
Statistical Inference:

777 Exercises, 77 Stories, and Solutions

Nils Lid Hjort

University of Oslo

Emil Aas Stoltenberg

BI Norwegian Business School

– This version of PART ONE, EXERCISES, last touched by Nils, 12-August-2024 –



©Nils Lid Hjort and Emil Aas Stoltenberg, 2024

Some technical stuff

ISBN - Numbers numbers

The Kioskvelter Project

This is a draft of our book-to-be and it may not be reproduced

or transmitted, in any form or by any means, without permission.

1234-5678



To my somebody

– N.L.H.

To my somebody

– E.A.S.





Preface

This book builds on Hello, here is some text without a meaning. This text should show

what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and

some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives

you information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of words

should match the language.

(xx then three-four paragraphs here, on the carrying ideas behind and structure

of the book: exercises and stories. a partly flipped classroom, with direct participa-

tion from the first pages of each chapter. there will be solutions to all exercises, notthe Hjort-

Stoltenberg

book website
physically placed inside the book, but rather on the book’s website-to-be, perhaps url’d

www.mn.uio.no/math/english/research/projects/HjortStoltenberg. That website

will also have all datasets and code is R and python to carry out all analyses, for the

construction of each of the book’s figures, etc.

(xx if we’re clever with the 777 exercises, 77 stories, we should mention Stigler’s 7

pillars. x)

(xx briefly on on prerequisties: linear algebra, with matrix theory, etc.; calcululs,

with functions of one or more variables, partial derivatives, etc.; programming, in R

or Python or other appropriate language, both for running common algorithms inside

relevant pacakages, and for programming one’s own functions, for simulation, etc.)

(xx crisp clear prose here, regarding segments of readers and how they can manouevre

through the material. overall: from beginning master’s level, in statistics, probability

theory, data science, machine learning, and upwards, to PhD level and more. xx) (i)

The Linear Readers, who will benefit from having the stamina to work through chapter

by chapter (ideally also exercise for exercise), and appropriate subsets of our stories.

These readers will be at a high master or PhD level. (ii) The Statistical Stories Readers,

for those who already know the basics on statistical models, parameter estimation and

testing, some Bayes, etc. (iii) Our book is also for the specialists inside certain themes,

who wish to learn even more.

(xx crisp clear prose here, regarding courses and teaching. below we help readers

and instructors by also providing short lists of relevant stories, for the different types of
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courses using our book. xx) Several types of courses can be taught from this book. several courses

which can be

taught from our

book

(i) Hard-core statistical inference, with parametric models, etc.: Chs. 1, half of 2,

then most of 3, 4, half of 5, 6, 7; a selection of Stories.

(ii) Large-sample theory, the careful probablity theory leading to CLT and more,

with applications in statistics: Chs. 1, 2, 5; half of 9, a selection of Stories.

(iii) Empirical processes, convergence, approximations, applications in statistics:

Chs. 1, 2, 5, 9; a selection of Stories.

(iv) Survival and event history analysis: Chs. 1, the essence of 2, 3, 4, 5, then the

full 9; a selection of Stories.

(v) Model selection and model averaging: Chs. 1, the essence of 2, 3, 4, 5, then the

full 11; a selection of Stories.

(vi) Bayesian statistics and confidence distributions: Chs. 1, the essence of 3, 5, then

the full 7, 8, parts of 15; a selection of Stories.

(vii) Statistics with applications: a special course can be taught with little emphasis

on the theoretical details, but illustrating concepts, models, methods, inference views

through a selection of perhaps fifty of our Stories.

The authors owe special thanks to Céline Cunen, Gudmund Hermansen, Tore Schwe-

der, for having contributed significantly to several of our Statistical Stories, and also for

always pleasant and inspiring long-term collaborations. Deep thanks are also due to a

long list of colleagues and friends, who have taken part in discussions and rounds of

clarification of relevance to various exercises and stories in our book: Marthe Aastveit,

Patrick Ball, Bear Braumoeller, Gerda Claeskens, Aaron Clauset, Dennis Cristensen,

Ingrid Dæhlen, Arnoldo Frigessi, Ingrid Glad, H̊avard Hegre, Aliaksandr Hubin, Ingrid

Hobæk Haff, Kristoffer Hellton, Bjørn Jamtveit, Martin Jullum, Vinnie Ko, Alexander

Koning, Ian McKeague, Per Mykland, Per August Moen, Jonas Moss, H̊avard Mokleiv

Nyg̊ard, Lars Olsen, Steven Pinker, Sam Power, Oskar Høgberg Simensen, Catharina

Stoltenberg, Gunnar Taraldsen, Ingunn Fride Tvete, Ingrid Van Keilegom, Lars Walløe,

Jonathan Williams, Lan Zhang.

We have also benefitted, directly and indirectly, through the collective efforts of

several grander wide-horizoned funded projects: the FocuStat: Focus Driven Statistical

Inference with Complex Data 2014-2019 project (led by Hjort) at the Department of

Mathematics, University of Oslo, funded by the Norwegian Research Council; the Sta-

bility and Change 2022-2023 project (led by Hjort and Hegre), funded by and hosted

at the Centre for Advanced Study (CAS), Academy of Science and Letters, Oslo; and

Integreat: The Norwegian Centre for Knowledge-Driven Machine Learning 2023-2033

Centre of Excellence (led by Frigessi and Glad), Oslo, funded by the Norwegian Research

Council. We finally acknowledge with gratitude a partial support stipend from the Nor-

wegian Non-Fiction Writers and Translators Association (Norsk faglitterær forfatter- og

oversetterforening).

Nils Lid Hjort and Emil Aas Stoltenberg

Blindern, some day in 2025
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Short & crisp
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I.1

Statistical models

In this chapter we study families of distributions and densities that we are to meet

time and again in this book. A partial list includes the uniform, normal and multi-

normal, chi-squared, the t and the F, Gamma, exponential, Weibull, Beta, Dirichlet,

Poisson, compound Poisson, binomial, multinomial, geometric, Pareto, Gumbel, lo-

gistic. These families have parameters, with values to be set for certain studies or

illustrations, or for purposes of confidence setting and tests; more generally these

parameters are estimated from data, as we return to in several later chapters. We

also learn fruitful ways of extending and mixing given families of distributions; in

such fashions the classical models can be building blocks for forming new ones.

Mathematical techniques for deriving crucial properties include those of moment-

generating functions, convolutions, and double expectation.

Key words: distributions, models, moments, moment-generating functions, param-

eters, quantiles, sums, transformations

The aim of this chapter is to go through a generous list of parametric statistical models,

from the well-known distributions connected with the normal model, to the Beta and the

Gamma, to the binomial, Poisson, and negative binomial for discrete data, etc., along

with deriving their basic properties. These models turn up repeatedly in later chapters

and in our Statistical Stories, with variations, as direct models for data, or as building

blocks for more complicated constructions. The normal and multinormal distributions

play important roles, also because these become fruitful simple-to-use approximations to

sometimes much more complicated exact distributions.

These models, for probability theory and statistics, rely on deeper mathematical

constructions and considerations, with random variables being measurable functions on

probability spaces, measure and integration theory, etc. For this book it has been practi-

cal to organise that body of mathematical theory in Appendix A. For the present chapter

on models we take certain notions and basic definitions for granted, with background and

more detail in that appendix. Thus we deal here with classes of distributions, param-

eters, probability densities, cumulative distribution functions, conditional and marginal

distributions, means and variances, quantiles, correlations, and so on. In particular, any

nonnegative function f(y) integrating to 1 over some interval is a probability density over

that interval; it has a cumulative distribution function (c.d.f.) F (y) =
∫ y

−∞ f(y′) dy′; the

3



4 Statistical models

mean of a random variable Y drawn from this distribution is EY =
∫
yf(y) dy; its me-

dian is F−1( 12 ); its variance VarY = E(Y − EY )2; the covariance between two random

variables X and Y with means a and b is cov(X,Y ) = E (X − a)(Y − b) = EXY − ab;

etc. We also deal with sums of random variables, drawn from the same or different dis-

tributions. In one of its classical forms, the density h(z) of Z = X + Y , where X and Y

are independent with densities f(x) and g(y), is

h(z) =

∫
f(z − y)g(y) dy =

∫
f(x)g(z − x) dx, (1.1)

see Ex. A.17 for more. There are also occasions in this chapter where the rules for double

expectation and variance

EX = EE (X |Y ) and VarX = EVar (X |Y ) + VarE (X |Y ), (1.2)

see Ex. A.23, come in handy.

In addition to defining and presenting a list of useful models, and diving into their

properties and inter-connections, we develop certain tools, useful also in later chapters.

These include transformations (see Ex. 1.12), moment-generating functions (see Ex. 1.30,

with more in Ex. A.31), characteristic functions (see Ex. 1.33), conditional distributions,

mixtures, and simulation. (xx make sure we have a little bit on simulation. xx) Also

included is material on the general exponential family class, which has several of the

classic models as special cases (see Ex. 1.50, with follow-up material in Ch. 4).

Importantly, several of the central models worked with in this introduction chapter

find uses inside wider contexts, e.g. for regression situations, as we shall return to in

later chapters. To indicate that direction of model building, below we learn about a

random variable Y having a gamma distribution with parameters (a, b), which we write

as Y ∼ Gam(a, b); see Ex. 1.9. Now suppose there is a dataset consisting of measurements

(xi,1, xi,2, yi) for individuals i = 1, . . . , n, where the main outcome yi is influenced by the

covariates xi,1, xi,2. Then a gamma regression model could take the form Yi | (xi,1, xi,2) ∼
Gam(ai, b), with ai = exp(β0 + β1xi,1 + β2xi,2). The traditional multiple linear gression

model is of a similar type, with Yi given the covariates having normal distributions,

with mean function linear in the covariates. Tools developed in later chapters may

then be applied to estimate parameters, with confidence intervals, testing, comparisons,

prediction, etc.

(xx also include: negative binomial, logarithmic, Poisson compound, hypergeomet-

ric, excentric hypergeometric. briefly generating functions G(s) = E sX too. Agree on ϕ

and Φ as fixed notation for the standard normal density and c.d.f. And check that we

most of the time write c.d.f. check in a while the title we choose for the short & crisp

sections, here and in all later chapters. xx)

(xx just a few pointers to later chapters. CLT. normal approximations. estimation,

testing. calibrate with what’s in the abstract. we may point to more complex models,

making clear that these classic families of distributions are often used as stepping stones.

could point to Markov chains etc., but not really touching these in this chapter. also:

take care with mentions of limit distributions and CLT, which we may choose to touch

here and there, but details come in Ch. 2. xx)
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(xx as of 12-August-2024, we have a little fortellerproblem: we do mgf and charac-

teristic functions in Appendix A, good, but then need just a bit of basic models there,

complete with M(t) formulae for the normal, the binomial, just a few more. but those

models are more formally introduced here in Ch1. so how to deal with this. xx)

Normal, bi- and multinomial, exponential, gamma, mixing

Ex. 1.1 The normal distribution. The perhaps most famous and broadly useful dis-

tribution in probability theory and statistics is the normal distribution, also called the

Gaußian distribution. It is also a building block for various inferred and related models

and distributions, as we learn later in the chapter. In its standard form, before we add

on two more parameters, the normal density is

ϕ(x) =
1√
2π

exp(− 1
2x

2) on the real line.

We call this the standard normal distribution, and write X ∼ N(0, 1) to indicate this. It

is standard in statistics and probability theory to use ϕ(x) for its density and Φ(x) for

its cumulative distribution function (c.d.f.).

(a) There are myriad ways of demonstrating that 1/(2π)1/2 is the correct constant here,

i.e. that I =
∫
exp(− 1

2x
2) dx = (2π)1/2. You are allowed to take this for granted, but

attempt to show it via expressing I2 as a double integral, featuring exp{− 1
2 (x

2 + y2)},
and then substituting x = r cos θ and y = r sin θ, followed by the use of double integration

tools from calculus.

(b) Show that for X a standard normal, its mean is zero and its variance is one.

(c) With X a standard normal, consider Y = µ + σX, with µ any number and σ

positive. Show that its mean and standard deviation are µ and σ, and that its density

can be writtenGauß

f(y) = ϕ
(y − µ

σ

) 1
σ

=
1

(2π)1/2σ
exp
{
− 1

2

(y − µ

σ

)2}
.

We write Y ∼ N(µ, σ2) to indicate this distribution. Show that Pr(µ − 1.96σ ≤ Y ≤
µ+ 1.96σ) = 0.95. Find the c such that Pr(|Y − µ| ≤ cσ) = 0.50.

(d) With X a standard normal, consider Z = X2. Find its distribution, and show

that its density becomes g(z) = (2π)−1/2 exp(− 1
2z)/

√
z. We learn about the chi-squared

distribution in Ex. 1.43; this X2 has such a chi-squared distribution, with degrees of

freedom equal to 1, which we write as X2 ∼ χ2
1.

(e) Consider X1, X2, X3 being independent and standard normal. Work out the means

and variances of X2
1 , X

2
1 + X2

2 , X
2
1 + X2

2 + X2
3 . Simulate say 104 realisations of these

distributions, check their histograms, and describe their different behaviour close to zero.

(f) Consider the enigmatic density f(x) = e−πx2

on the real line, featuring and combining

the eternal mathematical constants e and π, integrating to 1. What is its standard

deviation, and what is the probability that an X with this distribution is inside [−1, 1]?
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(g) For X a standard normal, and for x becoming large, show that Pr(X ≥ x)
.
=

ϕ(x)/x, in the sense that the ratio {1 − Φ(x)}/{ϕ(x)/x} tends to 1. This is the Mills

ratio. Make a plot of this ratio, to see how it converges to 1, and to assess the implied

approximation. (xx footnote, to be returned to, with hazards. xx) Show from this that

Pr(X ∈ [x, x+ ε] |X ≥ x)
.
= xε for growing x, and give this an interpretation.

(h) (xx some pointers, placed here or elsewhere. point to mgf already, for the linear

combination property. then a simple question to illustrate this. xx)

Ex. 1.2 Normal sums. Sums of independent normals have themselves normal distribu-

tions. This is clearly easiest to demonstrate via moment-generating functions (m.g.f.s),

see Ex. 1.31 below, but it is worth doing this via convolution formulae too.

(a) Let X and Y be independent standard normals. Show that X +Y ∼ N(0, 2), via the

convolution formula (1.1). With a bit more algebraic work, show that if X1 ∼ N(µ1, σ
2
1)

and X2 ∼ N(µ2, σ
2
2) are independent, then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

(b) Generalise this: show that if Xi ∼ N(µi, σ
2
i ) for i = 1, . . . ,m, and these are indepen-

dent, then Z =
∑m

i=1 aiXi is also normal, with mean
∑m

i=1 aiµi and variance
∑m

i=1 a
2
iσ

2
i .

(c) Sometimes 2 + 2 might be 5, for extremely high values of 2. If independent X and Y

are 2 and 2, but observed with with some Gaussian noise on top, of standard deviation

level σ, find a formula p(σ) for the probability that X + Y is outside [3.5, 4.5], i.e. 3 or 5

or even farther away from 4 when rounded off to the nearest integer. Plot this function.

Ex. 1.3 Binomial distribution. One of the more old, classic, and deservedly famous

distributions in probability and statistics is the binomial. If there is a fixed probability

p = P (A) of a certain event A taking place, in a certain type of experiment, then the

number Y of times A is seen, in n independent experiments, is the binomial, which we

write as Y ∼ binom(n, p). the binomial

distribution

(a) Show that

Pr(Y = y) =

(
n

y

)
py(1− p)n−y for y = 0, 1, . . . , n.

This involves the essential combinatorial fact that the number of ways one may place

precisely y 1s in a total of n possible position is
(
n
y

)
= n!/{y! (n− y)!}. Explain that Y

can be expressed as X1+· · ·+Xn, where Xi is a simple 0-1 variable, with Pr(Xi = 1) = p,

and where these are independent. Such Xi are called Bernoulli variables. Use this to

prove the classic formulae np and np(1 − p) for mean and variance. Also, deduce the

Pr(Y = y) formula from the Y =
∑n

i=1Xi description. Bernoulli

variables

(b) If the first question to ask concerning a distribution is about its centre (its mean, or

perhaps its median), and the second is about its spread (its standard deviation, or perhaps

a different measure, like its interquartile range), then the third question would be about

its skewness, the degree of asymmetry. The classical skewness definition of a distribution,

or equivalently of a random variable Y having that distribution, is skew = EW 3, where

W = (Y − EY )/(VarY )1/2 is the normalised version of Y , i.e. linearly transformed to
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have mean zero and standard deviation one. Show for the binomial (n, p) case that its the skewness

skewness is

skew = E
[ Y − np

{np(1− p)}1/2
]3

=
1− 2p

{np(1− p)}1/2
,

which for fixed p goes to zero with rate 1/
√
n (i.e.

√
n skew tends to a positive constant).

Briefly discuss what this entails regarding the degree of asymmetry for the binomial

distribution.

