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Preface

This book builds on Hello, here is some text without a meaning. This text should show

what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and

some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives

you information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of words

should match the language.

(xx then several crisp paragraphs here, on the carrying ideas behind and structure

of the book: exercises and stories. a partly flipped classroom, with direct participation

from the first pages of each chapter, also on prerequisties: linear algebra, with matrix

theory, etc.; calcululs, with functions of one or more variables, partial derivatives, etc.;

programming, in R or Python or other appropriate language, for simulation etc.)

The authors owe special thanks to Céline Cunen, Gudmund Hermansen, Tore Schwe-

der, for having contributed significantly to several of our Statistical Stories, and also for

always pleasant and inspiring long-term collaborations. Many thanks are also due to a

long list of colleagues and friends, who have taken part in discussions and rounds of clari-

fication of relevance to various exercises and stories in our book: Marthe Aastveit, Patrick

Ball, Bear Braumoeller, Aaron Clauset, Dennis Cristensen, Ingrid Dæhlen, Åsa Engel-

stad, Arnoldo Frigessi, Ingrid Glad, H̊avard Hegre, Aliaksandr Hubin, Ingrid Hobæk Haff,

Kristoffer Hellton, Bjørn Jamtveit, Martin Jullum, Vinnie Ko, Alexander Koning, Per

Mykland, Jonas Moss, H̊avard Mokleiv Nyg̊ard, Lars Olsen, Catharina Stoltenberg, Gun-

nar Taraldsen, Ingunn Fride Tvete, Sam-Erik Walker, Lars Walløe, Jonathan Williams,

Lan Zhang.

We have also benefited, directly and indirectly, through the collective efforts of

grander wide-horizoned funded projects: the FocuStat: Focus Driven Statistical Inference

with Complex Data 2014-2019 project (led by Hjort) at the Department of Mathematics,

University of Oslo, funded by the Norwegian Research Council; the Stability and Change

2022-2023 project (led by Hegre and Hjort) at the Centre for Advanced Study, Academy

of Science and Letters, Oslo; the grand Integreat: The Norwegian Centre for Knowledge-

Driven Machine Learning 2023-2033 Centre of Excellence (led by Frigessi and Glad),

Oslo, funded by the Norwegian Research Council. We finally acknowledge with grati-
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tude a partial support stipend from the Norwegian Non-Fiction Writers and Translators

Association (Norsk faglitterær forfatter- og oversetterforening).

(xx Then current time plan, as of 23-Aug-2023, possibly optimistic xx)

Nils Lid Hjort and Emil Aas Stoltenberg

Blindern, some day in 2023
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Statistical Stories: a Subset (for stk4011)

(xx WELL: many yhings to clean, as of 23-Aug-2023. In the full Hjort-Stoltenberg book,

there will be around 66 Stories, sorted into categories (i) Epidemiology and Medicine; (ii),

Art, Literature, Music; (iii) Social Sciences; (iv) Biology, Climate, Ecology; (v) Sports;

(vi) Simulation. xx)

Story viii.1 Cooling of newborns. Seminal work carried out by Marianne Thoresen and

coworkers (xx put in reference here praps 2005 paper xx) has demonstrated that when a

newborn has been deprived of oxygen during birth, an emergency intervention involving

cooling (therapeutic hypothermia) can save its life, with no loss of motoric or mental

abilities later on – provided this is implemented within six hours. Is it still helpful, or

not at all, when the cooling scheme starts later than six hours? Laptook (2017) report on

a wide and elaborate study, combining information from many registries across several

U.S. state, pertaining to this and related question. In particular, one counts the number

of events, in the cooled and non-cooled groups, the event in question being death or

disability (with a precise definition of disability, assessed when the child is about 18

months old). The essential relevant summary, from all these life-and-death efforts, lies

in the two times two table

non-cooled infants m0: y0 and m0-y0: 79: 22 and 57

hypothermic infants: m1: y1 and m1-y1: 78: 19 and 59

Seeing these as two biomial experiments, y0 ∼ binom(m0, p0) and y1 ∼ binom(m1, p1),

the statistical question is what inferences we may make, for comparing p0 and p1.

(a) First, give ordinary (and perhaps approximate) 95 percent confidence intervals for

p0 and p1, and comment. Then compute and display in the same diagram the confidence

distributions cc0(p0) and cc1(p1), associated with the optimal binomial confidence dis-

tributions C(p) = Pp(Y > yobs) + 1
2Pp(Y = yobs), as for the left panel pf Figure viii.1;

see Ex. 7.25.

(b) To analyse the degree to which p0 and p1 might be different, transform to the logistic

scale, with p0 = exp(θ0)/{1 + exp(θ0)} and p1 = exp(θ0 + γ)/{1 + exp(θ0 + γ)}. Note

that γ can be seen as the log-odds difference log(p1/(1− p1))− log(p0/(1− p0)); results
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Figure viii.1: Left panel: confidence curves for p0 and p1, with 95 intervals [0.189,0.384]

and [0.159,0.347]. Right panel: confidence curve for rr = p1/p0, with 95 interval

[0.509,1.485]. There is no indication that p0 and p1 really differ.

may also be given in terms of the odds ratio ρ = exp(γ). Use Ex. 7.27 to compute the

optimal confidence curve cc(ρ), and give a 95 percent interval for the parameter. The

Laptook (2017) article reported mainly in terms of the relative risk parameter rr = p1/p0,

however. Construct therefore a confidence distribution cc(rr) also for that parameter,

using the Wilks theorem based recipe of Ex. ??, as in the right panel of Figure viii.1.

Give the median confidence estimate r̂r0.50 and a 95 percent interval.

(c) The Laptook (2017) report framed results in terms of Bayesian priors and posteriors.

With priors p0 ∼ Beta(a0, b0) and p1 ∼ Beta(a1, b1), show that rr = p1/p0 given data

is a ratio of independent Beta(a0 + y0, b0 + m0 − y0) and Beta(a1 + y1, b1 + m1 − y1).

Deduce that the posterior distribution has cumulative

F (v |data) =

∫ 1

0

G(vp0, a1 + y1, b1 +m1 − y1)g(p0, a0 + y0, b0 +m0 − y0) dp0,

in terms of the density g and c.d.f. G for Beta distributions. Compute and display this

F (rr |data), using the Jeffreys prior Beta( 1
2 ,

1
2 ) (xx pointer to Ch5 with this detail xx),

Show that it becomes very close to the prior-free CD C(rr), constructed from the cc(rr)

above as 1
2 −

1
2cc(rr) for rr ≤ r̂r0.50 and 1

2 + 1
2cc(rr) for rr ≥ r̂r0.50 (xx pointer to that

thing in Ch7 xx).

(d) Laptook (2017) used several informative priors for their analyses, including one called

by them a neutral prior, with mean zero and standard deviataion 0.35 for log rr. Translate

this to two equal Beta priors (a, a), (a, a), finding the a matching their 0.35 standard

deviation, perhaps via simulations; you should find a
.
= 8.95. For this neutral prior,

display the posterior c.d.f. and density for rr. Compute also P (rr ≤ v |data) for v =

0.90, 0.95, 1.00.
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(e) Above we have computed P (rr < 1 | y0 = 22, y1 = 19) = 0.664 with the neutral

prior. Compute P (rr < 1 | y0 = 22, y1) for imagined data sets with y1 = 19, 18, . . . , 5,

say, keeping the other aspects of the data fixed, including y0 = 22. How small ought y1
to have been, in order for the rr < 1 scenario to have posterior probabilty above 0.95?

(f) (xx round off. point to Hjort blog story Hjort (2017a), big JAMA paper Laptook

(2017), short critical follow-up papers Walløe et al. (2019a,b). xx)

Story viii.2 Suicide attempt rates for Paroxetine vs. placebo. There are several studies

of the effects and side effects of the antidepressant Paroxetine (sold under brand names

Seroxat, Paxil, and yet others, since 1992). While beneficial for hundreds of thousands

of users, serious concerns are also part of the broader picture, with one particularly

disturbing aspect being its potential association with suicidal thoughts and actions. Here

we use data and information from Aursnes et al. (2005, 2006), who used Bayesian analyses

with informative priors, based on data and other information available to those authors

in respectively 2005 and 2006. Below we discuss these priors to posteriors calculations,

but also include other non-Bayesian methods.

The data are as simple as two Poisson counts, Y0 ∼ Pois(m0θ0) and Y1 ∼ Pois(m1θ1),

for the placebo and the drug groups, with m0 and m1 cumulative exposure time, here

conveniently counted as patient years. The parameter of primary interest is γ = θ1/θ0.

The articles pointed to concentrate on the probability that γ > 1, or, equivalently, that

κ > 0, where κ = log(θ1/θ0) is a more convenient scale for computation and summary

reporting, due the inherent strong right skewnesses involved on the γ scale.

For the studies in question, the 2005 article had (y0, y1) = (1, 7), after (m0,m1) =

(73.3, 190.7) patient years, and used informative priors based on previous literature to

conclude that it was rather likely that θ1 > θ0, i.e. an increased suicide attempt risk

in the Paroxetine group. This was followed by media exposure and debate, along with

critical comments from both individual researchers and from GlaxoSmithKline plc, the

multinational pharmaceutical and biotechnology company manufacturing the drug. This

again led to the 2006 article, by the same four authors, with more extensive data collection

and also further care for accuracy. In summary, the data now had (y0, y1) = (1, 11), after

(m0,m1) = (333.0, 601.0) patient years. The 2005 data are to be seen as part of the

extended and more accurately curated 2006 dataset.

(a) With Z = Y0 + Y1, show that Y1 | z ∼ binom(z,m1γ/(m0 +m1γ)), with γ = exp(κ).

Compute and display what is according to Ex. 7.24 the optimal confidence distribution,

C(κ) = Pκ(Y1 > y1,obs |Y0 + Y1 = zobs) + 1
2Pκ(Y1 = y1,obs |Y0 + Y1 = zobs),

with the 2005-information and the 2006-information; construct versions of Figure viii.2,

both on the κ and γ scales. Verify in particular that C2005(0) = 0.188 and C2006(0) =

0.022. Explain how these can be seen as p-values for testing θ0 ≤ θ1 against the drastic

alternative that the antidepressant in question increases the suicide attempt risk. Dis-

cuss also how the complementary numbers 0.812 and 0.978 can be seen as epistemic

probabiities for θ1 > θ0. Give also 95 percent confidence intervals, first for κ and then

transformed back to the scale of θ1/θ0.
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Figure viii.2: Cumulative confidencec distributions (left panel) and confidence curves

(right panel), for κ = log(θ1/θ0), based on information in the 2005 article (red, slanted)

and in the 2006 article (black, full). The central question is whether θ1 > θ0, i.e. whether

κ > 0. The evidence for this is much clearer with the 2006 information.

(b) Suppose now that adequate prior distributions are set of the type θ0 ∼ Gam(a0, b0)

and θ1 ∼ Gam(a1, b1). Show that this leads to clear posterior distributions

θ0 |data ∼ Gam(a0 + y0, b0 +m0), θ1 |data ∼ Gam(a1 + y1, b1 +m1).

Show that the posterior cumulative and density functions for κ = log(θ1/θ0) can be

expressed as

F (κ |data) =

∫ ∞
0

G(exp(κ)θ0, a1 + y1, b1 +m1) g(θ0, a0 + y0, b0 +m0) dθ0,

f(κ |data) =

∫ ∞
0

g(exp(κ)θ0, a1 + y1, b1 +m1) exp(κ)θ0 g(θ0, a0 + y0, b0 +m0) dθ0,

in terms of the cumulative and density G(·, a, b) and g(·, a, b) of the Gam(a, b). In particu-

lar, explain that pB = 1−F (0 |data) is the posterior probability for the dramatic θ1 > θ0
scenario, building on both the priors and the Poisson counts (y0, y1) with (m0,m1) pa-

tient years. Give also corresponding expressions for the posterior cumulative and density

on the direct scale of γ = θ1/θ0.

(c) For each of the 2005-infomation and 2006-information cases, compute and display

pB = 1−
∫ ∞
0

G(θ0, a+ y1, 50 +m1) g(θ0, a+ y0, 50 +m1) dθ0

as a function of a, a common parameter in gamma prior parameters (a, 50), (a, 50) for

θ0, θ1, interpreted as the expected number of suicide attempts in the course of 50 patient

years, for either the placebo or drug groups of patients. Comment on your findings.
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Figure viii.3: From the informative slightly optimistic prior (red, slanted) to the posterior

(black, full), using the 2006 data; cumulatives in left panel, densities in right panel. The

evidence is very strong that θ1 > θ0.

(d) Several informative priors are carefully argued for and worked with in Aursnes et al.

(2005, 2006). “This does not mean that these parameters are to be interpreted as ran-

dom variables, but our knowledge of the parameters is uncertain and we describe this

uncertainty with the help of probability distributions,” as they write, when setting their

priors, in fact by attempting to match conclusions of earlier meta-analysis publications

to gamma prior parameters. For illustration in the present story we are content with

using one of these, called by them in their 2006 article the slightly optimistic prior,

having (a0, b0) = (0.71, 50) and (a1, b1) = (0.58, 50). The idea was to quantify the ex-

pected number of suicide attempts for the placebo and the drug groups, in the course

of 50 patient years, and with these expected numbers adding up to 1.29 attempts per

100 patient years, matching information recorded in previous literature. For this prior,

work through the numerics, and display the prior and posterior densities, as well as the

prior and posterior cumulatives, for the focus parameter log(θ1/θ0); construct versions

of Figure viii.3. Find the 95 percent posterior interval for κ, and by transformation for

θ1/θ0. Also, record the Bayesian answer pB to the question of how likely we should think

it is that the drug increases suicide attempt risk.

(e) Results reported on in Aursnes et al. (2005, 2006) were not reached via the precise

integration tools above; the authors resorted rather to simulation. Carry out such work

too, simulating say 105 realisations of log(θ2/θ1) from the posterior distribution, followed

by simple density estimation, to reach a simulated version of Figure viii.3. As explained

via the integration details above, however, there is no real need for simulation here.

(f) (xx something more. try noninformative priors, of the type (0.1, 0.1) and (0.1, 0.1)

for θ0 and θ1. and something more neutral, like (1, 50) and (1, 50). xx)

(g) (xx something iiccff using Cunen and Hjort (2022). combining one of these informa-
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tive priors with the new data. several paths possible. (i) using the informative priors for

θ0 and θ1, then log-likelihoods for θ0 and θ1, i.e. four sources combined to find cc∗(κ).

(ii) using the log-prior for κ coming out of two priors, and the converted log-likelihood

for κ coming from cc(κ). both should work, but four sources in detail might be a bit

more precise. xx)

(h) (xx the analyses above have presumed that θ0 and θ1 are somehow well-defined

overall rate parameters, one for the Paroxetine users and one for the placebo group.

more realistically, these suicide attempt rate parameters would vary in the population,

e.g. with gender and age. argue that this could lead to negative binomial models for the

final counts (Y0, Y1). perhaps are conclusions above too sharp. but we can’t well answer

this since we do not have data divided into any subcategories. xx)

Story viii.3 Overdispersed children. Some one and a half century ago, there were as

many as n = 38495 plentiful 8-or-more children families living in Sachsen, with Geißler

(1889) dutifully counting and reporting about them and the number of girls and boys.

