loss given data can be expressed as

E {Lc(θ, t) |data} = E [exp{c(t− θ)} − 1− c(t− θ) |data]

= exp(ct)M(−c)− 1− c(t− ξ̂),

where ξ̂ is the posterior mean and M(−c) = E {exp(−cθ) |data}, the moment-generating

function of θ given data, computed at −c.

(c) Show that this is minimised for the t0 where exp(ct0)M(−c) = 1, or ct0+logM(−c) =

0, so that the Bayes estimator becomes θ̂B = −(1/c) logM(−c). This may be computed

numerically, perhaps by simulation, in cases where no clear formula exists for M(−c).
Show also that the expected posterior loss, using the Bayes solution, is

min E {Lc(θ, t) |data} = −c(t0 − ξ̂) = logM(−c) + cξ̂.

(d) Using approximation results from Ex. 2.32, show that M(−c) .
= 1− cξ̂+ 1

2c
2(ξ̂2 + σ̂),

with ξ̂ and σ̂2 the posterior mean and variance. Deduce that θ̂B
.
= ξ̂ − 1

2cσ̂
2.

(e) In situations where the posterior is based on a sample of size n, the posterior mean

ξ̂n stays stable wheras the posterior variance σ̂2 goes down with speed 1/n, i.e. as σ̂2
0/n,

for the relevant σ̂2
0 . In such cases, ξ̂n − 1

2cσ̂
2
0/n becomes the approximation to the Bayes

linex estimator θ̂B . Find in fact the exact Bayes linex estimator, for the case of Y1, . . . , Yn
being i.i.d. N(θ, 1), with a N(0, τ2) prior for θ; use the updating result from Ex. 6.10(b).

(f) (xx rounding off for now; point to Ex. 6.24, 6.25. xx)

Ex. 6.19 The marginal distribution. Suppose we have data y1, . . . , yn from a model

f(y, θ), with a prior π(θ). Most of the time Bayesians care about the posterior distri-

bution, but on occasion, also in connection with bigger setups, one needs the marginal
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distribution, which is f̄(y1, . . . , yn) =
∫
Ln(θ)π(θ) dθ, in terms of the likelihood function

Ln(θ). In various setups there will be a clear formula for this f̄ , se seen below; see

Ex. 6.20 for a very useful approximation method for more complex cases.

(a) Let y1, . . . , yn be independent Bernoulli variables with P (yi = 1 | θ) = θ, and let

θ ∼ Beta(a, b). Writing z =
∑n
i=1 yi for the number of 1s, show that

f̄(y1, . . . , yn) =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ z)Γ(b+ n− z)
Γ(a+ b+ n)

.

(b) Let then y1, . . . , yn be independent Pois(θ), with a Gam(a, b) prior. Show that

f̄(y1, . . . , yn) =
ba

Γ(a)

Γ(a+ nȳ)

(b+ n)a+nȳ

1

y1! · · · yn!
.

(c) Consider i.i.d. data yi ∼ N(ξ, σ2), with known σ and a normal prior ξ ∼ N(ξ0, σ
2
0)

for ξ. Find the marginal distribution (xx give a formula here xx).

(d) (xx do also N(xt
iβ, σ

2) with β ∼ N(β0,Σ0). find the marginal. check with other

exercises. xx)

(e) (xx then also for the gamma-normal; give a formula for f̄(y1, . . . , yn). xx)

(f) (xx something to point to empirical Bayes. calibrate carefully with loss-risk Ch. ??.

can already point to Stein things. and to mixtures, where these f̄(y) turn up as ingredi-

ents. xx)

Ex. 6.20 Approximating the marginal distribution. In the setup of Ex. 6.19, we go

through a useful type of Laplace approximation for the marginal.

(a) Writing as usual `n(θ) for the log-likelihood, with maximum value `n,max = `n(θ̂), in

terms of the ML estimator, show that

f̄(y1, . . . , yn) = exp(`n,max)

∫
exp{`n(θ)− `n(θ̂)}π(θ) dθ.

With Jn = −(1/n)∂2`n(θ̂)/∂θ∂θt the normalised observed information matrix, of dimen-

sion say p× p, show that the marginal can be approximated with

f̄
.
= exp(`n,max)

∫
exp{− 1

2n(θ − θ̂)tJn(θ − θ̂)}π(θ) dθ

= exp(`n,max)

∫
exp(− 1

2s
tJns)π(θ̂ + s/

√
n) ds/np/2

.
= exp(`n,max)π(θ̂)(2π)p/2|Jn|−1/2/np/2.

(b) (xx a couple of things here. check how successful the approximation is in two setups.

the formula

log f̄
.
= `n,max − 1

2p log n+ log π(θ̂)− 1
2 log |Jn|+ 1

2p log(2π),

with its two leading terms, lead to the BIC in Ch. 11. xx)



6.B. Short and crisp 225

Ex. 6.21 Bernshtĕın–von Mises approximations. Suppose observations Y1, . . . , Yn are

i.i.d. from a density f(y, θ), with π(θ) a prior for the model parameter, of dimension

say p. The posterior density can of course be quite complicated, perhaps necessitating

numerical efforts, or simulation, for its evaluation. Remarkably, there are generic and

simple normal approximations, however.

(a) Show that the posterior density πn(θ) = π(θ |data) is proportional to π(θ) exp{`n(θ)},
with `n(θ) =

∑n
i=1 log f(yi, θ) the log-likelihood function.

(b) Let θ̂ be the maximum likelihood estimator, and Jn = −(1/n)∂2`n(θ̂)/∂θ∂θt the

normalised observed information, as per (xx pointer to Ch 4 xx). Show that the density

of Zn =
√
n(θ− θ̂) is gn(z) = πn(θ̂+ z/

√
n)(1/np/2), and that it can be approximated as

gn(z) ∝ π(θ̂ + z/
√
n) exp{`n(θ̂ + z/

√
n)− `n(θ̂)} .= π(θ̂ + z/

√
n) exp(− 1

2z
tJnz).

(c) Suppose then that the data really are i.i.d. from the model, with an underlying θtrue.

In particular, then θ̂ →pr θtrue and Jn →pr J = J(θ0), by (xx point to Ch 4 exercises

xx). If π(θ) is continuous in a neighbourhood around θtrue, show that gn(z) tends to the

density of a Np(0, J
−1), in probability. In concrete terms, show

Dn =

∫
|gn(z)− φp(z, 0, J−1)|dz →pr 0.

This is one of several versions of Bernshtĕın–von Mises theorems. These are Bayesian

mirror versions of the classical maximum likelihood asymptotics results in the frequentist

camp:

√
n(θ̂ − θtrue) →d N(0, J−1),

√
n(θ − θ̂) |data →d N(0, J−1), in probability.

(d) Check two clear situations in detail, comparing the exact posterior density π(θ |data)

with the normal approximation: (i) where Y | θ ∼ binom(n, θ), and θ ∼ Beta(a0, b0); (ii)

where Y1, . . . , Yn | θ are i.i.d. Pois(θ), and θ ∼ Gam(a0, b0). Choose n and (a0, b0), and

also the true θ0, for your brief investigations.

(e) (xx just a bit more. lazy Bayesian. prior disappears. different Bayesians agree with

each other, and also with the frequentist. xx)

Ex. 6.22 MCMC, I: simulating from a given distribution. (xx the MCMC basics.

Metropolis algorithm. simulating from a couple of distributions. xx)

Ex. 6.23 MCMC, II: simulating from the posterior. (xx applying the above to the

generic Bayesian posterior distribution. a chain θ1, θ2, . . . in your computer, with π(θ |data)

as its equilibrium distribution. some easy start examples. xx)

Ex. 6.24 Bayes and minimax normal estimation with the linex loss. (xx perhaps to

be moved to Ch 8. xx) We worked out some basic properties of the linex loss function

exp{c(t − θ)} − 1 − c(t − θ) in Ex. 6.18. Here we use the Bayesian machinery to find a

minimax estimator for the normal mean.
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(a) Consider the simple prototype setup where a single X has the N(θ, 1) distribution.

Show that the estimator X + d has risk function

rc(θ) = Eθ [exp{c(X + d− θ)} − 1− c(X + d− θ)] = exp(cd+ 1
2c

2)− 1− cd,

constant in θ, and that the best estimator of this sort is θ∗ = X − 1
2c. Show also that

the risk achieved, by this estimator, is 1
2c

2.

(b) Now consider Bayes estimation, with the prior θ ∼ N(0, τ2). Show via Ex. 6.10

that (θ |x) ∼ N(wx,w), with w = τ2/(τ2 + 1). Show, perhaps via expressing θ |x as

wx+ w1/2N with N a standard normal, that the posterior expected loss is

E {Lc(θ, t) |x} = exp{c(t− wx) + 1
2wc

2} − 1− c(t− wx).

Deduce that the Bayes estimator is θ̂B = wx− 1
2wc, and that the posterior expected loss

is E {Lc(θ, θ̂B) |x} = 1
2wc

2, independent of x.

(c) Show that θ∗ = X − 1
2c is minimax. Show also, via Blyth’s method, that it is in fact

admissible.

(d) Generalise the above to the case of a full sample X1, . . . , Xn from N(θ, 1). Find the

Bayes estimator and associated minimum Bayes risk, for the N(0, τ2) prior, and prove

that θ∗ = X̄ − 1
2c/n is minimax. What is its minimax risk?

(e) Find the distribution of Zn =
√
n(θ∗ − θ), and comment on its limit, (i) when the

loss-skewness parameter c is fixed, (ii) when c =
√
n.

(f) (xx perhaps another example with linex loss. and something where we see certain

arguments lead to a choice of c. xx)

Ex. 6.25 More on the linex loss. (xx clean this, and calibrate with earlier. xx) For the

linex loss, studied initially in Ex. 6.18 and then in Ex. 6.24 for the normal case, we now

find out more.

(a) Suppose Y1, . . . , Yn are i.i.d. from the Pois(θ), with prior θ ∼ Gam(a, b), as with

Ex. 6.1. Show that the Bayes estimator with the linex loss is θ̂B = (1/c)(a+nȳ) log{1 +

c/(b+ n)}. Verify that when c→ 0, we retrieve the posterior means of Ex. 6.1.

(b) (xx one more case with a clear formula. perhaps σ in normal. xx)

(c) As we know from Ex. 6.21, an approximation to the posterior distribution is θ |data ∼
N(θ̂ml, σ̂

2/n), in terms of the maximum likelihood estimate and estimated inverse Fisher

information. Deduce that Mn(−c) .
= exp(−cθ̂ml + 1

2c
2σ̂2/n), in the notation above, and

that this leads to the approximation θ̂B = θ̂ml − 1
2cσ̂

2/n for the Bayes estimator under

linex loss. Show also that the posterior expected loss is approximately 1
2c

2σ̂2/n.

(d) (xx an example where we can check the approximation with the exact Bayes estima-

tor, e.g. with Poisson and gamma. xx)
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6.C Notes and pointers

A few remarks.

(xx mention Varian (1975); Zellner (1986); Claeskens and Hjort (2008a) for the linex

loss; but this should perhaps be in Ch 7. xx)

Stories, so far: nils puts in a brief version of Abel.

ToDo: nils needs to get this started. pointers to other chapters.





I.7

Confidence distributions, confidence curves,

combining information sources

With φ a focus parameter, a function of the full parameter vector θ, the Bayesian

setup gives a posterior distribution. This requires the conceptually and practically

difficult task of defining a prior for the full θ, however. Confidence distributions

(CDs) are a frequentist parallel, yielding post-data distributions for such focus pa-

rameters, without any prior. In this chapter we develop theory for CDs and con-

fidence curves, and also find ways of combining CDs across different information

sources. Computing CDs is not an easy or automatic task, but we develop and

illustrate several recipes. For the exponential family class, we derive optimal CDs,

with their own clear recipes.

7.A Chapter introduction

Confidence distributions and confidence curves are fruitful statistical inference sum-

maries. Suppose in general terms that data y stem from a model f(y, θ), with model

parameter θ = (θ1, . . . , θp), and that φ = φ(θ1, . . . , θp) is a parameter of particular inter-

est. A confidence distribution for φ, a CD, for short, is a function C(φ, y), such that (i)

it is a c.d.f. in φ, for each dataset y, and (ii) the distribution of U = C(φ0, Y ) is uniform

at the true value φ0 = φ(θ0). In other words,

Pθ0{a ≤ C(φ0, Y ) ≤ b} = b− a for each a, b ∈ [0, 1].

Assuming this random c.d.f. has a unique inverse, then, we have

Pθ{C−1(0.05, Y ) ≤ φ ≤ C−1(0.95, Y )} = 0.90, (7.1)

and of course similarly for other choices of quantiles. This is by definition making

[C−1(0.05, yobs), C
−1(0.95, yobs)] a 90 percent confidence interval for the focus parameter

φ. The CD concept is hence related to and an extension of the confidence intervals, see

Ch. 3. The confidence curve is a related summary graph, most often computed from the

CD via cc(φ, y) = |1− 2C(φ, y)|. It has the practical property that {φ : cc(φ, y) ≤ 0.90}
give the 90 percent interval directly; similarly, all intervals at any desired confidence level

can be read off from the confidence curve.

229



230 CDs, confidence curves, combining information

Construction a CD is not always an easy or automatic task, but we develop several

practical recipes, some of which are based on approximate normality, or on more general

methods of likelihood theory. Just as tests have detection power, also CDs have power,

and theory is developed below to find optimal CDs in classes of situations. This is partly

parallelling the optimal testing methodology of Ch. 3. All in all we develop and illustrate

the following recipes: (i) Via the c.d.f. of an estimator; (ii) normal approximation; (iii)

based on a pivot; (iv) deviance and Wilks theorem; (v) t-bootstrapping; (vi) the optimal

CD via conditional distributions, if inside the exponential family.

The CDs are post-data graphical summaries of the level of uncertainty for any focus

parameter, and can be seen as frequentist parallels to the Bayesian posterior distributions;

here there is no prior, however. We illustrate this ‘clear data-only based posteriors

without priors’ aspect of the CDs through theory and applications (xx perhaps point to

a few Stories xx).

Combining different information sources is a broad statistical theme, going back to

the first meta-analysis concepts and methods of Karl Pearson just after 1900 (Simpson

and Pearson, 1904). The more familiar meta-analysis methods aim at combining indepen-

dent estimators for the same quantity, or for providing a broader population assessment

of similar but not identical parameters. CDs are useful for such endeavours, and we

provide methods for combining sources more general than the traditional ones.

[xx as of 13-Aug-2023, the chapter needs a mild perestroika, more detail, and a

few exercises on the combining information things. nils attempts roughly following the

structure (i) lots of CDs and cc(φ) things, with some three basic recipes, for which we

also point to Ch3 Ch5 with Wilks; (ii) seeing CDs as natural for boundary parame-

ters, and pointmasses at zero are fine; (iii) some optimality, with applications; (iv) then

combination things, brief meta-analysis, some II-CC-FF. and pointers to stories. xx]

7.B Short and crisp

Ex. 7.1 The probability transform. Some of the following facts are related to various

operations for confidence distributions and confidence curves

(a) Suppose X has a continuous and increasing cumulative distribution function F ,

i.e. F (x) = P (X ≤ x). Show that U = F (X) is uniform on the unit interval. Any

continuously distributed random variable can hence be transformed to uniformity, via

this probability transform.

(b) Show that also U2 = 1− F (X) and U3 = |1− 2F (X)| have uniform distributions.

(c) Simulate a million copies of xi ∼ N(0, 1), and check the histogram of Γ1(x2
i ), where

Γν is the cumulative distribution function of a χ2
ν . Comment on what you find.

Ex. 7.2 Recipe One: via the c.d.f. of an estimator. Suppose θ is a one-dimensional

parameter, for which we need a CD, after having observed data yobs. If there is an

estimator θ̂, with a distribution depending only on this θ, there is a clear recipe.

(a) Assume therefore that θ̂ has a continuous distribution function Kθ(x) = Pθ(θ̂ ≤ x);

its distribution is here required to depend only on θ, not on other aspects of the underlying
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model employed. Consider Recipe One, the construction

C(θ, yobs) = Pθ(θ̂ ≥ θ̂obs) = 1−Kθ(θ̂obs),

a curve that can be computed and plotted post-data, where θ̂obs = θ̂(yobs) is the observed

estimate. Show that it has the property that the random C(θ, Y ) is uniformly distributed,

for each fixed θ.

(b) To illustrate, go through the details for the case of using θ̂ = 1/Ȳ , with i.i.d. ob-

servations Y1, . . . , Yn from the exponential θ exp(−θy). Show first that 2θYi ∼ χ2
2, and

derive Kθ(x) = 1 − Γ2n(2nθ/x), with Γ2n the c.d.f. of the χ2
2n. Simulate data and plot

the CD C(θ, yobs) = Γ2n(2nθ/θ̂obs). From the CD, find a 95 percent interval for θ.

(c) Assume X1, . . . , Xm are i.i.d. Expo(θ1) and that Y1, . . . , Yn are i.i.d. Expo(θ2). Find

the distribution of the estimator ρ̂ = θ̂1/θ̂2 for the ratio ρ = θ1/θ2, and derive the

associated CD.

(d) Generate n = 25 datapoints from the double exponential density f(y, θ) = 1
2 exp(−|y−

θ), using your favourite true θ0. Compute and display the CD for θ based on the median

Mn.

(e) For a simpler and more fundamental illustration, suppose θ̂ has a normal distribution

centred at θ, with a known variance, say θ̂ ∼ N(θ, κ2). Show that Recipe One gives

C(θ) = Φ((θ − θ̂)/κ). Check that the famous 95 percent interval θ̂ ± 1.96κ agrees with

this.

Ex. 7.3 Confidence distribution and confidence curve for the normal standard deviation.

The confidence distribution C and the confidence curve cc are close cousins, and they

do not need to be both displayed for each new statistical application. Here is a simple

illustration. You observe the n = 6 data points 4.09, 6.37, 6.87, 7.86, 8.28, 13.13 from

a normal distribution and wish to assess the underlying spread parameter, the standard

deviation σ.

(a) For the empirical variance, use σ̂2 ∼ σ2χ2
m/m, with m = n− 1, to build the CD

C(σ, yobs) = Pσ(σ̂ ≥ σ̂obs) = 1− Γm(mσ̂2
obs/σ

2).

Here yobs represents the observed data, and σ̂obs the observed point estimate. Show that

C(σ, Y ) ∼ unif, where Y represents a random data set Y1, . . . , Yn, from the σ in question.

In particular, the distribution of C(σ, Y ) does not depend on σ. Make a graph, also of

the associated confidence curvethe confidence

curve

cc(σ, yobs) = |1− 2C(σ, yobs)| = |1− 2 Γm(mσ̂2
obs/σ

2)|.

Compute the median confidence estimate σ̂0.50 = C−1(0.50, yobs) and the natural 90

percent confidence interval [C−1(0.05, yobs), C
−1(0.95, yobs)]. Find and display also the

confidence density c(σ, yobs), the derivative of the CD.

(b) Compute also the confidence density c(σ, yobs) associated with the CD. Compute

furthermore its mode, say σ∗, and briefly assess its properties as an estimator of σ.
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(c) A Bayesian approach to the same problem, i.e. finding a posterior distribution for σ,

is to start with a prior π(σ) and then compute π(σ | yobs) ∝ π(σ)g(σ̂, σ), where g(σ̂, σ)

is the likelihood, here the density function for σ̂ as a function of σ. When does such a

Bayesian approach agree with the confidence density?

(d) Suppose there are two independent normal samples, with standard deviations σ1

and σ2. Construct a CD for ρ = σ1/σ2. Invent a second simple small dataset, to

complement the first dataset given above, and then compute and display the confidence

curve cc(ρ, data).

Ex. 7.4 Computing a CD with simulation and isotonic repair. (xx to be polished.

we use this is Story iii.6 and perhaps in other places, where simulations are expensive.

xx) Suppose one observes y1, . . . , yn from the one-parameter Weibull distribution with

c.d.f. F (y, b) = 1 − exp(−yb), with sample size n = 25, and computes the data mean

ȳobs = 1.313.

(a) Though we do not actually need this in the CD computations here, find an estimate

of b based on EYi = Γ(1 + 1/b); see Ex. 1.40. Show that C(b) = Pb(Ȳ ≤ ȳobs) is a CD

for b.

(b) The practical obstacle here is that Ȳ does not have a simple distribution. But we’re

saved by simulation. Show that the simulation recipe Y ∗i = V
1/b
i produces outcomes from

the weibull F (y, b), where the Vi are unit exponential. For a grid of b values, e.g. from

0.20 to 1.20, compute the simulation based C∗(b), the proportion of B cases where the

simulated Ȳ ∗ is below ȳobs. Compute also the confidence curve cc∗(b) = |1 − 2C∗(b)|.
For this simple example it is easy to accomplish this with a high B, say 105, to make

C∗(b) and cc∗(b) smooth and very close to the real C(b) and cc(b); for this illustration,

however, make the simulation size as relatively small as B = 100, and plot the curves,

as in Figure 7.1.

(c) We learn that with a low or moderate simulation size B, the C∗(b) and cc∗(b) will

be wiggly. We can do better, using the prior knowledge that C(b) is increasing. There

are several repair mechanisms, which from the potentially wiggly C∗(b) create a mono-

tonically increasing curve. A simple scheme is so-called isotonic regression, the details

of which we do need to get into here. Supposing you have first created bval and Cval in isotonic

regressionyour R session, you may use Cvaliso=isoreg(bval,Cval)$yf, which repairs your C∗(b)

and cc∗(b) to ensure monotonicity. Produce versions of Figure 7.1, left and right panels.

(d) (xx round off. explain salient points about generalisability. we need reduction to

one-parameter situation. xx)

Ex. 7.5 An extension of Recipe One. In Ex. 7.2 we saw that the simple construction

C(θ, y) = Pθ(θ̂ ≥ θ̂obs) gives a CD, in the case of one-dimensional setups with a well-

defined estimator θ̂.

(a) When working with estimators, finetuning efforts are often exuded to trim away

biases, getting the scaling right, etc. In a sense this is not needed here, when constructing

the CD. Show that if α̂ = g(θ̂), with any smooth increasing g, the recipe C∗(θ) = Pθ(α̂ ≥
α̂obs) gives precisely the same CD as without the g transformation.
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Figure 7.1: Simulation based confidence distribution C∗(b) and confidence curve cc∗(b)

for the Weibull parameter b, based on the observed sample mean ȳobs = 1.313 for n = 25

data points, along with isotonic repairs. The simulation size here is the low B = 100.

(b) So this CD recipe relies merely on having an informative statistic, say Z, with a

distribution stochastically increasing in θ; it does not really have to be an estimator for

that parameter. Show that C(θ, y) = Pθ(Z ≥ zobs) is a bona fide CD.

(c) Show also that the construction works, if there are other parameters at play too, as

long as the distribution of the chosen Z only depends on θ. Go through the details for the

case of the Yi being N(µ, σ2), with Z =
∑n
i=1(Yi− Ȳ )2, and also for Z ′ =

∑n
i=1 |Yi−Mn|,

where Mn is the empirical median. Compute, display, compare both CDs, based on Z

and on Z ′, for the simple dataset of Ex. 7.3 (with n = 6). For the Z case, there is a

formula, but for the Z ′ case you would need simulation, for a grid of σ values; see Ex. 7.4.