(c) After the skewness comes the so-called kurtosis, defined as kurt = EW 4− 3, with Wthe kurtosis

as in the previous point. The minus 3 is there in order for the kurtosis to be zero for the

normal distribution; show that this is the case. Then show that

kurt = (1/n)[1/{p(1− p)} − 6],

for the binomial, and comment.

Ex. 1.4 Trinomial probabilities. (xx emil looks it over and checks if this is suitable here

in Ch1, perhaps before Ex. 1.5. if not in App A. xx) Consider the so-called trinomial

distribution for a random pair (X,Y ), with probability mass function

f(x, y) =
n!

x! y! (n− x− y)!
pxqy(1− p− q)n−x−y for x ≥ 0, y ≥ 0, x+ y ≤ n.

Here n is the total count number, p, q the probabilities of events of type One and Two in

repeated experiments, with p+ q < 1. With Z = n−X − Y representing the number of

events of type Three (not One, not Two), this is a model for the numbes of events One,

Two, Three in n independent experiments; hence the trinomial name. See also Ex. 1.5.

(a) Verify that what is here called the probability mass function is the same as the

density of the distribution with respect to counting measure on the set of (x, y) with

x ≥ 0, y ≥ 0, x + y ≤ n – or, for that matter, with respect to counting measure on the

set of all pairs (x, y) with x ≥ 0, y ≥ 0.

(b) Show by summing over the y that the distribution of X becomes a binom(n, p) from

Ex. 1.3.

(c) Show that Y | (X = x) ∼ binom(n− x, q/(1− p)). Give a formula for E (Y |X = x),

and deduce the formula for EX from this. Find also the covariance between X and Y ,

using this scheme of conditioning with respect toX = x first. Deduce that the correlation

between them is −{p/(1− p)}1/2{q/(1− q)}1/2.

(d) Find a formula for Pr(X ≤ x0, Y ≤ y0), expressed as a sum over x ∈ {0, 1 . . . , x0}
(as opposed to a double sum over lots of (x, y) pairs). For a setup with n = 50, (p, q) =

(0.22, 0.33), compute the probability Pr(X ≤ 15, Y ≤ 15).

Ex. 1.5 The multinomial model. The binomial model, with basic properties treated

in Ex. 1.3, is about sorting and counting events in two categories; if Y ∼ binom(n, p),

then also n − Y ∼ binom(n, 1 − p). The multinomial model is the natural extension to
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more than two categories. Suppose there are n independent experiments, where each

time one (and only one) of the events A1, . . . , Ak takes place, with the same probabilities

p1, . . . , pk for each experiment. Let then Y = (Y1, . . . , Yk), with Yj counting the number

of times Aj occurred, for j = 1, . . . , k. Of course Y1+ · · ·+Yk = n, and p1+ · · ·+pk = 1,

so there are k − 1 free parameters in the model.

(a) Show that Yj ∼ binom(n, pj), and deduce that we already know EYj = npj and

VarYj = npj(1−pj), even before we start working on the joint distribution of (Y1, . . . , Yk).

(b) Show that the joint probability distribution becomes the multinomial

model

f(y1, . . . , yk) = Pr(Y1 = y1, . . . , Yk = yk) =
n!

y1! · · · yk!
py1

1 · · · pyk

k

for nonnegative (y1, . . . , yk) with sum n. The first factor n!/(y1! · · · yk!) is a combinatorial

one, the number of different ways one may place ‘1’ in y1 positions, ‘2’ in y2 positions,

etc., up to ‘k’ in yk positions. Note that this generalises the classic n!/(y1! y2!) =
(
n
y1

)
for the binomial case, the number of ways one may place ‘1’ in y1 ways (and hence ‘2’ in

n− y1 ways) in a list 1, . . . , n.

(c) Show that each pair has a trinomial distribution, e.g.

Pr(Y1 = y1, Y2 = y2) =
n!

y1! y2! (n− y1 − y2)!
py1

1 p
y2

2 (1− p1 − p2)
n−y1−y2

for y1 ≥ 0, y2 ≥ 0, y1 + y2 ≤ n. Note that formulae from Ex. 1.4 therefore apply to

pairs (Yi, Yj) here. For i ̸= j, show that cov(Yi, Yj) = −npipj , and find the correlation

between Yi and Yj .

(d) Among the most used acronyms of statistical parlance is i.i.d., for idependent and

identically distributed. Explain in the present setup that Y = Z1 + · · · + Zn, where

Z1, . . . , Zn are i.i.d., with Zi taking values (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) with probabilities

p1, . . . , pk. Derive again the formulae for means, variances, covariances, starting with this

representation. i.i.d.

Ex. 1.6 Histograms. Suppose data Y1, . . . , Yn are i.i.d. from some continuous density

f over some interval [a, b]. Create disjoint cells C1, . . . , Ck, with Cj = (aj−1, aj ], for

a = a0 < · · · < ak = b. Let then Nj count the number of data points in cell j. The

histogram, associated with the chosen cells, is then histogram

f̂(x) = p̂j/hj for x ∈ Cj , with lengths hj = aj − aj−1,

where p̂j = Nj/n estimates pj = Pr(Yi ∈ Cj). In most automatic histogram algorithms,

the width is taken constant across cells. The notation f̂(x) indicates that beyond being

an effective way of showing the essential spread and shape of the data, it is an estimate

of the underlying f(x).

(a) Carry out some simulations, samling n datapoints from the standard normal, creating

histograms with k cells. For small and big n, play with k small, big, and about right. In

R, you may use hist(y,breaks=20,prob=T), etc.
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(b) Show that (N1, . . . , Nk) is multinomial. Taking a constant cell width h, for simplicity,

explain that we may write pj =
∫
Cj
f dy = f(ζj)h, for a suitable ζj inside cell Cj .

From this derive that for x ∈ Cj , we have E f̂(x) = f(ζj) and Var f̂(x) = f(ζj){1 −
f(ζj)h}/(nh). Argue that for the histogram to achieve E f̂(x) → f(x) and Var f̂(x) → 0,

as n increases, we need h→ 0 and nh→ ∞.

Ex. 1.7 Hazard rates and survival functions. Here and below we shall partly follow

the implied tradition of using say T and f(t) and F (t), for random variables with their

densities and c.d.f.s, rather than say Y and f(y) and F (y), when these relate to time. –

Consider a random variable T on the halfline [0,∞), with density f and c.d.f. F . Classes

of such distributions are sometimes most conveniently or fruitfully defined and discussed

in terms of their hazard or cumulative hazard functions, as opposed to their densities

and c.d.f.s, as we outline here; see also Ch. 10.

(a) Show thathazard rate

function

Pr(T ∈ [t, t+ ε] |T ≥ t) = h(t)ε+O(ε2), (1.3)

in terms of the so-called hazard rate function h(t) = f(t)/{1−F (t)}. With T interpreted

as the time to a certain event, the function h(t) describes the chance of this event taking

place in the next instance, among those having survived up to t.

(b) So we may deduce hazard rate from the density. Starting instead with h(t), define

first the cumulative hazard H(t) =
∫ t

0
h(s) ds, and show that F (t) = 1 − exp{−H(t)}.

The function S(t) = Pr(T ≥ t) = exp{−H(t)} is important in its own right, and is called

the survival function.

(c) Suppose an individual has survived up to time t0. Show that

Pr(T ≥ t |T ≥ t0) =
S(t)

S(t0)
= exp[−{H(t)−H(t0)}] for t ≥ t0.

Show that the median lifetime, for such an invidual having lived up to t0, is t∗ =

H−1(H(t0) + log 2).

Ex. 1.8 The exponential distribution. The exponential distribution is a simple but

important one, in probability theory and statistics, which with positive parameter θ has

the density f(t, θ) = θ exp(−θt) for t > 0. We write T ∼ Expo(θ) to indicate this.

(a) Show that the cumulative becomes F (t, θ) = 1 − exp(−θt), and find the median.

Show also that we may write T = T0/θ, where T0 has the unit exponential distribution

with density exp(−t0). Show that T has mean and variance 1/θ and 1/θ2.

(b) Using Ex. 1.7, show that the hazard rate is constant, h(t) = θ, and that the cumu-

lative hazard rate is H(t) = θt. Show also that the exponential distribution is the only

one where the hazard rate is constant.

(c) Show that the median survival time is (log 2)/θ. If an individual has survived up to

time t0, what is the median survival time?
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(d) Assume certain light bulbs have a longevity distribution with the property that

Pr(T ≥ t0 + t |T ≥ t0) does not depend on t0. Argue that such light bulbs may be soldthe memoryless

property as if they were brand new, as long as they are still alive. Show that their distribution

must be exponential.

Ex. 1.9 The Gamma distribution. The gamma function is important in various branches

in mathematics, probability theory, and statistics, and is defined as Γ(a) =
∫∞
0
xa−1

exp(−x) dx for a positive. We may hence define a family of probability densities via the gamma

functiong0(t, a) = Γ(a)−1ta−1 exp(−t) for t > 0. This is called the Gamma distribution with

shape parameter a.

(a) With T0 having this density, and b a positive scale parameter, show that T = T0/b

has density

g(t, a, b) = {ba/Γ(a)}ta−1 exp(−bt) for t > 0.

This is the two-parameter Gam(a, b) distribution. Verify that Γ(1) = 1, that Γ(a+ 1) = the Gamma

distributionaΓ(a) for all a > 0, and that Γ(m) = (m− 1)! for m = 1, 2, . . ..

(b) When T has the Gam(a, b) distribution, show that the mean and variance are a/b

and a/b2. Find also that ET p = {Γ(a+ p)/Γ(a)}/bp, valid for any p, as long as p > −a.
Use this to show that the skewness and kurtosis become equal to skew = 2/a1/2 and

kurt = 6/a. Finally, regarding moments, find that the inverse gamma distributed variable

1/T has mean b/(a− 1) and finite variance b2/{(a− 1)2(a− 2)}, as long as a > 2.

(c) Verify that for a = 1 we have the exponential distribution, with density b exp(−bt)
and cumulative 1−exp(−bt). Show that a = 2 gives density b2t exp(−bt) and cumulative

1− exp(−ty)(1 + bt). More generally, show that the cumulative is∫ t

0

g(s, a, b) ds = 1− exp(−bt)
{
1 + bt+

(bt)2

2!
+ · · ·+ (bt)a−1

(a− 1)!

}
for the case of a being an integer.

(d) For a an integer, give an explicit expression for the hazard function h(t, a, b), as per

(1.3), and show that it converges to b as time increases. Show that this is the case also

for any a, i.e. not only for integers; it increases from zero to b, if a > 1, and decreases

from infinity to b, if a < 1.

(e) Let T1, T2 be independent and exponential with the same θ. Show that T1 + T2 ∼
Gam(2, θ). With T1, . . . , Tk seen as the independent waiting times between events, show

that the time to event k is a Gam(k, θ).

(f) With T1 ∼ Gam(a1, b) and T2 ∼ Gam(a2, b) independent, show that T1 + T2 ∼
Gam(a1 + a2, b). Generalise. This may indeed be accomplished via the convolution for-

mulae from Ex. A.17, but as for other instances it becomes easier to show such statements

via m.g.f.s; see Ex. 1.30–1.31.
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Ex. 1.10 Mixing the exponential. Sometimes waiting time type data do not follow an

exact exponential distribution, but rather one characterised as a mixture of such; T given

θ has the Expo(θ) distribution, but the values of θ vary from occasion to occasion, or

from individual to individual.

(a) Suppose indeed that T | θ ∼ Expo(θ) but that θ has some density g(θ). Show that

the density of T then becomes f(t) =
∫∞
0
θ exp(−θt)g(θ) dθ.

(b) Suppose the distribution of θ is such that 1/θ has mean value 1/θ0 and a positive

standard deviation τ . Show, starting with E (T | θ) = 1/θ and Var (T | θ) = 1/θ2, that

ET = 1/θ0 and VarT = 1/θ20 + 2τ2; see (1.2). The case of a very tight distribution for

the θ corresponds to τ small, which again means the case of a constant rate θ0 for all.

(c) A convenient class of distributions for θ is the Gamma, with parameters (a, b), from

Ex. 1.9. Its mean and variance are a/b and a/b2; now find also the mean and variance

of 1/θ. Show that the density of T can be written

f(t, a, b) =

∫ ∞

0

θ exp(−θt) ba

Γ(a)
θa−1 exp(−bθ) dθ = aba

(b+ t)a+1
,

and also that its cumulative distribution function is

F (t, a, b) = 1−
( b

b+ t

)a
= 1− 1

(1 + t/b)a
.

(d) (xx a bit more. the hazard rate function h(t) = f(t)/{1 − F (t)} is decreasing.

expressions for quantiles, t0(p, a, b) = b{1/(1 − p)1/a − 1}, solution to F (t) = p, to be

used for Story iii.4 for fitting the distribution to the 95 between-war-times. xx)

(e) Find an expression for the hazard rate function h(t, a, b) = f(t, a, b)/{1− F (t, a, b)},
and comment on its form, compared to the exponential case.

(f) Find the mean and variance of T , for the g(t, a, b) ditribution. This might be used to

estimate (a, b) from data. (xx could point to Story iii.4, perhaps with better calibration.

xx)

Ex. 1.11 Gamma-mixing the gamma. A given parametric distribution may sometimes

be fruitfully extended by placing a separate distribution on one of its parameters. The

following is an illustration.

(a) Consider a distribution which for given individuals is a gamma, but where the scale

parameter varies between individuals. Specifically, suppose Y | b ∼ Gam(a0, b) and that

b has a distribution with E 1/b = 1/b0 and Var 1/b = τ2. Show that Y has mean a0/b0
and variance a0/b

2
0 + (a0 + a20)τ

2.

(b) For the special case of b ∼ Gam(c, d), thus leading to a 3-parameter model, find the

density f(y, a, c, d) for Y . (xx work a bit with parametrisation here; big (c, d) correspond

to old gamma. the following to be cleaned and sent to solutions. xx)

f̄(y) =

∫ ∞

0

ba

Γ(a)
ya−1 exp(−by) dc

Γ(c)
bc−1 exp(−db)db = dc

Γ(c)

Γ(a+ c)

Γ(a)

ya−1

(d+ y)a+c
.
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Transformations, uniform, Pareto, Cauchy, Beta, Dirichlet

Ex. 1.12 Transformation from X to Y . We often encounter transformations, from one

variable X to another Y , also in the vector case. We need formulae for how the density

g(y) of the Y can be found in terms of the density f(x) for X.

(a) In the one-dimensional case, suppose X = h(Y ), equivalently Y = h−1(X), where h

is smooth and increasing. Show that Pr(Y ≤ y) = Pr(X ≤ h(Y )), with density formula

g(y) = f(h(y))h′(y).

Show also that if x = h(y) is continuous and decreasing, the formula becomes g(y) =

f(h(y))|h′(y)|. Write down density formulae for the variables Y1 = exp(X), Y2 = 3.33−
2.22X, Y3 = logX (assuming for that case that X is positive).

(b) Show that if X is normal, then a linearly transformed Y = a + bX is also normal.

Show that if X ∼ Gam(a, b), with density proportional to xa−1 exp(−bx), then Y =

bX ∼ Gam(a, 1).

(c) Suppose then that X = (X1, . . . , Xp)
t and Y = (Y1, . . . , Yp)

t are vectors, with trans-

formations binding them together,X1

...

Xp

 =

h1(Y1, . . . , Yp)...

hp(Y1, . . . , Yp)

 ,

Y1...
Yp

 =

h
−1
1 (X1, . . . , Xp)

...

h−1
p (X1, . . . , Xp)

 .

We write this as X = h(Y ) and Y = h−1(X), for short. It is assumed that these

systems of equations have unique solutions, and that the transformations are smooth,

with continuous partial derivatives. In particular, the so-called Jacobi matrix

J(y) =
∂h(y)

∂y
=
∂h(y1, . . . , up)

∂y1 · · · ∂yp
,

having ∂hi(y)/∂yj as its (i, j) component, exists, and is continuous, with a non-zero

determinant det(J(y)) (xx point to real analysis reference xx). – Now, if X has density

f(x), show that

Pr(Y ∈ B) =

∫
h(B)

f(x) dx =

∫
B

f(h(y))|det(J(y))|dy.

This shows that Y has density g(y) = f(h(y))|J(y)|. This is essentially the multidimen-

sional ‘integration by substitution’ formula of calculus.

(d) For an application, suppose X and Y are independent and standard normal, and

transform to polar coordinates, X = R cosA and Y = R sinA. Find the density g(r, a)

for (R,A), with R positive and A ∈ [0, 2π]. Show in particular that length R and angle A

become independent, with A having a uniform distribution on [0, 2π] (i.e. the flat density

1/(2π) over that interval). Find also the distribution of Z = Y/X = tanA; see also

Ex. 1.16.
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(e) LetX,Y be independent standard exponentials, and consider (U, V ) = (X+Y,X/Y ).

Show that these become independent, having densities u exp(−u) and 1/(v + 1)2.