The little table to the left here gives the number N(y) of these families having y girls

and 8 − y boys, for y = 0, 1, . . . , 8. In the course of this and the following Story i.4 we

will work through models 1, 2, 3, say, producing expected numbers E1(y), E2(y), E3(y)

to match the N(y), along with what we term Pearson residuals {N(y)−E(y)}/E(y)1/2.

y N E1 pear1 E2 pear2 E3 pear3

0 264 192.325 5.168 255.621 0.524 255.210 0.550

1 1655 1445.384 5.514 1657.032 -0.050 1655.181 -0.004

2 4948 4752.364 2.838 4909.686 0.547 4901.376 0.666

3 8498 8928.902 -4.560 8683.213 -1.988 8692.383 -2.085

4 10263 10484.952 -2.168 10024.863 2.378 10034.318 2.283

5 7603 7879.792 -3.118 7735.975 -1.512 7736.379 -1.516

6 3951 3701.205 4.106 3896.509 0.873 3890.978 0.962

7 1152 993.421 5.031 1171.238 -0.562 1167.280 -0.447

8 161 116.655 4.106 160.865 0.011 161.895 -0.070

(a) Compute the overall fraction of girls, among the mn = 307860 children, as p̂ =∑m
y=0N(y)y/(mn) = 0.4844. Show that the null hypothesis p = 0.50 must be soundly

rejected here.

(b) Of course a statistician can’t always expect to see the difference between 0.500 and

0.485 as a clearly significant one – as this very much depends on the sample size. Suppose

you go out on the street sampling, counting a binomial B ∼ binom(k, p) after having

studied k objects or persons. How large must k be, in order for your 0.05-level test of

p = 0.50 against p 6= 0.50 to have detection power say 0.95, if the truth is p = 0.485?

What if you use a 0.01-level test and need detection power 0.99?

(c) Assume that the binomial model Y ∼ binom(8, p0) holds, with the same p0 across

all families. Find point estimates and 99 percent confidence intervals for nf1(0, p0), the

expected number of all-boys families, and for nf1(8, p0), the expected number of all-girls

families, among the n = 38495 families with eight children. Then check with the real

world.
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Figure viii.4: Pearson residuals {N(y) − E(y)}/E(y)1/2, for two models: the simple

binomial (red, dashed curve) and the betabinomial (black, full curve). Here N(y) is the

observed number of girls y, and E1(y) and E2(y) the expected number under models 1

and 2.

(d) Under the assumption that the girl-probability p is constant, across families, we would

have Y ∼ binom(8, p), for these n = 38495 Sachsen families. Compute E1(y) = nf1(y, p̂),

the expected number of y-girls families, under this model, with f1(y, p) the usual bino-

mial. Compute also the Pearson residual, say P1(y) = {N(y) − E1(y)}/E1(y)1/2, for

y = 0, 1, . . . , 8. These should roughly be standard normal, if the model used is good.

Check with Figure viii.4. Discuss what you find: in particular, it appears that the real

world exhibits significantly more ‘extreme families’, those with all boys or all girls, than

what is predicted under the straight binomial model.

(e) Suppose rather that each family has its own girl-probability p, but that this p varies

across families, according to some distribution with overall mean p0 and positive standard

deviation τ0. Show that EY = mp0 and that the extra-binomial variability manifests

itself by

VarY = mp0(1− p0) +m(m− 1)τ20 .

Compute the empirical variance S2 =
∑n
i=1(yi− ȳ)2/(n−1) =

∑m
y=0N(y)(y−mp̂)2/(n−

1), set the extra-binomial variance S2−mp̂0(1− p̂0) equal to m(m−1)τ20 , and show that

this leads to τ̂0 = 0.0538.

(f) Establish that this extra-variation, with τ̂0 = 0.0538, is indeed very significantly
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positive. Again, we would not always be able to identify a standard deviation of this size

as being significantly present, but we are, of course, helped by the enormous sample size.

(g) A natural two-parameter model, to explain also the extra-binomial variability, is to

take Y | p ∼ binom(m, p) and p ∼ Beta(a, b); see Ex. 1.25. Show that this leads to

f2(y, a, b) =

(
m

y

)
Γ(a+ y)Γ(b+m− y)

Γ(a)Γ(b)

Γ(a+ b)

Γ(a+ b+m)
for y = 0, 1, . . . ,m.

Representing (a, b) as (kp0, k(1 − p0)), estimate k from the overdispersion number τ̂0 =

0.0538. Draw the resulting Beta density in a diagram. How many families in the world

have their girl-probabilities outside the interval [0.40, 0.60]?

(h) Compute the expected numbers E2(y) and the Pearson residuals P2(y) = {N(y) −
E2(y)}/E2(y)1/2 also for this two-parameter model, and reconstruct both the table above

and Figure viii.4.

(i) (xx a thing or two more. point to later chapter where we also do Markov modelling,

from child to child inside given families. comment on
∑
y P1(y)2 = 159.41, way too big

for the binomial, but
∑
y P2(y)2 = 13.55, close to acceptable, for the beta-binomial. we

have
∑
y P3(y)2 = 13.41 for the Markov model. xx)

Story viii.4 Boys are born slightly bigger than girls. (xx quantile things, to be told.

perestroika required. first separate quantiles, boys and girls, then ratios of quantiles. xx)

nb = 548 boys and ng = 480 girls born in oslo. ratio of quantiles. let fb(x) and fg(x) be

the birthweight densities, for boys and for girls, with cumulative distribution functions

Fb(x) and Fg(x). here we shall compare quantiles for boys and girls, µb,q = F−1b (q) and

µg,q = F−1g (µg), at different levels q. may give a figure of estimated densities, standard

kernel methods from Ch. 13. see Figures.

(a) Show that boys are significantly bigger than girls, but that there is no clear indication

that they have different variances in their birthweight distributions.

(b) For each of the five quantile levels 0.1, 0.3, 0.5, 0.7, 0.9, construct a CD for the F−1(q),

for boys and for girls, using the order statistic method of Ex. 7.20. Compute also the

consequent confidence curves cc(µq), and make a version of Figure viii.5. (xx should get

a better plot from nils com16c. xx)

(c) In the following, keep one quantile level q fixed, to avoid a too heavily subscripted

notation. From Ex. 2.20 we know that n
1/2
b (Qb−µb)→d N(0, κ2b) and n

1/2
g (Qg−µg)→d

N(0, κ2g), with κb = {q(1 − q)}1/2/fb(µb,q) and with κg = {q(1 − q)}1/2/fg(µb,g). Show

that this entails

Qb = µb + κb/n
1/2
b Zb and Qg = µg + κg/n

1/2
g Zg,

where Zb = Zb,nb
and Zg = Zg,ng

have distributions coming (very) close to the standard

normal.

(d) Estimate the difference between the boys and girls distributions, as a function of

the quantile q, along with a confidence band. Construct a version of Figure viii.6, using

gram. The horizonal line represents the estimated overall difference d = ξb − ξg.
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Figure viii.5: Confidence curves for the five deciles F−1(q), for levels 0.1, 0.3, 0.5, 0.7,

0.9, for the birthweight distributions of boys (upper panel) and girls (lower panel), in

kg. 95 percent confidence intervals for the 5 + 5 quantities are indicated with the blue

horizontal lines.

(e) We now wish to estimate the ratio of quantiles function ρ = µb/µg, nonparametrically,

using ρ̂ = Qb/Qg. Use delta method arguments to deduce that

ρ̂ = ρ{1 + (1/µb)(κb/n
1/2
b )Zb − (1/µg)κg/n

1/2
g Zg},

and from this that ρ̂ ≈d N(ρ, v2), with variance

v2 =
(µb
µg

)2( 1

µ2
b

κ2b
nb

+
1

µ2
g

κ2g
ng

)
=

1

µ2
g

(κ2b
nb

+ ρ2
κ2g
ng

)
.

Construct a version of Figure viii.6. (xx conclude that across quantiles, boys tend to

about 5 percent bigger than girls. Attempt to build a model for how F−1b (q) for boys

relates to F−1g (q) for girls. xx)

(f) (xx just a bit more. xx) [xx can ask for estimates with bands of the ratio f1(y)/f2(y),

perhaps constructed by first estimating the log difference, finding band there, and exp-

ing home. could also bake a Type B Story from the birthweights of Oslo boys and Oslo

girls, 2001–2008, with other natural analyses. see (xx Data Story B.2.B xx). xx]

Story viii.5 Lifelengths in Roman Era Egypt, 2100 years ago. Intriguingly, archeologists

have been able to learn the ages at death of 141 mummified individuals living in Roman
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Figure viii.6: For the 548 boys and 480 girls born at Rikshospitalet in Oslo, during

2001–2008, and for quantiles in [0.05,0.95], the plot displays the estimated difference of

quantiles (left panel), and the estimated quotient of quantiles (right panel), along with

a 95 percent confidence band.

Era Egypt, some 2100 years ago, see Spiegelberg (1901). These lifelengths, varying from

1 to 96 years, for 82 men and 59 women, were discussed and analysed by Karl Pearson in

the very first volume of Biometrika, see Pearson (1902). We treat them here as a random

sample of lifelengths from the upper social class of Roman Era Egypt, during a period

of relatove societal stability; more details are in Claeskens and Hjort (2008b, Ch. 2). (xx

with data and details in Ch. B.2.B. when polishing, do the right pointing to Ch10 and

to ML machinery of Ch5. xx)

Despite Pearson’s not unreasonable comment that “in dealing with [these data] I

have not ventured to separate the men from the women mortality, the numbers are far

too insignificant” we shall work with parametric modelling of the men’s and women’s

survival functions and hazard rates, and in that process illustrate the main practical

uses of maximum likelihood machineries, both for model parameters and for natural

parameter functions of these, and for model comparison and model selection.

(a) Go through as many as eight candidate models for these data, given below. For each

model, estimate the parameters via maximum likelihood, along with estimated standard

deviations for these. Here we use the general versatile machinery partly summed up

in Ex. 5.12, involving programming the log-likelihood functions, finding their optima,

and inverting the Fisher information matrices. Part of the learning experience here is

that handling rather different parametric models does not take many extra forces, but

may involve relatively small changes from script to script. (i) Use gamma distributions

Gam(am, bm) and Gam(aw, bw) for the men and the women, with parametrisation as in

Ex. 1.9. Then use gamma distributions again, but take a common b for the shape pa-

rameter. (ii) Then use Weibull distributions (am, bm) and (aw, bw), with parametrisation

as in Ex. 1.40. Similarly, use a common shape parameter b for the two groups, but sep-
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Figure viii.7: Lifelengths in Roman Era Egypt, a century B.C., with men tending to

have longer lives than women. Left panel: Nonparametric Nelson–Aalen plots for the

cumulative hazards, for men (lower curves) and for women (upper curves), along with

parametric fits from Models 2b (Weibull with equal 2nd parameter) and 3b (Gompertz

with equal 2nd parameter) as per Ex. viii.5. Estimated 50 and 75 percent survival times

can be read off from the two horizontal lines at log 2 and log 4. Right panel: Survival

curves for the men (upper curves) and women (lower curves), nonparametric (rugged)

along with parametric fits. Estimated 0.50 and 0.75 percent survival times are read off

from where the curves cross the 0.50 and 0.25 lines.

arate am and aw. (iii) Then use Gompertz distributions with parameters (am, bm) and

(aw, bw), with parametrisation as in Ex. 1.41. Again allow the variation taking a common

shape parameter b but different am, aw for the two Gompertz distributions. (iv) Throw

in also the lognormal distributions, first with four free parameters (ξm, σm), (ξw, σw),

then with a common σ for the lognormals. For each of these 4 + 4 models, graph the

estimated cumulative hazard functions A(t, θ̂) for men and women, plotted alongside the

nonparametric Nelson–Aalen curves, and also the estimated survival curves S(t, θ̂) for

men and women, alongside the nonparametric Kaplan–Meier curves. In other words,

construct versions of Figure viii.7, left and right panels.

(b) After having fitted all the candidate models, and computed the log-likelihood maxima
in question, it is a small extra step to count parameters and compute the AIC scores.
Do this, organising your results into a table with the three first columns here, with ‘dim’
denoting the number of parameters in the model. Conclude that model 3B is the best
(so far), the Gompertz model with parameters (am, b) and (aw, b), as judged by the AIC.
Incidentally, show that the log-normal models are decidely worse. We include them here
for the sake of exercising the general maximum likelihood machinery, and since we could
not have known a priori which models are good and which are not.

dim logLmax aic men women delta sd low up

model 1A 4 -612.064 -1232.129 26.655 21.877 4.778 3.371 -0.766 10.323 gamma
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model 1B 3 -614.922 -1235.844 26.055 22.725 3.330 3.439 -2.327 8.986

model 2A 4 -609.954 -1227.909 28.262 22.728 5.534 3.502 -0.226 11.294 weib

model 2B 3 -610.387 -1226.774 29.120 21.910 7.209 2.997 2.279 12.139

model 3A 4 -608.388 -1224.776 31.783 22.140 9.644 4.246 2.659 16.629 gomp

model 3B 3 -608.520 -1223.040 31.124 22.723 8.401 3.447 2.730 14.072

model 4A 4 -627.397 -1262.794 23.237 19.958 3.279 3.447 -2.391 8.949 logN

model 4B 3 -629.511 -1265.023 23.237 19.958 3.279 3.521 -2.514 9.071

(c) For the three best of the fitted models, compute and graph the estimated densities

f̂(t), survival curves Ŝ(t), and cumulative hazard rates Â(t). Complement these with

the nonparametric Nelson–Aalen estimators. Present also the estimated hazard rates

α̂(t). Construct a version of Figure viii.7. Explain how estimated median survival time

in Roman era Egypt can be read off from the horizontal log 2 line, and similarly the

estimated 75 percent quantile survival time via the log 4 line.

(d) It appears clear that in Roman era Egypt, men tended to have longer lives than

women. The direct nonparametric median lifetime estimates are 28 for men and 22

for women. For each of the eight candidate models, compute the implied median-life

difference estimate, i.e. of δ = F−1m (0.50)−F−1w (0.50). Also use the maximum likelihood

theory summarised in Ex. 5.12, specifically the use of the delta method for any smooth

function of the model parameters, to compute the approximate standard deviation for

these δ̂ estimates, and give 90 percent confidence intervals. These estimates, with lower

and upper confidence points, are given in the table above. Your code should be flexible

enough to carry out similar analyses for e.g. the upper quartile difference F−1m (0.75) −
F−1w (0.75), a parameter of high interest for the five million Egyptians two thousand years

ago. Attempt to pinpoint where the men and women of Roman Era Egypt started having

different lifelength expectancies.

(e) (xx find an easy reference to the fact that a high proportion of women died in child-

birth, in many socities. xx) The models worked through above are generic in character

and do not take on board why or in which ways the lives of men and women might

have been dfferent in old Egypt. The flexibility and versality of the maximum likelihood

machinery should inspire building other models. Consider random lifetimes

Tm = min{t ≥ 0: Zm(t) ≥ c}, Tw = min{t ≥ 0: Zw(t) ≥ c},

defined via cumulative risk processes Zm and Zw for men and women; when these cross

threshold c, the individual dies. A natural class of such processes, amenable to further

survival analysis for their threshold crossing times, is that of independent increment

gamma processes, see Cunen and Hjort (2023). For the present purposes we take Zm(t)

having mean function at whereas Zw(t) has mean function at+d ex(t), with an extra risk

function ex(t) here taken to be the c.d.f. of a uniform distribution on [15, 40]. Show that

this leads to survival functions Sm(t) = G(c, at, 1) and Sw(t) = G(c, at + d ex(t), 1) for

men and women, where G(·, u, 1) is the c.d.f. for Gam(u, 1). Show that the log-likelihood

function becomes

`(a, c, d) =

nm∑
i=1

log fm(tm,i) +

nw∑
i=1

log fw(tw,i),
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Figure viii.8: (xx text to be coordinated and polished. xx) Left panel: Nelson–Aalen cu-

mulative hazards for men and women of Roman Era Egypt, along with those fitted to the

gamma process threshold crossing model; these are better than the 4 + 4 models worked

with initially. Right panel: Associated survival curves, nonparametric and parametric.

with the nm and nw lifelengths for men and women, and with densities fm(t) = −S′m(t)

and fw(t) = −S′w(t) implied by the survival functions.