(d) (xx one more example, where there is a Z carrying information, but not qua estima-

tor. xx)

Ex. 7.6 Recipe Two: the normal approximation CD. Applying Recipe One of Ex. 7.2

to the case of the estimator having a normal distribution leads as we saw there to a clear

CD, provided the variance is known. But this is at least approximately so, for large

classes of situations, as we’ve seen in Chs. 4 and 5.

(a) Suppose in general terms that θ̂ estimates θ, and that its distribution is approximately

a N(θ, κ2). Explain that C(θ) = Φ((θ − θ̂)/κ) then is an approximate CD for θ. More

formally, if (θ̂− θ0)/κ̂→d N(0, 1), at the true parameter θ0, show that C(θ, Y ) = Φ((θ−
θ̂)/κ̂) has the property that it converges in distribution to the uniform, at θ0. In typical

applications of these arguments, there is a
√
n scaling in terms of an underlying sample

size, with
√
n(θ̂ − θ0) →d N(0, τ2), say, and κ̂ = τ̂ /

√
n, with τ̂ →pr τ . So this is Recipe

Two, the normal approximation CD, most typically of this type Φ(
√
n(θ − θ̂)/τ̂).
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(b) Simulate a moderate or small dataset from a normal distribution. Compute and

display two (approximate) CDs for the mean parameter ξ, (i) using the data mean, (ii)

using the data median.

(c) We have seen in Chs. 4 and 5 that approximate normality is highly common, for

large classes of estimators, typically along with consistent estimators for the variances.

In particular, the delta method implies approximate normality of smooth functions of

background estimators (see Ex. 2.11, 4.25), making in its turn approximate normality

CDs easily available. For a simple illustration, suppose you throw your nearest die, which

has probability p of giving a ‘6’, until you get your first ‘6’. You carry out this geometric

experiment n = 10 times, giving you the counts Y1, . . . , Yn equal to 1, 2, 17, 18, 20, 4,

3, 1, 15, 3. Use the normal approximation for Ȳ to give an approximate CD for p. You

may also compare this to what one achieves working with the exact distribution of Ȳ .

(d) (xx point to logistic and poisson regression, with delta method. estimate β and also

p = H(xt
0β). xx)

Ex. 7.7 Recipe Three: from a pivot to a CD. (xx check that we’re not repetitive

regarding pivot. xx) Suppose in general terms that φ is some parameter of interest, in a

model for observations Y , and that a function A = piv(φ, Y ) of the parameter and the

data has the property that its distribution does not depend on the model parameters

(in particular, therefore, not on φ, which might itself be a function of other model

parameters). We call A a pivot, in more pedantic detail a pivot for the parameter

φ.

(a) With Y1, . . . , Yn independent from the normal (µ, σ2), let Rn =
∑n
i=1 |Yi − Ȳ | with

the sample mean Ȳ . Show that (Ȳ −µ)/Rn is a pivot. Invent yet another pivot involving

µ, with a different denominator.

(b) With two normal samples, say X1, . . . , Xm from N(µ1, σ
2
1) and Y1, . . . , Yn from

N(µ2, σ
2
2), suppose ρ = σ1/σ2 is in focus. Show that (V1/V2)/ρ is a pivot for ρ, where V1

and V2 are the interquartile ranges for the two datasets.

(c) Consider Y1, . . . , Yn from the Cauchy model with density (1/π)/{1 + (y− θ)2}. Show

that Rn − θ is a pivot, where Rn = 1
2 (Qn,0.10 + Qn,0.90) is the average of the 0.10 and

0.90 quantiles.

(d) Back to the generalities, consider a pivot A = piv(φ, Y ) for φ in some model, increas-

ing in φ. Assume the situation is continuous, not discrete, so that the pivot’s distribution

function K is continuous. Show that C(φ, yobs) = 1−K(piv(φ, yobs)) is a proper CD for

φ.

(e) In clean cases we may derive the precise distribution for the pivot in question, but

the CD recipe given above may be used also in more complicated setups, as long as

A = piv(φ, Y ) may be simulated. Make an illustration of this, with the ratio of standard

deviations above. Suppose two normal datasets, both of size n = 100, lead to interquartile

ranges V1,obs = 4.44 and V2,obs = 3.33. Construct and display C(ρ) and cc(ρ).
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(f) (xx make the point that various constructions, involving large-sample approximations

to the normal and to chisquares, lead to approximate pivots, and then again to approx-

imate CDs and ccs. in particular, Method One, with Φ((φ − φ̂)/κ̂) and Method Two,

with Γ1(D(φ)), can be seen via approximate pivots. also Method Three, construction of

a t type ratio and then bootstrapping. xx)

Ex. 7.8 CDs from the t pivot. In Ex. 7.2 we saw that the simple construction C(θ, y) =

Pθ(θ̂ ≥ θ̂obs) gives a CD, in the case of one-dimensional setups with a well-defined

estimator θ̂.

(a) For a normal sample from N(µ, σ2), we see that several Pµ,σ(Z ≥ zobs) schemes work,

in that the Z in question has a distribution depending on σ, but not µ. Attempt to work

with C∗(µ, y) = Pµ,σ(Ȳ ≥ ȳobs) – and explain that it will not really work (unless σ is

known).

(b) But of course there are natural CD constructions for µ here. What is needed is a

pivot, say A = piv(µ, y), a function binding the focus parameter and data together in a

way which makes its distribution not depend on the parameters. Study indeed

tn = tn(µ, Y ) = (Ȳ − µ)/(σ̂/
√
n),

with σ̂2 = (n − 1)−1
∑n
i=1(Yi − Ȳ )2 the classical empirical variance. Pretend that you

in all your cleverness have not seen this tn before, and are unaware of its relation to a t

distribution – but show that the distribution of tn, call it Kn, does not depend on (µ, σ).

(c) Then show that C(µ, yobs) = Kn(tn(µ, yobs)) is a CD for µ. Even if you do not see the

connection to the classic t of Student (1908), see Ex. 1.34, you may still carry through

this, by simulating B = 105 realisations of tn, and use

C(µ, yobs) = K∗n(tn(µ, yobs)) =
1

B

B∑
j=1

I{tn,j ≤ tn(µ, yobs)}.

Show however that by all means Kn is a tm, with m = n− 1, so the canonical CD for µ

is and remains C(µ, yobs) = Gm(
√
n(µ− ȳobs)/σ̂obs), with Gm the c.d.f. for the tm.

Ex. 7.9 Recipe Four: confidence curves via Wilks theorems. Consider data from a

parametric model, leading to the log-likelihood function `n(θ), and that there is a focus

parameter φ = g(θ). We have seen likelihood profiling and Wilks theorems in Ch. 5, and

know that the deviance Dn(φ) = 2{`max− `prof(φ)} has the property that Dn(φ0)→d χ
2
1

at the true value φ0 = g(θ0); see Ex. 5.9.

(a) Recipe Four, utilising the Wilks theorems, is to form cc(φ, y) = Γ1(Dn(φ)), with Γ1

the c.d.f. for the χ2
1. Show that Pθ0(cc(φ0) ≤ α) → α for each α, and explain that this

makes cc(φ, y) and approximate confidence curve.

(b) For an illustration, consider the model F (y, θ) = yθ for observations on [0, 1], where

θ is an unknown positive parameter. Write down the log-likelihood function and find a

formula for the maximum likelihood estimator θ̂. Use also theory of Ch. 5 to write down

a normal approximation to the distribution of θ̂.
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Figure 7.2: For the simple data example of Ex. 7.9: Left panel: confidence distribution

C(θ), via simulations (black and wiggly curve) and via exact calculations (red and smooth

curve); right panel: the two versions of the associated confidence curve cc(θ). From these

we read off the median confidence estimate θ̂0.50 = 0.76, and the 90 percent confidence

interval [0.43, 1.24].

(c) Consider the data set

0.013 0.054 0.234 0.286 0.332 0.507 0.703 0.763 0.772 0.920

Estimate θ and compute the CD C(θ) = Pθ(θ̂ ≥ θ̂obs), along with the confidence curve

cc(θ) = |1−2C(θ)|, (i) using simulations, (ii) using exact probability calculus. Reproduce

a version of Figure 7.2.

(d) Supplement these two curves with approximations based (i) on the normal approxi-

mation for θ̂ and (ii) on the chi-squared approximation for the deviance.

(e) (xx somewhere, if not here, then separately: from CD to cc, and from cc to CD, with

C(φ) = 1
2 −

1
2cc(φ) for φ ≤ φ̂0.50 and 1

2 + 1
2cc(φ) for φ ≥ φ̂0.50. particularly useful with

these deviance based ccs. xx)

Ex. 7.10 Something. (xx nils invents one more cool enough one-dim example, show-

casing that Dn(θ) works, even when we can’t do it explicitly. could take 1 − exp(−tb)
weibull, clear enough cc for b, and for any good function of b. xx)

Ex. 7.11 Recipe Five: CDs via approximate pivots and t-bootstrapping. Consider a

parametric model f(y, θ) for data, with a model parameter of length say p. Suppose

there is a focus parameter φ = g(θ), estimated as φ̂ = g(θ̂), for which we need a CD.

(a) Suppose first that φ̂− φ has some distribution, say G0, not depending on θ. Under

this simple pivotal assumption for ‘estimator minus estimand’, show that

C(φ) = Pθ(φ̂ ≥ φ̂obs) = 1−G0(φ̂obs − φ).
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As indicated in e.g. Ex. 7.4, this can be computed even without knowing the form of

G0, through simulation of many realisations of φ̂∗ − φ̂, where the φ̂∗ is computed from

a dataset drawn from the estimated distribution at θ̂. Explain that this recipe works,

even if G0 is nonsymmetric and not centred well at zero. Simulating the distribution of

φ̂ − φ at different points in the θ parameter space may also be helpful for checking the

assumption needed for the C(φ) constructed here to be a clear CD.

(b) For a special and simpler case, if φ̂ ∼ N(φ, κ2), to a good approximation, with known

or well estimated κ, show that the general recipe above leads to

C(φ) = Pθ(φ+ κN ≥ φ̂obs) = P (N ≥ (φ̂− φ)/κ) = Φ((φ− φ̂)/κ),

and argue that this is really a CD. Note that this requires Z = (φ̂− φ)/κ having distri-

bution equal to or close to a standard normal, regardless of where θ is in its parameter

space.

(c) Often the standard deviation in the normal approximation is not that sharply es-

timated from the available data. Consider a Student type ratio t = (φ̂ − φ)/κ̂, with

some appropriate scale estimator κ̂. Assume first that t really is a pivot, i.e. that its

distribution G is independent or nearly independent of where θ is in its parameter space.

Show that

C(φ) = Pθ((φ̂− φ)/κ̂ ≥ (φ̂obs − φ)/κ̂obs) = 1−G((φ̂obs − φ)/κ̂obs)

is a CD. If G is not known, or too difficult to derive, use simulations, of t∗ = (φ̂∗ −
φ̂obs)/κ̂

∗, via datasets simulated at position θ̂obs. We call this a CD computed from

t-bootstrapping.

(d) The previous recipe works well if t = (φ̂ − φ)/κ̂ is close to pivotal, i.e. its distri-

bution is nearly constant over the parameter region. In other cases we may take the

t-bootstrapping argument one step further. Write for emphasis θ = (φ, γ), perhaps in a

reparametrisation, where φ is in focus and γ is of length p−1. The t has some distribution,

depending on θ, and we write Pθ(t ≤ u) = G(u, φ, γ). Show that

H(φ, γ) = Pφ,γ((φ̂− φ)/κ̂ ≥ (φ̂obs − φ)/κ̂obs) = 1−G((φ̂obs − φ)/κ̂obs, φ, γ).

This is not necessarily a CD, in the strict sense, as this probability may depend not only

on φ but also on aspects of γ. Often the distribution of t is approximately the same,

though, in a neighbourhood around the true value. Argue that this leads to

C∗(φ) = 1− Ĝ((φ̂obs − φ)/κ̂obs, φ) where Ĝ(u, φ) = G(u, φ, γ̂).

Such an estimated distribution can be computed via bootstrapping, i.e. simulated datasets

at position θ̂ in the parameter space. With B such simulated datasets, leading to simu-

lated values θ̂∗, φ̂∗, κ̂∗, and hence t∗ = (φ̂∗ − φ̂obs)/κ̂
∗.

Ex. 7.12 Recipe Six: CDs in exponential families. We have worked with the general

exponential family in previous chapters, see Ex. 1.57. In particular we learned in Ex. 3.31
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that there are uniformly optimal tests, for individual parameters in such models. The

same holds in the present framework of CDs. Suppose data stem from a model of the

form f(y, a, b) = exp{aU(y) + btV (y)}h(y), with U one-dimensional and V of dimension

say p. The optimal recipe for a is

C∗(a) = Pa{U(Y ) ≥ uobs |V (Y ) = vobs}.

This construction is actually optimal, in a power function sense we come back to (xx

pointer xx), but we can already start working with this definition and see how it applies

in various situations.

(a) Verify from arguments in Ex. 3.31 that C∗(a) indeed depends only on a, not on b.

(b) For an illustration, consider the pair of exponentials of Ex. 3.26. To avoid confusion

with the parametrisation, use now X ∼ Expo(θ), Y ∼ Expo(θ+δ), with sum Z = X+Y .

Show that the joint density is indeed of exponential form, and that the recipe leads to

C∗(δ) = Pδ (Y ≤ yobs |Z = zobs) =
1− exp(−δyobs)

1− exp(−δzobs)
.

Find the positive confidence pointmass at δ = 0.

(c) Suppose there are m independent pairs of such exponentials, with Xi ∼ Expo(θi),

Yi ∼ Expo(θi + δ), and sums Zi = Xi + Yi. We need a CD for the difference parameter

δ. Show that the joint density of the 2m variables is on the exponential form, and that

the resulting CD must be of the form

C∗(δ) = Pδ(U ≤ uobs |Z1 = z1,obs, . . . , zm,obs),

with U =
∑m
i=1 Yi. There is no clear formula for this conditional distribution, but show

that Yi | zi has density δ exp(−δyi)/{1− exp(−δzi)} for yi ∈ [0, zi]. To show how the CD

can be computed, via simulations, suppose as in Ex. 3.26 that the data are the three pairs

(0.927, 0.819), (1.479, 0.408), (3.780, 1.311). In that exercise we worked with the optimal

test for δ = 0 vs. δ > 0, and needed only the null distribution of U given the three sums

z1, z2, z3, i.e. where δ = 0. Now we need to tabulate this conditional distribution also for

each δ > 0, however.

(d)

Ex. 7.13 Meta-analysis for Lidocain data. The following data table is from Normand

(1999), and pertains to prophylactic use of lidocaine after a heart attack. The aim is

to evaluate mortality from prophylactic use of lidocaine in acute myocardial infarction.

We view the data here as pairs of binomials, with y1,i ∼ binom(mi,1, p1,i) and y1,0 ∼
binom(mi,0, p1,0).

m1 m0 y1 y0

39 43 2 1

44 44 4 4

107 110 6 4

103 100 7 5

110 106 7 3

154 146 11 4
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(a) Write the probabilities in logistic fashion, i.e. pi,0 = H(θi,0) and pi,1 = H(θi,0 + γi),

with H(u) = exp(u)/{1 + exp(u)}. Show that

γi = H−1(pi,1)−H−1(p0,i) = log
pi,1

1− pi,1

/ p0,i

1− pi,0
,

the log-odds difference. Construct and display the optimal CD for the γi, and also for

the odds ratio ρi = exp(γi), for each of the six studies.

(b) Assume then that the log-odds parameter γ is the same, across studies, so that the

six binomial data pairs relate to seven parameters. Find the optimal CD for this γ, and

for the common odds ratio ρ = exp(γ). Translate the CDs to confidence curves, and

display the six + one curves in a diagram. How would you conclude?

Ex. 7.14 CDs and posterior distributions with boundary constraints. Here we learn

about construction of CDs when there is a boundary condition on the focus parameter.

This is sometimes an easy task, involving a natural positive post-data probability on the

boundary point. We also compare with Bayesian procedures. Matters may of course be

extended and generalised in several directions here, but for simplicity and conciseness we

study a very simple prototype situation: y is N(θ, 1), and θ ≥ 0 a priori.
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Figure 7.3: With yobs = 0.66 for the N(θ, 1) model, the black curve is the natural

CD, with positive point mass 0.255 at zero. The red and the blue curves are Bayesian

posterior distributions, for the flat prior on the halfline, and for the mixture prior with
1
2 at zero and 1

2 flat on the halfline, respectively.
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(a) Before we come to the parameter constraint, we deal with the more normal situation

where there is no a priori constraint. The classical CD is then C(θ, y) = Φ(θ − y).

Show that the Bayesian starting with a flat prior for θ finds the posterior distribution

θ | y ∼ N(y, 1), with cumulative B(θ | y) = Φ(θ − y), i.e. identical to the canonical CD. –

The point below will partly be that this is not the same for the constrained problem.

(b) For the remaining points here, assume indeed that θ ≥ 0 a priori. Argue that the

canonical CD should be C(θ, y) = Φ(θ − y) for θ ≥ 0. Its point mass at zero is Φ(−y).

Graph the CD, for the three cases yobs equal to −0.22, 0.66, 1.99.

(c) One Bayesian approach in this situation, where θ ≥ 0 a priori, is to let θ be flat on

[0,∞). Show that then

θ | y ∼ φ(θ − y)∫∞
0
φ(θ − y) dθ

=
φ(θ − y)

Φ(y)
for θ ≥ 0,

and that the cumulative posterior distribution becomes

B(θ | y) =
Φ(θ − y)− Φ(−y)

1− Φ(−y)
=

Φ(θ − y)− Φ(−y)

Φ(y)
for θ ≥ 0.

For the three cases of yobs given above, graph the CD along with the Bayesian B(θ | yobs),

and comment on what you find.

(d) (xx repair this. xx) There’s a notable discrepancy between the frequentist Schweder-

Hjort CD and the Bayesian posterior distribution associated with a flat prior on the [0,∞)

interval, in cases where the yobs is close to, or perhaps even to the left of, the boundary

point. In his FocuStat Blog Post, Schweder (2017) dares to very much disagree with

Nobel Prize Winner (that is to say, the Sveriges Riksbank Prize in Economic Sciences in

Memory of Alfred Nobel Winner) Professor Christoper Sims. It would have been better

for Sims, in his chosen example featuring Bayesian methodology, to not use flat priors

on positive halflines, but to allow pointmasses at zero too.

(e) In general terms, for the case of y | θ ∼ N(θ, 1), let θ have the mixture prior dis-

tribution p0π0 + p1π1, with the sub-priors π0 and π1 having their individual posteriors

π0(θ | y) and π1(θ | y). Show that the posterior has a natural mixture form,

θ | y ∼ p∗0(y)π0(θ | y) + p∗1(y)π1(θ | y),

where

p0(y) =
p0f0(y)

p0f0(y) + p1f1(y)
and p1(y) =

p1f1(y)

p0f0(y) + p1f1(y)
,

and with f0(y) =
∫
φ(y−θ)π0(θ) dθ and f1(y) =

∫
φ(y−θ)π1(θ) dθ the marginal densities

following from the two priors. (This structure generalises to general mixture priors in

general models, though that does not concern us just now.)
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(f) For the prior p0π0 + p1π1, with π0 a unit pointmass at zero and π1 a flat prior on the

halfline, show that f0(y) = φ(y) and f1(y) = Φ(y). With a 50-50 mixture, show hence

that

p0(y) =
φ(y)

φ(y) + Φ(y)
and p1(y) =

Φ(y)

φ(y) + Φ(y)
.

Draw curves of these two posterior probabilities, one for the zero-point and the other for

the halfline-based part, as y goes from say −5 to 5. Show that the posterior cumulative

distribution becomes B∗(θ | y) = p0(y) + p1(y)B(θ | y) for θ ≥ 0. In particular, there is a

pointmass p0(y) at zero. Construct a version of Figure 7.3.

(g) Show that there is no choice of (p0, p1) which makes the Bayesian cumulative posterior

B∗(θ | y) agree with the CD C(θ, y). Devise a method for selection (p0, p1) such that the

distance between B∗(θ | y) and C(θ, y) is small, for a relevant range of θ and possible

observed yobs.

(h) Generalise the formulae above to the case of y1, . . . , yn i.i.d. N(θ, σ2), with known σ.

Ex. 7.15 CDs for regression parameters with boundary constraints. (xx to come here:

more on boundary parameters, now in simple regression models. pointer to Story iii.6.

xx) (xx the point we wish to convey is that the Tore-Sims phenomenon is a general one,

easier to understand and analyse in simpler models, separately. so we can have separate

points for a model like yi = β0 + β1xi,1 + β2xi,2 + εi, where one has prior knowledge

β2 ≥ 0. There is a clear and exact CD for β2, of the type C(β2) = Gdf((β2 − β̂2)/κ̂2)

for β2 ≥ 0, with a pointmass Gdf(−β̂2/κ̂2) at zero. the Bayesian with flat priors on

β0, β1, log σ and a flat prior on (0,∞) for β2, a la Sims, will not be able to detect that

β2 = 0; there’s a clear discrepancy between the CD and the Bayesian posterior for that

parameter. xx)

Ex. 7.16 CDs in the truncated exponential model. Here we consider a model sometimes

called the truncated exponential model. We start with its simplest form, with data

Y1, . . . , Yn i.i.d. from the density exp{−(y − a)} for y ≥ a. The a is the unknown start

point for the distribution.

(a) Show that the maximum likelihood estimator is equal to Un = mini≤n Yi, the smallest

data point. Show that n(Un − a) has a unit exponential distribution. Build from this a

natural CD for a.

(b) Construct a predictive CD for the next sample point Yn+1. Illustrate by computing

and displaying the confidence curve for the text sample point, after having observed the

six data points 3.735, 3.338, 10.634, 3.839, 5.667, 5.808.

(c) Then consider the more realistic two-parameter version of the model, with density

f(yi, a, b) = (1/b) exp{−(yi − a)/b} for yi ≥ a,

with a being the unknown start-point and b a scale parameter. Show that the maximum

likelihood estimators become â = Un and b̂ = (1/n)
∑n
i=1(Yi−Un), again with Un being

the smallest observation.
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(d) Construct accurate CDs and confidence curves for a, for b, and for the next datapoint

Yn+1. If some of your formulae cannot be given very explicit mathematical forms, this is

ok, as long as numerical solutions can be found via numerical integration or simulation.

Give approximations for these CDs for large sample sizes n.

(e) Ignoring these large-sample approximations, compute and display confidence curves

for a, b, Yn+1 with the simple n = 6 dataset above.

Ex. 7.17 CD inference for the exponential rate, with censored data. The lifelength

distribution for a certain type of technical components is considered exponential, i.e. with

density θ exp(−θt) for t > 0, on a priori grounds. To arrive at a point estimate and a

confidence curve for θ, the firm producing these components sets in motion the simple

experiment where n such items are set to work, under controlled natural conditions. One

cannot wait until all components have died out, however, and the firm needs to report

what can be said about the lifelength distribution, via θ, a certain time t0 after project

start.

(a) With data of the form observed ti for the N of the items which have died within t0,

and the information ti > t0 for the n − N which are still alive and well, show that the

combined likelihood function may be expressed as

θN exp
[
−θ
{∑
ti≤t0

ti + (n−N)t0

}]
.

(b) Show that the maximum likelihood estimator is

θ̂ = N/R = N/
{∑
ti≤t0

ti + (n−N)t0

}
.

With increasing sample size, and fixed t0, find expressions for the probability limits of

N/n and R/n, and show that θ̂ is consistent.

(c) Show in fact that there is a limiting normal distribution here, with
√
n(θ̂ − θ) →d

N(0, τ(t0, θ)
2), and attempt to find an explicit (though not necessarily quick and simple)

formula for the limit variance.