Ex. 1.13 Ordering exponentials. Let Y1, Y2, Y3 be independent unit exponentials, with

density f(y) exp(−y) for y positive, and order them, to Y(1) < Y(2) < Y(3). Then define

the so-called spacings between them, Z1 = Y(1), Z2 = Y(2) − Y(1), Z3 = Y(3) − Y(2).

(a) Show first that the joint density of (Y(1), Y(2), Y(3)) is 3! f(y(1))f(y(2))f(y(3)) on the

set y(1) < y(2) < y(3). Find then the joint density for (Z1, Z2, Z3), and show that they

are independent.

(b) Then generalise, considering i.i.d. unit exponentials Y1, . . . , Yn, ordered into Y(1) <

· · · < Y(n). Work with the scaled spacings D1 = nY(1), D2 = (n− 1)(Y(2) − Y(1)), up to

Dn−1 = 2(Y(n−1) − Y(n−2)), Dn = Y(n) − Y(n−1). Show that

Y(1) =
V1
n
, Y(2) =

V1
n

+
V2
n− 1

, . . . , Y(n) =
V1
n

+
V2
n− 1

+ · · ·+ Vn−1

2
+
Vn
1
,

and then show that in fact V1, . . . , Vn are i.i.d. unit exponentials.

(c) The Euler constant γe = 0.5772... is defined as the limit of 1+1/2+ · · ·+1/n− log n.

Use the above to show that Y(n) = maxi≤n Yi has mean close to log n+ γe, and variance

converging to π2/6.

Ex. 1.14 The Pareto distribution. (xx pointer to Story iii.5. xx) Consider a variable

T defined on the range T ≥ t0, for some positive t0, with c.d.f. F (t) = 1 − (t0/t)
θ for

t ≥ t0, for some positive parameter θ. This is the Pareto distribution, and we may write

T ∼ pareto(t0, θ) to indicate this.the Pareto

distribution

(a) Use the EX =
∫∞
0

{1 − F (x)} dx formula for means of nonnegative variables, see

Ex. A.29, to show that the mean of a Pareto is t0θ/(θ− 1), for θ > 1. Show furthermore

that the variance is t20θ/{(θ − 1)2(θ − 2)}, for θ > 2, and that the median is med(T ) =

t02
1/θ.

(b) Show that the density is f(t, θ) = θtθ0/t
θ+1 for t ≥ t0; you may use this to find the

mean formula again. Furthermore, explain that the hazard rate is h(t) = θ/t.

(c) Show that Pr(T ≥ t |T ≥ t1) = (t1/t)
θ, for t ≥ t1. So T | (T ≥ t1) is Pareto (t1, θ).

Deduce from this that

med(T − t |T ≥ t) = ct = (21/θ − 1)t for all t.

This is linked to the so-called Lindy Effect: the longer the life is observed to be (of a

company, an idea, a party), the longer is the remaining lifetime expected to be (note that

c > 1). Show in fact that the Pareto distribution is the only one with the property that

med(T − t |T ≥ t) = ct for all t.

(d) Show that Y = log(T/t0) is exponential with parameter θ. So a representation of the

Pareto is T = t0 exp(Y ), with Y ∼ Expo(θ). You may use this to find the mean formula

once more.
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Ex. 1.15 Maxima of i.i.d. samples. To illustrate one of the many ways in which

suitable start models may be generalised and extended, consider Y1, . . . , Yn i.i.d. from

some distribution with c.d.f. F and density f , and from these define Mn = maxi≤n Yi.

(xx brief pointer to order statistics and sample quantiles in Chs 2, 3. xx)

(a) Show that Mn has c.d.f. Gn(z) = F (z)m with density gn(z) = nF (z)n−1f(z). Com-

pute and draw these, for say n = 1, . . . , 10, for the case of the Yi being standard normal.

(b) Before pursuing some maxima, consider a situation with X1 and X2 are independent,

find c.d.f.s H1, H2 and densities h1, h2. Show that

Pr(X1 ≤ X2) =

∫
H1(x2)h2(x2) dx2 =

∫
{1−H2(x1)}h1(x1)dx1.

(c) Long jumpers A and B have jumps being N(7.90, 0.102) and N(7.80, 0.152), respec-

tively (on the metres scale). What is the probability the A jumps longer than B, with

one jump each? Consider also pm, the probability that B after m jumps is better than

A after m = 1, 2, 3, 4, 5, 6 jumps (in the sense of ‘best jump so far’), assuming that all

jumps are independent. Show that pm =
∫
F1(z)

mmF2(z)
m−1f2(z) dz, in terms of the

two distributions. Compute pm both via numerical integration and via simulations.

Ex. 1.16 Ratios and the Cauchy. If (X,Y ) has a certain distribution, what happens to

the ratio V = Y/X?

(a) Suppose that X and Y are independent with the same density f on (0,∞). Show

that V = Y/X has density g(v) =
∫∞
0
xf(x)f(vx) dx. With X and Y independent from

the same exponential distribution, show that g(v) = 1/(1 + v)2.

(b) With X and Y independent from the same Gamma (a, b), show that V = Y/X has

density {Γ(2a)/Γ(a)2} va−1/(1 + v)2a.

(c) Suppose now that X and Y are independent from the same density f , symmetric

around zero. Show that V has density g(v) = 2
∫∞
0
xf(x)f(vx) dx. For the special case

of a ratio of two independent standard normals, show that the Cauchy

g(v) = (1/π)/(1 + v2) with c.d.f. G(v) = 1
2 + (1/π) arctan v.

This is the Cauchy distribution (in its standard form). Show that it has no mean. Find

its interquartile range.

(d) There is an infinitely long straight line ahead of you, with distance r from you to the

nearest point. You kick a ball towards the line, with some angle A ∈ (−π/2, π/2). Show
that it crosses the line at position X = r tan(A). Show that with A having density g and

c.d.f. G, over (− 1
2π,

1
2π), then X has c.d.f. F (x) = G(arctan(x/r)). When A is uniform

over that interval, show that X/r is standard Cauchy. Investigate what happens if A is

uniform over a tighter interval, like (−π/4, π/4).

(e) What distribution does the random angle A need to have, in order forX to be normal?

For r = 1 unit away from the line, show that the curious density g(a) = ϕ(tan(a))/ cos2(a)

leads to a standard normal X. Graph g to see that it is symmetric and bimodal, with

modes at ± 45 degrees.



Transformations, uniform, Pareto, Cauchy, Beta, Dirichlet 15

Ex. 1.17 Transformations to the uniform. We have already touched the uniform distri-

bution in a few points above. Say in general that a variable U is uniform on the interval

[a, b] if its density is constant over that interval, i.e. 1/(b − a), and zero outside. In

particular, we write U ∼ unif(0, 1) to indicate a variable with the uniform distribution

on the unit interval.

(a) For such a U ∼ unif(0, 1), find its mean and variance. Find the probabilities that U

lands in [0.03, 0.04], or in [0.77, 0.78].

(b) Let F be a continuous and increasing c.d.f. for a variable X. Show that U = F (X)

is uniform on the unit interval. Conversely, we may start with U ∼ unif(0, 1) and map

to X ′ = F−1(U). Show that X ′ has distribution F .

(c) Consider the c.d.f. F (x) = (x/10)3.33 on [0, 10]. Simulate 104 independent Xi from

this distribution, by transforming uniforms. Make a fine histogram, with the density

f(x) plotted alongside.

Ex. 1.18 The Beta distribution. An important class of distributions, over the unit

interval (0, 1), is the Beta distribution, with two positive parameters. We write p ∼the Beta

distribution Beta(a, b) if its density is

be(p, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1 for p ∈ (0, 1).

(a) As an introductory exercise, of separate interest, suppose X and Y are independent

Gamma variables with parameters (a, 1) and (b, 1). Construct from these the sum Z =

X+Y and ratio P = X/(X+Y ). Finding the joint density for (P,Z), demonstrate that

Z and P are independent, with Z ∼ Gam(a+ b, 1) and P having precisely the be(p, a, b)

density. This in particular shows that the integration constant is the correct one, i.e. that∫ 1

0
pa−1(1− p)b−1 dp = Γ(a)Γ(b)/Γ(a+ b).

(b) Compute and display a few of these densities, for (a, b) of your choice. Note that the

uniform is the special case of (a, b) = (1, 1).

(c) Show that E p = p0 = a/(a+ b) and that Var p = p0(1− p0)/(a+ b+ 1).

(d) Find a formula for E pm, for m = 1, 2, . . ., in terms of (a, b), and in terms of the

reparametrisation (cp0, c(1− p0)). Use this to find

E (p− p0)
3 =

2p0(1− p0)(1− 2p0)

(c+ 1)(c+ 2)
,

with a consequent formula for the skewness. For fixed mean p0, show that the skewness

tends to zero with increasing c.

(e) Examine the particular Beta( 12 ,
1
2 ) distribution. Show that its density and c.d.f. be-

come f(p) = (1/π)/{p(1− p)}1/2 and F (p) = (2/π) arcsin(
√
p). Find is quantile F−1(q).

Plot these functions.
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Ex. 1.19 The Dirichlet distribution. Let G1, . . . , Gk be independent and Gamma dis-

tributed, with parameters (a1, 1), . . . , (ak, 1). With G = G1+· · ·+Gk their sum, consider

the random ratios

(X1, . . . , Xk−1) = (G1/G, . . . , Gk−1/G).

It inherits a distribution, with density h(x1, . . . , xk−1), worked with below, in the simplex

where each xi ≥ 0 and x1+· · ·+xk−1 < 1. Taking alsoXk = Gk/G = 1−(X1+· · ·+Xk−1)

on board, we have a vector (X1, . . . , Xk) of random probabilities summing to 1 over its k

categories. Its distribution has a name: it’s the Dirichlet distribution, with k categories,

and parameters (a1, . . . , ak), which we write as X ∼ Dir(a1, . . . , ak). the Dirichlet

distribution

(a) Suppose (X1, X2, X3, X4, X5, X6) ∼ Dir(a1, a2, a3, a4, a5, a6). Show that (X1 +X4 +

X6, X2, X3+X5) ∼ Dir(a1+a4+a6, a2, a3+a5). Generalise and formalise this summing-

over-cells property of the Dirichlet distribution.

(b) With X ∼ Dir(a1, . . . , ak), show that each Xi ∼ Dir(ai, a−ai), with a = a1+· · ·+ak,
and that this is the same as a Beta(ai, a− ai). Show from this that

EDi = ξi = ai/a, VarDi = ξi(1− ξi)/(a+ 1),

Show also the cov(Di, Dj) = −ξiξj/(a+ 1) for i ̸= j.

(c) We have been able to derive certain basic properties above, without really needing

an expression for the density of a Dirichlet vector. We tend to this now, using the

transformation machinery of Ex. 1.12. Show in fact, starting with (G1, . . . , Gk) and

transforming to (X1, . . . , Xk−1, G), (i) that (X1, . . . , Xk−1) has the density

h(x1, . . . , xk−1) =
Γ(a)

Γ(a1) · · ·Γ(ak)
xa1−1
1 · · ·xak−1−1

k−1 (1− x1 − · · · − xk−1)
ak−1

over the simplex; (ii) that G ∼ Gam(a, 1); (iii) that these are independent; and (iv)

that this also verifies the implied formula for integrating xa1−1
1 · · ·xak−1−1

k−1 (1−x1 − · · · −
xk−1)

ak−1 over the simplex. Note that these efforts and results generalise the findings of

Ex. 1.18(a).

Ex. 1.20 Dirichlets inside Dirichlets. The summing-over-cells property of the Dirich-

let, see Ex. 1.19, has other consequences and angles, and we shall learn here that long

Dirichlet vectors might be split into Dirichlet parts via Dirichlet cuts.

(a) Start with A,B,C independent gammas with parameters (a, 1), (b, 1), (c, 1). Form

from these X = A/(A+B), Y = (A+B)/(A+B+C), Z = A+B+C. Explain that we

already know that X ∼ Beta(a, b), Y ∼ Beta(a + b, c), Z ∼ Gam(a + b + c, 1). Show in

fact that X,Y, Z also are independent. This means working out their joint distribution;

establish first that the inverse transform is A = XY Z, B = (1−X)Y Z, C = (1− Y )Z,

and that the associated Jacobi determinant becomes yz2. Explain that all of this leads

to the product Beta representation

A

A+B + C
=

A

A+B

A+B

A+B + C
= Beta(a, b) Beta(a+ b, c) = Beta(a, b+ c).
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(b) (xx nils rant, to be edited. link to pinned-down Dirichlet processes. xx) Suppose

(X1, . . . , Xk, Y1, . . . , Yℓ) is Dir(a1, . . . , ak, b1, . . . , bℓ), which we may represent as Xi =

Gi/(S + T ), Yj = Hj/(S + T ), with the Gi and Hj being independent gamma variables

with the appropriate parameters, and sums S =
∑k

i=1Gi and T =
∑ℓ

j=1Hj . Explain

that W =
∑k

i=1Xi = S/(S + T ) is a Beta(a, b), with a =
∑k

i=1 ai and b =
∑ℓ

j=1 bj , and

show that

Xi =
Gi

S + T
=W

Gi

S
=WX ′

i and Yj =
Hj

S + T
= (1−W )

Hj

T
= (1−W )Y ′

j ,

where X ′ = (X ′
1, . . . , X

′
k) ∼ Dir(a1, . . . , ak) and Y ′ = (Y ′

1 , . . . , Y
′
ℓ ) ∼ Dir(b1, . . . , bℓ),

independent of W . We learn that the long Dirichlet vector (X,Y ) may be split into two

separate Dirichlet vectors X ′ = X/w and Y ′ = Y/(1− w), by conditioning on W = w.

(c) Now generalise to longer vectors. Let X = (X1, . . . , Xk) be a Dir(a1, . . . , ak), where

each Xi is a vector (Xi,1, . . . , Xi,mi
), with corresponding ai = (ai,1, . . . , ai,mi

). Write

Wi =
∑mi

j=1Xi,j for the sum over Xi. Explain first that (W1, . . . ,Wk) ∼ Dir(b1, . . . , bk),

where bi =
∑mi

j=1 ai,j is the sum over ai. Show next that with X ′
i = Xi/Wi, then

X ′
i ∼ Dir(ai), and that X ′

1, . . . , X
′
k are independent of (W1, . . . ,Wk).

(d) The previous point implies that a long Dirichlet vector may be split into independent

Dirichlet components, in several ways. In the setting above, starting with the long

(X1, . . . , Xk), suppose we condition on (W1, . . . ,Wk) = (w1, . . . , wk), a given probability

vector. With X ′
i = Xi/wi, show that X ′

1, . . . , X
′
k are independent, with X ′

i ∼ Dir(ai).

This is the sorcerer’s apprentice property of the Dirichlet distribution; pin it down, into

subsets with given sums, and see that each part is a scaled Dirichlet again.

Ex. 1.21 The Beta-binomial distribution. Sometimes comparable binomial experiments

may be modelled and analysed jointly, but where the success probability is not the same

across studies. The p = Pr(girl) may e.g. vary from family to family, see Story i.2.

(a) Suppose in general terms that Y | p ∼ binom(n, p), and that p has a distribution with

mean p0 and standard deviation τ0. Using the double expectation rule (1.2), show that

EY = np0 and VarY = np0(1− p0) + n(n− 1)τ20 .

Hence the extra-binomial component of the variance, the n(n − 1)τ20 , becomes more

noticeable with increasing n. The case of τ0 = 0 corresponds to the usual binomial.

(b) Suppose Y | p ∼ binom(n, p) and that p ∼ Beta(a, b). Show that this leads to the

distribution

Pr(Y = y) =

∫ 1

0

(
n

y

)
py(1− p)n−yg(p, a, b) dp

=

(
n

y

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ y)Γ(b+ n− y)

Γ(n+ a+ b)
for y = 0, 1, . . . , n.

Give formulae for the mean and variance of Y . For the special case of the uniform for p,

show that all outcomes for Y are equally likely.
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Ex. 1.22 The Dirichlet-multinomial distribution. Here we deal with the natural exten-

sion of the Beta-binomial setup of Ex. 1.21, from the case of two categories to more than

two.

(a) Let Y = (Y1, . . . , Yk), for given probability vector p = (p1, . . . , pk), have a multinomial

(n, p1, . . . , pk) model, as per Ex. 1.5. Assume then that the p is not fixed, but with pi
variances τ20,i around mean p0,i. Show that Yi, marginally, has mean np0,i and variance

np0,i(1− p0,i) + n(n− 1)τ20,i.

(b) Let in particular p ∼ Dir(cp0), with parameters cp0 = (cp0,i, . . . , cp0,k). Show that

VarYi = {n+ n(n− 1)/(c+ 1)}p0,i(1− p0,i) =
c+ n

c+ 1
np0,i(1− p0,i),

with a clear overdispersion factor with respect to multinomial variation.

(c) Show that the marginal distribution of (Y1, . . . , Yk), now overdispersed compared to

the multinomial, becomes

f̄(y1, . . . , yk) =

∫
n!

y1! · · · yk!
py1

1 · · · pyk−1

k−1 (1− p1 − · · · − pk−1)
yk

g(p1, . . . , pk−1) dp1 · · · dpk−1

=
n!

y1! · · · yk!
Γ(c)

Γ(cp0,1) · · ·Γ(cp0,k)
Γ(cp0,1 + y1) · · ·Γ(cp0,k + yk)

Γ(c+ n)
.