(f) Now programme and optimise the log-likelihood. You should find (â, ĉ, d̂) = (0.033,

0.687, 0.810), and with a much higher log-likelihood maximum −604.368 than for the

eight models worked with above. Show also that this leads to an AIC score very clearly

better than for the competitors. Display nonparametric and parametrically fitted cumu-

lative hazard rates and survival curvess, as in Figure viii.8, left and right panels. The

gamma process models provide much better fits than for models portrayed in Figure

viii.7.

(g) To illustrate how the gamma process models work, simulate e.g. 25 Zm processes,

with mean function at, and Zw processes, with mean function at + d ex(t), using the

estimated (â, ĉ, d̂). Death occurs when the process reaches c. More men than women

survive the age of forty. Construct a version of Figure viii.9 (male processes in left panel,

female in right panel). (xx put in somewhere: with our gamma process model, women

and men have the same longer-time survival chances after the age of forty. xx)

Story viii.6 Stride towards your bookshelves. As part of the obligatory exercises work

for a bachelor level course on statistical methodology at the Department of Mathematics,

University of Oslo, we instructed each student to stride towards her or his bookshelves,

to pick one book in Norwegian and one in English, then record the lengths of the first

100 words on page 51. The books could be novels, collections of short stories, poetry,

or prose in general, but not technical material (as with mathematics or statistics); the

students were also instructed to use page 52 if page 51 didn’t have enough words. Do
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Figure viii.9: (xx text to be coordinated and polished. xx) 25 simulated gamma processes,

for mean functions at for the men (left panel) and at+d ex(t) for the women (right panel);

an individual dies when his or her process crosses the threshold c = 0.687, the horizontal

line.

Fløgstad, Kjærstad, Solstad tend to use words with more or less the same lengths as do

Miller, Lessing, Munro? And do some students have books tending to have longer words

than those of other students?

The students were asked to summarise information and to compare their own two

datasets in terms of means and standard deviations. This was expected to involve tests for

equality of means and of variances, confidence intervals for differences, perhaps comments

on skewnesses, etc. But the experiment also gave us an interesting combined data set,

where we recorded the empirical mean and standard deviation for each dataset, for

the two languages, for each student. In other words, we have summary statistics data

(xi,N , κ̂i,N , xi,E , κ̂i,E) for i = 1, . . . , n, for the n = 64 students, with

xi,N = average word-length for 100 Norwegian words for student i,

xi,E = average word-length for 100 English words for student i,

along with empirical standard deviations κ̂i,1 and κ̂i,2, say, for these 100 Norwegian and

100 English words, for student i.

(a) Construct a version of Figure viii.10, one panel with (xi,N , xi,E), a second panel with

(κ̂i,N , κ̂i,E). Why and in which sense was it ok for Hjort and Stoltenberg to throw away

the individual data samples, with nm = 64 · 100 words in each of the two languages, and

just keep the empirical means and standard deviations?

(b) Carry out a test to see if the mean word lengths are about the same, for the Norwegian

and English books (in these students’ bookshelves). For this point, suppose that Xi,N ∼
N(ξi,N , κ

2
i,N/100) and Xi,E ∼ N(ξi,E , κ

2
i,E/100). Then perform a second test, to see if

the underlying spread in wordlength distributions are the same for the two languages.

[xx polish a bit. answers are no for x̄, but yes for the κ̂. xx]
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Figure viii.10: Empirical means (xi,N , xi,E) (left panel), and empirical standard devia-

tions (κ̂i,N , κ̂i,E) (right panel), for the Norwegian and English wordlengths found in 64

students’ bookshelves, with each student sampling 100 words from their sampled books.

(c) We then take an in interest in the correlation between the two wordlength distribu-

tions. But taking the ordinary correlation between the reported averages xi,N , xi,E is

less interesting than inference for the real correlation, between say xi,real,N , xi,real,E , these

being the averages over the tens of thousands of Norwegian and English words on the

bookshelves of student i. It turns out the ordinary correlation deflates this underlying

real correlation, due to the measurement errors involved in sampling merely 100 words

for the two corpora.

In general terms, suppose we have observations (xi, yi) for i = 1, . . . , n, where these

are really proxies for certain underlying (xi,0, yi,0), and where the measurement errors

involved are normal with known variance levels. We have in mind situations where the

correlation ρ = corr(x0, y0) between these underlying quantities is of higher concern than

the deflated correlation corr(x, y) between the directly observed (xi, yi). We formalise a

version of the setup described as

xi = xi,0 + δi,1, yi = yi,0 + δi,2,

where the not fully observed (xi,0, yi,0) have a binormal distribution, with correlation ρ,

and where the measurement errors δi,1 and δi,2 are independent zero-mean normals with

known or well estimated standard deviations τ1 and τ2. With (ξ1, ξ2) the means and

(σ1, σ2) the standard deviations for (xi,0, yi,0), show that(
xi
yi

)
∼ N2(

(
ξ1
ξ2

)
, V ), with V = Σ +D =

(
σ2
1 + τ21 , ρσ1σ2
ρσ1σ2, σ2

2 + τ22

)
,

writing D for diag(τ21 , τ
2
2 ).

(d) First we sort out what happens with the traditional empirical correlation coefficient

for the observed data, say Rn = s1,2/(s1s2), where s1 and s2 are the empirical standard



560 Sports

deviations for the xi and the yi, and s1,2 = (n− 1)−1
∑n
i=1(xi− x̄)(yi− ȳ)/(s1s2). Show

that

Rn →pr
ρσ1σ2

(σ2
1 + τ21 )1/2(σ2

2 + τ22 )1/2
,

i.e. the default operation Rn actually estimates a deflated version of the real ρ.

(e) Consider first repair operation 1, which is to estimate the σj by σ̂2
j = max(s2j − τ2j , 0)

for j = 1, 2. Show that ρ̂ = s1,2/(σ̂1σ̂2) is consistent for ρ. Note however that its

limit distribution is more complicated than for the classical case of no measurement

error; see Ex. 5.13. (xx then spell out what this means for the bookshelves story. the

point is to see τ1 and τ2 from the data, as precisely estimated. For the xi,N , with

individual variances κ2i,N/m, argue that τN = {(1/n)
∑n
i=1 κ̂

2
i,N/m}1/2 = 0.2728 and

τE = {(1/n)
∑n
i=1 κ̂

2
i,E/m}1/2 = 0.2370 are precise estimates of the measurement errors

here. From the directly observed standard deviations sN = 0.5285 and sE = 0.4193 show

that these are reduced to σ̂N = (s2N − τ2N )1/2 = 0.4526 and σ̂E = (s2E − τ2E)1/2 = 0.3459.

This adjusts the deflated Rn = 0.2833 to ρ̂ = 0.4010. xx)

(f) Then consider repair operation 2, using likelihood methods. Show that the log-

likelihood function for the observed data becomes

`n =

n∑
i=1

{
− 1

2 log |Σ +D| − 1
2

(
xi − ξ1
yi − ξ2

)t

(Σ +D)−1
(
xi − ξ1
yi − ξ2

)}
.

Show that profiling over the means leads to `n,prof(σ1, σ2, ρ) = − 1
2nQ(σ1, σ2, ρ), where

Q(σ1, σ2, ρ) = log |Σ +D|+ Tr{(Σ +D)−1Sn},

in terms of the empirical variance matrix Sn for the (xi, yi) pairs. (xx do this for the

bookshelves data. find and display a cc(ρ). point estimate 0.401, 95 percent interval

[0.064, 0.670]. xx) (xx variations: could actually have different τi,1, τi,2 for the log-

likelihood. xx) (xx careful with wording: We learn that a student having Norwegian

books with long words tends to have English books with long words too, and vice versa.

The reasons for this interesting finding are not clear, but it’s interesting to do a bit of

speculation – some readers prefer longer-worded books, others might like shorter-worded

literature. We’re also reminded that the students were not instructed to choose books

from their bookshelves in a totally random fashion, so there’s a limit to how far we should

stretch our imagination here. xx)

(g) As is already apparent from the correlation analysis, the wordlengths exhibit not

merely the obvious variation inside bookshelves, but also between students. Construct

a version of Figure viii.11, left panel, displaying English wordlength averages xi,E along

with their associated individual 90 percent intervals. To assess the degree of disparity

between students, i.e. betweeen their bookshelves, model the xi,E as coming from a

N(ξE , ω
2
E) distribution. Show that marginally, xi,E ∼ N(ξE , σ

2
i,E + ω2

E), with σ2
i,E =
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Figure viii.11: Left panel: For the n = 64 students, average word lengths in their English

books, with 90 percent confidence intervals. Right panel: Confidence curves for the

spread parameters ωN and ωE , for the models where the averages xi,N and xi,E follow

distributions N(ξN , ω
2
N ) and N(ξE , ω

2
E).

κ2i,E/m. Since these are well estimated, we take them as nearly known, set equal to

κ̂2i,E/m. (xx then calibrate with what is in Ch7. xx) Using

QE(ωE) =

n∑
i=1

{xi,E − ξ̂E(ωE)}2

σ2
i,E + ω2

E

∼ χ2
n−1, with ξ̂E(ωE) =

∑n
i=1 xi,E/(σ

2
i,E + ω2

E)∑n
i=1 1/(σ2

i,E + ω2
E)

,

construct the CD CE(ωE) = 1 − Γn−1(QE(ωE)) and its associated confidence curve.

Compute cc(ωE) and cc(ωN ) and display these in a diagram, as with Figure viii.11. Find

median confidence estimates and also 95 percent intervals for the spread parameters ωE
and ωN , and comment on their sizes.

Story viii.7 The children of Odin. As we know, Odin had six male offspring – Thor,

Balder, Vitharr, Váli, Heimdallr, Bragi – with the sources saying nothing about daugh-

ters. So how many children is it likely that he had, in total? With N the number of

children, and y the number of boys, we assume y |N ∼ binom(N, p), with p = 0.514 (a

good overall point estimate human reproduction; see Story viii.3). So the data is that

y = 6, and we can attempt confidence inference for N . The themes and details below

expand on those given in Schweder and Hjort (2016, Example 3.11).

(a) A natural construction for a CD is

C(N, y) = PN (Y > y) + 1
2PN (Y = y),

with the half-correction for discreteness, as in the partly parallel situation of Ex. 7.25.

Compute and display this CD, and take differences to compute also the confidence point

masses, c(N, y).
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Figure viii.12: Confidence point masses c(N, y), for N ≥ 6. (xx more here, in a separate

point, checking U = C(N,Y ) and approximate uniformity, with Y ∼ binom(N, p). xx)

(b) A CD C(θ, y), for a parameter θ based on data y, should ideally have the uniformity

property that U = C(θ0, Y ) has the uniform distribution, for any fixed θ0, with Y a

random dataset drawn from the model at that position in the parameter space. This is

not quite possible here, since the situation is discrete, with not many values to attain for

y. For a given N0 = 14, simulate say 104 realisations of U = C(N0, Y ), then compute

and display the empirical distribution function P (U ≤ u). Comment on your findings.

(c) Carry out also a Bayesian analysis, using the prior proportional to 1/(N + 1) for

N ≥ 0. Compare the posterior distribution to the CD.

(d) Invent your own prior for N (formed before you learn in school that y = 6), and

compare the posterior distribution withat that found above.

(e) The frequentist CD C(N, y) above should be trusted as a good and neutral statistical

summary function for the unknown N . Find and display the Bayesian prior that would

give the same result.

(f) In some of the Snorri kennings there are also references to Týr and Höd as sons of Odin

(and yet other names are mentioned in the somewhat apocryphical Skáldskaparmál).

Adjust the calculations above to this revised case, with y = 8, and comment on your

findings.

(g) Find or dream up another situation (not necessarily with full data) where the model

above might be used, i.e. p is known, but the binomial N is unknown.
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Story viii.8 How many Abel envelopes from 1902? Hundred years after the death of

Niels Henik Abel (1802–1829), the Norwegian postal office issued a certain stamp and

a ‘first-day cover’ envelope commemorating him; this was only the second time such an

honour had been bestowed upon a person outside royalty (in 1928, a similar first-day cover

had been issued for Henrik Ibsen, hundred years after his being born). As the facsimile

below indicates, these carry ‘R numbers’ (as in ‘rekommandert post’), and R numbers

from five such Abel 1929 envelopes, from various philatelic sales lists and auctions in

the 2003–2008 period, were 280, 304, 308, 310, 328. The operating assumption is that

the Abelian first-day covers with stamps were produced in a running noninterrupted

sequence, but one does not know when it started and neither when it ended. So how

many were there? An answer to this curiosity question also enters the realm of philatelic

market prices and speculations (one such specimen might fetch 5000 kroner, in 2022).

Figure viii.13: A philatelic rarity: an Abel first-day envelope from 1929.

(a) We allow ourselves a statistical detour, discussing natural setups and solutions for
range estimation for the case of continuous data, before returning to Abel. So, for a
concrete illustration, consider the numbers

4.712 6.412 7.043 7.141 7.245 7.379 7.602 8.417 8.671 8.702

We’ve simulated these n = 10 points, from a uniform distribution over [a, b], and ordered

them, for simplicity. But we won’t tell you the values we used for a or b, or indeed the

range γ = b − a. Your task will be to make inference about this γ. We come back to

Bayesian solutions below, but now approach the problem using frequentist confidence

distributions. With Y1, . . . , Yn from the uniform on [a, b], explain that one may write

Yi = a+ (b−a)Ui, with the Ui from the standard uniform over the unit interval. Deduce

that Rn = Y(n) − Y(1) = γRn,0, with Rn,0 = U(n) − U(1), relating the range of data
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naturally to the range of a uniform sample. Explain that Rn/γ is a pivot, as defined in

Ex. 7.7.

(b) With Hn the c.d.f. of the uniform range Rn,0 distribution, show that the canon-

ical confidence distribution for γ becomes Cn(γ,data) = Pa,b(Rn ≥ Rn,obs) = 1 −
Hn(Rn,obs/γ), for γ ≥ Rn,obs (here observed to be 3.990). Simulate say 104 realisations

of Rn,0 in your computer, and use these to compute and display the CD Cn(γ,data),

as well as the confidence curve ccn(γ,data) = |1 − 2Cn(γ,data)|. Use also the explicit

knowledge from Ex. 2.19, that Hn actually is a Be(n− 1, 2), to show that the confidence

distribution and its confidence density become

Cn(γ,data) = 1− n(Rn,obs/γ)n−1 + (n− 1)(Rn,obs/γ)n,

cn(γ,data) = n(n− 1)Rn−1n,obs(γ −Rn,obs)/γ
n+1,

for γ ≥ Rn,obs. Compute the median confidence and maximum confidence estimates.

(c) We now approach the inference problem with Bayesian means. Starting with the

likelihood function, show that it can be written as follows, expressed as a function of

(a, γ) rather than of (a, b):

Ln(a, γ) = (1/γ)n I(a ≤ y(1) and y(n) ≤ a+ γ),

in particular taking the value zero if a > y(1) or y(n) > a+ γ. Find the ML estimates for

a and for γ. Then, with a flat prior on a, independently of a prior p(γ) for γ, show that

the posterior distribution of γ is

p(γ |data) ∝ p(γ)(γ −Rn,obs)(1/γ)n for γ ≥ Rn,obs.