(d) Explain why the construction Cn(θ) = Pθ(θ̂ ≥ θ̂obs) yields a CD, and also how it can

be computed in practice.

(e) Suppose the experiment described involves n = 20 such items, and that the lifelengths

for the N = 11 of these that conk out before the deadline of t0 = 2.00 years are

0.528 0.743 0.869 1.180 0.602 0.133 0.327 1.115 0.117 0.208 1.808

Compute and display perhaps as many as three (exact or approximate) confidence curves

for θ, for this little experiment: the one described in (c); one based on the normal ap-

proximation to the distribution of the maximum likelihood estimator; and a t-bootstrap

based version. Comment on your findings.

Ex. 7.18 Risk functions for CDs. This exercise looks into risk functions for and hence

comparisons between CDs, in simple prototype situations where calculations are easier
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than for general cases. We start out with Y1, . . . , Yn being i.i.d. from the N(θ, 1) model.

For a CD Cn(θ, y), where y denotes the full dataset, the risk function used is

riskn(Cn, θ) = Eθ

∫
(θ′ − θ)2 dCn(θ′, Y ) = Eθ(θcd − θ)2,

where θcd is the result of a two-stage random process: data Y lead to the CD Cn(θ, Y ),

and then θcd is drawn from this distribution.
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Figure 7.4: Risk function for the CD of Ex. 7.18(d), in the setup with Y1, . . . , Yn being

i.i.d. from N(θ, 1), with n = 10, but with the restriction θ ≥ 0. It starts out at 1/n and

then grows to the 2/n risk of the unrestricted case as θ grows.

(a) Show that the natural CD based on the observed sample mean ȳobs = n−1
∑n
i=1 yi

is Cn(θ, yobs) = Φ(
√
n(θ − ȳobs)). Prove that its risk function is riskn(Cn, θ) = 2/n.

(b) More generally, assume θ∗ is some unbiased estimator of θ, with finite variance τ2
n,

with the property that θ̂∗ − θ has a distribution Hn symmetric around zero. Show that

the associated CD becomes C∗n(θ, yobs) = Hn(θ − θ∗obs), and show that its risk function

becomes 2τ2
n. The case of Ȳ corresponds to 2/n. Find the risk function for the case of

the median based CD, with say n = 10, as for Figure 7.4.

(c) (xx fix this: Relate the above results to the optimality theorem for CDs, in certain

situations, from CLP’s Chapter 5. xx)
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(d) Now we change gears a bit, by putting the a priori assumption θ ≥ 0 on the table.

Show that the maximum likelihood estimator becomes θ̂ = max(0, ȳ), i.e. the sample

mean truncated, if necessary, to zero. Argue that this leads to the natural CD

C̃n(θ, y) = Φ(
√
n(θ − ȳobs)), for θ ≥ 0,

in particular having a positive point-mass at zero.

(e) With θcd drawn from this CD, for given data, show that it may be expressed as

max(0, ȳ + N/
√
n), with N a standard normal. Show next that in the two-stage setup,

with random data followed by θcd drawn from the C̃n CD, we have θcd − θ = max(0, θ+

(N +N ′)/
√
n)− θ, with N ′ another and independent standard normal. Use this to show

that the riskn(C̃n, θ) can be expressed as

rn =

∫ [
{max(0, θ + (2/n)1/2x)} − θ

]2
φ(x) dx

= θ2Φ(−( 1
2n)1/2θ) + (2/n){−( 1

2n)1/2θφ(( 1
2n)1/2θ) + 1− Φ(−( 1

2n)1/2θ)}.

Compute and display the risk functions for C̃n and Cn, for say n = 10, constructing a

version of Figure 7.4. Comment on what we learn from this.

(f) (xx not fully sure about this one. xx) There are various other estimators and CDs

worth considering in this θ ≥ 0 setting. To simplify matters, take n = 1, and consider

the Bayes estimator θ̂B , the conditional mean of θ | y, with a flat prior on (0,∞). Show

in fact that θ̂B = y+ φ(y)/Φ(y), and verify that this is positive even when y is negative.

Work out an expression for the naturally associated CD CB(θ) = Pθ(θ̂B ≥ θ̂B,obs), and

comment.

Ex. 7.19 Risk functions for three CDs in a variance components model. Consider the

simple variance component model with independent observations yi ∼ N(0, σ2 + τ2) for

i = 1, . . . , p, with σ known and τ the unknown parameter of interest; see Schweder and

Hjort (2016, Example 4.1 and Exercise 5.8). The aim here is first to construct CDs based

on (i) Z =
∑p
i=1 y

2
i , (ii) A =

∑p
i=1 |yi|, and (iii) the range R = max yi−min yi; and then

to compute and compare their risk functions. These are defined as

risk(C, τ) = Eτ |τcd − τ | = Eτ

∫
|τcd − τ |dC(τcd, Y ),

with τcd a random draw from the C(τ, Y ) distribution, and with Y itself denoting a

dataset drawn from the distribution indexed by τ .

(a) Show that the natural CDs, based on Z, A, R respectively, are

CZ(τ,data) = 1− Γp(Zobs/(σ
2 + τ2)),

CA(τ,data) = 1−Gp(Aobs/(σ
2 + τ2)1/2),

CR(τ,data) = 1−Hp(Robs/(σ
2 + τ2)1/2).

Here Γp is the cumulative distribution function of Z0 =
∑p
i=1N

2
i , with the Ni being

i.i.d. and standard normal, which means Z0 ∼ χ2
p. Similarly, Gp and Hp are the cumula-

tive distribution functions of A0 =
∑p
i=1 |Ni| and of R0 = maxNi−minNi, respectively.
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Figure 7.5: For the variance component model, with p = 4 and σ = 1, risk functions

r(C, τ) for three CDs for τ . The one based on Z =
∑p
i=1 Y

2
i is best, closely followed by

the one using A =
∑p
i=1 |Yi|, whereas the one using the range R = maxYi −minYi does

worse.

(b) Show that a random draw τcd from the first of these, i.e. CZ , for a given dataset, can

be represented as τcd = (Zobs/K−σ2)
1/2
+ , where x+ is notation for the truncated-to-zero

quantity max(x, 0), and where K ∼ χ2
p. In the situation where data are random, from

the model at position τ , deduce that

τcd − τ = {(σ2 + τ2)K0/K − σ2}1/2+ − τ = σ
[
{(1 + ρ2)K0/K − 1}1/2+ − ρ

]
,

where ρ = τ/σ, and K0,K are two independent draws from the χ2
p. In other words,

F = K0/K ∼ Fp,p, a F distribution with degrees of freedom (p, p). Use this to compute

the risk function risk(CZ , τ), for p = 4 and σ = 1; this is the lowest of the three risk

functions of Figure 7.5.

(c) Then consider the CA option. Show that a random draw from an observed CA(τ,data)

can be written τcd = {(Aobs/A)2−σ2}1/2+ . Deduce that for random data behind the CD,

we have the representation

τcd − τ = {(σ2 + τ2)(A0/A)2 − σ2}1/2+ − τ = σ
[
{(1 + ρ2)(A0/A)2 − 1}1/2+ − ρ

]
,

with A and A0 two independent draws from the Gp distribution. Use this to compute

risk(CA, τ). There is no simple expression for the density of A0/A, so use simulation.
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(d) Carry out similar analysis for the third CD, based on the range R. Construct a

version of Figure 7.5.

(e) Use your programme to explore the three risk functions for other values of p.

Ex. 7.20 CDs for quantiles. Let Y1, . . . , Yn be independent observations from a smooth

density f , with c.d.f. F . How can we construct CDs for its quantiles, the µq = F−1(q)?

We wish such a CD to be nonparametric, without further assumptions on the f . We

go through the main ideas for the case of the median µ = F−1( 1
2 ), before extending

methods and results to a general quantile q ∈ (0, 1). (xx a bit more prose here; several

methods; some better than others in terms of precision and coverage; we draw but briefly

on density estimators from Ch. 13. nils needs to check Price and Bonett (2001, 2002).

xx)
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Figure 7.6: Confidence curves cc(µ0.90), for the 0.90 quantiles of the birthweight dis-

tributions for girls (to the left) and boys (to the right). The black curves use the Beta

method cc∗n(µ,data), with linear interpolation, whereas the slanted curves use the large-

sample approximation. The former yields more accurate coverage than the latter. 95

percent intervals for the two 0.90 quaniles are indicated via the blue horizontal line.

(a) It is not difficult to construct a first-order correct CD via large-sample results reached

in Chapter 2, see in particular Ex. 2.20. With Mn the sample median, we have
√
n(Mn−

µ) →d N(0, 1
4/f(µ)2). Show that as long as τ̂ is a consistent estimator for f(µ), then√

n(Mn − µ)/( 1
2/τ̂)→d N(0, 1), and that this leads to the approximate CD approximate

CD for

quantilesCn(µ, y) = Φ
(√
n(µ−Mn)/( 1

2/τ̂)
)
.
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One of several choices is to take τ̂ = f̂(Mn), with f̂(y) = n−1
∑n
i=1 h

−1K(h−1(yi− y)) a

kernel density estimator, with some kernel function K and bandwidth h. The best size

for this fine-tuning parameter is of the type h = c/n1/5, as seen in Chapter 13, and a

classic rule of thumb which we typically might resort to here is to take h = 1.059 σ̂/n1/2,

with σ̂ the empirical standard deviation. Show that the confidence intervals from this

CD take the form Mn ± z0( 1
2/τ̂)/

√
n, with z0 the relevant normal quantile, like 1.96 for

intended 95 percent intervals.

(b) A different idea starts out as follows. For the ordered observations Y(1) < · · · < Y(n),

show that

Pf (µ ≤ Y(i)) = P ( 1
2 ≤ U(i)) = 1− Be( 1

2 , i, n− i+ 1) for i = 1, . . . , n.

Here U(i) = F (Y(i)); these form an ordered sample from the standard uniform, and

we saw in Ex. 2.20 that they have Beta distributions. The Be(x, a, b) is the c.d.f. of

a Beta(a, b). Define a full CD for µ, say C∗n(µ,data), via linear interpolation between

the C∗n(y(i),data) = 1 − Be( 1
2 , i, n − i + 1) points. This also yields a confidence curve

cc∗n(µ,data) = |1− 2C∗n(µ,data)|.

(c) Extend the two methods above, constructed there to deal with the median, to a

general quantile µq = F−1(q). For the first CD, use
√
n(Qn,q − µq) →d N(0, q(1 −

q)/f(µq)
2), with Qn,q = F−1

n (q) the empirical q quantile, and estimate τq = f(µq) via

f̂(F−1
n (q)). For the second CD, show first that Pf (µq ≤ Y(i)) = 1 − Be(q, i, n − i + 1),

and use linear interpolation:

C∗n(µq,data) = interpolation with 1− Be(q, i, n− i+ 1) at y(i), (7.2)

for i = 1, . . . , n. For µq inside (y(i), y(i+1)), therefore, the CD value is interpolationthe Beta

method CD for

quantiles
between 1−Be(q, i, n− i+ 1) and 1−Be(µ1, i+ 1, n− i). We call this the Beta method

CD for quantiles.

(d) (xx a bit more. for birthweights oslo boys and girls, compute, display, and interpret

the confidence curves for the 0.90 quantile, using both of the CD methods. Reproduce a

version of Figure 7.6. point to Story ??. xx)

Ex. 7.21 CDs for quantiles: how well do they work? In Ex. 7.20 we found two non-

parametric CD recipes, for any quantile µq = F−1(q). Here we investigate how well they

work, in terms of actual coverage probabilities for confidence intervals. For the methods

Cn(µq,data) and C∗n(µq,data), define

Vn = Cn(µq,true, Y1, . . . , Yn) and V ∗n = C∗n(µq,true, Y1, . . . , Yn),

with Y1, . . . , Yn drawn from the density in question. Accurate coverage, at all levels,

means that the distribution of these two random CDs, at the true value, should be close

to the uniform.

(a) To check the precision of these two CDs, carry out a simple simulation experiment.

Take f equal to the standard normal, with µq = Φ−1(q) to be estimated with uncertainty;
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use τ̂ = f̂(Qn,q) as above, with K the standard normal kernel and bandwidth h =

1.059 σ̂/n1/5 (which is optimal for the normal case), using the ordinary standard deviation

from the data; and then simulate say sim = 105 values of Vn = Cn(µq,true, Y1, . . . , Yn)

and V ∗n = C∗n(µq,true, Y1, . . . , Yn). Check, perhaps for n = 50, 100, 500, 1000, how close

the distributions of Vn and V ∗n are to the uniform. – For computing the C∗n, and hence for

executing that part of the simulation experiment, the approx algorithm of R is handy,

carrying out linear approximation between the two values 1 − Be( 1
2 , i, n − i + 1) and

1− Be( 1
2 , i+ 1, n− i), for any µ inside the [Y(i), Y(i+1)] interval.
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Figure 7.7: For the case of f being standard normal, n = 100, q = 0.50: histograms of

Vn and V ∗n based on sim = 105 simulations. Also in other cases the V ∗n is much closer to

uniformity than is Vn.

(b) Conduct a few similar simulation experiments, to see how close Vn and Vmn
∗ are to

uniformity, with different density f , quantile µq, sample size n.

(c) To assess ‘closeness to uniformity’ more accurately, use the monitoring processes of

Ex. 2.27. For each of your simulation experiments, in addition to displaying histograms

of Vn and V ∗n , compute and display the functions Zsim(t) = (sim)1/2{Gsim(t) − t} and

Z∗sim(t) = (sim)1/2{G∗sim(t)−t}, where Gsim and G∗sim are the empirical distribution func-

tions of the Vn and V ∗n . Compute also Dsim = maxt |Zsim(t)| and D∗sim = maxt |Z∗sim(t)|.
It will transpire (i) that Vn often is not particularly close to uniformity, unless n is rather

large; (ii) that V ∗n is often so close to uniformity, even for moderate n and q near 0 or 1,

that we cannot see that the distribution is not uniform, even with 105 simulated values.
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(d) xx

Ex. 7.22 Large-sample equivalence for two CDs for quantiles. (xx to come. details for

why the two CDs are large-sample equivalent. harder to show clearly that the 2nd is

better than the 1st. nils thinks that it is, though, as of 13-Aug-2023. xx)

Ex. 7.23 Optimal CDs and confidence curves. (xx the main recipe here, with a a few

applications. point back to optimal testing in Ch. 3, and to theory in Ch. 8. exponential

family etc. going back to exercise in Ch 2, with testing for δ with expo pairs, we here

give full confidence curves, with two methods. xx)

Ex. 7.24 Comparing Poisson parameters. (xx ranting on a bit, to be edited. point

to Story i.2, application to sucide attempts rates. xx) Suppose Y0 ∼ Pois(m0θ0) and

Y1 ∼ Pois(m1θ1). In what precise way is θ1 different from θ0? Writing γ = θ1/θ0,

show that the likelihood is proportional to exp{−θ0(m0 +m1γ)}θy0+y1
0 γy1 . Explain that

the optimality recipe tells us inference should be made based on the distribution of

Y1 | (Z = z), where Z = Y0 + Y1. Show that Y1 | (Z = z) has the binomial distribution

(z,m1γ/(m0 +m1γ)). Show how this leads to the optimal CD

C(γ) = Pγ(Y1 > y1,obs | z) + 1
2Pγ(Y1 = y1,obs | z)

= 1−Bz(y1,obs,m1γ/(m0 +m1γ)) + 1
2bz(y1,obs,m1γ/(m0 +m1γ)).

(xx point to Story i.2, for y0 = 1, y1 = 7, for the patient years m0, m1, in Aursnes et al.

(2005). compare with their Bayes gamma priors, both informative and less informative.

xx)

Ex. 7.25 CD and cc for binomial probabilities. Suppose y is observed from a binomial

(n, θ). The task is to construct a CD and a cc for θ.

(a) Show that the standard normal approximations for y (xx give pointer here to large-

sample chapter) lead to

Ca(θ, y) = Φ
( nθ − y
{nθ(1− θ)}1/2

)
and Cb(θ, y) = Φ

( √n(θ − θ̂)
{θ̂(1− θ̂)}1/2

)
,

with θ̂ = y/n the standard estimator for θ.

(b) The recipe of Ex. 7.5 does not quite work here since y has a discrete distribution.

This invites the half-correction method

C(θ, y) = Pθ(y > yobs) + 1
2Pθ(y = yobs).

For say n = 20 and y = 12, compute and display this CD, along with (i) the same CD but

without the half-correction, (ii) the two simple normal approximations above. Try other

combinations of (n, y), and demonstrate that they are approximately equal for moderate

to large n.

(c) To investigate the basic CD property, take n = 20 and θtrue = 0.33. Simulate a

large number of C(θ0, y), Ca(θ0, y), Cb(θ0, y), to check for their approximate uniform

distribution. Try other values of (n, θ0), and summarise your findings.
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Ex. 7.26 Aboriginals and invaders in Watership Down. Suppose a population of

rabbits has been living for a long time on an island, in Hardy–Weibnerg equilibrium

(p0, q0) = (0.25, 0.75), which means that pairs of alleles aa, Aa, AA occur with frequen-

cies (p2
0, 2p0q0, q

2
0). Suppose next that there’s an invading populations of new rabbits,

with their separate Hardy–Weinberg equilibrium (p, 2pq, q2), with q = 1− p. We assume

that the two populations do not mix, but live on, on the same island, and that rabbitol-

ogists don’t see the difference. One is interested in learning the fraction λ of newcomers

(so the fraction of aboriginals is 1− λ).
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Figure 7.8: Confidence curves for the unknown fraction λ of newcomers, after having

counted (X,Y, Z) = (118, 438, 444) of allele pairs aa, Aa, AA. The start population has

HW parameters (p0, q0) = (0.25, 0.75). (i) The black smooth cc1(λ) is computed using

the knowledge that the new population has HW parameters (p, q) = (0.40, 0.60). (ii) The

red slanted cc2(λ) is computed using only knowledge about (p0, q0), i.e. both p, q = 1−p,
and λ are unknown.

(a) Explain that when one samples n rabbits independently, and find their allele pairs

aa, Aa, AA, then these numbers (X,Y, Z) have a trinomial distribution with parameters

pr1 = (1− λ)p2
0 + λp2, pr2 = (1− λ)2p=q0 + λ2pq, pr3 = (1− λ)q2

0 + λq2.

Note that pr1 + pr2 + pr3 = 1.

(b) For the case of (X,Y, Z) = (118, 438, 444), and assuming not only (p0, q0) = (0.25, 0.75)

known, but also (p, q) = (0.40, 0.60) known, find an estimate and construct a confidence
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curve cc1(λ), as with the black smooth Figure 7.8. Assume next, with the same counts

(X,Y, Z), that the home population parameters (p0, q0) = (0.25, 0.75) are known, but

that the HW parameters (p, q) = (p, 1− q) for the new population are unknown. Again,

estimate λ and find a confidence curves cc2(λ), as for the red slanted curve of Figure 7.8.

Comment on your findings. For your computer script, play a bit with different sample

sizes, and with different degrees of difference between (p0, q0) and (p, q).

(c) Explain why it is not possible to estimate all (p0, p, λ) from (X,Y, Z).

Ex. 7.27 CD and cc for comparing binomials. In Ex. 7.25 we learn how to construct

CDs for separate binomial parameters. Consider now the 2 × 2 table setup with two

binomials, as with Ex. 3.29, say y0 ∼ binom(m0, p0) and y1 ∼ binom(m1, p1). How do

we reach precise inference for the extent to which p0 and p1 differ?

(a) We first use the logistic transform p0 = H(θ0) and p1 = H(θ0 + γ), with H(u) =

exp(u)/{1 + exp(u)}. Show that

γ = log
p1/(1− p1)

p0/(1− p0)
= log

p1

1− p1
− log

p0

1− p0
,

the log-odds difference. Write up the likelihood function for the observed (Y0, Y1) to

deduce (xx via the optimal CD exercise xx) that the optimal CD for γ takes the form

C(γ) = Pγ(Y1 > y1,obs |Z = zobs) + 1
2Pγ(Y1 = y1,obs |Z = zobs),

with Z = Y0 + Y1. The conditional distribution in question is the eccentric hypergeo-

metric, found in Ex. 3.29. (xx do simple example here. this CD is used in both Stories

i.1 and i.9. we use Ex. 3.29. xx)

Ex. 7.28 Bayesian posteriors as approximate CDs. (xx to come here: Consider a setup

with data y from a model with parameter θ = (θ1, . . . , θp), and with φ = φ(θ1, . . . , θp) a

focus parameter. A CD for φ has the property Pθ{C−1(0.05, Y ) ≤ φ ≤ C−1(0.95, Y )} =

0.90, etc., as with (7.1), thus delivering confidence intervals with the right coverage. This

is also akin to how Bayesian posterior distributions are used. If a Bayesian prior for θ

leads to a posterior for θ, and hence for a cumulative B(φ | yobs), then the Bayesian can

read off [B−1(0.05, yobs) ≤ φ ≤ B−1(0.95, yobs)]. A question of interest and relevance also

in Bayesian contexts is whether such intervals make sense also in the frequentist sense.

point to Bernshtĕın–von Mises things in Ch. 6. the answer is ‘ok’ under such conditions,

but not outside. xx)

(a) For a simple start example, consider Y1, . . . , Yn which given θ are i.i.d. from the

Pois(θ), and with a prior θ ∼ Gam(a, b); see Ex. (xx suitable exercise Ch 5 xx). Show

that the posterior cumulative for θ becomes Bn(θ |data) = G(θ, a+nȳobs, b+n), in terms

for the cumulative Gamma, and with ȳobs the observed data average. Let θ̂B and τ̂B be

the posterior mean and standard deviation. Assume now that data Y1, Y2, . . . come from

the Pois(θ0), for a certain θ0. Show that

Bn(θ0 |Y1, . . . , Yn) = P (θ ≤ θ0 |Y1, . . . , Yn) = G(θ0, a+ nȳ, b+ n)
.
= Φ((θ0 − θ̂B)/τ̂B)→d Φ(N(0, 1)) ∼ unif,

with probability 1.
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(b) For a similar adventure, start with the Beta(a, b) prior for a binomial probability θ.

Show that the posterior cumulative for θ becomes Bn(θ |data) = Be(θ, a+ y, b+ n− y),

in terms of the Beta cumulative. Assuming that Yn is really from a binomial with some

true θ0, show that

Bn(θ0 |Yn) = P (θ ≤ θ0 |Yn) = Be(θ0, a+ Yb, b+ n− Yn)
.
= Φ((θ0 − θ̂B)/τ̂B)→d Φ(N(0, 1)) ∼ unif,

with probability 1.

(c) (xx to land somewhere in Ch. 6, sorted under Bernshtĕın–von Mises. xx) consider the

posterior distribution πn(θ |data) ∝ π0(θ)Ln(θ), and then normalise to Zn =
√
n(θ− θ̂),

with θ̂ the maximum likelihood estimate. Show that Zn, given the data, has density

gn(z |data) ∝ π0(θ̂ + z/
√
n)Ln(θ̂ + z/

√
n)(1/

√
n)p

∝ exp{`n(θ̂ + z/
√
n)− `n(θ̂)}π0(θ̂ + z/

√
n)

.
= exp{− 1

2 (θ̂ − θ̂)tJn(θ − θ̂)}π0(θ̂),

with Jn the normalised Hesse matrix −(1/n)∂2`n(θ̂)/∂θ∂θt. Show from this, under mild

conditions, that
√
n(θ − θ̂) | (Y1, . . . , Yn)→d Np(0, J

−1) with probability 1.