(d) For the case of Dirichlet parameters cp0 = (1, . . . , 1), show that all outcomes (y1, . . . , yk)

have the same probability, and find a formula for how many different outcomes there can

be.

Laws of small numbers, Poisson, geometric, negative binomial

Ex. 1.23 The Poisson distribution. Counting a high number of events with small

probabilities leads to the Poisson distribution, which we define here. A count variable Y

is said to have the Poisson distribution with parameter θ > 0 if

Pr(Y = y) = exp(−θ)θy/y! for y = 0, 1, 2, . . . .

We write Y ∼ Pois(θ) to indicate this.

(a) Show that the probabilities indeed sum to 1. Verify next that EY = θ, EY (Y −
1) = θ2 and show from this that the variance is equal to the mean. Show further that

EY (Y − 1)(Y − 2) = θ3, EY (Y − 1)(Y − 2)(Y − 3) = θ4, and with further algebra that

for W = (Y − θ)/
√
θ, we have skew = EW 3 = 1/

√
θ, kurt = EW 4 − 3 = 1/θ. Show also

that Var (Y − θ)2 = 2θ2 + θ.

(b) With Y ∼ Pois(θ), what is the most probable outcome? What is the probability

that Y is odd?

(c) Show that the sum of two independent Poisson variables is Poisson, with parameter

equal to the sum of the two parameters. Generalise.
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(d) Consider Y ∼ binom(n, p), and assume that n grows, while p becomes small, in the

fashion of np→ θ. Show that Y then tends to the Pois(θ) distribution, in the sense that

the point probabilities converge. See also Ex. 2.8 for a fuller picture.

(e) In some event counting applications there are more zeros than predicted by the

Poisson, leading naturally to a more general model with

Pr(Y = 0) = p0, Pr(Y = y) = (1− p0) exp(−θ)θy/y! /{1− exp(−θ)} for y ≥ 1.

Verify that these probabilities sum to 1, and find expressions for the mean and variance.

This model is sometimes called the zero-inflated Poisson, since situations with p0 >

exp(−θ) are prevalent, but also cases with p0 < exp(−θ) are allowed. Simulate say 1000

datapoints from the model with θ = 3.00 and p0 = 0.25, and check the histogram.

Ex. 1.24 The geometric distribution. Suppose Y has the distribution with point prob-

abilities f(y) = (1 − p)y−1p for y = 1, 2, . . .. This is the geometric distribution, and we

write Y ∼ geom(p) to indicate this.

(a) Show that the probabilities f(y) indeed sum to 1. Suppose independent experiments

are carried out, each time with probability p that a certain event A takes place. With Y

the first time A happens, show that Y ∼ geom(p).

(b) Show that Y has mean 1/p and variance (1 − p)/p2, via direct summation of∑∞
y=1 yf(y) etc. If Y is the number of times you need to roll a six-sided die until it

shows a ‘6’, find the mean and the standard deviation.

(c) Another way of finding the mean and variance is as follows. With probability p,

Y = 1; with complementary probability 1 − p, Y = 1 + Y ′, with Y ′ having the same

distribution as Y . Show that this leads to EY = p+(1− p)(1+EY ) and solve. Use this

representation to also find the variance. Show also that E (Y −1/p)3 = (1−p)(2−p)/p3.

(d) Show that Pr(Y ≥ y) = (1 − p)y−1, derive a formula for Pr(Y ≥ y0 + y |Y ≥ y0),

and comment.

(e) A simple related distribution is when one starts counting at 0, not at 1, so to speak.

Show that with Y ∼ geom(p), as defined above, the variable Y0 = Y − 1 has point

probabilities Pr(Y0 = y) = qyp for y = 0, 1, . . ., writing q = 1 − p. Show that Y0 has

mean (1− p)/p and variance (1− p)/p2.

(f) Suppose Y given p has geometric probabilities (1− p)y−1p for y = 1, 2, . . ., but that

p itself stems from a uniform distribution. Find the distribution for Y ; not that this

implies 1/2 + 1/6 + 1/12 + 1/20 + · · · = 1.

Ex. 1.25 Time to last event. Suppose independent geometric experiments are carried

out by m individuals, say players throwing dice until they get the ‘6’. How long time

does it take until the event in question has taken place, for all individuals?

(a) Let Y1, . . . , Ym be the time needed for the m individuals to see the event in question.

Show that F (y) = Pr(Yi ≤ y) = 1− (1−p)y for y = 1, 2, . . .. For Zm = max(Y1, . . . , Ym),
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show that its c.d.f. is Hm(z) = F (z)m, and use this to find a formula for the median time

to final event: z∗m = log(1 − ( 12 )
1/m)/ log(1 − p) (which may be rounded to the nearest

integer).

(b) For p = 1/6, compute also the mean EZm, for say m = 1, . . . , 100. Plot this, along

with the median times z∗m.

Ex. 1.26 Mixing the Poisson. Suppose observations come from Poisson mechanisms,

but with different parameters, forming their own distribution. There are several versions

and uses of such Poisson overdispersion models. (xx pointer to Poisson regression with

overdispersion, perhaps in Ch5. xx)

(a) Suppose Y | θ ∼ Pois(θ) but that θ has a distribution with mean θ0 and variance τ20 .

Show that Y has mean θ0 and variance θ0 + τ20 .

(b) Specialise to the case of θ ∼ Gam(a, b), see Ex. 1.9. Show that EY = θ0 = a/b and

that VarY = θ0(1+1/b). Argue that with a large b we come back to pure Poisson. Show

also that the marginal distribution of Y becomes

f(y, a, b) =
Γ(a+ y)

Γ(a) y!

ba

(b+ 1)a+y
=

Γ(a+ y)

Γ(a) y!

( b

b+ 1

)a( 1

b+ 1

)y
for y = 0, 1, 2, . . . .

We are discovering the general negative binomial distribution in the process, of the form negative

binomial

g(y, a, p) =
Γ(a+ y)

Γ(a) y!
(1− p)ypa for y = 0, 1, . . . , (1.4)

for parameters a > 0, p ∈ (0, 1); see Ex. 1.27 for more details.

(c) (xx one more thing here, perhaps even mixture of a small and a larger θ value. also

point to Consider a regression context, with observed pairs (xi, Yi), where Yi |xi has a

distribution determined by Yi |µi ∼ Pois(µi) but µi ∼ Gam(exp(xtiβ)/c, 1/c). show that

Yi |xi has mean exp(xtiβ) and inflated variance exp(xtiβ)(1 + c).

Ex. 1.27 The negative binomial. We met the negative binomial distribution in Ex. 1.26

and now point to other features and constructions.

(a) Let X1, X2 be independent from the geometric distribution qxp for x = 0, 1, . . .,

with q = 1 − p. Show that Y = X1 +X2 has distribution Pr(Y = y) = (y + 1)qyp2, for

y = 0, 1, . . .. For Y = X1+X2+X3 a sum of three such independent geometric variables,

show that Pr(Y = y) =
(
y+2
2

)
qyp3 for y = 0, 1, . . ..

(b) Generalise to the case of Y = X1 + · · · + Xa, the sum of a independent geometric

variables, each with qxp for x = 0, 1, . . .. Show that

Pr(Y = y) =

(
y + a− 1

a− 1

)
qypa =

Γ(y + a)

Γ(a) y!
(1− p)ypa for y = 0, 1, . . . ,

i.e. the negative binomial with parameters (a, p). Deduce that the number of ways in

which one may find nonnegative numbers x1, . . . , xa with a given sum y is
(
y+a−1
a−1

)
=

(y + a− 1)!/{(a− 1)! y!}. In how many ways may one find 5 nonnegative numbers with

sum 100? And with 10 nonnegative numbers with sum 100?
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(c) How do we know that the negative binomial probabilities (1.4) sum to one, also when

the a is a non-integer? Deduce from this that

∞∑
y=0

Γ(y + a)

Γ(a)

uy

a!
=

1

(1− u)a
for u ∈ (0, 1).

Show that EY = aq/p, VarY = aq/p2.

(d) (xx the step from Y = X1 + · · · +Xr, counting from zero, to Y ′ = X ′
1 + · · · +X ′

a,

counting each from one, so that Y ′ ≥ a. and just a bit more. reason for the negative

binomial term. xx)

(e) In one of the episodes of the television series Siffer (NRK, 2011), programme leader

Jo Røislien announced he would flip his coin and land ‘krone’ ten times in a row – which

he then proceeded to do. He looked a bit tired, though; he had just kept on doing this,

complete with his opening statement, until he had achieved the ten krone in a row event,

and then showed only this crowning minute on tv. About how many times did he need

to flip his coin, in total, before he (and his camera man) could show that final string of

crowns? Simulate the process, and give a histogram of say 1,000 realisations.

Ex. 1.28 Conditioning on Poisson sums and a generalised binomial. We start with

Poisson sums and see a connection to the binomial. Using generalised Poissons then lead

to generalisations of the binomial.

(a) Let X and Y be independent Poissons with parameters θ1, θ2. Show that X given

X+Y = n is a binomal (n, p), with p = θ1/(θ1+θ2). Generalise to the case of X1, . . . , Xm

being independent Poissons, with parameters θ1, . . . , θm. Show that their conditional

distribution given X1 + · · · + Xm = n is a multinomial with count n and probabilities

(p1, . . . , pm), where pj = θj/(θ1 + · · ·+ θm).

(b) To generalise the above, and in its turn also the binomial distribution, consider the

gamma-mixed Poissons of 1.26. Specifically, let X | θ1 ∼ Pois(θ1) and Y | θ2 ∼ Pois(θ2),

with gamma distributions (cθ0,1, c) and (cθ0,2, c) for θ1 and θ2; when c is large, this

means tight concentration around θ1,0, θ0,2, and we’re back to Poisson. Show that the

conditional distribution of X given X + Y = n may be written

f(x |n) ∝
(
n

x

)
Γ(cθ0,1 + x)Γ(cθ0,2 + n− x) for x = 0, 1, . . . , n,

where ‘∝’ means ‘proportional to’. For a particular case, explain that with cθ0,1 = cθ0,2 =

1, X has the uniform distribution on 0, 1, . . . , n.

(c) It may not be easy to sum the terms above directly, to find the normalisation constant,

but show via expressions in Ex. 1.21 that we in fact must have

f(x |n) =
(
n

x

)
Γ(cθ0,1 + cθ0,2)

Γ(cθ0,1)Γ(cθ0,2)

Γ(cθ0,1 + x)Γ(cθ0,2 + n− x)

Γ(cθ0,1 + cθ0,2 + n)

for x = 0, 1, . . . , n. In yet other words, we have reinvented the Beta-binomial distribu-

tion with gamma-mixing of Poisson parameters. Also, for large c, we are back to plain

binomial (n, p), with p = θ0,1/(θ0,1 + θ0,2).
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(d) To invent other generalisations of the binomial, therefore, we might attempt other

extensions of the Poisson. One such is to let X and Y have point probabilities propor-

tional to θx1/(x!)
γ and θx2/(y!)

γ , for some γ ̸= 1; we work with such models in Ex. 4.34

and Story iv.6. Show here that X given X + Y = n has the distribution

f(x |n) ∝
(
n

x

)γ

px(1− p)n−x for x = 0, 1, . . . , n,

where p = θ1/(θ1 + θ2). Compute these probabilities, for say n = 50, p = 0.33, and

some values of γ around 1. Check then numerically np0 = EX and the dispersion ratio

ρ = VarX/{np0(1 − p0)}, to learn that there is overdispersion and underdispersion,

compared to the binomial case, for γ < 1 and γ > 1, respectively.

Moments, moment-generating functions, characteristic functions

Ex. 1.29 Moments. Consider a random variable X with c.d.f. F . Its mean is EX =∫
xdF (x), and we may of course define higher moments.

(a) Use results of Ex. A.15 to show that EXk, first seen as
∫
y dGk(y), the mean of the

variable Y = Xk with distribution Gk inherited from F , is also the same as
∫
xk dF (x);

thus there is no ambiguity there.

(b) For r < s, show that (E |X|r)1/r ≤ (E |X|s)1/s, i.e. h(r) = (E |X|r)1/r is a non-

decreasing function in r. You may use the Jensen inequality (see e.g. Ex. 8.8). In

particular, note that if |X| has a finite s-moment, then all moments of smaller order

are also finite. Illustrate by computing and graphing h(r) and log h(r) for the case of

X ∼ Expo(1).

(c) ForX a standard normal, show that E |X|p = 2p/2Γ( 12 (p+1))/
√
π for p ≥ 0, a formula

that also can be written ( 12 )
p/2Γ(p+1)/Γ( 12p+1). Compute and graph the function h(r)

for this case. For p an even integer, the formula simplifies to ( 12 )
p/2p!/( 12p)!.

(d) For a random variable X with finite fourth moment, we have defined its skewness

skew and kurtosis kurt in Ex. 1.3. Give expressions skew = h3(µ1, µ2, µ3) and kurt =

h4(µ1, µ2, µ3, µ4) in terms of the moments µj = EXj , and also expressions skew =

h∗3(µ
∗
2, µ

∗
3) and kurt = h∗4(µ

∗
2, µ

∗
3, µ

∗
4) in terms of the centralised moments µ∗

j = E(X −
µ1)

j .

Ex. 1.30 Moment-generating functions. (xx nils has lifted this from App, need post-

polish there and here. xx) For a random variable Y , with distribution P , its m.g.f. is

M(t) = E exp(tY ) =

∫
exp(ty) dP (y),

defined for each t at which the expectation exists. The moment-generating function is

useful for finding and characterising distributions, for finding their moments, for han-

dling the distributions of sums of variables, and in connection with distributional lim-

its. When Y has a density f(y) (with respect to Lebesgue measure), we have M(t) =∫
exp(ty)f(y) dy, and if it is discrete with pointmasses f(y) for sample space S, say,
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thenM(t) =
∑

y∈S exp(ty)f(y). The expectation operator is more general, however, and

M(t) is perfectly defined also for intermediate cases where Y can have both discrete and

continuous parts; see Ex. A.15.

(a) For a standard normal Y ∼ N(0, 1), show thatM(t) = exp(12 t
2). When Y ∼ N(µ, σ2),

derive M(t) = exp(µt+ 1
2σ

2t2).

(b) A moment-generating function has that name since it generates moments; we indeed

have M ′(0) = EY , M ′′(0) = EY 2, etc., under mild conditions, see Ex. A.31 for details.

Use this to find the first four moments of the standard normal.

(c) For Y ∼ Expo(θ), show that M(t) = 1/(1− t/θ), for t < θ.

(d) For Y ∼ Gam(a, b), with density {ba/Γ(a)}ya−1 exp(−by), show thatM(t) = {b/(b−
t)}a, for t < b. In particular, M(t) = 1/(1− t)a for Gam(a, 1).

(e) Suppose Y is equal to zero with probability 0.90, but a standard normal with prob-

ability 0.10. Find the M(t), and generalise.

(f) For the binomial (n, p), show that M(t) = {1− p+ p exp(t)}n.

(g) For Y ∼ Pois(θ), find M(t) = exp{θ(et − 1)}. Use this, with Ex. 1.26, to find M(t)

also for the negative binomial (a, p). (xx hm, should give the formula here. xx)

(h) Let Y = ±1 with probabilities 1
2 ,

1
2 . Show that

M(t) = cosh(t) = 1
2 (e

t + e−t) = 1 + (1/2)t2 + (1/4!)t4 + (1/6!)t6 + · · · .

(i) For the uniform distribution on the unit interval, show that M(t) = {exp(t) − 1}/t,
for t ̸= 0, and with M(0) = 1. For Y having the uniform distribution on the [−1, 1]

interval, show that

M(t) =
exp(t)− exp(−t)

2t
=

sinh t

t
,

and that this function may be written as the infinite sum 1 + (1/3!)t2 + (1/5!)t4 + · · · .

Ex. 1.31 Distribution of sums via moment-generating functions. Importantly, the

m.g.f. M(t) = E exp(tY ), if it exists in a neighbourhood around zero, characterises the

distribution; variables whose m.g.f.s are identical in such a neighbourhood have identical

distributions. See details in Ex. A.31.

(a) SupposeM(t) = ( 12 )
25{1+exp(t)}25. What is the underlying distribution? Similarly,

if M(t) = 0.99 + 0.01 exp( 12 t
2), what is the distribution?

(b) With X and Y being independent, with m.g.f.s M1 and M2, show that the sum

Z = X + Y has m.g.f. MX(t)MY (t).

(c) With X and Y independent and standard normal, show that X +Y is N(0, 2). Redo

the questions of Ex. 1.2.

(d) Redo a part of Ex. 1.23, showing that sums of independent Poissons are Poisson.
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(e) If X1, . . . , Xn are independent gamma variables, with parameters (a1, b), . . . , (an, b),

find the distribution of X1 + · · ·+Xn.