(d) Without clear prior knowledge concerning the range a natural prior is proportional

to 1/γ. Show that this leads to the Bayesian posterior distribution agreeing precisely

with the frequentist CD above. In particular, explain that the Bayes machine, starting

from the 1/γ prior, leads to credibility intervals with perfect frequentist coverage. The

95 percent interval becomes [4.094, 7.189], for example. As an alternative, consider also

using a flat prior for γ, and show that this leads to a posterior with density and cumulative

equal to (xx check all details here xx)

gn(γ |data) = (n− 1)(n− 2)Rn−2n,obs(γ −Rn,obs)/γ
n,

Gn(γ |data) = 1− (n− 1)(Rn,obs/γ)n−2 + (n− 2)(Rn,obs/γ)n−1,

for γ ≥ Rn,obs. Plot both posteriors (with one of these equal to the CD) for the dataset

above.

(e) We now return to the Abel numbers 280, 304, 308, 310, 328, first with a natural

CD approach. Take these to be a random sample X1, . . . , Xn (without replacement) of

size n = 5 from {a + 1, . . . , a + N}, with both a and N unknown. It is natural to base

the inference on the range Rn = Vn − Un, where Un = mini≤nXi and Vn = maxi≤nXi.

Show that its distribution is independent of a. Argue that this leads to the confidence

distribution C(N) = PN (Rn > 48) + 1
2 PN (Rn = 48); as usual, PN signals probability

calculations under the value N of this parameter.
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(f) It remains to find expressions for the distribution of Rn. Consider first the joint

distribution of (U0
n, V

0
n ), where U0

n and V 0
n are as Un and Vn, but in the situation where

a = 0. Show that their joint probability distribution can be expressed as

f(u, v) =

(
v − u− 1

n− 2

)/(N
n

)
for 1 ≤ u, u+ n− 1 ≤ v ≤ N.

Deduce that the distribution of Zn = Vn − Un can be written

PN (Zn = z) =
∑

v−u=z
f(u, v) = (N − z)

(
z − 1

n− 2

)/(N
n

)
for z = n− 1, . . . , N − 1. Compute and display the CD and the confidence curve cc(N)

for N .

(g) We then work towards a Bayesian solution, based on data X1, . . . , Xn as above, a

random draw from {a+ 1, . . . , a+N}. With independent priors p0(a) and p(N) for the

start-point a and sequence length N , show that

p(a,N |data) ∝ p0(a)p(N) I(a+ 1 ≤ Un < Vn ≤ a+N)/

(
N

n

)
.

With a flat prior on the starting point a, show that this under some conditions leads to

p(N |data) ∝ p(N)
(N −Rn)

N(N − 1) · · · (N − n+ 1)
;

note the partial similarity to the posterior p(γ |data) in the continuous case above. Work

out the posterior distribution for N , over a suitable range of N values, starting with a

flat prior. Find posterior median and a 95 percent interval. – One ought to be careful

here, since the prior for a should be flat on 1, 2, 3, . . ., not including negative numbers.

Show that the associated refinement of the direct result above becomes p(N |data) ∝
p(N)q(N)/{N(N−1) · · · (N−n+1)}, where q(N) counts the number of a ≥ 1 satisfying

Vn −N ≤ a ≤ Un − 1. Show that this means either Un − 1 − (Vn −N − 1) = N − Rn,

provided Vn ≥ N + 1, or Un − 1, in the case of Vn ≤ N . In other words and symbols,

q(N) = (N − Rn) I(Vn > N) + (Un − 1) I(Vn ≤ N). Show however that for the present

occasion, the relevant values of N are smaller than Vn = 328, so this additional layer of

care turns out not to be needed.

(h) In addition to the five R numbers 280, 304, 308, 310, 328 known as of 2008, five more

such first-day Abel envelopes have been unearthed, the latest in 2022: 285, 314, 317,

327, 334. Update your inference, for the CD and the Bayesian posterior, and construct

versions of Figure viii.14; CDs in the left panel and Bayesian cumulatives in the right.

Compute also the median confidence and median Bayes estimates, along with 95 percent

intervals. (Answers: for data up to 2008, point estimates are 69 and 75, with intervals

[51, 164] and [51, 170], for the CD and the Bayes. With extended data up to 2022, point

estimates are 64 and 64, with intervals [55, 94] and [55, 100].)
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Figure viii.14: Left panel: Confidence distribution for N , the number of Abel 1929 first-

day cover envelopes, based on the 5 known numbers by 2008 (full curve), and on the now

10 known numbers by 2022 (dashed curve). Right panel: for the same information, the

Bayesian posterior c.d.f.

Story viii.9 Bach, Reger, organ fugues, and Wohltemperierte I und II. A fugue, whether

for a piano, an organ, a choir, or an ensemble of instruments, starts with the principal

fugue theme itself, before it is imitated and varied, perhaps in complex ways, in other

voices; typical Bach fugues have from three to five voices. Rydén (2020) has studied such

fugue themes from the organ works of Bach and other composers. He has accurately

defined certain features, for quantitive analysis and comparisons. These can be identified

and counted for each given fugue theme. In brief, these are

x1, the length, number of notes, range 7 to 64;

x2, the compass, range (in semitones), range 5 to 20;

x3, the number of unique notes, range 4 to 12;

x4, the initial interval (in semitones), range 0 to 12;

x5, the number of unique intervals between successive notes, range 2 to 11;

x6, the max interval (in semitones), range 2 to 12.

Further aspects of the data are briefly described in (xx data overview 2.B xx). (xx could

mention Prout, 1891, Tovey, 1924. xx)

The musical here is to statistically describe and compare the fugues of J.S. Bach

(1685–1750) and Max Reger (1873–1916). Figure viii.15 shows (x1, x6) for the nB = 47

Bach fugues and nR = 45 Reger fugues, indicating also that the distributions are not

very different. (xx mention the Händel concerto gross, is it no. 7, with only a single note

for the fugue theme, so x3 = 1; for Bach and Reger the range is from 4 to 12, though.

xx)
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Figure viii.15: For the chief organ fugue themes of Bach (B, 47 fugues) and Reger (R,

45 fugues), the plot gives features x1, the length, and x6, the max interval.

(a) For an initial check of the data, take the nB +nR = 92 fugues together. Go through

each of the fugue features x1, . . . , x6, and give brief statistical descriptions. Identify also

pairs of features with strong correlation, if any. Construct a version of Figure viii.15,

which has (x1, x6) for Bach and Reger; construct a similar one for (x1, x3).

(b) For each of the fugue features x1, . . . , x6, compute means and standard deviations,
for the 47 Bach fugues and 45 Reger fugues. Then for each feature, test equality of means,
say ξB,j = ξR,j , using t testing; see Ex. 3.4. Comment both on the use of t testing for
these data and on your findings. (You should find that for feature x3, Reger has higher
mean than Bach, whereas they are more or less equal, for the other five features.)

mean B mean R sd B sd R kurt B kurt R

x1 25.766 21.111 16.240 11.924 -0.336 2.571

x2 11.043 11.911 3.520 2.636 -0.642 -0.821

x3 6.872 8.556 1.541 1.791 0.729 -1.055

x4 2.617 2.222 2.524 1.894 2.323 13.201

x5 6.000 5.978 2.467 2.072 -0.579 -0.901

x6 8.021 8.089 3.267 2.275 -1.114 -1.053

(c) Then go on to testing equality of standard deviations, say σB,j = σR,j . Do this first

by applying a traditional F test, as from Ex. 3.37, even though the data are not normal.

This should give an indication that Bach intriguingly exhibits greater variability than

Reger, for features x1, x2, x4, x6, with the means being about the same. Also carry out
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the somewhat more elaborate testing regime, for equality of standard deviations, from

Ex. 3.37, which does not rely on normal data. Does this change the previous tentative

findings?
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Figure viii.16: Using logistic regression on the basis of fugue features x1, x3, the figure

shows the estimated P (Bach |x1, x3), for the 92 fugues, listed with the 45 Reger ones

first, the 47 Bach ones afterwards.

(d) The fugue features x1, . . . , x6 devised by Rydén (2020) are meant as useful musico-

logical descriptors, but as they concern merely the fugue theme itself, not the further

compositional development, they cannot be expected to and do not pretend to discrim-

inate between e.g. Bach and Reger to any high degree. Even amateur musicians are

able to see or hear the difference between a Bach page and a Reger page, by looking

through or playing the music, though it would be hard to translate such knowledge into

algorithms. Leaving these musical considerations aside, we look here into the degree of

discrimination afforded by the fugue theme features. This can clearly be done in several

ways, but here we attempt to build a formula for the probability that the piece is by

Bach, via logistic regression,

P (Bach |x1, . . . , x6) =
exp(β0 + β1x1 + · · ·+ β6x6)

1 + exp(β0 + β1x1 + · · ·+ β6x6)
.

Carry out such an analysis, and check how well it works, when we tentatively sort fugues

into Bach, if the probability is at least 0.50, and Reger, if the probability is less than
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0.50. In this analysis, which features xj are significantly present, according to the logistic

regression? (xx nils will check whether this is an ok illustration or not: given the hope

of expressing Pr(Bach) in this way, what’s the uncertainty, how wide are confidence

intervals? but we should have another illustration of this somewhere. xx)

(e) Search through submodels, where some but not all of the six features are being used,

and check their AIC scores. You should find that including x1, x3, but excluding the other

four, gives the best AIC score. Construct a version of Figure viii.16), which uses logistic

regression for x1, x3. What is the appararent success rate, for the ensuing algorithm,

which sorts fugues into Bach and Reger?

(f) The direct counting of how many of the 92 fugues are correctly sorted into Bach and

Reger suffers from a certain bias (xx point to things in Ch. 11 xx), since the data are

used both to construct a formula and to test that formula. To form a clearer picture,

carry out leave-one-out cross validation (xx pointer xx), and estimate the success rate.

(g) Rydén (2020) concentrated on the organ fugues of Bach, Reger, and others, as dis-

cussed above. We recommend playing through also the 24 fugues of Wohltemperiertes

Klavier I (from the Köthen period, c. 1722) and the 24 fugues of Wohltemperiertes Klavier

II (from Leipzig, c. 1742). Has Bach stayed about the same, as a fugue theme composer,

for the clavier? (xx might point to Hindemidt 1950. xx) One of us has actually played all

24 + 24 fugues and carefully recorded a table of x1, . . . , x6; see 2.B. Use this to construct

a version of the table below, of means, standard deviations, skewness, kurtoses, for the

six characteristics, for WTK I and WTK II:

xi sigma skewness kurtosis

I II I II I II I II

x1 18.042 21.333 7.932 9.342 0.653 0.429 -0.098 -0.241

x2 11.083 11.000 2.749 2.874 -0.264 -0.158 -0.947 -0.767

x3 7.750 7.333 2.069 1.685 0.547 0.120 -0.466 -0.615

x4 2.667 2.750 1.903 1.800 1.149 0.745 -0.004 0.226

x5 5.083 5.500 1.767 1.445 0.921 -0.373 0.350 -0.833

x6 8.167 7.750 2.220 2.625 -0.201 0.316 0.107 -1.023

(h) To assess the grand hypothesis that Bach did not change much, as a fugue theme

composer from 1722 to 1742, carry out tests for the hypotheses ξI,j = ξII,j and σI,j =

σII,j , for the means and standard deviations, for features x1, . . . , x6.

(i) Then compute empirical correlations, say rI,j,k and rII,j,k, for the two datasets, for

j < k. To compare these, test equality, using the machinery of Ex. 5.13. Argue that since

kurtoses values are relatively small, these simpler methods will suffice, without bringing

in the somewhat heavier machinery of Ex. 5.14.

(j) Take the 48 WTK clavier fugues together, and compare these with the organ fugues.

What might be notable differences?

(k) (xx briefly, other themes, other questions to briefly explore. distance between two

distributions for (x, y), when these take on integer values. xx)
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Story viii.10 Power law scaling for academics and support staff. Considering the world

of science, and more particularly the people populating the world’s many research institu-

tions, there is a surprisingly clear relationship between x0, the number of scientists, and

y0, the number of non-scientists or support staff (from administration and economists

and lawyers to a range of technical positions). Here we use a dataset building on Jamtveit

et al. (2009), with (x0, y0) for n = 61 institutions. These 2008 data range from smaller

centres, like the Centre for Advanced Study of Theoretical Linguistics at the University

of Tromsø, with 18 academics and 2 support staff; the bigger ones, like the Faculty of

Mathematics and Natural Sciences at the University of Oslo, with 944 academics and

356 support; to the truly gargantuan ones, like the UK National Health System, with

230,000 in science but 1,130,000 in various support positions. Intriguingly, all these data

dots of (x0, y0), from the tiny to medium to very big, follow a very clear regression line

on the log-scale, as seen in Figure viii.17, left panel. We shall work through the relevant

details and aspects to land the associated growth equation

number of support people = c (number of research people)b,

with b a positive growth parameter. (xx point to this phenomenon being at work in

various other context and applications. growing cities. Story iv.4. mention Jamtveit

et al. (2018) for an instance of growth parameter b shifting after political reform. nils

emil: we use the jamtveit data, with n = 61, but amend it slightly, using FHI, BI, and

perhaps a few updated numbers, for MN fakultetet, for CEES, for NR. we ask around

for these. xx)
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Figure viii.17: Left panel: On log10 scale, the number of academics (x-axis) vs. the

number of support employees (y-axis), for 61 research institutions, with regression line

and 95 percent confidence band. Right panel: Confidence curve for the break-even size

x0 = 10−a/(b−1) at which the non-academic staff will equal the academic staff in size.

(a) Transform to x = log10 x0 and y = log10 y0, and carry out linear regression analysis

yi = a+ bxi + εi on those scales, with the εi seen as i.i.d. with mean zero and standard
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deviation σ. You should find (â, b̂) = (−1.116, 1.289), with standard errors (0.076, 0.025).

Show that this leads to the power-law growth curve ŷ0 = 0.077 · x1.2890 for relating the

non-academic to the academic.

(b) In this context, searching for a universal statistical law valid along the full scale, from

the smallest of apples to the colossal ones, argue that it makes sense to give each research

institution equal weight. Back this up with inspection of the resiudals ε̂i = (yi−â−b̂xi)/σ̂.

For research institutions with 500 scientists, about how many non-scientists are there?

Construct a version of Figure viii.17, left panel, with a 95 percent pointwise confidence

band around the regression line. Estimate also the correlation, on the (x, y) scale, and

give a confidence interval. Is the correlation on the (x0, y0) scale meaningful?

(c) So how big will a research environment need to be, in order for the number of non-

scientists to equal the number of scientists? Argue that this concerns γ = 10−a/(b−1).

Estimate this number, and construct a version of Figure viii.17, right panel, using ideas

of Ex. 7.29 to work out a full confidence curve for this parameter.

(d) (xx to be finalised after having finalised the dataset. compare b for Norway, Denmark,

Sweden, and Other. small differences, but significant. xx)

(e) (xx can bother to do this too, a fresh little change from logistic regression. xx)

consider R(x0) = y0/(x0 + z0), the fraction of non-academics in a research institution,

by the above expected to be low for small but higher for bigger environments. explain

that this leads to studying the parameter

ρ(x0) =
10a+b log10 x

10log10 x + 10a+b log10 x
=

10axb−1

1 + 10axb−1
,

and show that this is a logistic regression in log10 xi. plot (log10 x0, R(x0)) along with

the estimated ρ̂(x0), and give a 95 percent confidence band.