(d) xx

Ex. 7.29 Ratio of normal means. (xx edit and clean. about two exercises here on

this. mention Fieller name. start with x0 = −a/b, the point at which a regression type

equation a+ bx = 0. then application to bioassay or similar. xx)

(a) Consider the prototype setup for such questions, where â ∼ N(a, 1) and b̂ ∼ N(b, 1)

are independent. Show first that the log-likelihood is a simple `(a, b) = − 1
2Q(a, b), with

Q(a, b) = (a − â)2 + (b − b̂)2, and find a formula for `prof(x0) = − 1
2Qprof(x0), where

Qprof(x0) = min{Q(a, b) : x0 = −a/b}.

(b) Show that (â+ b̂x0)/(1 + x2
0) ∼ χ2

1, at the true x0, and hence that

cc(x0) = Γ1((â+ b̂x0)/(1 + x2
0))

is a clear confidence curve for x0. (xx illustrate, with the mildly peculiar confidence

regions. find max confidence level. more. xx)

(c) (xx with σ̂ on top. with dependence. things fine as long as (â, b̂) is binormal. xx)

(d) (xx bioassay. xx)

Ex. 7.30 The length problem. (xx might make a Satellite Collision Story, based on

Cunen et al. (2020b). contrasting CD with Bayes. xx) There are several situations, of

varying degrees of complexity, where the heart of the matter is, or can be transformed to,

the following: with Y having the Np(θ,Σ) distribution, with unknown mean vector and

known or partly known variance matrix, reach inference for the length ρ = ‖θ‖ = (θ2
1 +

· · ·+ θ2
p)

1/2. See e.g. Cunen et al. (2020b) for an application involving the computation

and real-time monitoring of the probability that two satellites will collide.
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Figure 7.9: As a function of the true ρ, for dimension p = 3, the figure shows the

actual coverage probability of the Bayesian 90 percent credibility interval, based on the

posterior stemming from a flat prior for the θ.

(a) Take first Σ = Ip, so y ∼ Np(θ, Ip), which means independent Yi ∼ N(θi, 1) for

i = 1, . . . , p. Show that the maximum likelihood estimator of ρ is ρ̂ = ‖Y ‖. Show also

that ρ̂2 ∼ χ2
p(ρ

2), the noncentral chi-squared.

(b) Deduce that ρ̂2 is overshooting its target ρ2, with mean and variance p + ρ2 and

2p+ 4ρ2. Find also an expression for E ρ̂, and show that it overshoots ρ.

(c) Show that the natural CD becomes C(ρ, y) = 1− Γp(ρ̂
2, ρ2).

(d) A typical Bayesian analysis would start with a flat prior for θ1, . . . , θp (xx calibrate

and xref Ch 5 for this detail xx). Show that θ | y ∼ Np(y, I), and that this entails

ρ2 | y ∼ χ2
p(ρ̂

2).

(e) For p = 5 and ρ̂ = 7.77, compute and draw both the CD and the Bayesian posterior

distribution,

C(ρ, y) = 1− Γp(ρ̂
2, ρ2) and B(ρ, y) = Γp(ρ

2, ρ̂2).

Comment on what you find.

(f) (xx simulate to illustrate that the CD by construction works, producing confidence

intervals with the correct coverage; UC = C(ρ0, Y ) ∼ unif when data stem from the
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model, at position ρ0. show however that the Bayesian posterior distribution here risks

being very far from producing intervals with the right coverage; UB = B(ρ0, Y ) is very

far from being uniform. point to Figure 7.9 for the too low coverage probability of the

Bayesian 90 percent credibility interval. the CD based intervals have exact coverage. link

to Bernshtĕın–von Mises things in Ch. 6; here we’re outside BvM terrain. more on why

and how. xx)

(g) Generalise the above to the case where Y ∼ Np(θ, σ
2Ip).

(h) More generally, with Y1, . . . , Yn being i.i.d. from the Np(θ, σ
2Ip), with σ known,

show first that Ȳ ∼ Np(θ, (σ
2/n)Ip). Then show that ρ̂ = ‖ȳ‖ is the maximum likelihood

estimator, with distribution given by nρ̂2/σ2 ∼ χ2
p(nρ

2/σ2). On the Bayesian side, show

that a flat prior for θ leads to θ |data ∼ Np(y, (σ
2/n)Ip). Show that these statements

lead to these generalisations of the above

Cn(ρ, y) = 1− Γp(nρ̂
2/σ2, nρ2/σ2),

Bn(ρ | y) = Γp(nρ
2/σ2, (n/σ2)ρ̂2).

(i) (xx a bit more, regarding BvM, which holds for fixed p and ρ, with growing n. but

misleading picture for finite n. do something to see interplay with n and p. xx)

(j) (xx also, briefly, to the case of Y ∼ Np(θ, σ
2Ip), with σ estimated via an independent

σ̂2 ∼ σ2χ2
m/m. xx)

Ex. 7.31 Estimating n based on observing the first r. Suppose Y1, . . . , Yn are i.i.d., from

some known distribution with density f and cumulative F , but that one only observes the

first r order statistics, Y(1) < · · · < Y(r). Can we estimate n? Such nonstandard problems

turn up in various context, from estimating the size of a vocabulary to the number of

unseen species. In this exercise we consider the special case of the unit exponential

distribution, where the Yi can be seen as waiting times, so the question may be phrased

as how long time do we need to wait, until we’ve seen all items, when we have used a

certain time to observe the first r.

(a) Let then Y1, . . . , Yn be i.i.d. from the unit exponential, and assume Y(1) < · · · < Y(r)

are observed, with unknown n. Observing these r first data points is equivalent to

observing the spacings D1 = Y(1), D2 = Y(2) − Y(1), up to Dr = Y(r) − Y(r−1). Use

Ex. 2.22 to show that the joint distribution of these f first spacings may be written

gr(d1, . . . , dr) = n(n− 1) · · · (n− r + 1)

exp
[
−{n(d1 + · · ·+ dr)− d2 − 2d3 − · · · (r − 1)dr}

]
,

and deduce from this that Y(r) is sufficient for n.

(b) With F (x) = 1−exp(−x), show that F (Y(r)) has a Beta distribution with parameters

(r, n− r + 1).

(c) Show that the optimal CD for n, based on having observed the smallest r datapoints,

is

Cr(n) = Pn(Y(r) ≤ Y(r),obs) = Be(F (Y(r),obs), r, n− r + 1).
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(d) (xx an example or two. suppose Y(r),obs = 0.348 with r = 33. estimate n. see nils

com87a or thereabouts. give normal approximation. but these are not good for r/n close

to zero or one. can we characterise ML estimator. xx)

Ex. 7.32 (xx another discrete model thing. xx) (xx to come. xx)

Ex. 7.33 Basic meta-analysis. (xx to come, and calibrated with later stuff. xx) There

is a very wide literature on combining information, with different names and labels,

including meta-analysis, data fusion, etc. This exercise looks into some of the more basic

versions, and where CDs will be helpful in later extensions below.

(a) Suppose yj ∼ N(φ, σ2
j ), for j = 1, . . . , k independent sources, with the same focus

parameter φ, and with variances taken to be known or well estimated. Consider the linear

combination estimator φ̂ =
∑k
j=1 ajyj . Show that it is unbiased, provided

∑k
j=1 aj = 1,

and find its variance. Show that the best choice, yielding minimal variance among the

unbiased ones, is aj ∝ 1/σ2
j , leading to

φ̂ =

∑k
j=1 yj/σ

2
j∑k

j=1 1/σ2
j

.

Show indeed that φ̂ ∼ N(φ, κ2), with this minimal variance being κ2 = (
∑k
j=1 1/σ2

j )−1.

Comment on what this leads to for the case where the σj are equal.

(b) In various settings there is a need to generalise the setting above to one where

yj |φj ∼ N(φj , σ
2
j ), with these individual mean parameters not being equal, but having

their own distribution, say φj ∼ N(φ0, τ
2). The task is then to reach inference for both

the overall mean φ0 and the spread τ among the φj . Show that yj ∼ N(φ0, σ
2
j + τ2), and

that the log-likelihood function becomes

`(φ0, τ) = − 1
2

k∑
j=1

{
log(σ2

j + τ2) +
(yj − φ0)2

σ2
j + τ2

}
.

(c) Considering the spread parameter τ first, show that the profiled log-likelihood can

be written

`prof(τ) = − 1
2

k∑
j=1

[
log(σ2

j + τ2) +
{yj − φ̂0(τ)}2

σ2
j + τ2

]
, for τ ≥ 0,

in which

φ̂0(τ) =

∑k
j=1 yj/(σ

2
j + τ2)∑k

j=1 1/(σ2
j + τ2)

is the best linear combination estimator for φ0, for the fixed τ under inspection.

(d) (xx fix this, needs to be clearer. xx) Consider this profiled log-likelihood as a function

of γ = τ2, rather than of τ , and show that its derivative at zero is

D = 1
2

k∑
j=1

1

σ2
j

{ (yj − φ̃0)2

σ2
j

− 1
}
.
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Here φ̃0 = φ̂(0). A small D means that the yj data have a low spread, and vice versa.

Show that if D ≤ 0, then τ̂ml = 0, and if that D > 0, then τ̂ml is positive.

(e) (xx fix this, needs to be clearer. xx) Show next that

Q(τ) =

k∑
j=1

{yj − φ̂(τ)}2

σ2
j + τ2

∼ χ2
k−1.

(f) (xx work with `prof(τ). partly from CLP. derivative at zero. xx) By maximising over

φ0, for each given τ , show that

`prof(τ) = − 1
2

k∑
j=1

[
log(σ2

j + τ2) +
{yj − φ̂(τ)}2

σ2
j + τ2

]
.

Ex. 7.34 Combining CDs for the same parameter. (xx a few exercises here. first for the

same parameter, basic. then to CLP Ch 13 settings, then CDs to likelihood; then II-CC-

FF. xx) Suppose that C1(φ), . . . , Ck(φ) are independent CDs for the same parameter φ,

perhaps based on different sets of data. How can these be properly combined?

(a) Show that Nj = φ−1(Cj(φtrue)) is standard normal, at the true position in the

parameter space underlying the Cj . With w1, . . . , wk numbers such that
∑k
j=1 w

2
j = 1,

show that

C̄(φ) = Φ
( k∑
j=1

wjΦ
−1(Cj(φ))

)
is a proper combination CD for φ.

(b) (xx point back to Ex. 7.33. xx)

(c)

Ex. 7.35 From CD to likelihood. (xx to come. with illustrations. normal conversion.

`(φ) = − 1
2Γ−1

1 (ccj(φ)). xx)

Ex. 7.36 II-CC-FF: Independent Inspection, Confidence Conversion, Focused Fusion.

(xx to come. using Cunen and Hjort (2022). point to Bayesian updating being part of

this, but allows user keeping only prior for the focus parameter. aim to demonstrate

iiccff in Story i.2. xx)

Ex. 7.37 Private attributes. (xx to be checked with care. xx) The probability ψ of

cheating at exams might be hard to estimate, but a bit of randomisation might grant

anonymity and yield valid estimates. Suppose there are three cards, two with the state-

ment ‘I did cheat’, and ‘I did not cheat’ on the third. Students are asked to draw one

of the three cards randomly and answer either true or false to the drawn statement,

without revealing it.

(a) Show that the probability of true is (1 + ψ)/3. Assume a binomial model for the

number of students answering true, and devise a CD for ψ.

(b) Assume 1000 students go through the simple post-exam exercise above (anony-

mously). Find and display CDs for ψ for the cases of respectively 300, 350, 400 out

of the 1000 answered true.
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7.C Notes and pointers

[xx A few remarks. xx]

we point to Schweder and Hjort (2016, Example 3.11), Fisher (1930), Xie and Singh

(2013), Hjort and Schweder (2018), Cunen and Hjort (2022), Singh et al. (2005), ...





I.8

Loss, risk, performance, optimality

Statistics is a mathematical formalisation of how to make good decisions under

uncertainty. One source of uncertainty is that the future or the true state of nature,

say θ, is not known when we are to make our decisions, and since the utility or loss

of a decision depends on θ, we need to be clear about how bad it is when our decision

is off. This is the role of loss functions, of which the square error is the most well

known example. Decisions are based on data, and it is not anodyne how we use

the data: Some procedures for going from data to a decision are better than others.

Therefore, it makes sense to see how a certain procedure performs on average. This

is the role played by risk functions, of which the mean square error is the most

well known example. Risk functions average out the data, but they still depend

on θ, so the risk function of various decision procedures are often difficult to order.

Some might be preferable for certain values of θ, while others might be better for

other values of θ. This chapter introduces criteria that let us, nevertheless, say

something about how good a decision procedure is. A decision procedure is said

to be admissible if there is no other that does better, in terms of the risk function,

whatever the truth or future may be. One says that a decision procedure is minimax

if it is the the best one in the most unfortunate situation. In proving that certain

decision procedures are admissible or minimax, Bayesian thinking is an essential

tool. This includes the concepte of Bayes risk, where not only the data is average

out, but also the various possible states of nature are averaged out.

8.A Chapter introduction

A statistical decision, as most decisions in life when you think about it, is a function of

what we observe to the space of all possible decisions we can make in a given setting:

I look out the window and see grey clouds, and choose to take my umbrella with me

when I go out. I see that you are smiling and I think that you are happy. Formally, an

action is a function a : X → A, where X is the space in which the data take its values,

the sample space; while A is the action space, that is the collection of all possible actions

we might take. How wise our choice of a ∈ A is or turns out to be, depends on the true

state of nature θ. This θ lives in a parameter space Θ, and is an unknown parameter

governing the probability distribution Pθ from which the data X ∈ X are generated. ALoss function

259
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loss function L(θ, a) measures ‘how much’ we lose by choosing action a when the true

state of nature is θ. We assume that

L : Θ×A → [0,∞),

so that the best possible loss is zero (in general, loss functions do not need to be

nonnegative, see e.g. Schervish (1995, Chapter 3.1) for a more general introduction).

To be concrete, consider the point estimation problem with data X1, . . . , Xn indepen-

dent N(θ, 1), where θ is an unknown parameter to be estimated under the loss function

L(θ, a) = (a− θ)2. Here, the amount lost is the squared distance between a and θ. If we

wish to test H0 : θ ≤ 0 versus HA : θ > 0, the action space is A = {keep H0, reject H0},
and a natural loss function can be described by

L(θ, a) =

θ ≤ 0 θ > 0

keep H0 0 1

reject H0 1 0

.

[xx see comment about 0-1 loss in Schervish (1995, p. 215) xx] With this loss function,

we lose the same amount when rejecting a true null hypothesis as when failing to reject a

null hypothesis that is false. In statistical jargon that you probably already know, failing

to reject a null hypothesis is called a Type I error, while when we fail to reject a null

hypothesis that is false, we commit a Type II error.

In the classical or frequentist setup, different decision procedures are compared by

the loss they incur for each value of θ, that is, by their risk function

R(θ, a) = Eθ L(θ, a(X)) =

∫
X
L(θ, a(x)) dPθ(x).

Notice that for each decision procedure a, the risk function R(θ, a) is a function of θ,

so that for two estimators a1 and a2 their respective risk functions may cross, that is

R(θ, a1) < R(θ, a2) for some θ, while R(θ, a1) > R(θ, a2) for other values of θ. Thus,

comparison of risk functions only provides a partial ordering of decision procedures, and

as such does not point clearly at a best decision procedure. What is clear, however, is

that if R(θ, a1) ≤ R(θ, a2) for all θ, with strict inequality for at least one value of θ,

then a2 should be discarded from the competition: We say that a1 dominates a2, and

a2 is said to be inadmissible. A decision procedure that is not dominated by any other Admissibility

decision procedure is admissible. In and of itself admissibility does not tell us much about

an estimator. Consider for example the estimator a′(X) = θ′ that returns the value θ′

whatever the data. Clearly, no estimator can perform better than a′ in θ′, but that does

not, for obvious reasons, make it an estimator we would like to use. Another principle

by which to compare decision procedures is the the minimax principle. According to this Minimax

principle, the estimator with the best performance in the worst possible scenario ought

to be chosen. We say that a decision rule a? is minimax if it minimises the maximum

risk, that is if

inf
a∈A

sup
θ∈Θ

R(a, θ) = sup
θ∈Θ

R(a?, θ).

If you are a Bayesian and venture into the business of constructing prior distributions

π(θ) over the parameter space Θ, then the problem of risk functions only being partially
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ordered can be circumvented. What you are interested in then is the Bayes risk of the Bayes risk

decision procedures you are comparing, that is

BR(a, π) = Eπ R(θ, a) =

∫
Θ

R(θ, a)π(θ) dθ.

For a given a and prior π, the Bayes risk is a number, and under certain conditions that

we will explore in the exercises to come, there will be a unique decision procedure a that,

for a given prior π, minimises BR(a, π). This decision procedure is the Bayes solution.Bayes solution

As we will see, Bayes solutions are, despite the name, extremely important for Bayesians

and frequentists alike.

8.B Short and crisp

Ex. 8.1 Coin tossing. To get a feeling for some of the basic challenges and concepts

concerning the comparison of various estimator, we start out with the emblematic prob-

lem of estimating the probability of heads in n = 10 independent tosses of a coin. Let

Y1, . . . , Yn be independent Bernoulli random variables with expectation θ.

(a) Sketch the risk function of the maximum likelihood estimator Ȳn = n−1
∑n
i=1 Yi

under squared error loss L(δ, θ) = (δ − θ)2. Recall that n = 10.

(b) Suppose we have some intuition about where on the unit interval the expectation θ

might be located, close to a value 0 < θ0 < 1, say. One way in which such a prior hunch

might be employed is by taking as our estimate a convex combination of the maximum

likelihood estimator and θ0, that is

δa(Y1, . . . , Yn) = aX̄n + (1− a)θ0,

for some 0 ≤ a ≤ 1. For a = 1/2 and θ0 = 1/2, sketch the risk function of this estimator.

Suppose that your task, as was Pierre-Simon Laplace’s in 1781 or so, is to estimate the

probability of giving birth to a boy. Which of the two above estimators do you prefer,

the maximum likelihood estimator or δa with a = 1/2 and θ0 = 1/2?

(c) Based on the risk functions you sketched in (a) and (b), we see that the two estimators

are difficult to compare. The maximum likelihood estimator has lower risk than δa for

certain values of θ, while δa performs better for other values of θ. The risk functions

cross and none of the two is uniformly better than the other. An easy fix to this problem

of comparison, is to limit our search for an estimator to the class of estimators that are

unbiased for what we are estimating. Look back at Ex. 5.15 and explain why, when the

search is restricted to the class of unbiased estimators, the maximum likelihood estimator

is the clear winner.

(d) The risk of the estimators from (a) and (b) vary widely with what the true θ is.

Choosing a best estimator, when the yardsstick is the squared error loss function, seems

therefore to require some prior hunch about where θ really is. A criterion for risk function

comparison that does not require such a prior hunch, is minimaxity: An estimator is

minimax if it minimises the maximum risk. Estimators whose risk functions are constant
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are, as we will soon see, good candidates for being minimax. Consider the estimator from

Ex. (b) with θ0 = 1/2. Find a function a = a(n) such that the risk function R(θ, δa(n))

is constant. For n = 10, sketch the risk function of your estimator (that is, draw a line).

Suppose you have absolutely no idea whatsoever about where in the unit interval θ may

be located. Which of your three estimators of θ do you prefer? In Ex. 8.8 we learn that

δa(n) is indeed minimax.

Ex. 8.2 Uniformly minimum variance unbiased estimators. As the sketch you made

Ex. 8.1 illustrates, comparing risk functions is not always straight forward, and a some-

what ad hoc way of making the problem of finding a best estimator tractable is by

limiting the search for a best estimator to the class of unbiased estimators. What is

variably called a best unbiased estimator, the uniformly minimum variance unbiased es-

timator, the UMVU estimator, is defined as follows: An estimator δ?(Y ) is the uniformly UMVU

estimatorminimum variance unbiased estimator for g(θ) if it is unbiased for g(θ), and for any other

estimator δ(Y ) that is unbiased for g(θ), it holds that Varθ δ
?(Y ) ≤ Varθ δ(Y ) for all θ.

When feasible (see Ex. 5.5 and 5.15–5.16), the easiest way of establishing that an unbi-

ased estimator is an uniformly minimum variance unbiased estimator, is to verify that it

achieves the Cramér–Rao lower bound.

(a) Let us look at a few examples of the Cramér–Rao approach: (i) Suppose X ∼ N(θ, 1),

and show that X is uniformly minimum variance unbiased for θ. (ii) Suppose Y has an

exponential distribution with mean θ. Show that Y is uniformly minimum variance

unbiased for θ. (iii) Let Yi = β0 + β1xi + σεi for i = 1, . . . , n, where the covariates

x1, . . . , xn are fixed numbers, and the ε1, . . . , εn are independent standard normal random

variables. Show that the least squares estimator for (β0, β1) is the uniformly minimum

variance unbiased estimator.

(b) Let Y1, . . . , Yn be i.i.d. N(µ, σ2). It is immediate from (a) that Ȳn = n−1
∑n
i=1 Yi is

uniformly minimum variance unbiased for µ. Show that the estimator σ̂2
n =

∑n
i=1(Yi −

Ȳn)2/(n− 1) is not uniformly minimum variance unbiased for σ2. In Exercise 8.3 we will

see that there is no unbiased estimator of σ2 attaining the Cramér-Rao lower bound.

Ex. 8.3 Cramér–Rao and Cauchy–Schwarz. The proof of the Cramér–Rao inequality

that we met in Ex. 5.15–5.16, is a clever application of the Cauchy–Schwarz inequality.

(a) Let X and Y be two square integrable random variables with expectation zero.

Show that |EXY |= {Var (X)Var (Y )}1/2 if and only if X and Y are linearly related,

Y = a+ bX, for example.

(b) Explain why the Cramér–Rao inequality is an equality if and only if the estimator

δ(y) and the score function are linearly related, that is

∂

∂θ
log f(Y ; θ) = a(θ) + b(θ)δ(Y ), for all θ,

for some function a(θ) and b(θ). Solve the differential equation above for f(y; θ), and state

what this entails for estimators and distributions when it comes to possible attainment

of the Cramér–Rao lower bound. You may have a look back at Ex. 1.57–??.
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(c) In Ex. 8.2(b) we saw that with Y1, . . . , Yn i.i.d. N(µ, σ2), the unbiased estimator

σ̂2
n =

∑n
i=1(Yi − Ȳ )2/(n − 1) for σ2 does not attain the Cramér–Rao lower bound. Use

the result from (b) to argue that the Cramér–Rao lower bound may only be attained

when µ is known.

Ex. 8.4 Sufficiency and Rao–Blackwell. Suppose that Y has a distribution from a

family {Pθ : θ ∈ Θ} of distributions. Recall from Ex. 1.61 that T = T (Y ) is a sufficient

statistic for this family distributions if the conditional distribution of Y given T does

not depend on θ. The Rao–Blackwell theorem says that any estimator can be improved

upon by conditioning on a sufficient statistic. This is an extremely important result, as

it tells us that in our search for a best estimator, we need only consider those estimators

that are functions of a sufficient statistic.

(a) Let δ′(Y ) be an unbiased estimator for g(θ), and suppose that T (Y ) is sufficient for θ.

Consider the estimator given by δ(Y ) = Eθ {δ′(Y ) | T}. Then δ(Y ) is better than δ′(Y ).