Ex. 1.32 The Laplace distribution. The Laplace or double exponential distribution, inthe Laplace

distribution its simplest form, has density f0(y) =
1
2 exp(−|y|), on the real line; note the cusp at its

centre point zero.

(a) Let V1 and V2 be independent standard exponentials. Show that Y = V1 − V2 has

this density f0(y). Deduce from this that its m.g.f. is M0(t) = 1/(1− t2), for |t| < 1.

(b) More generally, consider Y = V1−V2 where these two are independent and Expo(θ).

Show that Y has density f(y) = 1
2θ exp(−θ |y|), with zero mean and variance 2/θ2. Also,

show that its m.g.f. is M(t) = 1/{1− (t/θ)2} for |t| < θ. The Laplace with variance 1 is

hence that with θ =
√
2.

(c) Suppose X for given σ is a N(0, σ2), but that the variance V = σ2 has some distribu-

tion. Show that the m.g.f. for such a normal scale mixture becomesM(t) = E exp(tX) =

MV (
1
2 t

2), where MV (s) is the m.g.f. for V . In particular, show that if X |σ ∼ N(0, σ2)

and σ2 ∼ Expo(1), then X has the Laplace distribution with variance 1.

(d) If X |V ∼ N(0, V ), and V has density g(v), show that X has density f(x) =∫∞
0
ϕ(x/v1/2)(1/v1/2)g(v) dv. Translate the result above to the interesting formula∫ ∞

0

1

(2π)1/2
exp
(
− 1

2

x2

v

)exp(−v)
v1/2

dv = 2

∫ ∞

0

1

(2π)1/2
exp{−( 12x

2/w2 + w2)} dw

= 1
2

√
2 exp(−

√
2|x|).

Use this to find a formula for the integral
∫∞
0

exp{−(av2 + b/v2)} dv.

Ex. 1.33 Characteristic functions. Above we have found multiple uses for moment-

generating functions, as in Ex. 1.30, and also their close cousin the Laplace transform,

see Ex. 1.35, along with generating functions for distributions on the integers. Yet

another very useful transform is the characteristic function, worked with in App. A, see

Ex. A.34, which is also a crucial technical tool in the development of the large-sample

theory of Ch. 2. For a variable with distribution F , its definition is φ(t) = E exp(itX) =∫
{cos(tx) + i sin(tx)} dF (x), with dF (x) to be read as f(x) dx when F has a density f .

Notably, this φ(t) always exists, also for distributions without means, etc. We note here

the inversion theorem from Ex. ??, that if
∫
|φ(t)|dt is finite, then there is a density

f(x) = (2π)−1
∫
exp(−itx)φ(t) dt, see Ex. ??, which is also seen to be continuous.

(a) For the standard normal, show that φ(t) = exp(− 1
2 t

2), and that φ(t) = exp(− 1
2σ

2t2)

for the N(0, σ2).

(b) Show that φ(t) is real, and then equal to E cos(tX), if and only if the distribution

is symmetric around zero.

(c) For U a unit exponential, show that φ(t) = 1/(1− it). Deduce that X = U −V , with

its Laplace distribution, has φ(t) = 1/(1 + t2), and that

1
2 exp(−|x|) = (2π)−1

∫
cos(tx)

1

1 + t2
dt.
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(d) Show from this, essentially by changing from (x, t) to (t, x), that the standard Cauchy

has φ(t) = exp(−|t|).

(e) In Ex. 1.16(d) we saw that if a ball is kicked from distance r to an infinitely long

straight line, with random angle A being uniform on (− 1
2π,

1
2π), then the position where

the ball crosses the line is X = rX0, where X0 is Cauchy. Now assume r is not fixed, but

comes from a unit exponential distribution. Show that X, a scale mixture of Cauchys,

has characteristic function ϕ(t) = 1/(1 + |t|).

(f) For V a uniform on [−1, 1], show φ(t) = (sin t)/t. Prove from this that even though∫
(sin t)/t dt = π, the integral

∫
|(sin t)/t|dt must be infinite. Show that

f(x) = (2π)−1

∫
cos(tx)

( sin t
t

)2
dt

is equal to the triangular density on [−2, 2].

(g) Just as for m.g.f.s, sums of independent components are associated with products of

characteristic functions. Show that if X,Y, Z are independent, with φ1(t), φ2(t), φ3(t),

then X + Y + Z has φ1(t)φ2(t)φ3(t) as its characteristic function. Whem X1, . . . , Xn

are i.i.d. with characteristic function φ(t), show that (X1 + · · · + Xn)/
√
n has φn(t) =

φ(t/
√
n)n. We learn in Ch. 2 that if the Xi have mean zero and finite variance σ2, then

φn(t) → exp(− 1
2σ

2t2). In this connection, you may numerically compute

fn(x) = (2π)−1

∫
cos(tx)

( sin t/√n
t/
√
n

)n
dt

and verify that it tends to the N(0, 1/12) density; cf. Ex. ??.

(h) Show that there cannot be two i.i.d. variables with sum having the uniform distri-

bution. (xx but pointer to story with U = V1 + V2, two independent but with different

distributions. xx)

(i) (xx be repaired. xx) If X,Y are independent with the same distribution, and (X +

Y )/
√
2 ∼ X, show that X must be a zero-mean normal. (xx pointer to CLT. xx)

(j) (xx to be repaired. xx) For another characterisation lemma, suppose that (X+Y )/2 ∼
X, and show by induction that this implies the curious property that with X1, . . . , Xn

i.i.d. from such a model, then the sample mean X̄n has the same distribution for every

n. Show that X must be Cauchy. Why is this not contradicting the LLN?

Ex. 1.34 Cumulants and the cumulant-generating function. For a variable X with

m.g.f. M(t), assumed finite in an interval around zero, it is sometimes fruitful to work

with the cumulant-generating function K(t) = logM(t). When expanded in a power

series around zero, withcumulants

K(t) = K ′(0)t+ 1
2K

′′(0)t2 + · · · =
∞∑
j=1

κj
j!
tj ,

we call the coefficients κj = K(j)(0) the cumulants of the distribution.
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(a) For the N(ξ, σ2) distribution, show that K(t) = ξt+ 1
2σ

2t2. For the unit exponential

distribution, show K(t) = t+ t2/2 + t3/3 + · · · , with κj = (j − 1)! for j ≥ 1.

(b) If X has mean ξ, write X = ξ +X0, Show that K(t) = ξt +K0(t), where K0(t) =

logM0(t), with M0 the m.g.f. of the zero-mean variable X0. Hence the cumulants κj for

X are the same as the cumulants κj,0 for X0, for j ≥ 2.

(c) Via successive derivatives of M(t) = exp{K(t)}, show that

M ′ = MK ′,

M ′′ = M{K ′′ + (K ′)2},
M ′′′ = M{K ′′′ + 3K ′′K ′ + (K ′)3},
M ′′′′ = M{K ′′′′ + 4K ′′′K ′ + 6K ′′(K ′)2 + 3(K ′′)2 + (K ′)4}.

Write ξ and σ2 for the mean and variance of X. From the equations, show first that

K ′(0) = κ1 = ξ and that K ′′(0) = κ2 = σ2, and next that

EX3 = κ3 + 3ξκ2 + ξ3, EX4 = κ4 + 4ξκ3 + 6ξ2κ2 + 3κ22 + ξ4.

(d) Skewness and kurtosis were defined in Ex. 1.3. We may now find useful expressions

for these in terms of the cumulants. Show first via formulae above that

E (X − ξ)3 = κ3, E (X − ξ)4 = κ4 + 3σ4.

Explain that this leads to skew(X) = κ3/σ
3, kurt(X) = κ4/σ

4.

Ex. 1.35 Generating functions. Moment-generating functions, studying distributions

via the transformation M(t) = E exp(tX), have several close relatives, which might be

more convenient for certain classes of distributions. It is e.g. common to use Laplace

transformations L(s) = E exp(−sX) for distributions on [0,∞), then studied for s ≥ 0. Laplace

transformsHere we work through the basic properties of generating functions, primarily used for

distributions on the nonnegative integers. If Pr(Y = j) = pj , for j = 0, 1, 2, . . ., define

G(s) = E sY =
∑∞

j=0 pjs
j = p0+p1s+p2s

2+ · · · , called the generating function for that

distribution, or for variables having that distribution. generating

functions

(a) Show that G(s) =M(log s), for s such that the latter exists. Demonstrate that G(s)

is finite, for |s| < 1, and also for s = 1. Find the generating functions for (i) the binomial

(n, p); (ii) the Poisson with parameter θ; (iii) the geometric with Pr(Y = j) = qj−1p for

j ≥ 1, with q = 1− p; answers are

G1(s) = (1− p+ ps)n, G2(s) = exp{−θ(1− s)}, G3(s) =
ps

1− qs
,

the latter valid for |s| < 1/q.

(b) Returning to the general case, give an expression for G′(s), show that G′(1) = EY ,

and that G′′(1) = EY (Y − 1). Find the mean and variance for the Poisson using

generating functions.
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(c) Suppose X and Y are random variables taking on values in {0, 1, 2, . . .}, and that

their generating functions are equal, on an interval around zero. Show that X and Y

must have identical distributions.

(d) Show that if X,Y, Z are independent, with generating functions G1, G2, G3, then the

generating function for X+Y +Z is G1(s)G2(s)G3(s). Show from this, and the previous

point, yet again, that a sum of independent Poissons is a Poisson.

Ex. 1.36 Getting Y from two copies of X. Let X1, X2 be independently drawn from

some distribution on the nonnegative integers, and from these draw Y from the binomial

(X1 +X2,
1
2 ).

(a) Writing ξ and σ2 for the mean and variance for the X distribution, set up formulae

for the conditional mean and variance of Y , given X1, X2. From these show that EY = ξ,

VarY = 1
2ξ +

1
2σ

2.

(b) Write G0(s) = E sX for the generating function of the Xi. Show that the generating

function for Y may be written G(s) = G0(
1
2 +

1
2s)

2. When Xi ∼ binom(m, p), show from

this that Y ∼ binom(2m, 12p). Then show that if the Xi are Poisson, then Y reproduces

the same distribution.

Ex. 1.37 Sums of random lengths and the compound Poisson. Let X1, X2, . . . be i.i.d.,

from a distribution with mean ξ, variance σ2, and m.g.f. M0(t). Consider then a random

sum of these random elements; Z =
∑N

i=1Xi, where N has some distribution with mean

λ, variance τ2, and generating function G(s) = E sN . We define Z as zero if N = 0.

(a) Show that Z has m.g.f. M(t) = G(M0(t)). Show that Z has mean λξ and variance

λσ2 + ξ2τ2.

(b) Consider the so-called compound Poisson variable Z =
∑N

i=1Xi, where the Xi are

i.i.d. with m.g.f. M0(s) and N ∼ Pois(λ). Show that the m.g.f. of Z may be writtencompound

Pòisson

E exp(tZ) = EM0(s)
N = exp[λ{M0(t)− 1}],

and that this leads to mean λξ and variance λ(ξ2+σ2). Find an expression for E exp(tZ)

for the particular case of Xi ∼ Gam(a, b).

(c) Consider now Z =
∑N

i=1Xi, where the Xi are i.i.d. unit exponentials. For given N ,

the Z is a Gam(N, 1). With N ∼ geom(p), show that Z ∼ Expo(p). Generalise.

(d) Using terminology and results from Ex. 1.34, show that the cumulant-generating

function for the compound Poisson is K(t) = λ{M0(t) − 1}, with cumulants κj =

λEXj . Show from this that skew(Z) = (1/λ)1/2γ3 and kurt(Z) = (1/λ)γ4, with

γ3 = EX3/(EX2)3/2 and γ4 = EX4/(EX2)2. For a Poisson sum Z =
∑N

i=1Xi of

i.i.d. standard normals, so that Z | (N = n) ∼ N(0, n), find the variance and kurtosis.

Ex. 1.38 The logarithmic distribution. Consider a variable X with point probabilities

Pr(X = x) = c(p)−1px/x for x = 1, 2, . . ., with p a parameter in (0, 1). This distribution

is sometimes called the logarithmic distribution.
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(a) Show that we must have c(p) = − log(1 − p). Find expressions for the m.g.f. M(t),

its mean, and its variance. Comment on the cases where p is close to zero, or close to

one. Show also for its generating function that G(s) = E sX = c(ps)/c(p).

(b) Consider Z =
∑N

i=1Xi, with the Xi being i.i.d. with this logarithmic distribution,

and N is Poisson, with parameter expressed as λc(p). Find the mean and variance of

Z, and show that its distribution is a negative binomial. We learn that the negative

binomial is inside the class of compound Poissons.

The multinormal, the t, the chi-squared, the F

Ex. 1.39 Mean and variance matrix for a random vector. (xx calibrate with Story

vii.1. xx) Consider a random vector of length p, say Y = (Y1, . . . , Yp)
t. Its mean vector

is defined as the vector of means, i.e. ξ = EY = (EY1, . . . ,EYp)
t, and its variance matrix

Σ (also often called the covariance matrix), of dimension p× p, has the variances on the

diagonal and the covariances outside.

(a) Show that the elements of Σ are cov(Yi, Yj), for i, j = 1, . . . , p. If we transform Y to

Z = AY + b, with A a m× p matrix and b a vector of length m, show that EZ = Aξ+ b

and that VarZ = AΣAt. Explain that this generalises the usual rule Var (aY ) = a2VarY

for one-dimensional variables.

(b) Let X1, X2, X3, X4 be i.i.d. standard normals. Set up the variance matrix for

(X1, X1 +X2, X1 +X2 +X3, X1 +X2 +X3 +X4)
t.

(c) For the multinomial model studied in Ex. 1.5, with Y = (Y1, . . . , Yk)
t counting the

number of n events that fall in categories 1, . . . , k, with probabilities p1, . . . , pk, show

that EY = np, where p is the vector of p1, . . . , pk. Show also that its variance matrix

can be written Σ = D − ppt, where D is diagonal with elements p.

(d) For the multinomial model, with 1 the vector (1, . . . , 1)t, show that 1tD1 = 0.

Explain that this is related to the linear relationships
∑k

j=1 pj = 1 and
∑k

j=1 Yj = n.

The matrix is hence not of full rank, and not invertible. Work however with the shorter

vector Y0 = (Y1, . . . , Yk−1)
t, and show that its variance matrix may be written Σ0 =

D0 − p0p
t
0, where p0 = (p1, . . . , pk−1)

t and D0 is diagonal with these elements. Show

that Σ−1
0 = D−1

0 + (1/pk)101
t
0, where 10 is the vector of k − 1 1s. For any vector

x = (x1, . . . , xk) with sum zero, and with x0 being the shortened version (x1, . . . , xk−1),

demonstrate that xt0Σ
−1
0 x0 =

∑k
j=1 x

2
j/pj .

Ex. 1.40 The multinormal distribution. Let Y = (Y1, . . . , Yp)
t be a random vector of

length p. We say that it is multinormally distributed, with mean vector ξ and variance

matrix Σ, which needs to be positive definite, provided its joint density can be written

f(y) = (2π)−p/2|Σ|−1/2 exp{− 1
2 (y − ξ)tΣ−1(y − ξ)},

where the domain for y is all of Rp. We write Y ∼ Np(ξ,Σ) to indicate this distributon.

(a) Show that
∫
yf(y) dy indeed is equal to ξ, so calling it the mean vector is appropriate.

Show also that E (Y − ξ)(Y − ξ)t, calculated from the density, is equal to Σ.
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(b) Show that if Y ∼ Np(ξ,Σ), then Y − ξ ∼ Np(0,Σ).

(c) Assume now that A is an invertible p × p matrix, and consider the transformation

Z = AY . Show that if Y ∼ Np(ξ,Σ), then Z = AY ∼ Np(Aξ,AΣA
t).

(d) By the spectral decomposition theorem of linear algebra, there is an orthonormal

matrix P , with PP t = I = P tP , such that PΣP t = D = diag(λ1, . . . , λp), with these

values being the eigenvalues of Σ. Show that Z = P (Y − ξ) has components Z1, . . . , Zp

which are independent, with Zj ∼ N(0, λj).

(e) Show that a vector Y is multinormal if and only if all linear combinations are normal.

In particular, if Y ∼ Np(ξ,Σ), then V = ctY = c1Y1 + · · ·+ cpYp is normal N(ctξ, ctΣc).

[xx need to say something careful about allowing constants to be seen as normal, with

zero variance. xx]

(f) Generalise point (c) to state that with any matrix A, of size say q×p, the transformed

Z = AY is a multinormal Nq(Aξ,AΣA
t).

(g) For the binormal case, with means ξ1, ξ2, standard deviations σ1, σ2, and correlation

ρ, show that the density may be written

f(x, y) =
1

2π

1

σ1σ2(1− ρ2)1/2
exp
[
− 1

2

1

1− ρ2

{(x− ξ1
σ1

)2
+
(y − ξ2

σ2

)2
−2ρ

(x− ξ1
σ1

)(x− ξ1
σ1

)}]
.

Show that X and Y are independent if and only if the correlation is zero.