(f) We learn from the above that there is a bureaucratic growth parameter b at work

for a long range of institutions, with y0
.
= cxb0. The growth parameter might however

vary across societies, as we saw when comparing Norway, Denmark, Sweden, or over

time, perhaps caused by political decisions. We now access the second dataset from

Jamtveit et al. (2009), with information pertaining to the sizes of the Universities of

Oslo, Bergen, Trondheim over the period 1960 to 2008. We may organise these data

as triples (ti, x0,i, y0,i), with ti being calendar year minus 1960. Again transforming to

xi = log10 x0,i and yi = log10 y0,i, work through models 0, 1, 2, which have the yi as

respectively N(a0 + b0xi, σ
2
0), N(a1 + (b1 + c1ti)xi, σ

2
1), N(a2 + (b2 + c2ti + dt2i )xi, σ

2
2),

the idea being to allow data to show us if b has not been constant over time. For the

three candidate models, estimate the parameters, comparing in the end the σ̂j and the

AIC scores aicj , e.g. using Ex. 11.3. Show that model 2, with growth parameter seen

as b2 + c2t+ d2t
2 over time t = year− 1960, is judged the best one. Plot the estimated

growth parameter over this time window, and comment.

(g) Above the context and the natural interest in the growth parameter led naturally to

a regression model with mean structure a+ (b+ ct+ dt2)x. Explain why and how this is



572 Sports

different from the more traditional modelling with mean structure a′ + b′x + c′t + d′t2,

say.

Story viii.11 Statistical Sightings of Better Angels, I. When is the next big interstate

war coming? Why do the nations so furiously rage together, why do the people imagine

a vayne thing? [xx nils edits this. need rus-ukr feb 2022 as datapoint, sadly. we go

more quickly for ML in two-parameter model, but include also briefly moment-matching

and quantile-matching. The Correlates of War story, here with emphasis on waiting

times between wars, the wi = xi − xi−1. They are approximately Expo, point to Lewis

Fry Richardson volume editor Gleditsch, but the mixed expo works better; point to

Pinker (2011), Hjort (2018b), Gleditsch (2020), Cunen et al. (2020a). point to data and

description in 2.B. we ought to include Rus-Ukr too, where the CoW definition would

say 2022, i suppose, not 2014. xx]

The dataset allwars-data, available at the book website, contains data pairs (xi, zi)

for all n0 = 95 gruesome interstate wars with at least 1000 battle deaths (as per well-

maintained and publicly available databases for such matters, specifically the Correlates

of War project), from the Franco-Spanish war in 1823 to the invasion of Iraque in 2003.

Here xi is the time where war i started, with dates transformed via months and days to

decimals, so that the Korean war started at x60 = 1950.483, etc.; and zi is the number

of battle deaths. Check Figure iii.3 for seeing the (xi, log zi) data displayed, along with a

horizontal line attempting to divide already big wars into the truly horrendously big ones

and the relatively speaking less big ones. We return to several other aspects of these war

data in Story iii.3, but presently focus attention on the xi, and more specifically with the

between-times

wi = xi+1 − xi for i = 1, . . . , n,

say, with n = n0 − 1 = 94.

(a) There are both empirical studies and certain theoretical arguments, also for many

other types of violence phenomena, pointing to the interesting and non-obvious suppo-

sition that the between-times ought to be approximately independent and identically

exponentially distributed. In other words and terms, the wi will behave as waiting times

in a Poisson process with constant rate. Fit the model f(w, λ) = λ exp(−λw) for w > 0

to the w1, . . . , wn data, via maximum likelihood. Assuming the model holds, give a 90

percent confidence interval for λ.

(b) For this one-parameter model, find a formula for the probability p = p1(λ) that the

time between two consecutive wars is at least w0 = 3.00 years. Estimate this probability,

and find a 90 percent confidence interval.

(c) Perhaps the size of a war influences the eagerness with which cohorts of humankind

again decide to embark on the next war? Fit the model where wi = xi+1 − xi is an

exponential with parameter λi = λ0 exp(βvi), where vi = log zi, and comment on your

findings.

(d) Broader models emerge by taking the wi given λ to be exponential with this param-

eter λ, but to take the λ not as a single constant, but coming from a distribution of such
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rates. Assume that λ comes from a Gamma distribution with parameters (a, b), i.e. with

density proportional to λa−1 exp(−bλ). As in Ex. 1.10, show that this leads to c.d.f. and

density

G(w, a, b) = 1− {b/(b+ w)}a = 1− exp{−a log(1 + w/b)},
g(w, a, b) = aba/(b+ w)a+1,

for w > 0. Starting from E (W |λ) = 1/λ and Var (W |λ) = 1/λ2, find explicit expres-

sions for the mean and variance of W .

(e) You should now fit also this two-parameter model to the w1, . . . , wn data. We return

to the more canonical maximum likelihood method below, but first we use the occasion

to see two other estimation schemes in action. (i) Use moment matching, see Ex. 2.28,

solving two equations with the two parameters, to find (âm, b̂m). (ii) Use also quantile

matching, see Ex. 2.30, finding (âq, b̂q) by setting two sample quantiles Qn(q1) and Qn(q2)

equal to the model based G−1(q1) and G−1(q2). Choose first (q1, q2) = (1/4, 3/4), but

use your code with other quantiles to check whether the resulting parameter estimates

are reasonably stable. Then given such parameter estimates, construct figures plotting

the empirical c.d.f. Fn(w) along with the parametrically estimated versions, including

also the simpler 1− exp(−λ̂w). Comment on your findings here.
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Figure viii.18: The empirical cumulative hazard for the between-wars time data (black

curve), along with the two fitted parametric hazard cumulatives A(w, λ̂) and A(w, â, b̂).

(f) Find a formula p = p2(a, b) for the probability that the waiting time between two wars

is at least w0 = 3.00 years. Estimate this p, using the parameter estimates you’ve found
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above, and compare with p̂1 = p1(λ̂). [xx something more, about finding confidence

interval, approximate standard deviation of p̂2, etc. could ask for bootstrapping; will

point to delta method. yes, we ask the readers to go through delta method for p2(â, b̂),

using results from earlier exercises, about (w̄, σ̂). xx]

(g) We now turn to ML estimation of the two-parameter model. It is fruitful to parametrise

the gamma mixing distribution via (a, b) = (λ0/c, 1/c); show that the random λ then

has mean λ0 and variance cλ0. Show that the density may be written g(w, λ0, c) =

λ0/(1+cw)1+λ0/c; show that it is close to λ0 exp(−λ0w) for small c. Write down the log-

likelihood function `n(λ0, c) and find its maximisers (λ̂0, ĉ). Construct a version of Figure

viii.18, with the nonparametric Nelson–Aalen estimate Â(w) alongside the parametric λ̂w

and A(w, λ̂0, ĉ). (xx polish this. xx)

(h) (xx then the things with the ML here. polish, calibrate with the above and with what

we have in Ch7 with CDs for boundary parameters, and round off. xx) In this context

we wish to have a clear test for c = 0, corresponding to Poisson process behaviour for the

waiting times, versus c > 0. This requires more care than usual since c = 0 sits at the

boundary of the parameter space, as opposed to being an inner point. To study the ML

estimator ĉ with the required care, show that the log-likelihood profile function becomes

`n,prof(c) = max
all λ0

`n(λ0, c) = −n{logBn(c) + cBn(c) + 1},

with Bn(c) = n−1
∑n
i=1(1/c) log(1 + cwi). Plot it for the war onset waiting time data.

For small c, show that Bn(c)
.
= w̄ − 1

2c(v
2
n + w̄2), where w̄ = (1/n)

∑n
i=1 wi and v2n =

(1/n)
∑n
i=1(wi− w̄)2 are the mean and variance of the wi; with continuity, therefore, we

have Bn(0) = w̄ and B′n(0) = − 1
2 (v2n + w̄2). Show that

`′n,prof(0) = −n{B′n(0)/Bn(0) +Bn(0)} = 1
2nw̄(v2n/w̄

2 − 1).

Argue that the ML estimator ĉ is positive, provided vn/w̄n > 1, but zero, in the case

of vn/w̄ ≤ 1. Check that the derivative at zero is indeed positive for the war onset

data. (xx then round off. note that v2n/w̄n →pr 1 if the data really come from an

exponential. so prof half etc. xx) the approximation
√
n(ĉ − δ/

√
n) under c = δ/

√
n

which makes it possible to have both a test, a p-value, different from the usual things,

and a CD for c. under c = 0, should land at
√
nĉ/λ̂0 →d max(0, N), half a normal, and

Dn = 2(`n,max − `n,0) →d max(0, N)2, half a chisquared. so pvalue is ... 1 − Φ(D
1/2
n ),

which is 0.039; hence expo hypothesis is rejected. we need to crank out a good CD, and

need exercise with
√
n(ĉ− δ/

√
n) limit, at the end of Ch5, to be used in Ch7.

(i) (xx rewrite and polish. xx) Above various analyses have been based on the observed

between-war times, up to w94 = x95 − x94. There is also information in the fact that

since onset time x95 = 2003.219, there have gudsigforbyde as of July 1, 2020, been no

further interstate wars (well, according to the operative definitions of the Correlates of

War project). Explain how this may be used to modify or update your previous analyses.

Story viii.12 How many were killed in Srebrenica, 1995, and in Guatemala, 1978–1996?

In dramatic data analysed by Brunborg et al. (2003), numbers are reported for lists of
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killed Muslim men in Srebrenica 1995. They in particular go into the details of List A,

by the International Committee of the Red Cross, and List B, by Physicians for Human

Rights. We may draw up a simple Venn diagram, with 5,712 found on both lists, 1,586 on

List A only, 192 on List B only. How can we estimate the number of people killed, outside

both lists, i.e. outside the A ∪B set in the Venn diagram? Similar challenges surface in

connection with the complicated task of estimating the number of killed individuals in

Guatemala, during the 1978–1995 period, where there are three lists A, B, C.

(xx need serious editing here. point to Ex. 4.45. basic reference Brunborg et al.

(2003) for two-sources, then Lum et al. (2013) and patrick ball for Guatemala. in

notes mention Bartolucci and Lupparelli (2008), Sanathanan (1972), Goudie and Goudie

(2007), who point back to Laplace and Grant? we need a Venn diagram. see Figure

viii.19. dealing with three sources means non-trivial generalisation from two to three.

xx) (xx then this, appropriate placed, for Guatemala. emil constructs a Venn diagram

for A, B, C. Sources are the Recovery of Historical Memory (REMHI), Commission for

Historical Clarification (CEH), and the International Center for Human Rights Inves-

tigations (CIIDH), with acronyms reflecting project names in Spanish. The data are

n1,1,1 = 393, n1,1,0 = 3943, n1,0,0 = 15955, n1,0,1 = 634, n0,1,1 = 898, n0,1,0 = 19663,

n0,0,1 = 6317; the task is to estimate the full number N = n0,0,0 + · · · + n1,1,1 of indi-

viduals killed, hence also in the process the number n0,0,0 of deads not captured on any

of the three lists. (xx Ball xx) reports the overall estimate 132,174 for the total number

of killed, with a standard error of 6,568; this agrees reasonably well with our likelihood

analysis below. make clear here that our analysis is under independence. point to Ball

and more. xx)
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Figure viii.19: Left panel: Venn diagram for the number of people killed and accounted

for, for the three lists REMHI, CEH, CIIDH, and with N000 denoting those killed but not

any of these lists. Right panel: Confidence curves for N , the total number of people killed

in Guatemala 1978–1996, in thousands, based on all three sources (full black curve), and

based on pairwise analyses.
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We start with the two-lists setup before we address the issues with three and more

lists. Consider therefore the setup of Ex. 4.45, with a multinomial model for counts

n0,0, n0,1, n1,0, n1,1 in a 2 × 2 table, but where n0,0 and also the total population size

N = n0,0 + n0,1 + n1,0 + n1,1 are unknown. Assuming independence between the two

underlying factors, so that the four probabilities p0,0, p0,1, p1,0, p1,1 can be expressed as

(1−p)(1−q), (1−p)q, (1−q)p, pq, the simple estimator N∗ = n1,·n·,1/n1,1 was analysed; in

particular, we found there that (N∗−N)/N1/2 →d N(0, τ2), with τ2 = (1−p)(1−q)/(pq).
Presently we use likelihood analysis for estimating N (and hence the hidden n0,0), which

also lends itself more easily to tables of higher order than two.

(a) When n0,1, n1,0, n1,1 are observed, show that the likelihood function can be expressed

as

L(N, p, q) =
N !

(N − s)!
{(1− p)(1− q)}N−s{(1− p)q}n0,1{p(1− q)}n1,0(pq)n1,1 ,

with s = n0,1 + n1,0 + n1,1, so that n0,0 + s = N . Show that this leads to the profiled

log-likelihood

`prof(N) = log(N !)− log((N − s)!) +NH(p̂N ) +NH(q̂N ),

in terms of the function H(r) = r log r + (1− r) log(1− r), and where p̂N = n1,·/N and

q̂N = n·,1/N . We shall reach results for the ML estimator N̂ .

(b) Use the Stirling approximation, see Ex. 4.31, to reach

`prof(N)
.
= (N + 1

2 ) logN − (N − s+ 1
2 ) log(N − s) +NH(p̂N ) +NH(q̂N ).

With r = c/N , show that the derivative ofNH(r/N) becomesH(c/N)−NH ′(c/N)c/N2 =

H(r)−H ′(r)r = log(1− r). Use this to show that the first derivative becomes

U(N) = logN − log(N − s) + log(1− n1,·/N) + log(1− n·,1/N) + εN ,

with εN = Opr(1/N).

(c) Letting N0 denote the true value, we shall use what we established in Ex. 4.45,

that there is joint asymptotic normality N
1/2
0 (p̂i,j − pi,j) →d Ai,j , with variances and

covariances given in that exercise. Show now that N
1/2
0 U(N0)→d U , with

U = −
(A0,0

p0,0
+

A1,·

1− p
+

A·,1
1− q

)
.

Show that A1,· and A·,1 have variances p(1− p) and q(1− q), that they are uncorrelated,

and that (xx check with care xx) cov(A0,0, A1,·) = −p0,0p, cov(A0,0, A·,1) = −p0,0q. Use

these facts to conclude that U ∼ N(0, J), with

J =
1− p0,0
p0,0

− p

1− p
− q

1− q
=

pq

(1− p)(1− q)
.
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(d) Then show that the second derivative can be written

I(N) = 1/N − 1/(N − s) +
n1,·/N

2

1− n1,·/N
+

n·,1/N
2

1− n·,1/N
,

and deduce that −N0I(N0)→pr J .

(e) Study the process ZN0(d) = `prof(N0 +dN
1/2
0 )−`prof(N0), and show that ZN0(d)→d

Z(d) = dU − 1
2d

2J . Use this to show the two crucial results, (i) that (N̂ −N0)/N
1/2
0 →d

U/J ∼ N(0, 1/J); (ii) that D = 2{`prof,max − `prof(N0)} →d U
2/J ∼ χ2

1. Explain how

this may be used to form confidence intervals for N , hence also for the hidden n0,0. Apply

this method for the data given above for the two lists of killed Muslim men in Srebrenica

1995; display the `prof(N) curve; give a 95 percent interval; and also a full confidence

curve for N .

(f) (xx questions to nils emil, as of 23-Aug-2023. here we don’t have any Bartlett identity,

or Cramér–Rao, or Wilks, so we do things from scratch. but conclusions are as we’re

used to. is there a way of saying that the setup is sufficienty close to something more

familiar, and then deduce normality and Wilks from this? xx)

(g) We then proceed to the setup with three lists, see Figure viii.19, left panel. Assuming

independence, show that the log-likelihood function can be expressed as

`(N, p, q, r) = log(N !)− log((N − s)!) + n1,·,· log p+ n0,·,· log(1− p)
+n·,1,· log q + n·,0,· log(1− q) + n·,·,1 log r + n·,·,0 log(1− r),

writing s = n0,0,1 + · · · + n1,1,1 for the sum over the seven observed cells, so that N =

n0,0,0+s. We use ‘·’ notation to indicate summing over the index or indexes in questions.