The proof proceeds in three steps. First, explain why δ(Y ) is an estimator; second, showRao–Blackwell

theorem that δ(Y ) is unbiased, and third, show that Varθ δ(Y ) ≤ Varθ δ
′(Y ) for all θ. You have

now proven the Rao–Blackwell theorem for unbiased estimators. In Ex. 8.15 we look at

this theorem in a more general decision theoretic framework.

(b) Suppose that Y1, . . . , Yn are i.i.d. uniforms on [0, θ], with θ > 0 an unknown param-

eter. Show that the estimators

δ1 =
2

n

n∑
i=1

Yi, and δ2 =
n+ 1

n
max
i≤n

Yi,

are both unbiased for θ. There are (at least) two ways of showing that δ2 is a better

estimator than δ1. Try them both. First, compute the variances of both estimators.

Second, appeal to the Rao–Blackwell theorem, that is, more concretely, use the results

from Ex. 2.19 to establish that E {δ1 | maxi≤n Yi} = δ2 almost surely.

(c) Let Y1, . . . , Yn be i.i.d. Pois(λ). We seek to estimate θ = Pr(Y1 = 0) = exp(−λ). Find

the maximum likelihood estimator for θ, say θ̂, and show that E (θ̂) = γ{1 + O(1/n)},
meaning the the maximum likelihood estimator for θ is biased. Next, find the Cramér–

Rao lower bound for unbiased estimators of θ. Look back at Ex. 8.3 and consider whether

this lower bound can be attained.

Another estimation strategy is to estimate θ = Pr(Y1 = 0) by the share of zero

counts, that is θ̃ = n−1
∑n
i=1 I{Yi = 0}. This estimator is clearly unbiased for θ, why

is it not best unbiased? Finally, with the aid of the sufficient statistic T (Y ) =
∑n
i=1 Yi

we Rao–Blackwellise the estimator θ̃. Derive an expression for this Rao–Blackwellised

estimator, θ̃rb, say. Does θ̃rb attain the Cramér–Rao lower bound?

Ex. 8.5 Best unbiased, completeness, and Lehmann–Scheffé. From the Rao–Blackwell

theorem we know that any candidate for being an uniformly minimum variance unbiased

estimator must be a function of a sufficient statistic. This limits our search. In this

exercise we establish that in our search for the UMVU estimator, we are only looking for

one estimator. Thereafter, it is shown that an estimator is best unbiased if and only if it
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is uncorrelated with all unbiased estimators of zero. This yields a characterisation of the

best unbiased estimators, albeit one of limited utility as it is, without further conditions,

hard to describe all unbiased estimators of zero. Finally, completeness – a condition on

the distribution of the data – is introduced, ensuring that the only unbiased estimator

of zero is zero itself.

(a) Suppose that δ is uniformly minimum variance unbiased for g(θ), and that so is δ′. Let

δ′′ = δ/2 + δ′/2, and use the Cauchy–Schwarz inequality to show that Varθ δ
′′ ≤ Varθ δ. UMVU

estimator is

unique
But since δ is an UMVU estimator and δ′′ is unbiased (check it), it must be the case that

Varθ δ
′′ = Varθ δ. Look back at the results in Ex. 8.3, and use this to establish that if δ

and δ′ are both uniformly minimum variance unbiased, then δ = δ′ almost surely, for all

θ.

(b) [xx rewrite xx]Suppose that δ is an unbiased estimator for g(θ) and a function of a

sufficient statistic. How may we improve on δ? Well, the family of estimators δa = δ+aε

as a ranges of the real numbers, and ε is some mean zero random variable, constitute

a class of unbiased estimators. Show that if covθ(δ, ε) 6= 0 for some θ, then a may be characterisation

of the UMVU

estimator
chosen so that Varθ(δa) < Varθ(δ) for some value(s) of θ, which entails that δ is not best

unbiased. Prove the converse, namely that if δ is unbiased and covθ(δ, ε) for all θ and all

mean zero random variables ε, then δ is uniformly minimum variance unbiased.

(c) It is in general no easy task to show that an unbiased estimator, or more generally,

a statistic T = T (Y ) say, is uncorrelated with all unbiased estimators of zero. Since the

correlation between any random variable and zero is zero, the task would be much easier

if we knew of the distribution of T that the only unbiased estimator of zero, is zero itself.

That is, if for any measurable function h, Eθ h(T ) = 0 implies Pθ{h(T ) = 0} = 1, for

all θ. We recall from Ex. 3.23 that a family of distributions with this property is called

complete. Alternatively, we just say that the statistic T (Y ) is complete.

Suppose that T is sufficient and complete for θ. Let δ = δ(T ) be unbiased for g(θ). Lehmann–

Scheffé

theorem
Prove the Lehmann–Scheffé theorem, that is, show that the estimator δ is the unique

uniformly minimum variance unbiased estimator for g(θ).

(d) Look back at Ex. 8.4(b). Show that the estimator δ2 is the uniformly minimum

variance unbiased estimator.

(e) The completeness requirement in the Lehmann–Scheffé theorem was motivated by the

characterisation in (b), saying that an estimator is uniformly minimum variance unbiased

if and only if it is uncorrelated with all unbiased estimators of zero. A perhaps more

illuminating motivation comes from the fact, proven in Ex. 8.4(a), that a best estimator

must be based on a sufficient statistic. Intuitively, by getting rid of information irrelevant

to the estimation problem at hand, we reduce the variance of our estimation procedure.

Taking this intuition to its logical conclusion, we deduce that a best estimator must

be based on a statistic achieving the maximum amount of data compression, while still

retaining all the information in the data about the parameter we seek to estimate. In

other words, a best estimator must be based on a minimal sufficient statistic. Recall

from Ex. 1.64 that a statistic S is minimal sufficient if for any sufficient statistic T there
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exists a measurable function g so that S = g(T ). Show that if δ is an unbiased estimator,

we form the estimators δ′ = E (δ | T ) and δ′′ = E (δ | S), where T is sufficient and

S is minimal sufficient, then Var(δ′′) ≤ Var(δ′). Now, suppose that T is sufficient and

complete. Use the Lehmann–Scheffé theorem and (a) to conclude that δ′ and δ′′ must

be almost surely equal. In view of this equality, it may not come as a surprise that if T

is sufficient and complete, then T is minimal sufficient. A fact we will prove in (g).

(f) Here is a toy example illustrating some of the points made in (e). Let X1 and X2 be

independent Bernoulli(θ) random variables and consider the estimator θ̂ = (X1 +X2)/2

and the estimator δ = δ(X1, X2) given by

δ(x1, x2) =


1, (x1, x2) = (1, 1),

2/3, (x1, x2) = (1, 0),

1/3, (x1, x2) = (0, 1),

0, (x1, x2) = (0, 0).

Explain why both θ̂ and δ are sufficient for θ. Show that δ is unbiased for θ, and show

that the variance of δ exceeds the variance of θ̂ for all values of θ ∈ (0, 1).

(g) The results quoted at the end of (e) is Bahadur’s theorem: If T is sufficient andBahadur’s

theorem complete, then T is minimal sufficient.

To prove this, let W be another sufficient statistic, and assume, with out loss of

generality, that T and W are real valued. We must show that there is a function g

such that T = g(W ). If T = Eθ (T | W ), then we have found a function g, it is

g(w) = Eθ(T | W = w), and g does not depend on θ since W is sufficient. Let us

therefore prove that T equals Eθ (T | W ) almost surely for all θ. To this end, assume

that T has finite variance, and define g(W ) = Eθ (T |W ) and h(T ) = Eθ {g(W ) |T}.
Now, use the tower property of conditional expectation a couple of times and that T is

complete to show that T = h(T ) almost surely, for all θ. Next, combine the above with

the variance decomposition formula to obtain

Varθg(W ) = EθVarθ(g(W ) |T ) + EθVarθ(T |W ) + Varθg(W ),

from which we conclude that T = Eθ(T |W ) almost surely for all θ. To get rid of the

finite variance assumption on T , replace T by f(T ) = 1/{1 + exp(−T )} (which clearly

has finite variance) throughout the proof, to conclude that T = f−1(g(W )).

Ex. 8.6 A uniform mean. Let Y1, . . . , Yn be i.i.d. unif(a, b). We are to estimate the

mean µ = (a+ b)/2.

(a) Show that (mini≤n Yi,maxi≤n Yi) is sufficient and complete.

(b) Propose an unbiased estimator for µ, and find its variance.

Ex. 8.7 A weird unbiased estimator. Limiting our search for a best estimator to the

class of unbiased estimators lacks the decision theoretic foundation that the principle

of minimising expected loss enjoys. More on this in the Notes and Pointers section.
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Sometimes, the search for unbiasedness might lead us astray. Let Y be a random variable

with density

f(y, θ) =
θy exp(−θ)

y!{1− exp(−θ)}
, for y = 1, 2, . . .,

with θ > 0. This is a Poisson distribution truncated at zero, and the probability of being

truncated is exp(−θ).

(a) Show that δu(Y ) = (−1)Y+1 is the unique unbiased estimator for exp(−θ).

(b) Find an expression for the risk function of δ1(Y ).

(c) Propose an estimator with uniformly smaller risk than δ1(Y ).

Ex. 8.8 Tools for minimaxity. In Exercise. 8.1 we compared three different estimators.

That’s fine, but we ultimately want to say something about the performance of our

estimators compared to all other estimators. To do so, we need some more tools. We

start out with convenient tools for establishing minimaxity, from which we will see that

the estimator in Exercise 8.1(d) is minimax.

(a) Let δπ be a Bayes solution with respect to the prior distribution π, and suppose that

BR(δπ, π) = sup
θ
R(θ, δπ). (8.1)

Show that δπ is minimax.

(b) Show that if δπ satisfies (8.1) and is the unique Bayes solution with respect to π,

then δπ is the unique minimax procedure.

(c) Show that if a Bayes solution has constant risk, then it is minimax.

(d) Show that if an estimator has constant risk and is admissible, it is minimax.

(e) Show that if an estimator is unique minimax, it is admissible.

Ex. 8.9 The minimax estimator in Bernoulli problem. Let Y1, . . . , Yn be independent

Bernoulli with success probability θ.

(a) Give θ a Beta(aθ0, a(1−θ0)) prior distribution, and find an expression for the posterior

expectation.

(b) Find an expression for the risk function under squared error loss when a = n3/2 and

θ0 = 1/2 (see Exercise 8.1(d)). Conclude.

Ex. 8.10 Minimaxity and sequences of priors. In Exercise 8.8(b) we assumed that

the equality in (8.1) is attained. A prior distribution that succeeds in attaining this

equality is, for natural reasons, called a least favourable prior distribution. If no such

prior distribution exists, we cannot use the conclusion of the exercise to prove minimaxity.

Consider independent X1, . . . , Xn | θ from N(θ, 1). It seems reasonable that a least

favourable prior for θ should spread its mass evenly out on the real line, that is∫ a+c

a

π(θ) dθ =

∫ b+c

b

π(θ) dθ, for all a, b ∈ R and c > 0.
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This distribution is Lebesgue measure on R, and is not a proper probability distribution.

This hints at the result above not being applicable. To fix this, the idea is to approximate

an improper distributions with proper ones. In the case of the normals, one may try

θ ∼ πk(θ), where πk(θ) is the density of a uniform distribution over [−k, k], then let k

grow.

(a) Suppose that δ is an estimator and (πk)k≥1 a sequence of prior distributions such

that

sup
θ
R(δ, θ) = lim

k→∞
BR(δπk

, πk),

with δπk
being the Bayes solution for πk. Show that δ is minimax.

(b) Let X1, . . . , Xn be independent N(µ, σ2). We are to estimate µ under the squared

error loss L(µ̂, µ) = (µ̂ − µ)2. You may consider the sequence of priors µ ∼ N(0, τk) for

k = 1, 2, . . . to show that the estimator µ̂ = X̄n is minimax.

(c) Let X1, . . . , Xn be independent Poisson(θ). We want to estimate θ under the weighted

loss function L(θ̂, θ) = θ−1(θ̂− θ)2. Use Gamma priors to show that θ̂ = X̄n is minimax.

Ex. 8.11 Some Bayes and some admissibility. If we have at hand an estimator δ, the

most convenient way of showing that δ is admissible is to show that it is Bayes. In fact,

it is almost true that an estimator is admissible if and only if it is Bayes. We’ll get to

the cases where this implication fails, but as a rule of thumb it is pretty safe.

(a) Suppose that X ∼ fθ, where θ ∈ Θ = {θ1, . . . , θk} for some finite k ≥ 2. Consider

the estimator δπ that is Bayes for the prior π = {π1, . . . , πk}, where πj is the prior mass

given to θj . Show that if πj > 0 for j = 1, . . . , k, then δπ is admissible.

(b) Why does the conclusion of Ex. 8.11(a) fail if πj = 0 for one or more j?

(c) Show that if a Bayes solution is unique, then it is admissible. Or, equivalently, if

every Bayes rule with respect to a prior π has the same risk function, then they are all

admissible.

(d) To clarify what the uniqueness of the Bayes solution refers to, let’s look at an example

where there are several Bayes solutions. Let X ∼ unif(0, θ) and suppose that we want

to estimate θ under the squared error loss function L(δ, θ) = (δ − θ)2. Suppose θ is

given the prior distribution that is uniform on (0, c). Find the posterior distribution

θ | (X = x) and derive at least two different Bayes solutions (there are uncountably

many). [xx comment on this exercise, more relevant in BNP, point to Nils’ 1976-proof and

the mistake made by Lehmann. Could also mention Lindley and his so-called Cromwell’s

rule xx].

(e) Recall that a parameter value θ is in the support of π (a probability density in our

notation) if it is contained in the set {θ ∈ Θ: π(θ) > 0}. Let {fθ : θ ∈ Θ} be a model, and

suppose that (i) the support of the prior π is Θ; and that (ii) the risk function R(θ, δ) is

continuous in θ for all estimators δ. Show that if δπ is Bayes with respect to π and have

finite Bayes risk, then δπ is admissible.



268 Loss, risk, performance, optimality

Ex. 8.12 Generalised Bayes. Suppose that in some experiment involving data from a

normal distribution with expectation θ, you have no idea whatsoever about where on

the real line θ might be located. A natural ‘prior’ is therefore π(θ) ∝ 1 (or just take

it equal to one) that spreads the ‘probability’ mass uniformly over the real line. Now,

π(θ) ∝ 1 corresponds to Lebesgue measure on the real line, and is not a probability

measure because ∫
R
π(θ) dθ =∞.

The fact that π(θ) does not integrate to one does not, however, stop us from using it

to derive estimators using ‘Bayes’ theorem. Priors that are not probability distributions

are called improper priors. improper priors

(a) Suppose X1, . . . , Xn are independent N(θ, σ2). Suppose θ is given the improper

prior π(θ) = 1. Show that π(θ | x1, . . . , xn) = N(X̄n, σ
2/n). A generalised Bayes

estimator is the estimator δ minimising the posterior expected loss E {L(δ, θ) | data}.
Let L(δ, θ) = (δ − θ)2, and find the generalised Bayes estimator for θ.

(b) The estimator you found in (a) is generalised Bayes, why is this not enough to

conclude that it is admissible?

(c) (xx xx)

Ex. 8.13 Blyth’s method. We call δ a limiting Bayes estimator if there is a sequence

{πk}k of possibly improper priors such that the corresponding Bayes estimators δπk

converge almost surely to δ. Blyth’s methods can be paraphrased as saying that limits

of Bayes’s estimators are admissible. We start, in (a) by proving Blyth’s method, as is

clear by now, when it comes to admissibility proofs by contradiction is the way to go.

(a) Let δ? be an estimator. Suppose Θ ⊂ Rp is open, and that R(δ, θ) is continuous in θ

for all estimators δ. Let (πk)k≥1 be a sequence of (possibly improper) prior distributions

such that BR(δ?, πk) <∞ for all k, and for any open set Θ0 ⊂ Θ,

BR(δ?, πk)− BR(δπk
, πk)∫

Θ0
πk(θ) dθ

→ 0, as k →∞;

Then δ? is admissible.

(b) Let X1, . . . , Xn be i.i.d. from a N(θ, 1), where θ is an unknown parameter to be

estimated under under the squared error loss function L(δ, θ) = (δ − θ)2. Show that

θ̂ = X̄n is admissible.

Ex. 8.14 Poisson means and inadmissibility of ML-estimator. To show that an estima-

tor is inadmissible it suffices to showcase one estimator that dominates it. Let Y1, . . . , Yp
be independent Poisson with means θ1, . . . , θp. We are to estimate the θ = (θ1, . . . , θp)

under the loss function

L(θ, δ) =

p∑
i=1

(δi − θi)2

θi
,
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where δ = (δ1, . . . , δp). The maximum likelihood estimator δml takes δml,i(Y ) = Yi for

i = 1, . . . , p. Clevenson and Zidek (1975) showed that δml is inadmissible by constructing

an estimator, say δCZ, such that R(θ, δCZ) < R(θ, δml) for all θ. In this exercise we derive

this estimator [xx and try to show that it is admissible. xx]

(a) Let Z =
∑p
i=1 Yi be the sum of the p independent Poisson observations, write γ =∑p

i=1 θi for the sum of the p Poisson means, and define πi = θi/γ for i = 1, . . . , p. Show

that

(Y1, . . . , Yn) | (Z = z) ∼ z

y1! · · · yp!
πy11 · · ·πypp .

This establishes that E (Yi | Z) = Zπi and Var(Yi | Z) = Zπi(1− π) for i = 1, . . . , p.

(b) Prove the following little lemma. If X ∼ Poisson(θ) and g is a function such that

g(0) = 0, then

E g(X)/θ = E g(X + 1)/(X + 1).

(c) Consider the estimator δ? whose components are given by

δ?(Y ) = (1− φ(Z))Yi, for i = 1, . . . , p.

The game to be played now (as with the James–Stein estimator of Exercise xx), is to

find an expression for the risk difference R(θ, δ?) − R(θ, δml) that is independent of the

unknown parameters. Using the results from (a) and (b) it is indeed the case that the

risk difference D(Z) = R(θ, δ?)−R(θ, δml) can be expressed as

D(Z) = Eγ {[φ(Z + 1)2 − 2φ(Z + 1)][(Z + 1) + (p− 1)] + 2φ(Z)Z}.

Derive this expression for D(Z).

(d) Suppose that the function φ is such that φ(z)z is increasing. Under this assumption,

find a function φ that ensures that D(z) < 0 for all z ∈ {0, 1, 2, . . .}. The estimator

δ(Y ) = (1 − φ(Z))Y with this function φ inserted is the estimator δCZ of Clevenson

and Zidek (1975) [xx fix, this is a class of estimators xx]. Conclude that the maximum

likelihood estimator is inadmissible.

(e) We have shown that δCZ uniformly [xx nytt begrep xx] dominates the maximum like-

lihood estimator, however, we do not yet now whether or not there exists and estimator

that dominates δCZ. Show that δCZ is admissible. [xx hmm, this is too hard. make it

into a separate exercise xx].

Ex. 8.15 Rao–Blackwellisation. Recall that a function is convex if g is a convex if for

all x, y in its domain, and all λ ∈ [0, 1],

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y).

Jensen’s inequality states that if g is convex, then

g(EX) ≤ E g(X),
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with equality only if g(x) = a+bx. Jensen’s inequality also holds conditional expectations

[xx point to appendix here xx]. In this exercise we will look at loss functions L(δ, θ) that

are convex in δ for all θ. Think of your favourite loss function, and you will realise that

this is a quite natural requirement.

(a) Let δ = δ(X) be an estimator of θ. Suppose that T = T (X) is sufficient for θ and

define δ?(T ) = E {δ(X) | T}. Explain why δ?(T ) is an estimator.

(b) Suppose L(δ, θ) is convex in δ for all θ. Show that R(δ?, θ) ≤ R(δ, θ) for all θ.

(c) When will the inequality in (b) be strict for all θ?

(d) Suppose that Eθ δ
?(T ) = h(θ), and that T is complete. Show that, in the class of

estimators {δ : Eθ δ = h(θ)}, the estimator δ? is the unique estimator minimising the

risk. [xx hmm, check this for the general case here presented xx].

(e) [xx Let L(δ, θ) = (δ − θ)2 and specialise to UMVU estimator xx]

(f) Suppose L(δ, θ) is convex in δ for all θ, and that δπ is the unique Bayes solution

under the prior π. Show that δπ must be a function of a sufficient statistic.

Ex. 8.16 Admissibility of X. [xx sketch of exercise. Point to an exercise in Chapter 4,

Cramér–Rao stuff xx]. Assume that X ∼ N(θ, 1). We wish to estimate θ under the

squared error loss function L(δ, θ) = (δ − θ)2.

(a) Find the Cramér–Rao lower bound.

(b)

Ex. 8.17 Bernoulli mean with weighted risk. Let X1, . . . , Xn be i.i.d. Bernoulli(θ). We

wish to estimate θ, and we are particularly interested in precise estimates of very small

and very large values of θ. Therefore, we’ll work with the loss function

L(δ, θ) =
(δ − θ)2

θ(1− θ)
.

(a) Compute the risk function of the maximum likelihood estimator. What’s noticeable

about this risk function?

(b) We now take a Bayesian point of view and give θ a Beta(aθ′, a(1− θ′)) prior distri-

bution. Compute the expectation and variance of this prior.

(c) With the prior introduced in (b), find the posterior distribution π(θ | x1, . . . , xn).

Find also the Bayes solution δπ, i.e., the minimiser of the Bayes risk BR(δ, θ) =
∫
R(δ, θ)π(θ) dθ.

[xx introduce Bayes risk earlier xx].

(d) Tweak the parameters of the Beta prior distribution, so that the Bayes solution

you found above equals the maximum likelihood estimator from (a). What desirable

properties does the maximum likelihood estimator possess?
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Ex. 8.18 Suppose X1, . . . , Xn are i.i.d. from N(0, σ2). We are to estimate σ2 under the

loss function

L(δ, σ2) =
(δ − σ2)2

σ2
. (8.2)

(a) Find the maximum likelihood estimator and its risk function.

(b) Consider the prior distribution given by density

σ2 ∼ ba

Γ(a)
(1/σ2)a+1 exp(−b/σ2), σ2 > 0,

with a > 1 and b > 0. This is the density of an inverse gamma distribution. Find the

prior expectation of σ2. Find also the prior expectation of 1/σ2.

(c) Find the posterior distribution σ2 | x1, . . . , xn, and derive the Bayes solution under

the loss function given in (8.2).

(d) Show that the maximum likelihood estimator is inadmissible by exhibiting an esti-

mator, say δ?, with uniformly smaller risk. Hint: Consider δα = ασ̂2
ml.

(e) Is δ? admissible? Hint: Use Blyth’s method.

Ex. 8.19 [xx change loss in above exercise xx] Suppose X1, . . . , Xn are i.i.d. from

N(0, σ2). We are to estimate σ under the loss function

L(δ, σ) =
(δ − σ)2

σ
. (8.3)

(a) Find the maximum likelihood estimator, say σ̂ml, and show that its risk function is

R(σ, σ̂) = σ{(n− 1)/n+ b2n + (bn − 1)2}, where bn =

√
2

n

Γ(n/2)

Γ((n− 1)/2)
.

You may now use Stirling’s formula Γ(z) = (2π/z)1/2(z/e)z to show that bn → 1, and

R(σ, σ̂)→ 2σ as n→∞, as we already knew from ML-theory (see Ex. xx in Chapter 5).