(h) We learn that the situation is easy and clean for the multinormal case, where inde-

pendence is equivalent to zero correlation. This is in general more complicated. (i) Let

X ∼ N(0, 1) and Y = DX, withD a random sign with equal probabilities for −1, 1. Show

that Y also is standard normal, that the correlation is zero, but that they are dependent.

(ii) For another example, again with X ∼ N(0, 1), let Y = X if |X| ≤ a but Y = −X if

|X| > a. Show that Y is standard normal. Show that the correlation ρ(a) goes from −1

to 1 as a goes from zero to infinity; thus there is an a0 for which the correlation is zero.

Also, find this a0 numerically (answer: 1.537). In these zero-correlation constructions,

with normal marginals, the point is that there is not joint binormality.

Ex. 1.41 The multinormal and conditional distributions. Consider a multinormally

distributed vector, of length p+ q, blocked into subvectors of sizes p and q. Let us write

this as (
Y1
Y2

)
∼ Np+q(

(
ξ1
ξ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)
).

(a) By carrying out a linear transformation, and using results from Ex. 1.40, show that

Z = Y1 − Σ12Σ
−1
22 Y2 ∼ Np(ξ1 − Σ12Σ

−1
22 ξ2,Σ11 − Σ12Σ

−1
22 Σ21),

and that this Z is independent of Y2.
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(b) Show that the distribution of Y1 given Y2 = y2 must be multinormal. Derive the

important formulae for the conditional mean and variance,

E (Y1 | y2) = ξ1 +Σ12Σ
−1
22 (y2 − ξ2), Var (Y1 | y2) = Σ11 − Σ12Σ

−1
22 Σ21.

Note that the conditional mean is a linear function in y2 and that the conditional variance

matrix is constant, not depending on y2.

(c) Now study the simplest two-dimensional prototype case, with(
X

Y

)
∼ N2(

(
0

0

)
,

(
1, ρ

ρ, 1

)
).

Show that Y |x ∼ N(ρx, 1 − ρ2) and that X | y ∼ N(ρy, 1 − ρ2). Discuss implications

for situations where an easy to measure X might be a proxy for a harder to come by Y .

How can you estimate Y from X, and with what precision?

(d) In generalisation of this special binormal case, consider a binormal(
Y

X

)
∼ N2(

(
ξ

ξ0

)
,

(
σ2, ρσσ0
ρσσ0, σ2

0

)
).

In particular, the X is seen as stemming from a N(ξ0, σ
2
0) distribution. Show that

Y | (X = x) is normal, with constant variance σ2(1 − ρ2) and linear mean function

E (Y |x) = ξ + ρ(σ/σ0)x. This is essentially the linear regression model, for Y |x, here
derived as a consequence of binormality. Without pretensions of having precise numbers,

guess the binormal parameters in your population for (X,Y ) being height and weight,

and deduce from this a model predicting a person’s weight from his or her height.

(e) Generalise this to situations with a (p + 1)-dimensional normal distribution for

(Y,X1, . . . , Xp), with Y seen as the main outcome, influenced by covariates X1, . . . , Xp.

Show that Y given these covariates is normal, with a constant variance, and find the lin-

ear conditional mean function E (Y |X1, . . . , Xp). This is essentially the linear multiple

regression model; see Ex. 3.31.

(f) (xx a bit here on regression towards the mean. xx)

Ex. 1.42 How tall is Nils? Assume that the heights of Norwegian men above the age

of twenty follow the normal distribution N(ξ, σ2) with ξ = 180 cm and σ = 9 cm.

(a) Given this information only, what is your point estimate of his height, and what is

your 95 percent prediction interval?

(b) Assume now that you learn that his four brothers are actually 195 cm, 207 cm,

196 cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the

population of Norwegian men is equal to ρ = 0.80. Use this information about his four

brothers to revise your initial point estimate of his height, and provide the updated 95

percent prediction interval. Is Nils a statistical outlier in his family?
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(c) Suppose that Nils has n brothers and that you learn their heights. Give formulae for

the updated normal parameters ξn and σn, in the conditional distribution of his height

given these extra pieces of information. Use this to clarify the following statistical point:

Even if you get to know all facts concerning 99 brothers, there should be a limit to your

confidence in what you may infer about Nils.

Ex. 1.43 The chi-squared. This exercise goes through some basic properties of the chi-

squared; see also Ex. 1.47 for its eccentric cousin, the noncentral or eccentric chi-squared.

(a) We say that a nonnegative variable X has the chi-squared distribution, with degrees

of freedom m, and write X ∼ χ2
m for this, when its density takes the form

gm(x) =
1

2m/2Γ(m/2)
xm/2−1 exp(− 1

2x) for x > 0.

Show that its m.g.f. becomesM(t) = (1−2t)−m/2, for t < 1
2 . Show further that EX = m,

VarX = 2m, and that the skewness, i.e. EW 3 with W = (X − EX)/(VarX)1/2 =

(X−m)/(2m)1/2, is (8/m)1/2. From the density, show E (χ2
m)p = 2pΓ(m/2+p)/Γ(m/2).

(b) Via the m.g.f., show the simple and basic convolution property for the chi-squared,

that if X1, . . . , Xn are independent and chi-squared distributed with degrees of freedom

m1, . . . ,mn, then the sum Z =
∑n

i=1Xi is chi-squared too, with degrees of freedom∑n
i=1mi. A generalisation is given in Ex. 1.47.

(c) If N is standard normal, show that X = N2 ∼ χ2
1. Establish that if X ∼ χ2

m, with

m a natural number, then it may be represented as X = N2
1 + · · · + N2

m, in terms of

independent standard normals N1, . . . , Nm. Note, however, that the χ2
m with the density

gm(x) above may be used also when m is not a natural number.

(d) There are connections between the chi-squared and the Gamma distribution (see

Ex. 1.9). Show that the Gam( 12m,
1
2 ) is the χ

2
m; that if Y ∼ Gam(a, b), then X = 2bY ∼

χ2
a/2; and that if Z ∼ χ2

m, then 1
2Z ∼ Gam( 12m, 1).

(e) Consider independent X ∼ χ2
a and Y ∼ χ2

b . Show, perhaps via Gamma distribution

ratios in Ex. 1.12, that R = X/(X + Y ) ∼ Beta( 12a,
1
2b).

(f) When X ∼ χ2
m, show that E logX = log 2+ψ( 12m), where ψ(x) = Γ′(x)/Γ(x) is the

digamma function.

(g) Consider Z = XY , a product of independent standard normals. Use (1.2) to show

that its m.g.f. is M(t) = 1/(1− t2)1/2, for |t| < 1. Deduce from this that Z has the same

distribution as 1
2 (K − L), where K and L are independent with χ2

1 distributions.

(h) Consider the second degree equation x2+Bx+C = 0 from school. If there are many

such equations, with B and C being independent standard normal, how many of these

equations will have both roots real?

Ex. 1.44 Tell me about X and X + Y . In exercises above we have seen that sums of

independent normals, Poissons, chi-squares are respectively normal, Poisson, chi-square.

Sometimes we meet questions going the other way.
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(a) Suppose X and Y are independent, and that you learn the distributions of X and

Z = X + Y . Show that Y must have m.g.f. MY (t) = MZ(t)/MX(t). As an illustration,

suppose X ∼ N(0, 1) and X + Y ∼ N(0, 2). Show that Y ∼ N(0, 1).

(b) Explain similarly that if X and Y are independent, with X and X+Y being Poisson,

then Y is also Poisson.

(c) Suppose X and Y are independent, that X ∼ χ2
a and that Z = X+Y ∼ χ2

a+b. Show

that the only possibility is then the expected one, that Y ∼ χ2
b .

(d) Consider X1, . . . , Xn i.i.d. standard normal. Writing as usual X̄ for the sample

mean, we know that
√
nX̄ is also standard normal. Show that the vector of Xi − X̄ is

independent of X̄. Writing Q =
∑n

i=1(Xi − X̄)2, show from
∑n

i=1X
2
i = Q + nX̄2 that

Q ∼ χ2
n−1. (xx calibrate with other things; this is giving a simpler proof of the lemma

below, with no orthogonal transformations. xx)

(e) (xx for later, perhaps in Ch3: also nice for p-dimensional things with Q(θ) =∑k
j=1(yj−θ)tΣ

−1
j (yj−θ), whereQmin = Q(θ̂) ∼ χ2

(k−1)p, independent of θ̂ = A−1
∑k

j=1 Σ
−1
j yj .

xx)

Ex. 1.45 Orthonormal transformations. [xx check and calibrate with chi-squared things,

to get the order right. restructure text. xx] We have seen in Ex. 1.40 that a multinormal

vector can be sent via a linear transformation to independent one-dimensional normal

components, and vice versa. This also leads to useful characterisation and representation

theorems involving independence. In the present exercise we shall e.g. find a proof that

the sample mean Ȳ and the sample variance statistic S =
∑n

i=1(Yi−Ȳ )2 are independent;

this fact, which does not hold outside the normal family, was actively used in Ex. 3.4,

and will also be utilised (xx in other exercises, like Ex. 3.6 xx).

(a) Suppose X = (X1, . . . , Xn) is a vector with i.i.d. and standard normal components,

and let A be an orthonormal matrix, which means AAt = I = AtA. In yet other words,

each row of A and each column of A has length 1, rows are ortogonal, as well as columns.

Show that Y = AX must have components Y1, . . . , Yn which are also i.i.d. and standard

normal. – Here you may also use the general transformation formula of Ex. 1.12.

(b) To exemplify the above, show that if X1, X2 are independent and standard normal,

then also Y1, Y2, where(
Y1
Y2

)
=

(
1/
√
2, 1/

√
2

1/
√
2, −1/

√
2

)(
X1

X2

)
=

(
(X1 +X2)/

√
2

(X1 −X2)/
√
2

)
,

must be independent and standard normal.

(c) When A is orthonormal, show that it preserves length, so ∥Au∥ = ∥u∥, for any

vector u; here ∥u|∥ is Euclidean length, so ∥u∥2 = u21 + · · ·+ u2n.

(d) Let again X1, . . . , Xn be i.i.d. standard normals. Construct an orthogonal matrix

A by letting its first row be (1/
√
n, . . . , 1/

√
n), and define Y = AX. Then show that

Y1 =
√
nX̄ =

∑n
i=1Xi/

√
n, and that

Z =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

X2
i − nX̄2 =

n∑
i=2

Y 2
i .
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(e) Conclude from this that (i)
√
nX̄ ∼ N(0, 1), (ii) Z ∼ χ2

n−1, and (iii) X̄ and Z are

idependent. This was proven more directly in Ex. 1.44 above, via decompositions of

chi-squares.

(f) Show that this implies the following classical and important properties, starting

with an independent sample Y1, . . . , Yn from the N(µ, σ2): The statistics Ȳ and Z =∑n
i=1(Yi − Ȳ )2 are independent, with Ȳ ∼ N(µ, σ2/n) and Z ∼ σ2χ2

n−1. Show also from

this that the classical empirical variance

σ̂2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2 (1.5)

is unbiased for the population variance, i.e. E σ̂2 = σ2. Construct an unbiased estimator

for σ, of the type cnσ̂. [xx point to generalisations for the linear regression model. xx]

(g) Consider the general multinormal distribution Y ∼ Np(ξ,Σ), with invertible Σ. Show

that K = (Y − ξ)tΣ−1(Y − ξ) ∼ χ2
p. Suppose Y = yobs is observed, that Σ is known,

but ξ unknown. Give a confidence region R such that ξ ∈ R with probability 90 percent.

How does this region shrink, if you observe 100 vectors from the multinormal, rather

than merely 1?

Ex. 1.46 The t distribution. Consider independent variables X ∼ N(0, 1) and K ∼ χ2
m.

The ratio t = X/(K/m)1/2 is then said to have the t distribution, with m degrees of

freedom. We write t ∼ tm to indicate this.

(a) Find the mean and variance of t.

(b) Show that its density can be written

gm(x) =
Γ((m+ 1)/2)

Γ(m/2)

1√
mπ

1

(1 + x2/m)(m+1)/2
.

Show that gm(x) tends to the standard normal density ϕ(x) as m increases, and explain

why this is to be expected. Show also that the Cauchy distribution, see Ex. 1.16, is the

t1 distribution. (xx find the little fun fact from Hjort (1994). xx)

(c) Find also the skewness and kurtosis for the tm distribution. In particular, show that

the latter is kurt = 6/(m− 4) for m > 4.

(d) Assume Y1, . . . , Yn are i.i.d. N(µ, σ2). With σ̂ the empirical standard deviation, from

(1.5), show that

t = (Ȳ − µ)/(σ̂/
√
n)

has the t-distribution with n− 1 degrees of freedom. This is the classic t-statistic dating

all the way back to Student (1908),

Ex. 1.47 The noncentral chi-squared. Consider also the so-called noncentral chi-squared

distribution, say K ∼ χ2
m(λ), with λ the excentre or eccentricity parameter; the case of

λ = 0 corresponds to the ordinary K ∼ χ2
m. It is the distribution of Y 2

1 + · · ·+Y 2
m, where

the Yi are independent normals, with Yi ∼ N(µi, 1), and λ =
∑m

i=1 µ
2
i .
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(a) Show that the m.g.f. of K ∼ χ2
m(λ) may be written

M(t) = E exp(tK) =
exp{λt/(1− 2t)}

(1− 2t)m/2
for t < 1

2 .

(b) Also the noncentral chi-squared distributions have convolution properties, generalis-

ing those of Ex. 1.43. If Ki ∼ χ2
mi

(λi), and these are independent, for i = 1, . . . , n, show

that
∑n

i=1Ki is another noncentral chi-squared, with degrees of freedom
∑n

i=1mi and

excentre parameter
∑n

i=1 λi.

(c) Another property which can be established, remarkbly without yet having seen the

density of a χ2
m(λ), is the following, using Ex. 1.44: if X and Y and independent, with

X ∼ χ2
m1

(λ1) and X + Y ∼ χ2
m1+m2

(λ1 + λ2), then by necessity Y ∼ χ2
m2

(λ2).

(d) Its density can be expressed in several ways; show that this is one such valid formula:

f(k,m, λ) =

∞∑
j=0

{exp(− 1
2λ)(

1
2λ)

j/j!} gm+2j(k),

where gm+2j(k) is the χ2
m+2j density. In other words, the noncentral chi-squared is a

Poisson mixture of central chi-squared distributions. Show that this entails the repre-

sentation K | (J = j) ∼ χ2
m+2j , where J ∼ Pois( 12λ). Also non-integer values of m are

allowed here.

(e) Establish that for K ∼ χ2
m(λ), we have EK = m + λ and VarK = 2m + 4λ. Show

also that the skewness of K becomes 23/2(m + 3λ)/(m + 2λ)3/2. What is required in

order for this skewness to tend to zero?

(f) Let K = (λ1/2 + N)2, which has the χ2
1(λ) distribution. Consider the normalised

variable

K − (1 + λ)

(2 + 4λ)1/2
=
N2 + 2λ1/2N − 1

(2 + 4λ)1/2
.

Work out its m.g.f. and show that it tends to exp( 12 t
2) for growing λ.

(g) More generally, with K ∼ χ2
m(λ), work out a formula for the m.g.f. M(t) for Z =

{K − (m+ λ)}/(2m+ 4λ)1/2. For any fixed m, show that M(t) → exp( 12 t
2) as λ grows,

and comment on this finding.

Ex. 1.48 Noncentral chi-squared for empirical variances. We saw in Ex. 1.45 that if

X1, . . . , Xn are i.i.d. N(a, 1), with common a, then Z =
∑n

i=1(Xi − X̄)2 ∼ χ2
n−1, with

consequences for the empirical variance estimator. Here are some fruitful generalisations.

(a) Let the Xi have non-identical means, Xi ∼ N(ai, 1). Show that Z ∼ χ2
n−1(λ), with

noncentrality parameter λ =
∑n

i=1(ai − ā)2.

(b) Assume now that Xi ∼ N(ai, 1/mi) for i = 1, . . . , n, perhaps reflecing sample sizes

mi for different groups, and with M =
∑n

i=1mi. Consider Z =
∑n

i=1mi(Xi− X̃)2, with

X̃ =
∑n

i=1(mi/M)Xi. Show that Z =
∑n

i=1miX
2
i −MX̃2, and that its distribution is

a χ2
n−1(λ), with λ =

∑n
i=1mi(ai − ã)2, where ã =

∑n
i=1(mi/M)ai.
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(c) Let X ∼ Np(ξ,Σ). Show that Z = XtΣ−1X ∼ χ2
p(ξ

tΣ−1ξ).

Ex. 1.49 The F distribution. As we have seen Ex. 1.45, with a normal sample

X1, . . . , Xn, the distribution of the classical empirical variance estimator σ̂2 = (n −
1)−1

∑n
i=1(Xi−X̄)2 is governed by σ̂2 ∼ σ2χ2

m/m, wherem = n−1 is the degrees of free-

dom. Suppose there are two independent samples, from normal distributions N(ξ1, σ
2
1)

and N(ξ2, σ
2
2), of sample sizes n1 and n2, with estimators σ̂2

1 and σ̂2
2 .