Show that this leads to the profiled log-likelihood

`prof(N) = log(N !)− log((N − s)!) +NH(p̂N ) +NH(q̂N ) +NH(r̂N ),

in terms of the function H(x) = x log x + (1 − x) log(1 − x), and with p̂N = n1,·,·/N ,

q̂N = n·,1,·/N , r̂N = n·,·,1/N .

(h) With Stirling approximation, reach first the approximation

`∗prof(N) = (N + 1
2 ) logN − (N − s+ 1

2 ) log(N − s) +NH(p̂N ) +NH(q̂N ) +NH(r̂N ).

Then show that this leads to the score function

U(N) = logN − log(N − s) + log(1− p̂N ) + log(1− q̂N ) + log(1− r̂N ) + εN

with εN = Opr(1/N) (xx check this xx), in terms of p̂N = n1,·,·/N , q̂N = n·,1,·/N ,

r̂N = n·,·,1/N . Taking the second derivative, find also (xx check remainder size xx)

I(N) = 1/N − 1/(N − s) +
n1,·,·/N

2

1− n1,·,·/N
+

n·,1,·/N
2

1− n·,1,·/N
+

n·,·,1/N
2

1− n·,·,1/N
.
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(i) Letting N0 denote the true number, show that as N0 grows large there is a clear limit

in probability

−N0I(N0)→pr J =
1− p0,0,0
p0,0,0

− p

1− p
− q

1− q
− r

1− r
=

pq + pr + qr − 2pqr

(1− p)(1− q)(1− r)
.

(j) Next on the agenda is working with the approximate distribution of U(N0). Writing

p̂i,j,k = ni,j,k/N , use Ex. 4.44 to show that there is joint convergence in distribution

N
1/2
0 (p̂i,j,k − pi,j,k) →d Ai,j,k, the 23 = 8 components of a zero-mean multinormal with

variances pi,j,k(1 − pi,j,k) and covariances −pi,j,kpi′,j′,k′ when the index sets are not

identical. Show then that

N
1/2
0 U(N0) = N

1/2
0 {− log p̂0,0,0 + log(1− p̂) + log(1− q̂) + log(1− r̂)}

→d U = − 1

p0,0,0
A0,0,0 −

1

1− p
A1,·,· −

1

1− q
A·,1,· −

1

1− r
A·,·,1.

This is a zero-mean normal, where it remains to find an expression for its variance.

Use algebra to show that (xx check all this with care xx) A1,·,·, A·,1,·, A·,·,1 are actually

independent, with variances p(1 − p), q(1 − q), r(1 − r), and that cov(A0,0,0, A1,·,·) =

−p0,0,0p, cov(A0,0,0, A·,1,·) = −p0,0,0q, cov(A0,0,0, A·,·, 1) = −p0,0,0r. Use these formulae

to show that indeed VarU = J . (xx note: there is no Bartlett identity here, so we need

to this from scratch. xx)

(k) Work with the process ZN0(d) = `prof(N0 + dN
1/2
0 ) − `prof(N0), and show that it

converges in distribution to Z(d) = Ud − 1
2Jd

2. Use this to derive (i) that (N∗ −
N0)/N

1/2
0 →d U/J ∼ N(0, 1/J); (ii) that D(N0) = 2{`prof,max − `prof(N0)} →d U

2/J ∼
χ2
1. Use this again to argue that cc(N) = Γ1(D(N)) is a valid confidence curve for N .

Construct a version of Figure viii.19, right panel. Here the full black curve is the crucal

one, using all three sources, centred at N∗ = 138, 576, with 95 percent interval 135,794

to 141,453 (length 5,659). This agrees reasonably well with (xx Ball xx). The three other

confidence curves use two sources at a time (xx round off this xx)

table 1 table 2 table 3 overall

n10 19,898 16,589 6,951

n01 7,215 20,561 23,606

n11 1,027 4,336 1,291

ML 167,916 120,145 158,935 138,576

low 158,918 117,309 151,458 135,794

up 177,681 123,097 166,979 141,453

length 18,763 5,788 15,521 5,659

(l) (xx ask readers to simulate a bit, to estimate N with cc(N), using union, setdiff,

intersect things. also to check that cc(N0) ∼ unif, in repeated sampling. xx)

(m) (xx we shall see, probably too much for us, depending on how smoothly can tall

`prof(N) things for general pi,j,k(θ) models. heterogeneity for the lists’ ability to find

people: take p ∼ Beta(k1p0, k1(1−p0)), q ∼ Beta(k2q0, k2(1−q0)), r ∼ Beta(k3r0, k3(1−
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r0)). this gives a six-parameter model for the mixed multinomial:

f̄ =
N !

n0,0,0! · · ·n1,1,1!

Γ(k1)

Γ(k1p0)Γ(k1(1− p0))

Γ(k1p0 + n−A)Γ(k1(1− p0) +A)

Γ(k1 +N)

× Γ(k2)

Γ(k2q0)Γ(k2(1− q0))

Γ(k2q0 + n−B)Γ(k2(1− q0) +B)

Γ(k2 +N)

× Γ(k3)

Γ(k3r0)Γ(k3(1− r0))

Γ(k3q0 + n− C)Γ(k3(1− r0) + C)

Γ(k3 +N)
,

with A = n1,·,·, B = n·,1,·, C = n·,·,1. For the Guatemala Venn diagram data, show that

(A,B,C) = (20925, 24897, 8242).

Story viii.13 New Haven annual temperatures 1912-1971. Figure viii.20 displays the

annual average temperatures at New Haven, Connecticut, in Celcius, for the years 1912

to 1971. (xx point to 2.B, in Ch. B. xx) Our task here is to analyse these data using first a

simple linear normal regression model, to assess whether the upward trend is significiant,

and to construct ‘prediction intervals’ for years a bit before and a bit after the observa-

tion range 1912-1971. We also investigate whether the data support more sophisticated

modelling, (i) by using t-distributed error terms, with heavier tails than those implied by

the traditional normal assumption, and (ii) by allowing for autocorrelation in the yearly

data.
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Figure viii.20: Annual average temperatures (in Celsius) at New Haven, Connecticut,

from 1912 to 1971. Also plotted is the linear trend, and 90 percent prediction intervals

for average temperature for the years 1907 and 1976.
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(a) For simplicity of computation, write ti = xi− 1912, for year xi. With yi the average

temperature in year xi, fit the linear normal regression model yi ∼ N(a+ bti, σ
2). Find

confidence intervals for b and for σ, and show in particular that b is indeed significantly

positive.

(b) For any year x0 outside the 1912-1971 range, form a 90 percent prediction interval

for the average temperature Y0 in that year. In other words and symbols, construct

[L(x0), U(x0)] such that P (Y0 ∈ [L(x0), U(x0)]) = 0.95. Construct a version of Figure

viii.20, where the two extra years are 1907 and 1976. Comment on your findings. Try

also with 1897 and 1986.

(c) Compute the estimated residuals ri = (yi − â − b̂xi)/σ̂, and plot these as a func-

tion of year xi. Use this to check aspects of the modelling assumptions, including the

independence.

(d) Sometimes meteorological data like these exhibit heavier tails than those implied by

the normality assumption. Look therefore into the extended four-parameter model which

takes yi = a+bti+σεi, where the εi are i.i.d. tν , the t distribution with degrees of freedom

ν. Compute and display the log-likelihood profile function `prof(ν), by maximising for

each ν over (a, b, σ), and find the ML estimates. Also display a confidence curve for

ν. (xx we give a figure here, askin readers to reproduce it; the point is that normality

is inside the likely range. explain that if ν is moderate to small, it might not affect

predictions so much, but the prediction intervals. xx)

(e) Then attempt another direction of sophistication, allowing autocorrelation. The

model is now yi = a + bti + σεi, with the εi being jointly normal, with variance 1, and

correlations ρ|i−j|, for some ρ. Compute and display the profiled log-likeihood function

`prof(ρ), and give a confidence curve for ρ. How do you conclude?

Story viii.14 Where are the snows of yesteryear? Figure viii.23 is a potentitally

dramatic one, for core segments of the Norwegian population, displaying the number of

skiing days per year, from 1897 to 2015, at the location Bjørnholt in Nordmarka, a tram

distance and a skiing hour north of central Oslo. A skiing day is defined as there being

at least 25 cm snow on the ground. The data are in (xx in the Ch overview xx). How

clear is the downward trend, will we still be able to ski, a dozen years from now?

(a) Since there is a gap in the time series, with no data from 1938 to 1954, we need a

bit of care both with the notation and the analysis. With data index t = 1, 2, . . . , n,

write zt for yeart − 1896, these running from 1 to 119, though n = 102, due to the

hole in the data. Fit the simple linear regression model to the skiing days data, with

yt = α0 +α1zt +σ0ε0,t, where the ε0,t are seen as i.i.d. N(0, 1). Find confidence intervals

for the slope α1, for σ, and for the expected number of skiing days in 2023, given the

available information up to 2015. Check the residuals r0,t = (yt − α̂0 − α̂1zt)/σ̂0, both

for constancy of variance, and for autocorrelation, using the approrpriate acf algorithm.

(b) To investigate whethere is is autocorrelation in the data, with possible consequences

for both slope estimation and prediction, explore the four-parameter model

yt = β0 + β1zt + σεt, where cov(εs, εt) = ρ|s−t|.
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Figure viii.21: The number of skiing days per year, at the location Bjørnholt in Nord-

marka, from 1897 to 2015, though with a gap in the series, with no records from 1938

to 1954. The dashed line is the estimated regression from (xx the four-parameter model

xx).

Compute the profiled log-likelihood function `prof(ρ), and give the associated confidence

curve cc(ρ). (xx point to Ex. 12.21. and to cc recipe. xx)

(c) Compute AIC scores for the three-parameter and the four-parameter model, and

comment. Also test ρ = 0 using (xx point to method of Ch3 xx).

(d) Use the four-parameter model to plot the data along with the estimated mean curve

and a 90 percent pointwise confidence band.

(e) (xx can do even more. point to Cunen et al. (2018). xx)

Story viii.15 Where are the snows of yesteryear? Figure viii.23 is a potentitally

dramatic one, for core segments of the Norwegian population, displaying the number of

skiing days per year, from 1897 to 2015, at the location Bjørnholt in Nordmarka, a tram

distance and a skiing hour north of central Oslo. A skiing day is defined as there being

at least 25 cm snow on the ground. The data are in (xx in the Ch overview xx). How

clear is the downward trend, will we still be able to ski, a dozen years from now?

(a) Since there is a gap in the time series, with no data from 1938 to 1954, we need a

bit of care both with the notation and the analysis. With data index t = 1, 2, . . . , n,
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Figure viii.22: The log-likelihood profile funcion `prof(ρ), for the four-parameter model

(xx). The horizontal dashed line indicates the level `1,max obtained for the submodel of

independence, where ρ = 0.

write zt for yeart − 1896, these running from 1 to 119, though n = 102, due to the

hole in the data. Fit the simple linear regression model to the skiing days data, with

yt = α0 +α1zt +σ0ε0,t, where the ε0,t are seen as i.i.d. N(0, 1). Find confidence intervals

for the slope α1, for σ, and for the expected number of skiing days in 2023, given the

available information up to 2015. Check the residuals r0,t = (yt − α̂0 − α̂1zt)/σ̂0, both

for constancy of variance, and for autocorrelation, using the approrpriate acf algorithm.

(b) To investigate whethere is is autocorrelation in the data, with possible consequences

for both slope estimation and prediction, explore the four-parameter model

yt = β0 + β1zt + σεt, where cov(εs, εt) = ρ|s−t|.

Compute the profiled log-likelihood function `prof(ρ), and give the associated confidence

curve cc(ρ). (xx point to Ex. 12.21. and to cc recipe. xx)

(c) Compute AIC scores for the three-parameter and the four-parameter model, and

comment. Also test ρ = 0 using (xx point to method of Ch3 xx).

(d) Use the four-parameter model to plot the data along with the estimated mean curve

and a 90 percent pointwise confidence band.

(e) (xx can do even more. point to Cunen et al. (2018). xx)
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Figure viii.23: The number of skiing days per year, at the location Bjørnholt in Nord-

marka, from 1897 to 2015, though with a gap in the series, with no records from 1938

to 1954. The dashed line is the estimated regression from (xx the four-parameter model

xx).

Story viii.16 How many Clethrionomys glareoli? In work reported on in Blower et al.

(1981, p. 83), a population of the bank vole C. glareolus, inside a certain area of biological

interest, the voles were trapped, then marked and released (and potentially trapped

again), over a six-month period. In total, 53 different voles were caught, in the course of

109 captures. So how many glareoli were there?

(xx serious cleaning in a little while, after moving an earlier Ch5 exercise here. xx)

This and related problems have a connection to the card collector problem studied in

Ex. 4.65. Consider a version of that setup, with cards X1, X2, . . . being sampled from

{1, . . . , n} with equal probabilities 1/n. In the exercise pointed to we investigated the

full time T1 + · · · + Tn it takes to have the dull deck of cards, with Tr time needed to

have seen new card no. r, having started clocking time again after having previously

found r − 1 cards. Here we turn the table and ask how many n cards there are, based

on having seen r different cards after Vr attempts. With many repetitions among the

sampled cards one expects a low n, and if one needs many samples to reach a low r one

expects the opposite.

(a) Via arguments discussed in Ex. 4.65, show that Vr = T1 + · · ·+Tr, with independent
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Figure viii.24: The log-likelihood profile funcion `prof(ρ), for the four-parameter model

(xx). The horizontal dashed line indicates the level `1,max obtained for the submodel of

independence, where ρ = 0.

waiting times Ti ∼ geom(pi), and pi = (n− i+ 1)/n = 1− (i− 1)/n. Show that

ξr(n) = En Vr =

r∑
i=1

1/pi =
n

n
+

n

n− 1
+ · · ·+ n

n− r + 1
= n(Hn −Hn−r),

where Hn = 1 + 1/2 + · · ·+ 1/n is the harmonic series partial sum. If Vr = 109 captured-

released-recaptured samples from a closed population of an unknown number n of animals

yield r = 53 different animals, use this moment equation to estimate n.

(b) Show that the joint distribution of the observed (T1, . . . , Tr) is

1 ·
( 1

n

)t2−1(
1− 1

n

)
· · ·
(r − 1

n

)tr−1(
1− r − 1

n

)
with log-likelihood

`r(n) =

r∑
i=2

{
(ti − 1) log

( i− 1

n

)
+ log

(1− i− 1

n

)}
.

Conclude also that Vr = T1 + · · · + Tr is sufficient for n. The ML estimator is the

maximiser of `r(n), rounded off to nearest integer, if required.
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(c) Allowing ourselves taking the derivative with respecct to n, even though it is not a

continuous parameter, show that ∂`r(n)/∂n = −Vr/n + Hn − Hn−r. Use this to show

the ML estimator n̂ is the same as the moment estimator. The result is n̂ = 64.

(d) (xx a bit more. something about normal approximation being ok for some (r, n)

areas but not others. but cc(n) is perfect. xx)

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

55 60 65 70 75 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of voles

co
nf

id
en

ce

Figure viii.25: Confidence curve cc(n) for the number of Clethrionymus glarealus, after

having trapped r = 53 different animals in the course of Vr = 109 trappings.

(e) Show that the likelihood function for T1, . . . , Tr may be expressed as

n−Vrar(n) = exp{−(Vr/r) log(n/r) + br(n)},

for suitable ar(n) and br(n). Show that this is an exponential class situation, see Ex. 1.57

(xx check with care, also regarding canonical parameter, and uses in Ch7 xx), with

log(n/r) the canonical parameter and Vr/r the sufficient statistic.