(b) Consider the prior distribution σ ∼ π(σ), whose density is

π(σ) ∝ (1/σ)a+1 exp(−b/σ2).

with a > 1 and b > 0. Find the prior expectation of σ. Find also the prior expectation

of 1/σ.

(c) Find the posterior distribution σ | x1, . . . , xn, and derive the Bayes solution under

the loss function given in (8.3).

(d) Show that the maximum likelihood estimator is inadmissible by exhibiting an esti-

mator, say δ?, with uniformly smaller risk. Hint: Consider δα = ασ̂ml.

(e) Is δ? admissible? Hint: Use Blyth’s method.
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Ex. 8.20 When estimating the price of apples in Oslo, the height of women in Bergen,

and the unemployment rate in Trondheim, it is sometimes advantageous to use informa-

tion about apples is Oslo and women in Bergen to say something about the unemployment

rate in Trondheim. The point is that when estimating an ensemble of unrelated things,

we can sometimes do better in the estimation by borrowing information across unrelated

things. This phenomenon is known as Stein’s paradox or the Stein effect. See Stein

(1956); James and Stein (1961) for the original articles, and, for example Efron and Mor-

ris (1977) and Stigler (1990) for lucid presentations. In the present exercise we’ll look at

Stein’s 1956–1961 result, a result that initiated a whole field of statistical research known

as shrinkage estimation.

Let Yi ∼ N(θi, 1) be independent for i = 1, . . . , p with p ≥ 3. We are to estimate

θ1, . . . , θp under the combined loss function

L(δ, θ) =

p∑
i=1

(δi − θi)2.

The standard approach is to use Yi as an estimator of θi. The estimator Yi is the maxi-

mum likelihood estimator, it is admissible under (δi − θi)2, it is the uniformly minimum

variance unbiased estimator, etc.

(a) For obvious reasons, we call Y = (Y1, . . . , Yp) the standard or the natural estimator.

Compute its risk function.

(b) For a single Y ∼ N(θ, 1), show that under very mild conditions on the function b(y),

one has

Eθ (Y − θ)b(Y ) = Eθ b
′(Y ),

where b′ is the derivative of b. Hint: Use integration by parts.

(c) Let now b(y) = (b1(y), . . . , bp(y)). Generalise what you found in (b) to

Eθ (Yi − θi)bi(Y ) = Eθ bi,i(Y ),

where bi,i(y) = ∂bi(y)/∂yi.

(d) What you found in (b) and (c) is known as Stein’s lemma. We are now going to use

Stein’s lemma to construct an estimator that uniformly dominates Y . Consider a general

competitor to Y of the form δ(Y ) = (δ1(Y ), . . . , δp(Y )), with

δi(Y ) = Yi − bi(Y ). (8.4)

Show that the difference in risk between Y and estimators of the form (8.4) can be

expressed as

R(δ, θ)−R(Y, θ) = EθD(Y ),

where

D(y) =

p∑
i=1

{bi(y)2 − 2bi,i(y)}.
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Then R(δ, θ) = p+ EθD(Y ). The fabulous thing about such a simple lemma as Stein’s,

is that D(y) does not depend on the unknown θ1, . . . , θp. We can therefore try to find a

data dependent function b(y) such that D(y) < 0 for all y, and consequently an estimator

that uniformly dominates the standard estimator. It turns out to be impossible to find

such functions b(y) when p ≤ 2, but it is possible for p ≥ 3.

(e) Try bi(y) = ayi/‖y‖2, with ‖y‖2 being the squared Euclidian norm
∑p
i=1 y

2
i , corre-

sponding to

δ(y) = y − b(y) =
(
1− a

‖y‖2
)
y.

With this choice of b(y), show that

D(y) =
1

‖y‖2
{a2 − 2a(p− 2)}.

Show that this is negative for a range of a values provided p ≥ 3. Demonstrate that the

optimal a is a = p− 2, corresponding to the estimator

δJS(Y ) =
(
1− p− 2

‖Y ‖2
)
Y. (8.5)

This estimator is known as the James–Stein estimator. Show that the risk function of

this estimator can be expressed as

R(δJS, θ) = p− (p− 2)2Eθ
1

‖Y ‖2
.

Show that the greatest reduction in risk from using δJS instead of Y takes place when

θ1 = · · · = θp = 0, and compute the risk R(δJS, 0) in this point.

(f) We’ll now make a connection to empirical Bayes procedures. Start with a prior

that takes θ1, . . . , θp independent from N(0, τ2). Show that the Bayes solution is δB =

(δB1 , . . . , δ
B
p ), with

δBi (Y ) = αYi, i = 1, . . . , p, where α =
τ2

τ2 + 1
. (8.6)

(g) The empirical Bayes approach consists of estimating hyperparameters from data.

Hyperparameters are those parameters set by the statistician in a pure Bayesian ap-

proach. Show that the marginal distribution of y1, . . . , yp is a product of N(0, 1 + τ2)

distributions. Find the maximum likelihood estimator of α. Use the maximum likelihood

estimator to find an unbiased estimator, say α̃, of α. The empirical Bayes estimator is

then δEB(Y ) = α̃Y . What’s noticeable about this estimator?

Ex. 8.21 Resolving the paradox. [xx make an exercise based on insights from Stigler

(1990), perhaps?]

Ex. 8.22 Let X ∼ fθ(x) and consider the simple hypothesis H0 : θ = θ0 versus the

simple alternative θ = θ1. The statistical tests φ, with φ(x) = 1 meaning ‘reject H0, and

φ(x) = 0 ‘keep H0’, are to be evaluated under the loss function

L(φ, θ0) =

{
0, if φ(x) = 0,

K1, if φ(x) = 1,
L(φ, θ1) =

{
K2, if φ(x) = 0,

0, if φ(x) = 1.
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(a) Let 0 < π0 < 1 be your prior probability of H0 being true. Derive an expression for

the posterior expected loss, and show that the Bayes solution φπ is of the likelihood ratio

type

φπ(x) =

{
1, if f(x | θ1) > kπf(x | θ0),

0, if f(x | θ1) < kπf(x | θ0).

Find kπ and relate this quantity to the level of a test.

(b) Let now X | θ be N(θ, 1). We want to test H0 : θ = 0 versus θ1 = 1/2 using the

Bayes solution when the prior is π0 = 1/2. Find K1 and K2 such that Eθ0 φπ(X) = 0.05.

(c) Show that any Bayesian test with a prior giving weight to both the null- and the

alternative hypothesis, is the most powerful test of its size. Hint: Use what you know

about Bayes solutions and admissibility.

Ex. 8.23 Unbiased estimation of a parametric density. (xx earlier nils exercise from

Ch3, not pushed to this Ch8. needs to be connected to sufficiency and completeness,

perhaps to exponential family. xx) Suppose Y1, . . . , Yn are i.i.d. from a parametric density

f(y, θ), like the normal or the Gamma or the Beta. How can we construct an unbiased

estimator of the density function itself? Assume there is a sufficient statistic here, say

T = T (Y1, . . . , Yn).

(a) A very simple estimator for the window probability

p(θ) = P (Y ∈ [a, b]) =

∫ b

a

f(y, θ) dy

is p̂ = I(Y1 ∈ [a, b]), using very simply a single data point. Show that it is unbiased.

(b) This also invites the somewhat more intelligent estimator p̄ = n−1
∑n
i=1 I(Yi ∈ [a, b]),

the binomial proportion of data points inside the [a, b] window. Show that it is unbiased

and find a formula for its variance.

(c) Typically this estimator can be beaten, however. Consider indeed

p∗ = E (p̂ |T ) = P (Y1 ∈ [a, b] |T ).

Explain why this is actually an estimator, i.e. that it does not depend on the parameter

θ, and that it is unbiased. Show also that the construction E (p̄ |T ) leads to the very

same p∗.

(d) Let fn(y |T ) be the density of a Yi given T . Explain why it does not depend on the

parameter, and that

p∗ =

∫ b

a

fn(y |T ) dy, for all windows [a, b].

(e) Show that fn(y |T ) is unbiased, and also the minimum variance estimator among all

siuch unbiased estimators.
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(f) For each of the following parametric densities, find a formula for this minimum

variance unbiased estimator for the density. (i) The N(µ, 1). (ii) The N(0, σ2). (iii) The

two-parameter normal N(µ, σ2). (iv) The exponential θ exp(−θy).

(g) (xx give them 25 data points from a normal, perhaps even a tiny real dataset. plot the

different estimates of both f(y) and of log f(y). convey the point that smallish differences

and nuances are better picked up and seen on the log scale. xx)

8.C Notes and pointers

[xx some notes and pointers here xx]
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IV.A

Mini-primer on measure and integration theory

[xx Mini-primer on measures, probabilities on spaces, integration theory. Back-

ground for rest of the book. xx]

1.A Chapter introduction

(xx mini intro to measure theory and integration, background for probability measures,

distributions, densities, models, etc. we also explain in one paragraph that yes, these

things matter, and without them we cannot work properly; on the other hand, for most

of the work we do, also in later chapters, we do not need to think too much about it.

it’s also a matter of becoming basically literate in the probability language underlying

theoretical and also applied statistics. xx)

Various aspects of probability theory, and hence statistics methodology, rest on the

general theory of measure and integration. If all random variables we meet have nice

distributions and densities, on regular domains, like an interval, the real line, or open

subsets of Euclidean spaces, we can get pretty far without this underlying measure and

integration theory. To formulate concepts in natural generality, and to develop tools

and demonstrate basic properties for these, however, one needs this more general theory.

In particular, the business of defining probabilities, for perhaps complicated events in

not-so-standard spaces, demands theory beyond ‘ordinary’ integration.

1.B Essentials of measure, integration, and probability

Ex. A.1 Quick introduction to measure and integration, I: Measures, measurable spaces,

measurable functions. The purpose of our first three exercises is to point to, explain,

helping the readers go through a list of key tools and properties from the general theory

of measure and integration, without tending to all details and the wider stories.

(a) We start with a measurable space, say (Ω,A), with Ω any non-empty set and A a

collection of subsets; these subsets are later to be given values, perhaps probabilities, in

terms of a measure. ForA, we demand (i) that the full set Ω is inA; (ii) that complements

are in A (if A is there, then Ac = Ω \A needs to be there); (iii) that countable unions of

575
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sets in A are in A. An A with these properties is called a σ-algebra. – Show that 2Ω, thea σ-algebra of

sets collection of absolutely all subsets of Ω, often called the power set, is a σ-algebra. For a

different type of example, consider A, all subsets of R which are either empty, finite, or

countably infinite, or whose complements are either empty, finite, or countably infinite.

Show that A is a σ-algebra.

(b) Show that if A is a σ-algebra, with A1, A2, . . . in that class, then also A1 ∩ A2,

A1 ∩ A2 ∩ A3, and even ∩∞i=1Ai, is in A. Show that sets like A1 ∩ (A2 ∪ A3 ∪ A4)c ∩ A5

must be in A.

(c) Show that an intersection of σ-algebras must be a σ-algebra. Hence we may start by

identifying a list of basis events, finite or infinite, say B0, and then define B = σ(B0), as

the smallest σ-algebra containing all sets in B0. That is, B =
⋂
{A is σ-algebra: B0 ⊂ A}.

The σ-algebra B is said to be generated by B0, and since B0 is contained in the collection

of absolutely all subsets of Ω, namely 2Ω, there is always such a σ-algebra. Working with

basis events that generate a σ-algebra is much more convenient than trying to somehow

list all types of subsets of the σ-algebra. A famous and important example is the Borel

sets on the real line, say B(R), defined as the σ-algebra generated by all intervals (a, b). the Borel sets

Show that sets like [a, b], (−∞, b), finite unions of intervals, etc., are then also in B(R).

Similarly we define Bk = σ(Bk0 ), the Borel sets of Rk, as the smallest σ-algebra containing

all open rectangles (a1, b1)×· · ·×(ak, bk). Show that Bk then also must contain all closed

rectangles [a1, b1]× · · · × [ak, bk], and also all open sets of Rk.

(d) Consider a real function f : Ω → R on a measurable space (Ω,A). We say that

f is measurable provided f−1(a, b) = {ω : a < f(ω) < b} is a measurable set, that is,

f−1(a, b) is in A for each interval (a, b). Show that if f is measurable, then B? = {B ∈
B : f−1(B) ∈ A} is a σ-algebra. Show also that if f is measurable, then also the much

more general inverse sets f−1(B) = {ω : f(ω) ∈ B} are in A, for any Borel set B.

(e) Show that f1, . . . , fn are measurable functions, then fmax = max(f1, . . . , fn) and

fmin = min(f1, . . . , fn) are also measurable.

(f) Show further that if 0 ≤ f1 ≤ f2 ≤ · · · , a sequence of functions where fn(x) is

nondecreasing for each x, then the limit function f , with f(x) = limn fn(x), is also

measurable. A simple function is one taking on only finitely many values, so if g is Simple

functionsa simple function it can be written g =
∑k
j=1 ajIAj

for a measurable decomposition

A1, . . . , Ak of Ω, that is, Ai ∩ Aj = ∅ for all i 6= j and ∪kj=1Aj = Ω. With f any

nonnegative measurable function Ω→ R, show that the sequence of simple functions Approximation

by simple

functions

fn(x) =

n2n∑
k=1

k − 1

2n
IAn,k

(x) + nIAn
(x),

with An,k = {x : (k − 1)/2n ≤ f(x) < m/2n} and An = {x : f(x) ≥ n}, is measurable,

and is such that 0 ≤ f1 ≤ f2 ≤ · · · and f(x) = limn fn(x) for each x.

(g) A measure ν on a measurable space (Ω,A) is a function A → [0,∞], giving values to Measures and

measurable

spaces
all sets A in A, with the following properties: (i) ν(∅) = 0, for the empty set; (ii) with
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A1, A2, . . . disjoint sets in A, ν(∪∞i=1Ai) =
∑∞
i=1 ν(Ai). The resulting triple (Ω,A, ν) is

called a measure space. We say that ν is a finite measure if ν(Ω) is finite, and prime ex-

amples are those where ν(Ω) = 1; such measures are probability measures, to be returned

to below. If Ω can be represented as a countable union ∪∞i=1Ai, with each ν(Ai) finite,

we say that ν is a σ-finite measure. Show that if A and B are sets in A, then (1) B ⊂ Aσ-finite measure

entails that ν(B) ≤ ν(A); (2) provided ν(A) <∞, ν(A \B) = ν(A)− ν(A ∩B); and (3)

ν(A ∪B) = ν(A) + ν(B)− ν(A ∩B) provided both A and B have finite measure. Show

also that ν(∪∞i=1Ai) ≤
∑∞
i=1 ν(Ai), for any sequence of Ai in A.

(h) Suppose that A1 ⊂ A2 ⊂ · · · are sets in A. We say that (Ai)i≥1 is a nondecreasing

sequence of sets. Show that ν(∪∞i=1Ai) = limn→∞ ν(An). Suppose now that A1 ⊃Continuity of

measure A2 ⊃ · · · is a decreasing sequence of sets in A. Show that ν(∩∞i=1Ai) = limn→∞ ν(An),

provided ν(Ak) <∞ for some k.

(i) Suppose that ν is a finitely additive measure. That is, ν is a function A → [0,∞],

such that (i) ν(∅) = 0, and ν(A ∪ B) = ν(A) + ν(B) for all disjoint sets A and B.

Suppose that for any nondecreasing sequence A1 ⊂ A2 ⊂ · · · in A it is the case that

ν(∪∞i=1Ai) = limn→∞ ν(An). Show that ν is a measure, in other words, that countably

additivity is a continuity property in disguise.

(j) Consider the σ-algebra A of those subsets of R which are empty, or finite, or countably

infinite, or complements of such sets. Let ν(A) be the simple measure which counts the

number of elements in A. Show that it defines a measure, called the counting measure,counting

measure and that it is not finite nor σ-finite.

(k) Consider the σ-algebra 2N of all subsets of N = {1, 2, . . .}. Let ν be the counting

measure. Show that ν is σ-finite.

Ex. A.2 Limits of sets and Fatou’s lemma. Recall that for sequences (an)n≥1, we

define lim infn→∞ an = limn→∞ infn≥m am and lim supn→∞ an = limn→∞ supn≥m am.

Let A1, A2, . . . be a sequence of sets, and IA1
, IA2

, . . . the corresponding sequence of

indicators functions.

(a) Show that lim infn→∞ IAn(x) = 1 if and only if x ∈ ∪n≥1 ∩m≥n Am. Show also

that lim supn→∞ IAn
(x) = 1 if and only if x ∈ ∩n≥1 ∪m≥n Am. These two equivalences

motivate the definitions

lim inf
n→∞

An = ∪n≥1 ∩m≥n Am, and lim sup
n→∞

An = ∩n≥1 ∪m≥n Am.

In probability and statistics one often also encounters events that occur infinitely often,

or i.o., this notion is defined by An i.o. = lim supn→∞An.

(b) Prove that for any sequence of sets A1, A2, . . . in a measure space (Ω,A, ν),

ν(lim inf
n→∞

An) ≤ lim inf
n→∞

ν(An).

This inequality is known as Fatou’s lemma. Here you have proven it for sequences ofFatou’s lemma

indicator functions. As we will se in Ex. A.6(b), it holds for any sequence of nonnegative

measurable functions.
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Ex. A.3 Quick introduction to measure and integration, II: Lifting good candidates to

bona fide measures. An important and useful general result is Carathéodory’s Extension

Theorem, which we now briefly summarise; we will not ask you to prove it here (xx Carathéodory’s

Extension

Theorem
give reference xx), but there will be occasions where we need to verify its conditions. –

Consider a nonempty space Ω, and an algebra A0 of subsets; this requires the system of

sets to contain the emptyset and to be closed under complements and finite unions. The

point is often to start with such an A0, with simpler subsets, before we go to A = σ(A0),

the fuller σ-algebra generated by A0 subsets. Suppose ν is a function working on A0 sets

in A0, with the properties (i) ν(∅) = 0; (ii) ν is finitely additive on A0, which means

ν(∪ni=1Ai) =
∑n
i=1 ν(Ai) if these are disjoint and in A0; and (iii) that it has the continuity

property, that if A1 ⊃ A2 ⊃ A3 · · · is a full sequence of sets in A0, with ∩∞i=1Ai = ∅, the continuity

propertythen P (An) → 0. Then ν on A0 can be lifted to a full measure µ∗ on A = σ(A0), with

ν∗(A) = ν(A) for all A ∈ A0; also, this extension is unique if ν is sigma-finite.

(a) Suppose A1 and A2 are two different algebras, both generating the same σ-algebra,

i.e. A = σ(A1) = σ(A2). Assume that ν1 and ν2 are finitely additive on A1 and A2, both

satisfying the continuity condition, and that they are equal for at least all sets A3 ∈ A3,

say, another algebra generating A. Then show that ν1 and ν2 can both be lifted to A,

and that they must be equal. – Go through the details for the following application, with

subsets of R, taking A1 as all (a, b), with finite unions and complements, and A2 as all

[a, b], with finite unions and complements.

(b) Consider in particular a ν : B0 → [0,∞], defined on the system A0 of subsets of R,

which are open intervals, finite unions of such, and the complements of all these again;

also, the emptyset is included. Show that σ(A0) is the same as B = σ(B0), the Borel

sets generated by all open sets. Assume that ν(∅) = 0, that ν(A∪B) = ν(A) + ν(B) for

disjoint A,B in A0, and that it has the continuity property. Show that ν can be lifted

to a bona fide measure on (R,B); this extension is also unique if ν is sigma-finite.

(c) (xx spell out, for (R,B) and (Rk,Bk), that measures and indeed probability measures

can be constructed by starting simple, with open intervals and open rectangles. link to

cumulative distribution functions. xx)

(d) A fundamental measure is the so-called Lebesgue measure, say λ, on the real line Lebesgue

measurewith its Borel sets; again, these are B = σ(B0), the smallest σ-algebra containing all open

sets. Its basic property is that λ(a, b) = b − a, the length of the interval in question.

For A = ∪j∈JAi, a finite union of disjoint open intervals, we define λ(A) =
∑
j∈J λ(Aj),

the total length of A. Show that this is unambiguous, giving the same λ(A) for possibly

different representations of this type of sets A. Show also that λ must be sigma-finite. –

What is not yet fully clear is that λ, defined on open intervals and unions of such, can be

lifted to a bona fide measure on the full measurable space (R,B). This is the business of

having a clear definition of λ(A) also for very complicated sets A, and still keeping the

simple λ(a, b) = b − a for intervals. Show via Carathéodory’s Extension Theorem that

this is indeed possible.

(e) Establish similarly Lebesgue measure on (R2,B2), i.e. on the plane, with its Borel

sets, starting from the area of rectangles λ((a1, b1) × (a2, b2)) = (b1 − a1)(b2 − a2). Via
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the Carathéodory lifting, this gives rise to a well-defined way of measuring the area of

any Borel subset A on the plane.

(f) Once the fundamental Lebesgue measure has been properly put on the map, it will

be easy to define classes of others, via cumulative distribution functions and densities;

see Ex. A.9 and A.12 below. It is nevertheless useful to go through direct arguments,

resembling those for the Lebesgue measure itself, for a few concrete instances. Do this for

the measures µ and ν on the positive halfline, starting with respectively µ(a, b) = log(b/a)

and ν(a, b) = b2 − a2, for intervals (a, b).

Ex. A.4 Quick introduction to measure and integration, III: Integrals, probabilities,

extensions. After having defined measures and measurable functions, the next goal is to

form a well-defined integral, say
∫
f dν =

∫
f(x) dν(x), with (Ω,A, ν) a measure space,

and with f : Ω→ R a measurable function.

(a) We start with f = IA, an indicator function, with f(x) = 1 if x ∈ A and f(x) = 0 if

x /∈ A. Here define
∫
IA(x) dν(x) =

∫
IA dν = ν(A). Next, for f a nonnegative simple

function, taking on only finitely many values, say f(x) =
∑k
j=1 cjIAj

(x), define

∫
f dν =

k∑
j=1

cjν(Aj).

Show that this is unambiguous, giving the same value for different representations of the

same simple function.

(b) Let now f ≥ 0 be any measurable function. By earlier efforts, see Ex. A.1(f), there is

a monotone sequence 0 ≤ f1 ≤ f2 ≤ · · · of simple functions, each taking on only finitely

many values, with fn(x)→ f(x) for each x. We define the integral
∫
f dν =

∫
f(x) dν(x)

as the limit of these
∫
fn dµ, that isLebesgue

integral ∫
f dν = lim

n

∫
fn dν.

Show that the limit
∫
f dν is the same for all nondecreasing sequences of functions con-

verging pointwise to f . For a fully general measurable f , show that we may represent it

as f = f+ − f−, with these two being nonnegative. We then define∫
f dν =

∫
f+ dν −

∫
f− dν,

provided one or both of these two terms are finite, so we avoid coming into ∞ minus

∞ type trouble. If A is measurable, and f a measurable function, show that fIA is

measurable too; we can hence define
∫
A
f dν =

∫
fIAdν.