(a) Let ρ = σ1/σ2, the ratio of standard deviations. For the ratio of the two empirical

variances, show that

R2 =
σ̂2
1

σ̂2
2

= ρ2F, where F ∼
χ2
m1
/m1

χ2
m2
/m2

,

with degrees of freedom m1 = n1 − 1 and m2 = n2 − 1, and with the two chi-squareds

being independent. We say that F has the F distribution, or Fisher distribution, with

degrees of freedom (m1,m2), and write F ∼ F (m1,m2).

(b) Show that when F ∼ F (m1,m2), then 1/F ∼ F (m2,m1). Show furthermore that

EF =
m2

m2 − 2
, EF 2 =

m1 + 2

m1

m2
2

(m2 − 2)(m2 − 4)
,

these expressions being finite when m2 > 2 and m2 > 4, respectively. Find also an

expression for the variance. Verify that both EF and EF 2 tend to 1 as the degrees of

freedom increase.

(c) The main aspects of the F distribution have been worked out, above, from the

constructive definition given in ((a)), without actually needing any formula for its density;

also, probabilities are found using software packages, like pf(x,m1,m2) in R. Once in a

while one needs the density function, however. Show first that the cumulative function

can be written

Pr(F ≤ x) = Pr(χ2
m1
/m1 ≤ xχ2

m2
/m2) =

∫ ∞

0

G(xy(m1/m2),m1)g(y,m2) dy,

in terms of the cumulative G(·,m) and densiy g(·,m) of the χ2
m. Then take the derivative

to get

h(x,m1,m2) =

∫ ∞

0

g(xy(m1/m2),m1)y(m1/m2)g(y,m2) dy.

Complete the math to land at

h(x,m1,m2) =
Γ( 12 (m1 +m2))

Γ( 12m1)Γ(
1
2m2)

(m1/m2)
m1/2

xm1/2−1

{1 + (m1/m2)x}(m1+m2)/2
.

The exponential family class

Ex. 1.50 The exponential family class. Many parametric models fall under the wide

umbrella of the exponential family class, which we treat in this and the folllowing exer-

cises. This will be properly generalised and extended down the road, but we start with

this definition: Suppose Y has model density of the formexponential

family
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f(y, θ) = exp{θ1T1(y) + · · · θpTp(y)− k(θ1, . . . , θp)}h(y)
= exp{θtT (y)− k(θ)}h(y), (1.6)

for appropriate functions T1(y), . . . , Tp(y) and h(y); the k(θ) function is there to se-

cure integration to one. We require that there is no fixed linear relationship among

T1(y), . . . , Tp(y), and also that the support of the distribution, the smallest closed set

having probability 1, is the same, for all parameter values. We then say Y is of the

exponential family class, with data functions T (y) = (T1(y), . . . , Tp(y))
t and natural pa-

rameters θ = (θ1, . . . , θp)
t.

(a) Before we start developing the general theory for the full class, we verify that a few

classic models are under its umbrella. For the following models, write the model density

in a form matching (1.6). (i) Y ∼ binom(n, p). (ii) Y ∼ Pois(θ). (iii) Y ∼ Beta(a, b). (iv)

Y ∼ Gam(a, b). (v) Y ∼ N(ξ, σ2), with known σ (and see Ex. 1.51). (vi) Let (X,Y, Z)

be trinomial (n, p, q, r), with r = 1 − p − q. First work with f(x, y, p, q), and then with

the submodel where p = a2, q = 2a(1− a), r = (1− a)2.

(b) Show that we must have

k(θ) = log
(∫

exp{θtT (y)}h(y) dy
)
,

assumed to be finite for at least some θ. Let in fact Ω be the set of θ such that k(θ) is natural

parameter

region
finite, called the natural parameter region. Show that Ω is a convex set.

(c) The score function of a model is u(y, θ) = ∂ log f(y, θ)/∂θ; see Ex. 5.14 for more on

this. For the class of models studied here, show that u(y, θ) = T (y)− ξ(θ), where

ξ(θ) =
∂k(θ)

∂θ
=

∫
T (y) exp{θtT (y)}h(y) dy∫

exp{θtT (y)}h(y) dy
.

Show that the score function must have mean zero, which here means Eθ T (Y ) = ξ(θ).

Show also that Varθ T (Y ) = ∂2k(θ)/∂θ∂θt, giving variances and covariances of the Tj(Y )

in one matrix formula.

(d) We come back to general likelihood theory in Ch. 5, but for now show that if

Y1, . . . , Yn are i.i.d. from the exponential family density, then the logarithm of the joint

density can be written

ℓn(θ) =

n∑
i=1

log f(Yi, θ) = n{θtT̄ − k(θ)},

with T̄ = (1/n)
∑n

i=1 T (Yi) the vector of averages T̄j = (1/n)
∑n

i=1 Tj(yi). If this is a

family with say p = 3 parameters, and n = 10000, then the full relevant information

required for computing the ℓn function is captured in the 3 averages T̄1, T̄2, T̄3. This is

related to the sufficiency concept, returned to in Ch. 5. Show also that this ℓn(θ) is a

concave function.

Ex. 1.51 The normal and binormal exponential family members. The normal and

binormal (and multinormal) classes of distributions belong under the exponential family

umbrella.
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(a) Consider first the normal (ξ, σ2) model. Explain that its density may be written

f(y) =
1

(2π)1/2
exp
(
− 1

2

y2

σ2
+
ξy

σ2
− 1

2

ξ2

σ2

)
,

and argue from this that the normal is of exponential family type, with natural param-

eters 1/σ2 and ξ/σ2, and data functions equivalent to (y, y2).

(b) Consider then (X,Y ) binormal, with its five parameters ξ1, ξ2, σ1, σ2, ρ, see Ex. 1.40.

Show that the distribution is of the exponential family type, with natural parameters

1

(1− ρ2)σ2
1

,
ξ1

(1− ρ2)σ2
1

,
1

(1− ρ2)σ2
2

,
ξ2

(1− ρ2)σ2
2

,
ρ

(1− ρ2)σ1σ2
.

In the terminology of exponential families, identify also the associated T1(x, y), . . . ,

T5(x, y).

(c) Show that (ξ1, ξ2, σ1, σ2, ρ) is in one-to-one correspondence with the five exponential

class natural parameters above.

(d) Suppose now that ξ1 = ξ2 and σ1 = σ2, so this distribution for (X,Y ) has now

three parameters. Show that it is inside the exponential family, and identify its natural

parameters.

Ex. 1.52 A log-linear density model on the unit interval. The machinery of the expo-

nential family class makes it easy to construct new models, starting with relevant data

functions Tj , in the language of Ex. 1.50.

(a) For densities on the unit interval, start with data function T (y) = y − 1
2 , to define

f(y, θ) = exp{θT (y)− k(θ)} for y ∈ [0, 1]. Find the k(θ), a formula for the c.d.f. F (y, θ),

and the mean and variance for Y having this density.

(b) Then go on to

f(y, θ1, θ2) = exp{θ1(y − 1
2 ) + θ2(y − 1

2 )
2 − k(θ1, θ2)},

i.e. using Tj(y) = (y− 1
2 )

j as data functions, for j = 1, 2. Set up an integral function for

k(θ1, θ2) and some algorithms for determining the means, variances, and covariance, for

T1(Y ), T2(Y ), for any given (θ1, θ2).

(c) Spell out the necessary details for the third order log-linear density model, which

uses Tj(y) = (y − 1
2 )

j for j = 1, 2, 3. Again, set up algorithms so that you may compute

the means, variances, covariances for T1, T2, T3, for any (θ1, θ2, θ3).

Yet other models: log-normal, Weibull, Gompertz, Gumbel, et al.

Ex. 1.53 The log-normal distribution. Starting with X ∼ N(ξ, σ2), the variable Y =

exp(X) is said to be a log-normal, and we write Y ∼ logN(ξ, σ2) to indicate this.the log-normal

distribution

(a) Consider the view that the distribution should or could have been named the expo-

normal instead – would you agree? Show that with Y ∼ logN(ξ, σ2), its mean and

variance are exp(ξ + 1
2σ

2) and {exp(2σ2)− exp(σ2)} exp(2ξ).
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(b) Show that its density may be written ϕσ(log y − ξ)/y = σ−1ϕ(σ−1(log y − ξ))/y, for

y > 0. Find its mode.

(c) Assume that Y | ξ ∼ logN(ξ, σ2), and that ξ ∼ N(ξ0, τ
2). Show that marginally,

Y ∼ logN(ξ0, σ
2 + τ2). Make explicit the connection to Ex. 1.59.

(d) Show that a product of independent log-normals is log-normal. Suppose Y1, . . . , Yn
are i.i.d. from the logN(ξ, σ2) distribution. Explain what happens to their harmonic

mean, Zn = (Y1 · · ·Yn)1/n.

(e) Assume a random time variable T has the logN(0, 1) distribution. Find a formula for

its hazard rate h(t), and show that h(t)
.
= (log t)/t for growing t. Plot the exact hazard

rate, along with its approximation, and comment.

Ex. 1.54 The Weibull distribution. The Weibull distribution, with positive parameters

(a, b), has c.d.f. F (t) = 1− exp{−(t/a)b} for t ≥ 0. The b is called the shape parameter,

with a a scale parameter. The Weibull generalises the exponential distribution, which

is the special case of b = 1. Other parametrisations are sometimes convenient, as with

1− exp(−ctb).

(a) Find a formula for the median, and more generally for the q-quantile F−1(q). Show

that the density can be written f(t) = exp{−(t/a)b}btb−1/ab for t > 0. Find also a

formula for the hazard rate, and draw this in a diagram, for b = 0.9, 1.0, 1.1, say for

a = 1.

(b) Use the general mean formula of Ex. 1.14(a) to work through the details of

ET p =

∫ ∞

0

Pr(T p ≥ u) du =

∫ ∞

0

exp{−(u1/p/a)b}du = ap Γ(1 + p/b).

Show that this leads to mean aΓ(1 + 1/b) and variance a2 {Γ(1 + 2/b) − Γ(1 + 1/b)}2.
With T from the Weibull (a, b), plot the function sd(T )/ET as a function of b. (xx write

out. also reparametrisation, with 1− exp(−ctb). point to story. xx)

(c) Show that V = (T/a)b ∼ Expo(1), and use this to give a recipe for simulating

outcomes from any Weibull.

Ex. 1.55 The Gompertz distribution. The Gompertz distribution, with positiver pa-

rameters (a, b), has hazard rate h(t) = a exp(bt).

(a) Find the cumulative hazard rate, the c.d.f., and the density. Find also a formula for

the median, and more generally for the q quantile, expressed via (a, b). (xx pointer to

Story ii.1. more; round off. xx)

(b) Suppose an individual has survived up to time t0. Show that her cumulative hazard

rate, for the remaining lifetime, is H(t) − H(t0) = (a/b){exp(bt) − exp(bt0)}. Give a

formula for t∗(t0), her median survival time. (xx then brief application of this, for Nor-

wegian women, using perhaps rough estimates of (a, b), via data from Human Mortality

Index. give (t0, t
∗(t0)) as a graph, for women born in perhaps 1900, 1960, 2020. can also

be a Story. xx)
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Ex. 1.56 The Gumbel distribution. Here we work with the Gumbel distribution, useful

e.g. in models for extreme values. the Gumbel

distribution

(a) Let X1, . . . , Xn be i.i.d. from the standard exponential distribution. Show that

their maximum value Mn has c.d.f. {1 − exp(−m)}n. Deduce that Mn − log n has

c.d.f. Gn(u) = {1− (1/n) exp(−u)}n, for all u ≥ − log n.

(b) Show that the limit c.d.f. for Mn − log n becomes G(u) = exp{− exp(−u)}, and that

this defines a c.d.f. on the full line. This is called the Gumbel distribution. Find its

median and interquartile range.

(c) Find its density g(u) = exp{−u − exp(−u)}, and draw it in a diagram, along with

the densities gn for say n = 10, 20, 30, for Mn − log n.

(d) With U having the Gumbel distribution, show that its m.g.f. becomesM(t) = Γ(1−t),
for t < 1. To find the moments, show by taking derivatives of Γ(a) =

∫∞
0
va−1 exp(−v) dv

at position a = 1 that

EUp = (−1)pΓ(p)(1) = (−1)p
∫ ∞

0

(log v)p exp(−v) dv.

These may be found numerically. You may also work with the cumulant-generating

function, where a certain connection can be made to the Riemann zeta function, namely

K(t) = log Γ(1− t) = γet+

∞∑
j=2

ζ(j)

j
tj

for |t| < 1. Here γe = 0.5772... is the Euler constant, see Ex. 1.13, and ζ(j) =
∑∞

n=1 1/n
j .

In the terminology of Ex. 1.34, show that κ1 = γe, κ2 = ζ(2), κ3 = 2ζ(3), κ4 = 6ζ(4).

With ζ(2) = π2/6, ζ(3) = π3/25.7943, ζ(4) = π4/90, establish that EU = γe, VarU =

σ2 = π2/6, skew(U) = 2ζ(3)/σ3 .
= 1.1395, kurt(U) = 12/5 = 2.4.

(e) To appreciate the perhaps strange-looking connection from Gumbel moments to the

zeta function, show from efforts of Ex. 1.13 that

Mn − log n =

n∑
i=1

Wi/i+ an

where Wi = Vi − 1, for i.i.d. unit exponentials Vi, and an → γe. Find formulae for the

mean, variance, skewness, kurtosis of Mn − log n based on this, and take their limits;

these will agree with formulae found above.

Ex. 1.57 The logistic distribution. Consider the logistic distribution (in its standard

form), with c.d.f. H(x) = exp(x)/{1 + exp(x)}, over the real line.the logistic

distribution

(a) Show that H indeed is a proper c.d.f., and that its density is h(x) = exp(x)/{1 +

exp(x)}2 = H(x){1−H(x)}, symmetric around zero. Find its interquartile range.
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(b) With X having the logistic distribution, show that its m.g.f. M(t) becomes∫
exp{(t+ 1)x}
{1 + exp(x)}2

dx =

∫ ∞

0

ut

(1 + u)2
du =

∫ 1

0

vt(1− v)1−t dt = Γ(1 + t)Γ(1− t),

for |t| < 1. Show from this that actually X = U − V , in terms of independent Gumbel

distributed U and V , see Ex. 1.56. Demonstrate this fact also directly, via convolution.

Use this representation to show that VarX = π2/3 and that its kurtosis is kurt = 6/5 =

1.2.

(c) Here we managed to find moments of the logistic via the Gumbel difference rep-

resentation. We may also use the intriguing formula Γ(1 + t)Γ(1 − t) = πt/ sin(πt), a

consequence of Euler’s reflection formula. Take derivatives of this function to find the

variance and kurtosis formulae.

(d) A scaled version of the logistic has c.d.f. H(x, τ) = H(x/τ) = exp(x/τ)/{1 +

exp(x/τ)}2, for a suitable positive τ . Show that the variance is τ2π2/3, which is 1

for τ =
√
3/π. Draw a figure with the density, alongside the standard normal, and

comment.

Ex. 1.58 The logistic-normal distribution on the unit interval. The most prominent

model for distributions on the unit interval is the Beta, also useful in various guises

and roles outside its direct use for fitting datasets; see Ex. 1.18. Here we work with a

different class, useful for versions of logistic regression, which we meet in Ch. 5. Let

H(u) = exp(u)/{1 + exp(u)} the logistic transform, worked with in Ex. 1.57, taking any

real u to the unit interval.

(a) Solve H(u) = v to find the inverse transform H−1(v) = log{v/(1 − v)}. Start with

X a standard normal and define V = H(X). Show that its c.d.f. is G(v) = Pr(X ≤
H−1(v)) = Φ((H−1(v))), with density

g(v) = ϕ(H−1(v))
1

v(1− v)
=

1

(2π)1/2
exp[− 1

2{log v − log(1− v)}2] 1

v(1− v)
.

(b) Generalise to the case where X ∼ N(ξ, σ2), where the density becomes

g(v, ξ, σ) = ϕ((H−1(v)− ξ)/σ)
1

σ

1

v(1− v)
.

We call this the logistic-normal with parameters (ξ, σ). Draw c.d.f.s and densities of

this type, for some combinations of parameters. Explain that if X1, . . . , Xp has a joint

multinormal distribution, then the random probability

p(X1, . . . , Xp) = H(β0 + β1X1 + · · ·+ βpXp)

has the logistic-normal distribution, and identify its parameters. In this sense the logistic-

normal class is closed under linear combinations of the underlying H−1(V ), whereas the

Beta class does not have similar properties.
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(c) Suppose Y | p is binom(n, p), and that p is logistic-normal. There are no closed-form

expressions for the resulting probabilities

f̄(y) =

(
n

y

)∫ 1

0

py(1− p)n−yg(p, ξ, σ) dp for y = 0, 1, . . . , n,

but it may be worked with numerically. Display a few of these f̄(y), for say n = 100 and

a few values of (ξ, σ).