(f) Use theory from (xx point to exercise in Ch7) to argue that the confidence distribution

Cr(n) = Pn(Vr < Vr,obs) + 1
2Pn(Vr = Vr,obs) for n ≥ Vr,obs

is optimal (modulo half-correction for discreness). Implement this, computing Cr(n) via

a high number of simulations of Vr for each n in question, and display the confidence

curve cc(n), as in Figure viii.25. Find also a 90 percent confidence interval, and compare

the ML estimate with the median confidence estimate.
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(g) (xx round off. xx)

Story viii.17 Golf putting probabilities. You’re golfing, and when closer to the hole

than some twenty feet need to focus on your putting. Drawn from databases of several

hundreds of professional tournaments, the data below, from Gelman and Nolan (2002)

with further discussion in Schweder and Hjort (2016, Ch. 14), give the number mj of

attempts and the number yj of successful ones from these, at distances xj , in feet,

for say j = 1, . . . , k. Our story concerns estimating the success probability p(xj), and

also modelling the inherent variability at work. See Figure viii.26, which in particular

also displays the raw estimates p̃j = yj/mj , with small vertical 90 binomial confidence

intervals around them. It will be of relevance for a few of these models to factor in the

radii R for the hole and r for the ball, which are respectively 4.252/2 inches and 1.680/2

inches, or 0.0177 and 0.070 on the foot scale.

feet away; number of tries; number of successes

11 237 75

2 1443 1346 12 202 52

3 694 577 13 192 46

4 455 337 14 174 54

5 353 208 15 167 28

6 272 149 16 201 27

7 256 136 17 195 31

8 240 111 18 191 33

9 217 69 19 147 20

10 200 67 20 152 24

(a) We start out viewing the data as a sequence of independent binomial experiments,

with Yj ∼ binom(mj , pj) for j = 1, . . . , k. The task is to model p1, . . . , pk, as functions of

the distances x1, . . . , xk to the hole. Show that with any such model, say pj = p(xj , θ),

the log-likelihood function becomes
∑k
j=1[yj log pj(θ) + (mj − yj) log{1− pj(θ)}]. Carry

out logistic regressions, in x (order one); in x, (x− x̄)2 (order two); in x, (x− x̄)2, (x− x̄)3

(order three); in x, (x − x̄)2, (x − x̄)3, (x − x̄)4 (order four). As usual, x̄ is the mean of

the xj . For each of these models, estimate and plot the curves

p1(x) = H(a+ bx) up to p4(x) = H(a+ bx+ c(x− x̄)2 + d(x− x̄)3 + e(x− x̄)4).

This can be achieved in R via glm(cbind(y,m-y) ∼ x + x2 + x3, family=binomial),

and so on; for this standard type of model there is then no need to programme the log-

likelihood function etc. For the four models, find the log-likelihood maxima and AIC

scores, as per Chapter 11. In particular, you should find that the most traditional order

one model does not work well here, and that AIC prefers the order four model among

these.

(b) Considering the population of good golfers, and disregarding other geometric aspects

of these thousands of putting situations, let Z be the angle of the put, from putting

position to the hole. Not all attempts are perfect (Z close to zero), so we can translate
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Figure viii.26: The raw success estimates p̃j = yj/mj at distances 2, 3, . . . , 20 feet from

the hole, along with small vertical 90 percent binomial intervals. The full curve is the

fitted p(xj , a, b) with the geometric model, and the dashed curve is the simple logistic

regression curve.

uncertainty and variability to a distribution of the random angle Z. In terms of such a

distribution, show that to a good geometric approximation,

p(x) = P (sinZ ∈ (−(R− r)/x, (R− r)/x)) for x ≥ R− r.

A natural model for the random angles is a normal (0, σ2). Fit the resulting model

p(xj , σ) = P (|σN | ∈ (−dj , dj)) for j = 1, . . . , k,

with N denoting a standard normal, and where we write dj = arcsin((R− r)/xj) for the

bounds inside which successful putting angles must land at distance xj . Compute the

log-likelihood maximum, and compare with the logistic regressions above, using the AIC

scores. In particular, demonstrate that this simple geometric one-parameter moel works

better than logistic regressions of order one and two.

(c) (xx a little bit more with simple p(xi, σ) model before we go to variable σ. show that

it works much better than standard first order two-parameter logistic regression; see also

Figure viii.26. check σ̂1, . . . , σ̂k, fitted at the individual xj . Can the σ̂j reasonably be

taken as constant, across putting distances? can have a simple figure. xx)
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Figure viii.27: Left panel: The estimated density for σ, on the scale of ordinary degrees

(i.e. 90/(π/2) times radians). The point estimate 1.53 from the no-variability model is

shown on the horizontal axis. Right panel: The estimated density of putting angles,

again in ordinary degrees.

(d) The simple model above somehow puts all angular uncertainty into one common σ.

It might be better and more informative to view these σ as coming from a distribution,

across golfers. There are several such possibilities, starting with Z |σ ∼ N(0, σ2), but

here we take σ2 to have an inverse gamma distribution, i.e. λ = 1/σ2 ∼ Gam(a, b); the

model is flexible, and we can get through the mathematics to an explicit distribution for

Z. Writing g(·, a, b) for that gamma density, show that this leads to a density for the

random Z of the form

f̄(z) =

∫ ∞
0

φ(λ1/2z)λ1/2g(λ, a, b) dλ =
1

(2π)1/2
Γ(a+ 1

2 )

Γ(a)

ba

(b+ 1
2z

2)a+1/2
.

While this may be worked with directly, it is useful to transform the density to a member

of the well-known distributions, to facilitate computations of probabilities etc. Show

therefore that

V = ( 1
2Z

2/b)/(1 + 1
2Z

2/b) ∼ Beta( 1
2 , a),

and express the c.d.f. of Z in terms of the c.d.f. Be of this Beta distribution. Demonstrate

that all this leads to the model

p(xj , a, b) = P (|Z| ≤ dj) = Be((1
2d

2
j/b)/(1 + 1

2d
2
j/b),

1
2 , a) for j = 1, . . . , k.

Fit this model numerically, maximising the log-likelihood function; you should find

(â, b̂) = (2.8498, 0.00154). Compute also the log-likelihood maximum, and demonstrate

that this two-parameter model has the best AIC score of the four plus two models con-

sidered (so far).
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(e) Compute and display the estimated densities for σ, the variable normal scale for the

putting angle, and for Z, the putting angle itself. Since most golfers prefer standard

angular degrees to radians, present these densities on the degree scale z′ = 90/(π/2) z =

(180/π) z. Construct versions of the plots in Figure viii.27. With Z the random angle,

use these fitted densities to demonstrate that 95 percent of all putting angles are inside

±3.30 degrees, and 99 percent are inside ±5.05 degrees. Note that this signifies rather

heavier tails than for the normal; in a fair proportion of cases, the shot is off with more

than say 4 degrees, which is enough to not hit the hole.

(f) It does perhaps not appear likely, but we may check statistically whether this popu-

lation of players might have some systematic angular bias in their putting. The simplest

check on this is to use the two-parameter normal Z ∼ (ξ, σ2). Compute and display

the profiled log-likelihood `prof(ξ). It will indeed be seen to be very flat at the top,

around zero, with no indication of such a bias. (xx point to previous stuff perhaps in

Ch1 regarding noise in ξ being picked up in the σ. xx)
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Figure viii.28: Left panel: model residuals (yj − mj p̂j)/{mj p̂j(1 − p̂j)}1/2, for two-

parameter geometric model (full black), simple geometric model (dotted), and for the

third-order logistic model (dashed). These indicate good fit, but overdispersion. Right

panel: At distances x equal to 3, 10, 20 feet, the Beta-binomial model leads to probability

densities, centred around respectiely 0.701, 0.322, 0.165. The strict binomial models take

these probabilities as fixed, for all golfers at a fixed distance from the holw.

(g) (xx we do one more thing. binomial overdispersion. point to Story viii.3. xx) There is

another tool for assessing and comparing model adequacy, with such data for a collection

of tables, which is to monitor the model residuals r̂j = (yj − p̂j)/{mj p̂j(1 − p̂j)}1/2
for j = 1, . . . , k, with p̂j that model’s implied estimates of the pj . If the model is

adequate, explain why these should be distributed approximately as standard normals;

also, the residual sum of squares Q =
∑k
j=1 r̂

2
j should roughly have a χ2

df distribution,

with df = n− p, where p is the number of parameters estimated. Compute and display
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these residuals, for the models entertained so far; see the left panel of Figure viii.28. It

will be seen that even when the fitted p̂j manage to be close to the raw estimates yj/mj ,

there is binomial overdispersion; the (yj −mj p̂j)
2 tend to be bigger than mj p̂j(1− p̂j).

(h) The modelling and analyses above rest on the binomial assumption, for each yj and

position xj , which means relying on all shots having the very same success probability

pj . This is not entirely realistic, as seen via the model residuals in the previous point.

This invites modelling an extra little layer of uncertainty in pj around some central value

pj,0. A natural way for this is the Beta-binomial setup, see Ex. 1.25, with yj | pj ∼
binom(mj , pj), but pj ∼ Beta(cpj,0, c(1 − pj,0)). In other words, we use one of the

parametric models for pj,0, but then estimate the additional variability via c. Show that

the log-likelihood becomes

k∑
j=1

log
[ Γ(c)

Γ(cp0,j(θ)) Γ(c(1− p0,j(θ)))
Γ(cp0,j(θ) + yj) Γ(c(1− p0,j(θ)) +mj − yj)

Γ(mj + c)

]
.

Analyse this binomial overdispersion model, for the case of the simple geometric pj(σ) =

2 Φ(dj/σ) − 1 model, by maximising the log-likelihood over (σ, c). Show that the log-

likelihood maximum increases very significantly, from the one-parameter binomial based

to the two-oarameter overdispersion model. This does not necessarily influence the es-

timated overall curve p(x), but aims at describing the probability mechanisms much

better, e.g. for prediction. (xx can ask for a figure to complent the first. instead of

binomial based 90 percent intervals around yj/mj , give 90 percent intervals induced by

the estimated beta-binomial model. xx) (xx we might give a little table, for models 1, 2,

3, 4, then 5, 6, 7, with logLmax, AIC, Q. xx)

dim logLmax aic Q

1 2 -3020.155 -6044.309 258.968 logistic order 1

2 3 -2929.041 -5864.082 74.356 logistic order 2

3 4 -2912.873 -5833.745 40.743 logistic order 3

4 5 -2904.889 -5819.778 25.288 logistic order 4

5 6 -2904.365 -5820.731 24.337 logistic order 5

6 1 -2922.639 -5847.279 62.436 one-para geometric

7 2 -2911.589 -5827.178 36.741 geometric with extra

8 2 -2910.926 -5825.852 71.528 two-para Beta-binomial

(i) (xx can at least point to a Tore-Nils thing with estimation and giving confidene

curve for x0, the distance at which the probability of success is e.g. 0.75. the point is

to showcase than even with a complicated x0 = x0(a, b) formula, we may crank through,

find deviance and then cc(x0). xx)

Story viii.18 Who wins? Computing probabilities as a function match time. (xx this

ought to be good stuff, composed the day after Nor-Den 27-25 November 2022. data1:

time points for goals; data2: 117 match results, for correlated Poissons. need to calibrate

with what we write elsewhere on Poisson processes. xx) Watching a handball match,

the two teams have at time t scored A(t) and B(t) goals. In our continuous excitement

we speculate perhaps perplexidly about the final outcome, i.e. A(60) = A(t) + A′ and
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B(60) = B(t) + B′. Below we find the dynamically evolving probabilities for team A

winning and for team B winning, as a function of time t; see Figure viii.29 for how these

dramatically panned out for the women’s European Championship 2022, with Denmark

taking an early lead but Norway prevailing in the end.
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Figure viii.29: Probabilities that Norway will win, that Denmark will win, or that it will

be a draw, as a function of match time, in the women’s European Finals November 2022.

(a) Assume the teams are about equally strong, and that goals are scored according to

independent Poisson processes with rate λ = 27.00; this is close to the average number

of goals scored by teams in women’s Olympic, World, European tournaments. What is

the pre-match probability of a draw? What is the most likely result at halftime?

(b) Show that the relevant probabilities, at time t during the match, where A(t) and

B(t) have just been observed, are

pA(t) = P (A(t) +A′ > B(t) +B′) = P (A′ −B′ > B(t)−A(t)),

pB(t) = P (A(t) +A′ < B(t) +B′) = P (A′ −B′ < B(t)−A(t)),

pD(t) = P (A(t) +A′ = B(t) +B′) = P (A′ −B′ = B(t)−A(t)),

in which A′ and B′ are independent Poissons with means λ(60 − t). Find formulae for

these probabilities, in terms of sums. Then compute and plot these, from the beginning

to the end of the match, for the case of Norway–Denmark in the European 2022 finals;

produce indeed a version of Figure viii.29.
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(c) When A(t) is a Poisson process with constant rate λ, show that A(t) given A(60) = m

is a binomial (m, t/60). Show more generally that with match time [0, 60] split into dis-

joint intervals C1, . . . , Ck, with lengths `1, . . . , `k, then the goal counts (A(C1), . . . , A(Ck))

for these intervals have a multinomial distribution m, (`1/60, . . . , `k/60). For a finished

handball match, having observed the A(t) process, explain how a Pearson chi-squared

test (see Story vii.1) can be put up to test the constant rate Poisson modelling hypoth-

esis. Carry out such a test, for Norway and for Denmark, in the European 2022 finale,

counting the number of goals scored in the six time windows [0, 10], . . . , [50, 60].
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Figure viii.30: Two summary views of the Norway–Denmark European finals 2022. Left

panel: the number of goals scored, as a function of match time. Right panel: bridge

plots, to assess the Poisson constant rate hypohtesis. These will under that modelling

assumption be inside ±1.358 in 95 percent of all cases.

(d) Another view of the scoring-of-goals processes is as follows. If team A has scored

A(60) = m goals, show that the time points T1 < · · · < Tm at which goals have been

scored follows the joint density m!/60m on the set t1 < · · · < tm. Explain that this also

means that (T1, . . . , Tm) behaves as an ordered sample from the uniform distribution on

[0, 60]. Use this again to argue that with Fm(t) the empirical c.d.f. for the data, the

process Zm(t) = m1/2{Fm(t)− t/60} is close in distribution to that of Z(t) = W 0(t/60),

with W 0 a Brownian bridge; see Ex. 9.9. To check the constant rate Poisson process

assumption, therefore, compute and display these Zm processes, for Norway and Denmark

in their 27–25 European finals match. Construct a version of Figure viii.30.

(e) There is perhaps a feeling among spectators and handball followers that the top

teams to a high degree follow each other during matches; the final scores A(60), B(60) are

often close. This motivates Poisson models with positive dependence. For a parameter

a ∈ [0, 1], consider A = C + A0 and B = C + B0, where A0, B0, C are independent

Poissons, with parameters aλ, a(1 − λ), a(1 − λ), and where only (A,B) are observed.
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Show that A and B are Pois(λ), but dependent, with correlation a. Show that

P (A = a,B = b) =
∑

c≤min(a,b)

g(c, aλ) g(a− c, (1− a)λ) g(b− c, (1− a)λ),

in terms of the point mass function g(x, θ) for the Poisson with parameter θ. Now

access the table of results (y1, y2) from 117 top-level women’s handball matches (xx

described in dataoverview xx). Plot the differences y1−y2 divided by standard deviation

to argue that matches 33 (Norway vs. Slovenia, 41-18) and 54 (Greece vs. China, 13-

33) are clear outliers, and work then with the resulting cleaned table of 115 match

results. Programme and graph the profiled log-likelihood function for the a parameter,

say `prof(a) = maxall λ{`(a, λ)}. Estimate the correlation parameter a, and construct a

confidence curve cc(a). This should give the ML estimate â = 0.218, with 95 percent

interval [0.012, 0.390]. Thus handball matches at the top international level are positively

correlated Poisson processes.