(c) With f and g nonnegative simple functions, show from the above definitions thatLebesgue

integral

properties
(i) if f ≤ g, in the sense of f(x) ≤ g(x) for all x, then

∫
f dν ≤

∫
g dν; (ii) if A ⊂ B

are measurable sets, then
∫
A
f dν ≤

∫
B
f dν; (iii) if ν(A) = 0, then

∫
A
f dν = 0; (iv) if

f(x) = 0 for all x ∈ A, then
∫
A
f dν = 0; and, (v)

∫
af dν = a

∫
f dν for any constant a.
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(d) (xx showing that classical Riemann integration is a special case. xx) Suppose

f : [a, b] → R is a continuous function, on some interval [a, b]. Show that f is mea-

surable, and that its classical Riemann-definition integral
∫ b
a
f(x) dx coincides with the

more general integral we’ve worked with in this exercise,
∫ b
a
f(x) dλ(x) =

∫ b
a
f dλ, with

λ the Lebesgue measure, defined in Ex. A.1(d)

Ex. A.5 Almost surely, Borel–Cantelli, and convergence in measure. Let (Ω,A, µ) be

a measure space. The set (or event) A in A is said to be true almost surely or almost

everywhere if µ(A) = 1. If µ is a probability measure, we say that A is true, or A occurs

or happens, with probability 1.

(a) Let A1, A2, . . . be a sequence of events in A, and suppose that
∑∞
n=1 µ(An) < ∞.

Show that µ(lim supn→∞An) = 0. When µ is a probability measure, this lemma has a

converse, but that requires the notion of independence, to which we turn in Ex. A.11.

(b) A sequence of measurable functions fn converges almost surely if the set

A = {ω : lim sup
n→∞

fn(ω)− lim inf
n→∞

fn(ω) = 0},

has measure one, i.e. µ(A) = 1. If µ(A) = 1 then limn→∞ fn exists, and to represent

this limit we pick a function f that is equal to limn→∞ fn almost everywhere. This

means that if f̃ is another function and µ({x : f̃(x) 6= f(x)}) = 0, then it is also true

that limn→∞ fn = f̃ . For all this to make sense, we helps to know that infn fn, supn fn,

lim infn fn, lim supn fn, and limn fn are measurable functions. Please show that they

are.

(c) A sequence of measurable functions fn converges in measure to a measurable function

f if for any ε > 0, µ({x : |fn(x) − f(x)|}) → 0 as n → ∞. When µ is a probability

measure, this type of convergence is called convergence in probability, a notion meet we

will innumerable times in this book. Assume that the functions f1, f2, . . . , f are defined

on a measure space with finite measure, say µ(Ω) = K. Show that if fn → f almost

surely, then fn → f in measure.

(d) Suppose that fn → f in measure. Show that there exists a subsequence fn1
, fn2

, . . .

that converges almost surely to f . [xx perhaps elaborate a bit more here xx]

Ex. A.6 Convergence theorems. One of the main objectives of the integration theory

developed in the preceding exercises is to find general criteria for when limn→∞
∫
fn dν =∫

limn→∞ fn dν. The theorems that give various sets of conditions for when we can pass

the limit under the integral sign like this, are the convergence theorems of measure

theory. Remember that the measure ν can be any measure on any measurable space,

so the theorems that follow are very general, they will, for example, apply to sums∑∞
j=1 fn(j), as well as the Riemann integrals

∫
fn(x) dx. Let (Ω,A, µ) be a measure

space, and f1, f2, . . . a sequence of measurable functions.

(a) Let A be a set with finite measure, and suppose that fn(x) = 0 on the set Ac for all n. Bounded

convergenceShow that if |fn| ≤M for all n and fn → f in measure, then limn→∞
∫
fn dν =

∫
f dν.
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(b) Suppose that fn ≥ 0 for all n. Show that Fatou’s lemma∫
lim inf
n→∞

fn dν ≤ lim inf
n→∞

∫
fn dν.

(c) Suppose that 0 ≤ f1 ≤ f2 ≤ · · · almost surely, and that fn → f almost surely. ShowMonotone

convergence that limn→∞
∫
fn dν →

∫
f dν.

(d) Let f1, f2, . . . be a sequence of measurable functions such that fn → f almost surely.Dominated

convergence Suppose there is a nonnegative integrable function g so that |fn| ≤ g for all n. Show

that limn→∞
∫
fn dν →

∫
f dν and that limn→∞

∫
|fn − f |dν = 0.

(e) Show that the Dominated convergence theorem also holds under the weaker assump-

tion fn → f in measure.

Ex. A.7 Bootstrapping the integral. [xx some exercises where we establish various

properties of the integral, using what we learned above xx]

(a) We can use the monotone convergence theorem to prove properties of the Lebesgue

integral, for example (and crucially!) linearity,∫
(αf + βg) dν = α

∫
f dν + β

∫
g dν,

for all measurable functions f and g and constants α and β. Start by showing that

linearity holds for simple functions f =
∑k
i=1 aiIAi

and g =
∑n
j=1 bjIBj

. Next, appeal

Ex. A.1(f) and the monotone convergence theorem to show that linearity holds for mea-

surable nonnegative functions, not merely simple ones. Finally, extend it to a general

measurable functions, that is, functions that might attain both positive and negative

values.

(b) Show that
∫
A

∑∞
j=1 fj dν =

∑∞
j=1

∫
A
fj dν, from which it follows (prove it) that for

any pairwise disjoint sequenceA1, A2, . . . of measurable sets
∫
∪∞j=1Aj

f dν =
∑∞
j=1

∫
Aj
f dν.

Deduce from this that if a nonnegative f has finite integral, then κ(A) =
∫
A
f dν defines

a finite measure. Here we also say that f is the density of κ with respect to ν, and write

f = dκ/dν; see also Ex. A.12.

(c) In (a) we touched on a proof strategy that appears again and again, so often that some

call it a bootstrapping argument (not to be confused with bootstrapping in statistics).bootstrap

arguments Here is an example: Let κ(A) =
∫
A
f dν be the measure introduced in (b). We want to

show that that for any measurable function g,∫
g dκ =

∫
gf dν.

First, prove this for indicator functions g = IA. Second, by linearity go to simple

functions g =
∑k
j=1 ajIAj

. Third, use Ex. A.1(f) and the monotone convergence theorem,

and deduce that it extends to nonnegative measurable functions. Finally, using linearity

again, show that it holds for all measurable functions g, provided g is integrable with

respect to κ.
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(d) Let (X ,A) and (Y,B) be measurable spaces, and let ν be a measure on A, and let

T : X → Y be a measurable function. Define the set function νT−1(B) = µ(T−1(A)). –

Show that νT−1 is measure in B. Let f : Y → R be an integrable function. Show thatchange of

variable ∫
T−1(B)

f(T (x))dν(x) =

∫
B

f(y) dνT−1(y).

Here, you may once again use a bootstrapping argument. [xx fT is integrable with

respect to ν iff f integrable w.r.t. νT−1 xx]

Ex. A.8 Probability spaces. Mathematically speaking, we are free to define the basics

of probabilities, along with axioms these should satisfy, without yet tying these to the

so-called real world. So let us define a probability space as a triple (Ω,A, P ), where Ω a probability

spaceis a fixed set; A a σ-algebra of subsets of this Ω (see Ex. A.1); and P : A → [0, 1] a
a probability

measureprobability measure, defined simply to be a measure, in the sense of Ex. A.1, with full

measure P (Ω) = 1.

We may envisage P as a probability machine, assessing to each A a probability

P (A). Such a probability measure on (Ω,A) has axiomatic properties following those of

more general measures, given in Ex. A.1, and for convenience stated again here, for the

present case of P (Ω) = 1. We demand axioms for a

probability

space
(i) that P (A) ≥ 0 for all A ∈ A;

(ii) that P (Ω) = 1;

(iii) that ifA1, A2, . . . are disjoint sets inA, then we have countable additivity, P (∪∞i=1Ai) =∑∞
i=1 P (Ai).

The subsets A can be given several names, including events; the conceptual idea is that

we do not yet know whether a certain A occurs or not, but we can give it a probability.

(a) Deduce that P (∅) = 0. For all events A and B deduce that P (A) ≤ 1; that P (A) =

1− P (Ac); and that P (A \B) = P (A)− P (A ∩B). Show also that countable additivity

implies finite additivity, namely P (A1 ∪ · · · ∪An) = P (A1) + · · ·+P (An), for each finite

collection A1, . . . , An of disjoint events.

(b) Deduce the following continuity properties. First, ifA1 ⊂ A2 ⊂ · · · , then P (∪∞i=1Ai) =

limP (Ai); secondly, if A1 ⊃ A2 ⊃ · · · , then P (∩∞i=1Ai) = limP (Ai). Show furthermore

that either of these two statements could replace (iii) in the axiom list above. These are

hence highly related to the continuity condition for measures, see Ex. A.3.

(c) From the axioms, show that if A ⊂ B ⊂ C, then P (A) ≤ P (B) ≤ P (C). Show

that P (A ∪ B) = P (A) + P (B) − P (A ∩ B), for any A,B. Deduce also that P (A ∪
B) ≤ P (A) + P (B), and, by induction, that P (A1 ∪ · · · ∪ An) ≤ P (A1) + · · · + P (An),

for all events A1, . . . , An. Show that this rule also holds with infintely many events,

P (∪∞i=1Ai) ≤
∑∞
i=1 P (Ai).
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(d) Show that

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

−P (A ∩B)− P (A ∩ C)− P (A ∩B ∩ C) + P (A ∪B ∪ C),

and try to generalise to the union of four or more events.

(e) If A and B have probabilities 0.95, or more, show that P (A ∩ B) ≥ 0.90. Gener-

alise. This simple lower-bounding of certain types of probabilities is sometimes called

the Bonferroni method, or Bonferroni correction.

(f) For a σ-algebra A, show that intersections, finite and countable, must be in – hence

also sets like ∪∞i=1 ∩∞j=i Aj , etc.

(g) Above we have been careful to define probability measures P for large collections

of events, namely σ-algebras, but also avoiding defining P (A) for every subset A. At-

tempting to do that, in various natural spaces, will lead to difficulties and incoherencies,

related to the existence of non-measurable sets. These issues are not present when the

full space Ω is finite, however, as one can simply allow every subset to be included, in the

set of subsets for which a probability is attached. Show indeed that if Ω = {ω1, . . . , ωm},
with perhaps a large m, and these singletons are attached probabilities p1, . . . , pm (non-

negative, with sum 1), then

P (A) =
∑

j : ωj∈A
pj , for any subset A,

defines a probability measure on (Ω,A), where, in this case, A = 2Ω the set of all 2m

subsets (which, from Ex. A.1(a), we know is a σ-algebra). Generalise to the case of

countably big spaces, say Ω = {ω1, ω2, . . .}, with pointmasses p1, p2, . . . summing to 1.

In these cases the collection A of all subsets is the natural set of events.

Ex. A.9 Distribution functions. Consider the case where the probability space is

(R,B, P ), with B the Borel sets on the real line (the smallest σ-algebra containing all

intervals), and P is some probability on this measurable space. For such a P , define thethe c.d.f., the

cumulative

distribution

function

cumulative distribution function (c.d.f. for short) as

F (t) = P (At), with At = (−∞, t],

where we also allow the simpler notation P (∞, t] for P ((−∞, t]).

(a) Show that F is nonincreasing, right continuous, with F (t) → 1 and F (t) → 0 as

t→∞ and t→ −∞, respectively. Show also that F (t− 1/n)→ P (−∞, t), and that

P (a+ 1/n, b− 1/n] = F (b− 1/n)− F (a+ 1/n)→ F (b−)− F (a) = P [a, b),

for all intervals (a, b). Here F (b−) is notation for the limit of F (b − ε) as ε → 0+,

converging to zero from above, and is also the same as P (−∞, b).



584 Mini-primer on measure and integration theory

(b) Show that P ({t}), the probability assigned to the fixed point t, is F (t)−F (t−). This

probability is often zero, as is the case for all t if F is continuous. Show that the set DF

of discontinuities for F is at most countably infinite.

(c) Suppose P1 and P2 are two probability measures on (R,B), with the same c.d.f.,

i.e. F1 = F2. From the mathematical analysis fact that every open set on the real line

can be expressed as a finite or countably infinite union of disjoint open intervals, deduce

that P1(A) = P2(A) for all open A, and for all closed sets, too. – An important fact

is that if F1 = F2, then indeed P1(A) = P2(A) for all Borel sets; it is impossible to

construct a perhaps very complicated set A for which the probabilities would disagree,

if their cumulatives are equal. Show this, from Carathéodory’s Extension Theorem of

Ex. A.3, or, alternatively from Ex. A.17. Very conveniently, this allows one to define a

full probability measure P by giving only its c.d.f., or its values for all intervals. For

example, saying that P (a, b) =
∫ b
a

(2π)−1/2 exp(− 1
2x

2) dx, for all intervals (a, b), is a

sufficient description of the standard normal distribution; we don’t need to give a more

laborious recipe for how to compute P (A) for more complicated events A.

(d) (xx briefly here about R2 and Rk too. sufficient to define probabilities on all boxes.

xx) Suppose P is a probability measure on (R2,B2), where B2 = σ(B2
0) is the collection

of Borel sets on the plane, the smallest σ-algebra containing all boxes, or rectangles,

(a1, b1)× (a2, b2). Define the cumulative distribution function for the pair as

F (t1, t2) = P (At1,t2) = P ((−∞, t1]× (−∞, t2]).

Show that for any rectangle,

P ((a1, b1]× (a2, b2]) = F (a1, a2)− F (a1, b2)− F (a2, b1) + F (a2, b2).

Use again Carathéodory Extension Theorem of Ex. A.3 to prove that if two probability

measures are equal for all rectangles, then they are identical, i.e., giving the same proba-

bility to any Borel set. Thus a probability measure P on (R2,B2) is fully determined by

giving its F (t1, t2) function. – Attempt to generalise this to dimension k, i.e., to (Rk,Bk);

in particular, the probability attached to a rectangle (a1, b1]× (ak, bk] can be expressed

as a sum of values of F computed at the 2k vertices of the rectangle, with ±1 signs, as

seen above for k = 2.

Ex. A.10 Random variables. Speaking mathematically, and more to the point in the

language of measure theory and integration, a random variable is a measurable function

on a probability space. In detail, with (Ω,A, P0) a ‘background’ probability space, we

may construct random variables as measurable functions X : Ω → X , where (X ,B) is

a measurable space where X(ω) lands. Measurability means that the inverse images

A = X−1(B) = {ω : X(ω) ∈ B} are measurable, that is, X−1(B) belongs to A for any

measurable B in the image space X .

(a) Show that the probability distribution for X, say P , inherited from its ingredients,

or, P is the probability distribution induced by X on the range of X, is

P (B) = P0(X ∈ B) = P0({ω : X(ω) ∈ B}) = P0(X−1(B)), for B ∈ B.
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We often write the probabilities like this, P0(X ∈ B), though we sometimes write P0{X ∈
B} or P0({X ∈ B}), for emphasis of the set, in the background probability space, behind

the event in the image probability space. Show that P = P0X
−1 indeed is a probability

measure on (X ,B); with pedantic care, we define P via (P0X
−1)(A) = P0(X−1(A)).

(b) Often what matters is the distribution of X, rather than particularities of the back-

ground space. Indeed there may be different spaces (Ωj ,Aj , P0,j) and random variables

Xj : Ωj → X inducing precisely the same distribution, i.e., the different Pj = P0,jX
−1
j

might be identical. For a given P on (X ,B), show that the identity map x 7→ x is

one such construction, leading to a random variable X with distribution P . In the case

of Xj : Ωj → R, we have seen in Ex. A.9 that what matters is the c.d.f. Pr(Xj ≤ t) =

Pj({ωj : Xj(ωj) ≤ t}) = Fj(t); as long as these are equal, the distributions Pj = P0,jX
−1
j

are identical. Give three separate such constructions of the standard normal distribution.

– The general type construction becomes more useful when working with several random

variables at the same time, say X1, . . . , Xn, in which case it becomes practical to have

them defined on the same background probability space.

(c) If X : Ω → R is a real random variable, defined on a background probability space

(Ω,A, P0), its mean, or expected value, is defined asthe expectation

EX =

∫
X dP0 =

∫
X(ω) dP0(ω),

as long as this integral is finite. This general definition requires measure and integration

theory, but it may be sufficient to think of the integral
∫
X dP0 as the limit of simpler

Riemann-like approximations, say via Xn taking on values cj on sets Aj , with Xn(ω)→
X(ω) (such a sequence can always be found, see Ex. A.1(f)); we then have

∫
Xn dP0 =∑

cjP0(Aj), and under mild conditions, see Ex. A.6,
∫
Xn dP0 →

∫
X dP0. – With g(x)

any nonnegative measurable function, use a bootstrap argument (see Ex. A.6(c)) to show

that

E g(X) =

∫
g(X(ω)) dP0(ω) =

∫
g(x) dP (x), with P = P0X

−1.

In particular, only the distribution of X matters, not the details associated with the

background probability space.

(d) With the mean of a real random variable well defined, we may of course go on to other

and higher moments. For a real random variable X : Ω → R, as above, with ξ = EX,the variance

show that

E (X − ξ)2 =

∫
(X − ξ)2 dP0 =

∫ ∞
−∞

(x− ξ)2 dP (x) =

∫ ∞
0

y dQ(y),

with Q the distribution of Y = (X − ξ)2; so there’s no ambiguity. This quantity is of

course the variance of X, denoted VarX, the square of the standard deviation of X.

(e) Consider real random variables X,Y defined on the same background probability

space (Ω,A, P0). Show that E (aX + bY ) = aEX + bEY , and generalise. In particular,
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for random variables X1, . . . , Xn, we have E (X1+· · ·+Xn) = EX1+· · ·+EXn, regardless

of any dependencies between these variables. For variables with finite second moments,

show that VarX = EX2 − (EX)2.

Ex. A.11 Independence. Here we define and work through basic properties of indepen-

dence, for events and for random variables.

(a) For a probability space (Ω,A, P ), we start out saying that two events A and B are

independent if P (A∩B) = P (A)P (B). Show that then also Ac and Bc are independent.

Show that all events are independent of the emptyset and of the full set Ω.

(b) Try to exhibit an example, with a finite Ω, of events A,B,C such that A and

B are independent, A and C are independent, B and C are independent, but where

P (A ∩B ∩ C) 6= P (A)P (B)P (C). Hence care is needed when defining independence for

more than two events. We say that A1, . . . , An are independent if P (Ai1 ∩ · · ·Ai,k) =

P (Ai,1) · · ·P (Ai,k) holds, for any finite subset {i1, . . . , ik} of {1, . . . , n}. Show that then

also Ac1, . . . , A
c
n are independent.

(c) Consider X,Y defined on the same probability space (Ω,A, P0), with distributions

P1 = P0X
−1 and P2 = P0Y

−1. We say that X and Y are independent if {X ∈ A} and

{Y ∈ B} are independent events, i.e.

Pr(X ∈ A, Y ∈ B) = P0({ω : X(ω) ∈ A, Y (ω) ∈ B}) = P1(A)P2(B),

for any A,B. Show the existence of a product measure Q = P1 × P2, on the σ-algebra

A2 = A×A, generated by all A×B sets with A,B ∈ A, such thatQ(A×B) = P1(A)P2(B)

for all such sets.

(d) So Q(C) = Pr((X,Y ) ∈ C) is now properly defined for much more complicated sets

than the direct product sets A × B. Let X and Y be independent, both with uniform

distributions on [−1, 1], with subintervals of equal length having the same probability.

Find the probability that (X,Y ) lands inside the unit circle.

(e) Show that E g(X)h(Y ) = E g(X) Eh(Y ) for each g(x) and h(y) for which the means

exist. (xx a bit more; round it off. covariance, correlation. xx)

(f) We must of course extend the above to the case of more than two independent random

variables. With X1, . . . , Xn defined on the same underlying probability space (Ω,A, P0),

their distributions are P1 = P0X
−1
1 , . . . , Pn = P0X

−1
n . We say that X1, . . . , Xn are

independent if

Pr(X1 ∈ A1, . . . , Xn ∈ An) = P0({ω : X1(ω) ∈ A1, . . . , Xn(ω) ∈ An})
= P1(A1) · · ·Pn(An)

for all Borel setsA1, . . . , An. Show that this is equivalent to having {X1 ∈ A1}, . . . , {Xn ∈
An} independent for every A1, . . . , An. Show also that this gives rise to a well-defined

product probability measure Q = P1 × · · · × Pn on the σ-algebra An = A × · · · × A,

generated by all A1 × · · · ×An.
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(g) Show that if X1, . . . , Xn independent, and g1, . . . , gk are measurable functions, then

also g1(X1), . . . , gk(Xk) are independent. Show also that

E g1(X1) · · · gk(Xk) = E g1(X1) · · ·E gk(Xk)

when these means exist.

(h) (xx with care: Var (X1 +· · ·+Xk) = VarX1 +· · ·+VarXk, for independent variables.

point briefly to stigler and seven pillars. xx)

(i) xx

Ex. A.12 Probability densities. We have seen in Ex. A.9 that probability measures on

the real line are fully characterised by the cumulative distribution functions. Very often

there is an even more practical and satisfying way of defining a probability distribution,

however, via its probability density function. These may be defined not only in famil-probability

density function iar situations with continuous distributions, but with discrete data, and with measures

having both continuous and discrete components.

(a) In various classical situations, the density is simply the derivative of the cumulative

distribution function, say f(x) = F ′(x), when the random variable X in question has a

differentiable c.d.f. F . From the fundamental theorem of calculus,

Pr(X ∈ [a, b]) = F (b)− F (a) =

∫ b

a

f(x) dx, for all [a, b].

The general theory of measure and integration allows the clear definition of
∫
A
f(x) dx

for any Borel set A. Show that Pr(X ∈ A) =
∫
A
f(x) dx, for all such A, i.e. not merely for

intervals. – Giving f(x), instead of the cumulative F (x), or perhaps more complicated

ways of defining P (A) for all A, is the most convenient (and traditional) way in which

to define a probability distribution.

(b) Suppose in general terms that ν is a σ-finite measure on a measurable space (X ,A).

That ν is σ-finite means that there is a countable division X = A1 ∪A2 ∪A3 · · · , where

each ν(Ai) is finite. Suppose next that the probability measure P is dominated by ν,

meaning that ν(A) = 0 implies P (A) = 0; one also says that P is absolutely continuousabsolute

continuity with respect to ν. Under these conditions, the Radon–Nikodym theorem says that there

is a density, say f(x), such thatthe Radon–

Nikodym

theorem
P (A) =

∫
A

f(x) dν(x) for all A ∈ A. (A.1)

The density f is often denoted dP/dν, to remind us that this is a density of P with

respect to ν. Explain that what we have seen above, where F has a derivative and is

the integral of this derivative, matches this more general setup, where ν is the so-called

Lebesgue measure, with µ(a, b) = b − a for all intervals. Many classes of probability

distributions, like the normal, the gamma, the Beta, the Weibull, the exponential, the t,

the chi-squared, etc., are of this type, where a clear probability density function can be

given as here, that is, with respect to standard Lebesgue measure.
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(c) Absolute continuity is related to the ε-and-δ definition of continuity. Suppose that

ν and µ are finite measures. Show that if for any ε > 0 there exists δ > 0, such that

ν(A) < ε whenever µ(A) < δ, then ν � µ. Prove the converse.

(d) The strength of the general f = dP/dν machinery above is that it can be fruit-

fully used for large classes of other probability measures too, not only for those which

are dominated by the Lebesgue measure. The dominating measure is often chosen by

mathematical convenience, to match the situation at hand. For the Poisson and other

distributions, with random variables landing in X = {0, 1, 2, . . .}, consider, for any subset

of X , ν(A) equal to the number of numbers j ∈ A, that is, ν is the counting measure on

the integers, which, from Ex. A.1(k), we know is a σ-finite measure. Show that with P

having a Poisson distribution P , with mean θ, that there is a density f = dP/dν, given

by f(x) = exp(−θ)θx/x! for x = 0, 1, 2, . . ., in the sense given above.