(f) (xx round off. more sophisticated plots for pA(t), pB(t), pD(t), using this dependence

model. probably not very different. xx)

Story viii.19 The turn-around operation: from 0-2 to 3-2. (xx nils ranting a bit before

deciding whether this is an ok story or whether things should be given to exercises,

Poisson and waiting times with integrals etc. Briefly point to Belgium vs. Japan, with

Japan leading 2-0, but Belgium able to come back and win 3-2, in the round-of-16 match

World Cup 2018, ‘overcoming a curse’, according to media. xx) Football is a simple game:

22 men chase a ball for 90 minutes and, in the end, the Germans win. Consider a match

between two essentially equally strong teams A and B. The score at time t is (X(t), Y (t)),

with independent Poisson processes with the same rate λ. In a detailed story in Claeskens

and Hjort (2008b, Ch. 6), analysing 254 matches to see how FIFA ranking scores may

influence these Poisson rates, 627 goals were scored, which means an average of 2.468

goals per match, which we here translate to a common rate of λ = 1.234/90 per minute,

up to match length T = 90 minutes (sometimes extended with a few extra minutes for

so-called injury time). This little story aims at assessing how small the probability is,

for experiencing a match with first has 0-2 and then is turned around to a 3-2 or even

better.

(a) What is the probability that the score is still 0-0 after five minutes, and after time

t? Plot this probability, for t ∈ [0, T ].

(b) What is the probability that B some time during the match will be leading 2-0 over

A? Show that this is

p0 =

∫ T

0

g2(s, λ) exp(−λs) ds,

with g2(s, λ) = λ2s exp(−λs) the Gam(2, λ) density, a sum of two Expo(λ). Carry out

the integration to find p0 = (1/4){1− (1 + 2λT ) exp(−2λT )}. This is 0.176. Argue that

the frequency of matches where a 2-0 lead will occur, some time during the event, is 2p0 =

0.353. – Note that if the teams had been allowed to play on, with T increasing beyond
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the 90 minutes, the p0 tends to 1/4, the chance that when observing two independent

undisturbed Poisson processes X(t) and Y (t) over time, with the same intensity, the two

first events will occur in the X process.

(c) Show that in games where team A experiences a 0-2 situation against team B, the

random timepoint S where this occurs has probability density,

h2(s, λ) = g2(s, λ) exp(−λs)/p0 =
λ2s exp(−2λs)

(1/4){1− (1 + 2λT ) exp(−2λT )}

for s ∈ [0, T ]. Show that it peaks at s0 = 1/(2λ), here in about 36 and a half minute.

Construct a figure showing this.

(d) Team B now leads 2-0, at time point S, and team A better hurry up. Show that the

probability that team A will actually accomplish the 3-2 feat, given that there is a 0-2

time point in the first place, may be expressed as

p∗ =

∫ T

0

P (hurry up from s to T |S = s)h2(s, λ) ds

=

∫ T

0

G3(T − s, λ) exp{−λ(T − s)}h2(s, λ) ds,

with G3(T −s, λ) the cumulative gamma (3, λ) distribution function for the sum of three

exponential waiting times, evaluated at match time minus s, and exp{−λ(T − s)} the

probability that team B doesn’t score during this remaining time.

(e) Show first that the probability that a Poisson with mean λ(T − s) is less than or

equal to 2 is Q(2, λ(T − s)) = exp{−λ(T − s)}{1 + λ(T − s) + 1
2λ

2(T − s)2}. Use this to

show that the probabiity of experiencing a 0-2 followed by a 3-2 operation is

p∗ =

∫ T

0

{1−Q(2, λ(T − s))} exp{−λ(T − s)}h2(s, λ) ds.

(xx check. we find p∗ = 0.014. xx)

(f) When Belgium see Genki Haraguchi and Takashi Inui score, in the 48th and 52nd

minute, they ought to be forgiven for being merely moderately interested in the overall

p∗ = 0.014, but more concerned with the imminent chance that they can still manage,

given that they face 0-2 after precisely s = 52 minutes. Show that this probability is

p∗(s) = G3(T − s, λ) exp{−λ(T − s)}.

Plot that probability curve, as a function of 0-2 occurrence time s. At time s = 0, this is

the chance of winning 3-0 or more, namely 3.7 percent, and after 52 minutes, it is about

1.0 percent.

(g) (xx could round off with one or two supplementing questions, using the fifa scores

database nils built up for gerda-nils Ch6, to make it statistical too. there λi,j =

h(xi/xj , θ), in terms of pre-tournament fifa scores. point finally to magne aldrin and

anders løland, their prediction machines at NR, during tournaments. xx)
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Story viii.20 Bolt from heaven. (xx to come. 195 sub-Hary races 2000 to 2007. how

surprised ought we to have been, when Usain Bolt ran 9.72, in May 2008? data in 2.B.

mention Hary (1960), Bolt (2013). See Figure viii.31. xx) On 31 May 2008, Usain Bolt

burst upon us, with his first world record, 9.72. How surprised were we? To approach

that question, along with those which followed as the Bolt From Heaven did 9.69 (August

2008) and then 9.58 (August 2009), we compare the 9.72 performance with the n = 195

sub-10.00 races of 2000–2007; these are given in data description 2.B (xx check that data

description says these are bona fide races; dopers pushed out of dataset xx).
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Figure viii.31: Left panel: displayed are all the 195 sub-Hary races achieved during the

eight seasons 2000 to 2007, along with the new word record 9.72 ran by Bolt in May 2018.

Right panel: the empirical distribution function (black, rugged) for these 195 races, along

with the fitted two-parameter distribution from extreme values theory.

(a) To readily access a body of literature on extreme values theory (xx references here,

embrechts xx), we transform these race times ri to yi = 10.005−ri. Such theory predicts

that the yi should follow the distribution

G(y, a, σ) = 1− (1− ay/σ)1/a for y > 0,

for parameters (a, σ). Show that the log-likelihood function takes the form

`(a, σ) =

n∑
i=1

{− log σ + (1/a− 1) log(1− ayi/σ)}.

Fit the model, which should give ML estimates (â, σ̂) = (0.1821, 0.0701), and produce a

version of Figure viii.31. As we see, the model works very well.

(b) For a season with N top races, below the Hary threshold 10.00, consider p =

p(a, σ,N) = P (max(Y ′1 , . . . , Y
′
N ) ≥ w). With N being a Poisson λ, show that

p = p(a, σ) = 1− exp{−λ(1− aw/σ)1/a}.
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(c) Use λ = 198/8 = 24.375, the rate of top races per year. For each threshold w we may

estimate p(a, σ). With w = 10.005− 9.72 = 0.285, for 31 May 2008, compute p̂ = 0.035;

the estimated probabiity of seeing a 9.72 better in the course of 2008, as judged from 1

January 2008, was 3.5 percent.

(d) (xx then about standard error. and CD for p = p(a, σ). xx)

(e) xx

Story viii.21 Monetary pre-WW2 US policy and its effects. C.A. Sims won the Sveriges

Riksbank Prize in Economic Sciences im Memory of Alfred Nobel for 2011. In his prize often

inaccurately

called the Nobel

Prize of

Economics

acceptance lecture he related his own contributions to the fundamental statistical eco-

nomics theory work of Trygve Haavelmo, winner of the same Sveriges Riksbank Prize

for 1989, see e.g. Haavelmo (1943), and used the occasion to analyse a certain dataset,

given below, concerning US macroeconomics for the pre-WW2 years 1929–1940. Specifi-

cally, the variables examined amount to the multivariate time series of consumption (C),

investment (I), government spending (G). From basic economics theory he constructed a

certain vector time series model, with six regression coefficients and three variance pa-

rameters. For this Stockholm occasion, Sims (2012a,b) advocated and showcased the use

of Bayesian methodology, setting up priors for the nine parameters followed by MCMC

computation, assessment, interpretation of posterior summaries. Below we re-analyse

the same data, using the very same model and with the same constraints on its nine

parameters; we use however the frequentist methodology of Ch. 7, and derive confidence

distributions for the crucial parameters. These clash significantly with Sims’s findings,

and we shall see how and why below. (xx we point to Ex. 7.14 and 7.15, and also to

Ex. 7.11. xx)

year C I G

1929 736.3 101.4 146.5

1930 696.8 67.6 161.4

1931 674.9 42.5 168.2

1932 614.4 12.8 162.6

1933 600.8 18.9 157.2

1934 643.7 34.1 177.3

1935 683.0 63.1 182.2

1936 752.5 80.9 212.6

1937 780.4 101.1 203.6

1938 767.8 66.8 219.3

1939 810.7 85.9 238.6

1940 752.7 119.7 245.3

(a) Consider in general terms a model for vectors y1, . . . , yn, of dimension say p, pro-

gressing in time in a one-step memory fashion, via

H0yt = c+H1yt−1 + εt for t = 1, . . . , n,

with the εt being i.i.d. from some error distribution density f0. Here H0 and H1 are

p× p matrices, perhaps constructed via regression parameters, with H0 being invertible;

also, there is a given start observation y0 from which the process then develops. Using
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yt = H−10 zt, with zt = c+H1yt−1 + εt given yt−1 having density ft(zt | yt−1), say, show

that the joint probability distribution for (Y1, . . . , Yn), given the start y0, can be written

L =

n∏
t=1

g(yt | yt−1) =

n∏
t=1

ft(H0yt | yt−1)|H0| =
n∏
t=1

f0(H0yt − c−H1yt−1)|H0|.

For the case where the εt ∼ Np(0, D), with a diagonal σ2
1 , . . . , σ

2
p variance structure, show

that this leads to log-likelihood

` =

n∑
t=1

[
log |H0|+

p∑
j=1

{− log σj − 1
2 ε̃

2
t,j/σ

2
j }
]

= n log |H0|+
p∑
j=1

{−n log σj − 1
2

n∑
t=1

ε̃2t,j/σ
2
j },

where ε̃t = H0yt − c−H1yt−1. Supposing regression coefficients α go into the c and the

H0 and H1 matrices, show that the log-likelihood profile, maximising over σ1, . . . , σp,

becomes

`prof(θ) = n log |H0(α)|+
p∑
j=1

{−n log σ̂j(α)− 1
2n}, where σ̂j(α)2 = Qj(α)/n,

writing Qj(α) =
∑n
t=1 ε̃t,j(α)2. This reduces the log-likelihood optimisation problem

from dimension p0 + p to dimension p0 = dim(α).

(b) (xx let’s see. xx) The vector autoregressive model used in Sims (2012b) takes

Ct = β0 + β1(Ct + It +Gt) + σCZ1,t,

It = θ0 + θ1(Ct − Ct−1) + σIZ2,t,

Gt = γ0 + γ1Gt−1 + σGZ3,t,

with the error terms Zj,t being i.i.d. standard normal. With Yt = (Ct, It, Gt)
t, show that

this can be translated to the general form above, with

H0 =

1− β1, −β1, −β1
−θ1, 1, 0

0, 0, 1

 , H1 =

 0, 0, 0

−θ1, 0, 0

0, 0, γ1

 , c =

β0θ0
γ0

 .

This leads to a clearly defined log-likelihood function of six regression coefficients and

three standard deviation parameters. Show that |H0| = 1 − β1(1 + θ1) here, and it is

part of the prior constraints of the parameters that this determinant must be positive.

Programme this log-likelihood function and find its optimisers, i.e. the unrestricted ML

estimates. (xx For the unconstrained ML, nils finds the following. with approximate

normality for θ̂1, there is a pointmass 0.904 at zero. Sims says θ1 ≥ 0, γ1 ≤ 1.03, 1 −
β1(1+θ1) > 0. mention that (β̂0, β̂1) as well as (γ̂0, γ̂1) have strong negative correlations,

about −0.99, so the model is not well parametrised. this is seen also for the mcmc. –

Attention is now on θ1, which Sims explains is a priori nonnegative. xx)
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ML se sims reports
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Figure viii.32: (xx polish, with the last details, com34* of nilswork23. xx) Left panel, for

the crucial θ1 parameter: posterior cumulative, with the Simps prior (slanted), and 95

percent interval xxxx; the normal approximation CD (dotted); and the more carefully

computed CD using t-bootstrapping (full curve). The confidence pointmass at θ1 = 0 is

0.989, whereas the Bayesian posterior does not detect that θ1 very likely is zero. Right

panel: similarly, for the γ1 parameter, where Sims uses the upper bound 1.03. The

posterior distribution (slanted) does not detect that there is a considerable probability

that γ1 = 1.03; the CD pointmass there is 0.501. (xx more, round off; see com31* and

com34* of nilswork23. xx)

(c) With α = (β0, β1, θ0, θ1, γ0, γ1)t the regression coefficients and σ = (σ1, σ2, σ3)t,

having independent priors πa and πs, say, show that the posterior distribution becomes

π(α, σ |data) ∝ πa(α)πs(σ) exp{n log |H0(α)|}
3∏
j=1

(1/σj)
n exp{− 1

2Qj(α)/σ2
j }

With independent noninformative priors 1/σj for the σj , show that

π(α |data) ∝ πa(α) exp{n log |H0(α)|}
3∏
j=1

1/Qj(α)n/2.

With flat priors on α, show that maximising this posterior density, over the regression

coefficients α, is equivalent to finding the ML estimates. Then set up an MCMC to
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simulate posterior realisations of α = (β0, β1, θ0, θ1, γ0, γ1), using the prior Sims advocates

here; it is flat, but with built-in constraints θ1 ≥ 0, γ1 ∈ [0, 1.03], and 1−β1(1 + θ1) > 0.

Of particular interest is the posterior π(θ1 |data), which can then be read off from the

MCMC. Construct a version of viii.32, left panel, with the c.d.f. for θ1, alongside the

confidence distribution C(θ1) = Φ((θ1− θ̂1)/κ̂1). (xx nils needs a bit more care with CD

for θ1. simulate lots of Sims datasets at positions α̂, but with θ1 on a little grid. need to

verify that t = (θ̂1 − θ1)/κ̂1 is approximately a standard normal. xx)

(d) (xx yet other points can be worked with. round off. we use t-bootstrapping methods

of Ex. 7.11 for more accurate CDs for θ1 and for γ1. simulations are a bit expensive, so

we use the isotonic repair trick of Ex. 7.4. perhaps one more parameter. computationally

this is moderately costly. push the view that a quite likely submodel actually holds, a

significant simplification of the original nine-parameter model:

Ct = β0 + β1(Ct + It +Gt) + σCZ1,t,

It = θ0 + σIZ2,t,

Gt = γ0 +Gt−1 + σGZ3,t.

interpret this simpler model. In the pre-war US economy, investment It was independent

of consumption and of its changes over time, and government spending acted like a

random walk. round off. xx)

(e) (xx to be moved from here to solutions section. we not in passing that Sims is

a bit sloppy with the log-likelihood things. anyway, this is to verify the basic vector

autoregressive structure, with the H0 and H1 matrices. xx)1− β1, −β1, −β1
−θ1, 1, 0

0, 0, 1

CtIt
Gt

−
 0, 0, 0

−θ1, 0, 0

0, 0, γ1

Ct−1It−1
Gt−1

 =

Ct − β1(Ct + It +Gt)

It − θ1(Ct − Ct−1)

Gt − γ1Gt−1

 .
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