(e) Consider a probability measure P on [0, 1] with probabilities 0.1 and 0.1 at positions

0 and 1, and which has P (a, b) = 0.8 (b − a) for (a, b) inside (0, 1). Thus P is not

continuous, and not discrete, but a mixture. Show that P is dominated by the measure

ν, which has pointmasses 1 and 1 at the points 0 and 1, and is uniform inside (0, 1). Find

the probability density f(x) = dP (x)/dν.

(f) Suppose P is dominated by a sigma-finite ν, with f(x) = dP (x)/dν the probability

density, as per (A.1). With X having distribution P , if you have not already done so in

Ex. A.6(c), show that for any g(x) for which the mean is finite (with respect to P ), that

E g(X) =

∫
g(x) dP (x) =

∫
g(x)

dP (x)

dν
dν(x) =

∫
g(x)f(x) dν(x).

(g) (xx round this off. drive home that this makes it possible and convenient to derive

results in a general manner, point to Cramér–Rao, which we need to redo, as of 13-Aug-

2023, and also that we can handle any type of mixed distributions, not merely the classic

ones, the continuous and the discrete. ask for the mean and variance of the 0.1, 0.1, 0.8

distribution above. xx)

Ex. A.13 Proving the Radon–Nikodym theorem. To prove the Radon–Nikodym theorem

Ex. A.14 Radon–Nikodym derivatives Let p, q, µ be σ-finite measures on the measurable

space (Ω,A).

(a) Show that if p� q and q � µ, then p� µ, then

dp

dµ
=

dp

dq

dq

dµ
, µ almost surely.

(b)

(c)

Ex. A.15 Modes of convergence[xx check if such an exercise already exists in the large-

sample chapter xx]
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(a) Suppose that Xn converges almost surely to X. Show that Xn converges in proba-

bility to X.

(b) Suppose that Xn →p X as n→∞. Show that there exists a subsequence (Xnk
)k≥1

so that Xnk
→ X almost surely.

Ex. A.16 Uniform integrability. Let (Ω,A, P ) be a probability space, and write {X >

M} = {ω ∈ Ω: X(ω) > M}.

(a) Suppose that X is a random variable. Show that X is integrable if and only if there

is a real number M such that E |X|I|X|>M <∞.

(b) Suppose that X is integrable. Show that limM→∞ E |X|I|X|>M = 0.

(c) Let X1, X2, . . . be a sequence of integrable random variables, converging almost surely

to X. Show that lim infn→∞|Xn|I|Xn|>M ≥ |X|I|X|>M , almost surely.

(d) Let X1, X2, . . . be a sequence of integrable random variables, converging almost surely

to X. Show that if E |Xn|I|Xn|>M ≤ δ for all n, then E |X|I|X|>M ≤ δ.

(e) A sequence of random variables X1, X2, . . . is called uniformly integrable ifUniform

integrability

lim
M→∞

sup
n≥1

E |Xn|I|Xn|>M = 0.

Assume thatX1, X2, . . . is a uniformly integrable sequence of random variables converging

almost surely to X. Show that X is integrable.

(f) Assume that X1, X2, . . . is a uniformly integrable sequence of random variables con-

verging to X almost surely. Show that limn→∞ EXn = EX.

(g) Show that in Ex. (f), it is sufficient that Xn →p X.

(h) Show that if (Xn)n≥1 is uniformly integrable and Xn →p X, then E |Xn −X|→ 0.

(i) Let X1, X2, . . . be random variables such for some δ > 0 it is the case that E |Xn|1+δ<

∞ for all n. Show that (Xn)n≥1 is uniformly integrable.

Ex. A.17 Monotone classes and some more. For many classes of sets it is possible to

give an explicit characterisation of its elements. The collection of all half intervals open

on the left and closed on the right on the real line, for example, consists of elements (a, b]

with a < b. [xx fix xx]. With the σ-algebras that interest us in probability and statistics,

however, it is not possible to give such ‘closed form’ characterisations of its elements.

This is the motivation for the definitions and results we introduce in this exercise.

(a) A family of sets M is a monotone class if A1 ⊂ A2 ⊂ · · · are sets in M, then

∪n≥1An ∈ M, and if B1 ⊃ B2 ⊃ · · · are sets in M, then ∩n≥1Bn ∈ M. Show that a

collection of sets is a σ-algebra if and only if it is a monotone class and a algebra.

(b) Let C be a family of sets. Show that there is a smallest monotone class, say m(C),
such that C ⊂ m(C).
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(c) Let Ω be a set, and A0 an algebra of subsets of Ω. Suppose that M is a monotoneMonotone class

theorem class of subsets of Ω and that A0 ⊂M. Prove that σ(A0) ⊂M.

The importance of this theorem stems from the fact that certain properties can be

proved for sets in an algebra, which are easy to describe, and as long as this algebra is

contained in a monotone class, the property holds for all sets in the σ-algebra generated

by the algebra. We’ll see an example of such a ‘monotone class argument’ in Ex. A.18.

(d) [xx π-systems, λ-systems, Dynkin’s π-λ lemma. If two finite measures agree on a

π-system, then they agree on the σ-algebra generated by that π-system. xx]

Ex. A.18 Fubini and Tonelli. Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be two measure spaces.

The (Ω1 × Ω2,A1 ⊗ A2, µ1 × µ2) is called the product space, with A1 ⊗ A2 being the Product space

smallest sigma algebra generated by the products A1 × A2 with A1 ∈ A1 and A2 ∈ A2,

and µ1×µ2 is the extension toA1⊗A2 (see Ex. abc) of the set funtion (µ1×µ2)(A1×A2) =

µ1(A1)µ2(A2).

(a) (xx check this: If both µ and ν are sigma-finite, then it can be shown using the

Carathéodory’s Extension Theorem that µ1 × µ2 is the only measure on A1 ⊗ A2 with

the property that µ1 × µ2(A1 ×A2) = µ1(A1)µ2(A2) for all A1 ∈ A1 and A2 ∈ A2 xx)

(b) Let A0 be the collection of finite disjoint unions of measurable rectangles A1 × A2

(that is A1 ∈ A1 and A2 ∈ A2). Show that A0 is an algebra.

(c) Fubini’s theorem says that if f : Ω1 × Ω2 → R is an integrable function on (Ω1 × Fubini’s

theoremΩ2,A1 ⊗A2, µ1 × µ2), then∫
f(x, y) d(µ1 × µ2)(x, y) =

∫ ∫
f(x, y) dµ1(x)dµ2(y)

=

∫ ∫
f(x, y) dµ2(y)dµ1(x).

(A.2)

Let B = A1×A2 be a set inA1⊗A2, and let f = IB Show that
∫
f(x, y) d(µ1×µ2)(x, y) =∫ ∫

f(x, y) dµ1(x)dµ2(y).

(d) LetM be the class of sets B such that the claim in A.2 is true for f = IB . By Ex. (c),

the algebra A0 of Ex. (b) is contained in M. Show that M is a monotone class, and

conclude that the claim in A.2 is true for f = IB , with B being any set in A1⊗A2. Now,

use a bootstrapping argument to finish up the proof of Fubini’s theorem.

(e) Tonelli’s theorem is much like Fubini’s. The difference is that the function f is Tonelli’s

theoremassumed nonnegative (but not necessarily integrable), while both µ1 and µ2 are assumed

to be sigma-finite measures. The conclusion of Tonelli’s theorem is that given in (A.2).

[xx formulate an exercise xx].

Ex. A.19 Conditional probability. When the sun is shining in the morning, there is a

fair chance that it will be shining in the afternoon. Suppose that this inductive insight

is based on observing the weather for the n previous days, of which there were m days

with a sunny morning, and k days with a sunny morning and a sunny afternoon. On this

particular day, you wake up in sunshine and want to estimate the probability of a sunny
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afternoon. The natural estimate of the probability of a sunny afternoon is k/m. Using

the strong law of large numbers (which you will be asked to prove in Ex. abc),

k

m
=

k/n

m/n
→ P (sunny morning & sunny afternoon)

P (sunny morning)
,

as the number of days n grows without bounds. This example goes to show that the

definition of the conditional probability is the intuitive one. Here is the definition: Let

(Ω,A, P ) be a probability space, and A and B be events, that is A,B ∈ A. Provided

P (B) > 0, the conditional probability of A given B is

P (A |B) =
P (A ∩B)

P (B)
, (A.3)

The notation P (A |B) might be unfortunate, because it sort of seems that the events

A and B are on equal footing. They are not. The event we condition on, namely B,

is fixed, while the event we are computing the conditional probability of, that is A, can

change. In other words, A 7→ P (A |B) is a probability measure, while B 7→ P (A |B) is

not a probability measure.

(a) Show that P (A |B) is a probability measure, providedf P (B) > 0.

(b) The function L(B) = P (A |B) where the event A is fixed and the event we condition

on might change, is called the likelihood function, and L(B) is referred to as the likelihood

of B. Show that L(B) is not a probability measure.

(c) Suppose that P (B) > 0. If A and B are independent, show that P (A |B) = P (A).

(d) Show that if P (A) = 0, then A and B are independent. Also, show that if P (A) = 1,

then A and B are independent.

Ex. A.20 Conditional expectation. Let X and Y be two random variables on a proba-

bility space (Ω,A, P0). For events A and B, the probability of X falling in A given that

Y ∈ B is, using the definition in (A.3), P0(X ∈ A |Y ∈ B) = P0(X ∈ A, Y ∈ B)/P0(Y ∈
B), provided P0(Y ∈ B) > 0. We can then define the conditional expectation of X given

Y ∈ B by

E0 {X |Y ∈ B} =
E0{XIY ∈B}
P0(Y ∈ B)

=

∫
XdP0(ω | Y ∈ B)

the conditional c.d.f. F (x |Y ∈ B) = P0(X ≤ x |Y ∈ B), and so on. The point being

that conditioning on an event {Y ∈ B} with positive probability is just a matter using

the definition in (A.3) in the obvious manner.

(a) Let X ∼ N(0, 1) and Y = I{X ≥ c} for some constant c. Show that

E0 {X | Y = 1} =

∫
R
x

φ(x)

1− Φ(c)
I[c,∞)(x) dx.

If PX = P0X
−1 is the measure induced on the range of X, and we define the conditional

probability PX|Y=1(A) = PX(A | [c,∞)])/PX [c,∞), for A in the range of X, explain

why this means that (dPX|Y=1/dλ)(x) = φ(x)/{1 − Φ(c)}I[c,∞), where λ is Lebesgue

measure on the real line.
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(b) In (a) we conditioned on the event {Y = 1} = {X ≥ c}. But what if rather want to

condition on the random variable Y (as defined in (a)), whatever that might mean? In

view of of the above it makes sense to define the conditional expectation of X given Y

by

E0 (X |Y )(ω) = E0 (X |Y = 0)I{Y=0}(ω) + E0 (X |Y = 1)I{Y=1}(ω),

for ω ∈ Ω. Notice that while E0 (X |Y = 0) and E0 (X |Y = 0) are constants, I{Y=1}
and I{Y=0} are random variables, entailing that E0 (X |Y ) is a random variable. Show

that E0 E0 (X |Y ) = E0X.

(c) Let X be some integrable random variable, and let Y be a discrete random variable

with values in {y1, y2, . . .}. Define Bk = {ω ∈ Ω | Y (ω) = yk} for k = 1, 2, . . .. As a mild

extension of (b) we define the conditional expectation of X given Y as

E0 (X |Y )(ω) =
∑
k≥1

E0 (X |Bk)IBk
(ω). (A.4)

Show that E0 E0 (X |Y ) = E0X, and also E0 IBjE0 (X |Y ) = E0IBj X for any Bj as

defined above. In fact, show that

E0 ICE0 (X |Y ) = E0IC X, (A.5)

for any event C in the σ-algebra generated by Y . Note that {∅, B1, B2, . . .} is a π-system

generating σ(Y ), so we can use Ex. A.17(d) here, and, for simplicity you may assume

that X ≥ 0 so that both C 7→ E0 ICE0 (X |Y ) and C 7→ E0IC X are finite measures.

(d) So far we have only considered discrete random variables Y . But what if the random

variable we want to condition on, say Y , is continuous, so that P0(Y = y) = 0 for all y.

Then the definition of E0 (X |Y ) given in (A.4) does not make sense, because it would

involve division by zero. The solution to this problem is to take (A.5) as the definition

of conditional expectation: On the probability space (Ω,A, P0) let X be an integrable

random variable. Let C ⊂ A. Then any C-measurable random variable Z such that conditional

expectation

E0 ICZ = E0 ICX, for all C ∈ C, (A.6)

is called the conditional expectation of X given C, denoted E0(X | C). This definition

entails that the conditional expectation is only defined up to sets of measure zero, and

we call each Z satisfying (A.6) a version of the conditional expectation. Suppose that

X ≥ 0 and that Z1 ≥ 0 and Z2 ≥ 0 are random variables, both satisfying (A.6). Show

that P0(Z1 6= Z2) = 0.

(e) Comparing the definition in (A.6) with the result in (A.5), we see that C corresponds

to the σ-algebra generated by Y , i.e., σ(Y ). In fact, when C is a σ-algebra generated

by a random variable Y , we typically write E0(X | Y ) instead of the more cumbersome

E (X | C) or E {X |σ(Y )}. Let’s go ‘backwards’, and see that (A.6) leads back to the

definition we started out with. Suppose that B1, B2, . . . are disjoint sets of positive

probability whose union equals Ω.

(f) (xx properties, Jensen’s, DCT, and the like for conditional expectation xx)
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(g) (xx Conditional variance. Show that (xx modulo simple general assumptions xx) xx)

VarX = E Var (X |Y ) + Var E (Y |X).

(h) (xx conditional probability conditioned on σ-algebra, regular conditional probability

xx)

(i) (xx conditional densities xx)

(j) (xx Borel pardox, examples xx)

Ex. A.21 Conditional expectation. red(xx drop this old ex xx) In Ex. A.20 we defined

the conditional expectation E [X |Y ] in the case that Y is discrete, or (X,Y ) has a joint

density. In this exercise we proceed to the general case, and define the conditional ex-

pectation of a random variable given a σ-algebra, instead of a random variable. [xx some

more intro xx] We concentrate on expectations because probabilities are expectation over

indicators functions, and if these probabilities are dominated, then there is density (per

the Radon–Nikodym theorem). In other words, one can argue that among expectations,

probabilities, and densities, the first is the fundamental concept.

Let X and Y be two random variables on the probability space (Ω,A, P0), with joint

distribution P . Recall that σ(Y ) is the σ-algebra generated by Y [xx not defined xx].

(a) As in Ex. A.20, suppose that Y is discrete or (X,Y ) has a joint density. Define

E[X |σ(Y )] = ϕ(Y ), where ϕ(y) is as defined in (??) or (??). Show that (i) E[X |σ(Y )]

is σ(Y ) measurable, and (ii) that
∫
A

E[X |σ(Y )] dP0 =
∫
A
X dP0 for all A ∈ σ(Y ).

(b) Properties (i) and (ii) in Ex. (a) are the characterising features of conditional expec-

tation: Any random variable with these properties is a conditional expectation. Here is

the definition: Let (Ω,A, P0) be a probability space, X an integrable random variable,Conditional

expectation and let G ⊂ A. A random variable Z is the conditional expectation of X given G if Z

is G-measurable and
∫
A
Z dP0 =

∫
A
X dP0 for all A ∈ G. We write E [X | G] for Z, and

when we want to be pedantic, call E [X | G] a version of the conditional expectation of

X given G. It is a version of this conditional expectation, because any other random

variable that is almost surely equal to Z also is also the conditional expectation of X

given G. Suppose that Z and Y are the conditional expectation of X given G, show that

P0(Z = Y ) = 1.

(c) Conditional expectation exists. Let (Ω,A, P0) be a probability space, and X an

integrable random variable. Let G ⊂ A. Then there exists a G-measurable function Z

such that ∫
A

Z dP0 =

∫
A

X dP0, for all A ∈ G.

Use Ex. A.4 along with the Radon–Nikodym theorem to prove this claim.

(d) [xx properties of conditional expectation xx]

(e) Let X : Ω→ R and Y : Ω→ Y be random variables on a probability space (Ω,A, P0).

Assume that X is integrable, that the σ-algebra C on Y contains all singletons, and that
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PY is the probability measure on (Y, C) induced by Y (see Ex. A.10(a)). Prove that

there exists a function ϕ : Y → R such that∫
Y −1(C)

X dP0 =

∫
C

ϕ(y) dPY (y),

for all C ∈ C. It is the function ϕ(y) we typically denote by E [X |Y = y]. Hint: Combine

the Radon–Nikodym theorem with Ex. A.10 (c).

(f)

Ex. A.22 The mean via the cumulative distribution function. Consider a random

variable X on [0,∞), with cumulative function F .

(a) Show that the mean EX =
∫∞

0
xdF (x) also can be expressed as

∫∞
0

(1− F ) dx.

(b) As a simple illustration, consider X with density function f(x) = θ exp(−θx), where

θ is a positive parameter. Find the cumulative F , and compute EX in two ways.

(c) (xx something with a discrete distribution too. find the AmStat paper we talked

briefly about, for a bit more. xx)

Ex. A.23 Convolutions. If µ and ν are two finite measures on R (equipped with the

Borel σ-algebra), the convolution µ ∗ ν = ν ∗ µ is the unique finite Borel measure on R
such that for any bounded continuous function f : R→ R∫

f d(µ ∗ ν) =

∫ ∫
f(x+ y) dµ(x) dν(y) =

∫ ∫
f(x+ y) dν(y) dµ(x). (A.7)

Notice that if µ× ν is the product measure on R×R, and g : R×R→ R is the function

g(x, y) = x+ y, then g induces the measure (µ× ν) ◦ g−1 on R, and (µ× ν) ◦ g−1 = µ ∗ ν,

because∫
f(z)(µ× ν) ◦ g−1(dz) =

∫
f(g(x, y)) dµ(x) dν(y) =

∫
f(x+ y) dµ(x) dν(y).

In this sense, the definition in (A.7) is just a reformulation of Fubini’s theorem.

(a) Let g be a real-valued non-negative integrable function. Define the measure ν(B) =∫
B
g(x) dx, and let µ be a finite measure on R. Show that∫

f d(µ× ν) =

∫
f(y)(g ∗ µ)(y) dy,

where (g ∗ µ)(y) is the function

(g ∗ µ)(y) =

∫
g(y − x) dµ(x).

(b) Let X and Y be two independent random variables with distributions PX and PY ,

respectively. Show that the distribution PZ of the sum Z = X + Y is given by the

convolution of PX and PY , defined by

(PX ∗ PY )(A) =

∫ ∫
IA(x+ y)PX(dx)PY (dy).
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(c) Suppose now that X has density fX(x). Show that Z = X + Y has density

fZ(z) =

∫
fX(z − y)PY (dy).

Show also that if Y has density fY (y), then

fZ(z) =

∫
fX(z − y)fY (y) dy =

∫
fX(x)fY (z − x) dx,

which we may write as fZ(z) = E fX(z − Y ) = E fY (z −X).

(d) Suppose that g is bounded and continuously differentiable, whose derivative g′ is

bounded. Show that for any finite measure µ, the convolution (g ∗ µ)′ is also bounded

and continuously differentiable, and that

(g ∗ µ)′(x) = (g′ ∗ µ)(x) =

∫
g′(x− y) dµ(y).

Generalise to k times continuously differentiable functions with compact support. [xx

check details here xx]

Ex. A.24 More convolutions. (xx we shall see, perhaps something easier than the

previous very general exercise, for sums. xx) [xx we show basic convolution formulae;

useful for later. xx] Let X and Y be independent real random variables with cumulative

distribution functions F and G, and consider Z = X + Y .

(a) Show that Z has distribution function

H(z) =

∫
F (z − y) dG(y) =

∫
G(z − x) dF (x).

(b) When both F and G have densities, say f and g, show that H has density

h(z) =

∫
f(z − y)g(y) dy.

(c) (xx just a bit more, with X discrete and Y having a density. an illustration. also

pointers to mgf things and CLT etc. xx)

Ex. A.25 Something More. (xx not yet an exercise, but a place to jot down a few

comments, also as of 13-Aug-2023. we need the ‘double variance’ formula too. and show

we round off ChZero with a few things to make the readers feel ‘aha, so after all of

this, we can do familiar things again’, with ordinary integrals and sums and means and

variances. perhaps a few simple but nonstandard things too. xx)

1.C Notes and pointers

(xx we point to some of the many books on measure theory for probability and statistics,

and also to where key ideas originated. Kolmogorov. Billingsley (1968); Royden and

Fitzpatrick (2010). also, briefly, to ‘what is a statistical model’, McCullagh (2002). Can-

tor set and Cantor function, F is continuous on [0, 1] but not at all absolutely continuous.

xx)
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American Statistician, 64:228–230.

Irwin, J. O. (1927). On the frequency distribution of the means of samples from a population having

any law of frequency with finite moments, with special reference to Pearson’s type II. Biometrika,

19:225–239.

Jacod, J. and Shiryaev, A. (2013). Limit Theorems for Stochastic Processes. Second Edition. Springer,

Berlin.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to Statistical Learning

with Applications in R. Second Edition. Springer, New York.

James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, pages 361–379.

Jamtveit, B., Jacobsen, A. U., and Wyller, T. B. (2018). Utvikling i andel administrativt personale i

norske helseforetak. Samfunnsøkonomen, 6:17–21.

Jamtveit, B., Jettestuen, E., and Mathiesen, J. (2009). Scaling properties of European research units.

Proceedings of the National Academy of Sciences, 106:13160–13163.

Jansen, D. (1994). Full Circle. Villard Books, New York.



References 623

Jones, M. C. (1991). The roles of ISE and MISE in density estimation. Statistics and Probability Letters,

12:51–56.

Jones, M. C., Hjort, N. L., Harris, I. R., and Basu, A. (2001). A comparison of related density-based

minimum divergence estimators. Biometrika, 88:865–873.

Jullum, M. and Hjort, N. L. (2017). Parametric or nonparametric: The FIC approach. Statistica Sinica,

27:951–981.

Jullum, M. and Hjort, N. L. (2019). What price semiparametric Cox regression? Lifetime Data Analysis,

25:406–438.

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux, New York.

Kahneman, D., Sibony, O., and Sunstein, C. R. (2020). Noise: A Flaw in Human Judgment. William

Collins, London.

Kjesbu, O. S., Opdal, A. F., Korsbrekke, K., Devine, J. A., and Skjæraasen, J. E. (2014). Making use of

Johan Hjort’s ‘unknown’ legacy: reconstruction of a 150-year coastal time-series on northeast Arctic

cod (Gadus morhua) liver data reveals long-term trends in energy allocation patterns. ICES Journal

of Marine Science, 71:2053–2063.

Kjetsaa, G., Gustavson, S., Beckman, B., and Gil, S. (1984). The Authorship of The Quiet Don [also

published in Russian]. Solum/Humanities Press, Oslo.

Klotz, J. (1972). Markov chain clustering of births by year. Proceedings of the Sixth Berkeley Symposium

on Mathematical Statistics and Probability Theory, 4:173–185.

Klotz, J. (1973). Statistical inference in Bernoulli trials with dependence. Annals of Statistics, 1:373–379.

Koehler, J. J. and Conley, C. A. (2003). The “hot hand” myth in professional basketball. Journal of

Sport and Exercise Psychology, 25:253–259.

Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giorn Ist Ital

Attuar, 4:83–91.

Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. Springer,

New York.
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