(d) We may also work the other way here: suppose V = H(X) is Beta(cp0, c(1 − p0));

what is then the distribution for X?

Ex. 1.59 A normal with a normal mean is normal. (xx preliminary version; need just a

few editorial decisions regarding where to place it, and how. xx) The normal distribution

has a convenient coherence type property: if X given its mean parameter is normal, and

this mean parameter itself is normal, then X, marginally, is again normal. This is also

related to what is found in Ex. 1.41.

(a) Consider first independent X1 and X2 with densities f1 and f2. Show that
∫
f1f2 dx

is the density of X1 −X2, evaluated at zero. Write then ϕσ(x− ξ) = σ−1ϕ(σ−1(x− a))

for the N(ξ, σ2) density. Show that∫
ϕσ1

(x− ξ1)ϕσ2
(x− ξ2) dx = ϕ(σ2

1+σ2
2)

1/2(ξ1 − ξ2).

(b) Assume that X given ξ has mean ξ and variance σ2, and further that ξ stems from

its own distribution, with mean ξ0 and variance τ2. Show that X, marginally, has mean

ξ0 and variance σ2 + τ2. Then specialise to the normal case, with X | ξ and ξ having

normal distributions. Show that X indeed also is normal, (i) by integrating out the ξ,

with respect to its distribution, and also (ii) by arguing via X = ξ+ε = ξ0+δ+ε, where

ε and δ are zero-mean normals with variances σ2 and ε2. (xx point to connected thing

for logN. xx)

(c) Suppose Y | (x1, x2) is normal N(a+ b1x1 + b2x2, σ
2), as in linear regression models

we will study in later chapters; see e.g. Ex. 3.31. Assume then that (x1, x2) themselves

have a distribution, in its space of covariate pairs, and that this distribution is binormal.

Show that Y , marginally, is normal, and give formulae for its mean and variance.

Ex. 1.60 Mixing the normal scale. (xx at the moment nils thinks this exercise will go

away, partly with material in Story v.2 and partly elsewhere. point back to and calibrate

with Ex. 1.32. xx) Suppose X ∼ N(ξ, σ2) for given parameters (ξ, σ), but that there are

background mechanisms producing these (ξ, σ). In various settings this leads to good

‘mixtures of normals’ models for actually observed data.

(a) Suppose a given individual has his ξ and that his associated X is a N(ξ, σ2). Assume

next that in a population of such X, there is a distribution ξ ∼ N(ξ0, σ
2
extra) of their

means. Show that an X sampled from that population is a N(ξ0, σ
2 + σ2

extra). From a

statistical modelling viewpoint we have simply ‘put in more in the σ’, perhaps stretched
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its interpretation a little, without inventing or having to invent a new model for the ob-

served X, per se. Also, without knowing more, or perhaps having a separate experiment,

we cannot identify the components of the observed variance.

(b) Now turn attention to the scale. With the mean ξ kept fixed, but σ having some den-

sity π(σ), show that X has density f̄(x) =
∫
(1/σ)ϕ((x− ξ)/σ)π(σ) dσ, and the variance

of X is the mean of the distribution of σ2. Assume for simplicity of presentation that

ξ = 0, and work with the case where the distribution of σ is such that 1/σ2 ∼ Gam(a, b)

(it is common to express this by saying that σ2 has an inverse gamma distribution).

Work out that

f̄(x) =
1

(2π)1/2
ba

Γ(a)

Γ(a+ 1
2 )

(b+ 1
2x

2)a+1/2
.

It is useful to transform this to a member of the well-known distributions, to facilitate

computations of probabilities etc. Show therefore that

V = ( 12X
2/b)/(1 + 1

2X
2/b) ∼ Beta( 12 , a),

and express the c.d.f. of X in terms of the c.d.f. of this Beta distribution: Pr(|X| ≤ x) =

Be(( 12x
2/b)/(1+ 1

2x
2/b), 12 , a). Check these details via simulations. (xx nils jotting down

the details here, to land in solutions. xx) solving the V equation for X, this inverse

transformation is X = (2b)1/2{v/(1 − v)}1/2. Since X is symmetric around zero, the

density of V must be

h̄(v) = 2f̄((2b)1/2{v/(1− v)}1/2) (2b)1/2 1
2{(1− v)/v}1/2/(1− v)2.

Sorting out terms with v and 1− v gives the desired Beta distribution density.

Ex. 1.61 Normal mixtures. [xx to come. mean, variance, skewness. xx] Suppose Y

is such that with probability pj , it is a normal (µj , σ
2
j ), with probabilities p1, . . . , pk

summing to 1. Its density may be written f(y) =
∑k

j=1 pjϕσj
(y − µj), where ϕσ(u) =

σ−1ϕ(σ−1u) is the density of a N(0, σ2). Such distributions are called normal mixtures.

(a) With J taking values 1, . . . , k, with probabilities p1, . . . , pk, let Y | (J = j) ∼ N(µj , σ
2
j ).

Show that this Y has the density above; this amounts to a way of representing and in-

terpreting a normal mixture.

(b) From E (Y | J) = µJ and Var (Y | J) = σ2
J , show that

EY = µ̄ =

k∑
j=1

pjµj , VarY = E(Y − µ̄)2 =

k∑
j=1

pjσ
2
j +

k∑
j=1

pj(µj − µ̄)2.

(c) (xx someting; display a few. xx)

Ex. 1.62 The hypergeometric distribution. You draw a sample of n items from a bag

of N , which has A of Type One and B = N − A of type Two. Consider X, the number

among the sampled n which are of Type One.
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(a) Show that X has distribution

f(x) = Pr(X = x) =

(
A

x

)(
B

n− x

)/(N
n

)
.

For which x is this positive? Explain the identity
∑A

x=0

(
A
x

)(
B

n−x

)
=
(
A+B
n

)
.

(b) Show that EX = nA/N = np, with p = A/N the proportion of Type One in the

bag. This may be done work with
∑n

x=0 xf(x), or by writing X = J1 + · · ·+ Jn, with Ji
and indicator for selected item i being a Type One or not.

(c) Explain that if one samples one item at the time, followed by replacing the item,

then the J1, . . . , Jn above are independent Bernoulli variables with probability p = A/N ,

leading in that case to binomial variance np(1 − p). For the present hypergeometric

setting, where n items sampled in one go without replacement, the Ji are dependent;

show that cov(J1, J2) = p(A − 1)/(N − 1) − p2 = −p(1 − p)/(N − 1). Deduce that

the variance formula becomes VarX = cnnp(1 − p), with cn being the shrinking factor

(N − n)/(N − 1). This may be accomplished working algebraically with EX(X − 1), or

via the representation above.

(d) (xx just a bit more. comparing with binomial. xx)

Ex. 1.63 Building bivariate dependence models. (xx something here. need to have

something beside the multinormal for dependence. xx) Let X and Y have densities f1(x)

and f2(y), with c.d.f.s F1(x) and F2(y). To model dependence between them, the idea

pursued here is mapping them to the normal scale, then using the binormal model, and

mapping back.

(a) Write X = F−1
1 (Φ(U)) and Y = F−1

2 (Φ(V )), where (U, V ) is binormal with zero

means, unit variances, and correlation ρ. Show that X and Y indeed have densities f1
and f2. Writing gρ(u, v) for the binormal density, show that the joint density can be

written

f(x, y) = f1(x)f2(y)Rρ(Φ
−1(F1(x)),Φ

−1(Φ(y))), with Rρ(u, v) =
gρ(u, v)

ϕ(u)ϕ(v)
.

with the dependence factor Rρ of course being 1 when ρ = 0. Show in fact that

Rρ(u, v) =
1

(1− ρ2)1/2
exp
{
− 1

2

1

1− ρ2
(ρ2u2 + ρ2v2 − 2ρuv)

}
.

(b) Now consider f1(x) = exp(−x) and f2(y) = exp(−y), i.e. two unit exponentials.

Construct a bivariare pair (X,Y ) via the recipe above, with a density fρ(x, y) having

unit exponential marginals. Compute the correlations corr(X,Y ) as a function of ρ,

which might be easiest via simulations. (xx note very different cases, ρ = −0.99 and

ρ = 0.99. xx)

(c) (xx one more example. for the uniform case, we have corr(X,Y ) quite close to ρ, but

they remain different. xx)
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Ex. 1.64 Alice and Bob correlate their binomials. Here we show how correlated bino-

mials may be constructed, leading also to correlated random walks.

(a) Alice flips her fair coin n times, with i.i.d. 0-1 outcomes A1, . . . , An. Bob has two

coins, and mixes between them depending on Alice’s outcomes: if Ai = 1, he uses the

plus-coin with probability 1
2 +a for heads; and if Ai = 0 he uses his minus-coin with 1

2 −a
for heads. With Bi his outcome, show that Pr(Bi = 1) = 1

2 , and argue therefore that

both Xn and Yn are binomial (n, 12 ) variables, where Xn =
∑n

i=1Ai and Yn =
∑n

i=1Bi

are the number of heads for Alice and for Bob. Show that the correlation between these

two binomials is 2a.

(b) In the little story-telling above, Bob observes Alice’s outcomes, one by one, which

then influence his choice between two coins; Alice doesn’t even need to be aware of

Bob’s existence. Explain however that we from observed pairs of coin flips (Ai, Bi)

never can see the difference between that scenario and the alternative one, that Bob

is the one flipping his fair coin, without caring for Alice, before she chooses between

two biased ones. This is arguably an instance of what Breiman (2001) alludes to as the

Rashomon Effect (from a Japanese movie in which different persons report very differently

about something they have all observed): data alone cannot help us uncover which of the Rashomon

Effect: different

models may

offer equally

good

explanations

the chains of action have been at work. Show indeed that as long as Alice and Bob

have a joint scheme of producing outcomes (0, 0), (0, 1), (1, 0), (1, 1), with probabilities

respectively 1
4 (1 + a), 14 (1 − a), 14 (1 − a), 14 (1 + a), then (Xn, Yn) have the correlated

binomial distribution.

(c) Find a way to compute f(x, y) = Pr(Xn = x, Yn = y), for x, y = 0, 1, . . . , n.

(d) Leaving the Rashomon aspects to the side, generalise the first setup to the case of

two correlated binomials (n, p), where p is not necessarily 1
2 . Take indeed Pr(Ai = 1) = p

and then Pr(Bi = 1 |Ai = 1) = p + a, Pr(Bi = 0 |Ai = 0) = 1 − p + ap/(1 − p), for

a < min(p, 1 − p), and show that this works properly. What is the correlation between

Xn and Yn?

(e) Show that
√
n(Xn/n − p, Yn/n − p) tends in distribution to a binormal zero-mean

(X,Y ), with variances p(1− p) and covariance ap.

(f) (xx brief pointer to two correlated random walks, Ch9, with two correlated Brownian

motions. also good ML exercise, finding â based on having observed Alice and Bob

random walks, easy
√
n(â− a), test for a = 0, etc.)

Notes and pointers

(xx to come. a bit old literature, but crisply, and not systematic. brief genesis of the

normal, a few sentences on the chi-squared, Pearson (1900), the t, Student (1908), the

F, the Dirichlet, more. we also point to essential things in later chapters. point out that

the normal is famous and useful also because of a host of approximation methods. xx)

(xx where do we have a precise theorem on MX = MY implying F = G? inversion

formula? xx)
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The chi-squared is on the list over deservedly famous distributions in probability

theory and statistics, and stems from Karl Pearson’s famous 1900 paper, ‘On the criterion

that a given system of deviations from the probable in the case of a correlated system

of variables is such that it can be reasonably supposed to have arisen from random

sampling’. [xx a bit more: he establishes the chi-square distribution, the test carrying the

chi-squared name, and sets up a rigorous concepttual framework for hypothesis testing.

xx]

(xx point to uses of expofamily in both Chs. 4 and 5. xx)





I.2

Large-sample theory

The broad themes of this chapter are the concepts, details, methods, results, appli-

cations pertaining to three modes of convergence for random variables: convergence

in probability, convergence almost surely, convergence in distribution. The first two

have to do with random variables Xn coming close to some limit X, with increas-

ing n, typically indexed by sample size; often the limit is merely a constant. The

chief result here, with various extensions and uses, is the Law of Large Numbers,

than the empirical average of a sequence of observations tends to the expected

value of the underlying distribution. The third mode of convergence rather involves

the distribution of Xn coming close to the distribution of some limit X, with the

Central Limit Theorem being a prime statement. These machineries also lead to

practically useful approximations; the idea is that a complicated distribution may

be approximated by something much simpler. This is in particular helped by a col-

lection of approximation methods called the delta method. The theory is developed

first for functions of i.i.d. sequences, involving tools of moment-generating functions

and characteristic functions, along with various probability inequalities. It is then

extended to cover cases of independent variables from non-equal distributions, cul-

minating in the Lindeberg theorem, giving precise conditions under which a sum

of independent components approaches normality. Methods and results from this

chapter are crucial for developing the likelihood theory of Ch. 5, and also for several

later chapters.

Key words: central limit theorems, characteristic functions, delta method, large-

sample approximations, laws of large numbers, Lindeberg conditions, modes of con-

vergence

In this chapter we study convergence of sequences (Xn)n≥1 of random elements. The

index n typically refers to the sample size, and Xn is some function of the n data points

available. The modes of convergence we study take place as n grows without bounds;

hence the name large-sample theory.

A random element X is a function defined on a probability space (Ω,F ,Pr), taking
its values in some space X , equipped with an appropriate σ-algebra. When X is a subset

of the real line, X a random variable; when X is a subset of Rk for some k ≥ 1, X is a

random vector (so a random vector of dimension one is a random variable); and when X

47
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is a function space (i.e., a set of functions), X is called a random or stochastic process. In

this chapter we concentrate mainly on convergence of random variables and vectors, with

the more involved themes of convergence of stochastic processes studied in Ch. 9. Many

of the results of the present chapter are, however, valid for stochastic process, which ones

will be clear from the context.

Applications of large-sample theory are plentiful in probability and statistics, partly

to understand crucial phenomena better, and partly to provide fruitful and practical

approximations; an estimator or a statistic might have a very complicated exact distri-

bution, but have a simple to use and sometimes accurate large-sample approximation.

The key convergence concepts, with ensuing approximations and applications, are as

follows.

First, if Xn = (Xn,1, . . . , Xn,k) is a sequence of are random vectors in Rk, and

a = (a1, . . . , ak) is some point in Rk, we say that Xn converges to a in probability,

written Xn →pr a, if for each positive ε,

Pr(∥Xn − a∥ ≥ ε) → 0, as n tends to infinity. (2.1)

Here ∥x∥ = (
∑k

j=1 xj)
1/2 is simple Euclidean distance, and hence ordinary distance in

the one-dimensional case. If Xn = θ̂n is an estimator, for some parameter θ, we say that

the estimator is consistent if θ̂n →pr θ0, where θ0 is the true parameter value. consistency of

an estimatorSecond, a stronger version of convergence is Xn converges to a almost surely, that

is, the convergence occurs with probability one. This means that the event

N = {ω ∈ Ω: lim
n
Xn(ω) ̸= a} has probability zero, (2.2)

and we write Xn →a.s. a. We say that an estimator θ̂n is strongly consistent for θ0 if

θ̂n →a.s. θ0. A strong achievement indeed is the strong Law of Large Numbers (LLN), the LLN

which says that

if X1, X2, . . . are i.i.d. with finite mean ξ, then X̄n = n−1
n∑

i=1

Xi →a.s. ξ, (2.3)

with no further assumptions required. One may readily prove weaker versions of the

LLN, as in Ex. 2.11(a) and Ex. 2.16, but with the development of sharper tools, and

separate valuable results along the way, we reach the strong LLN in Ex. 2.52–2.53. It

immediately has many applications and uses, as we shall see.

We note that limits in probability and almost surely can easily be defined also when

the limit is a random variable X, just by replacing a with the X in (2.1)–(2.2). Most

often, though, these two convergence concepts are used for cases when the limit is a

constant.

The third and statistically speaking most important concept is that of convergence

in distribution. If the random vectors Xn and X of dimension k ≥ 1 have c.d.f.s Fn and

F , we say that Xn converges in distribution to X, or, equivalently, that Fn converges in

distribution to F , if

Fn(x) → F (x), for all continuity points x = (x1, . . . , xk) of F . (2.4)
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We write Xn →d X or Fn ⇒ F to indicate this, allowing for simplicity also statements

like Xn →d N(0, 1). The bigger sibling of the LLN is the Central Limit Theorem (CLT):the CLT

if X1, X2, . . . are i.i.d. random variables with variance σ2, then

√
n(X̄n − EX1) →d N(0, σ2), (2.5)

again with no further assumptions needed beyond a finite variance. Below we go consid-

erably further, however, in detail, in extensions, in applications. In particular, with addi-

tional tools and efforts we reach the Lindeberg theorem, with precise necessary conditions

for a sum of independent variables from different distributions to approach normality.

Such results are, for example, used to establish approximate normality for estimators in

regression models.

Reaching the CLTs, with variations, requires hard mathematical work, with various

technical details to sort out. When the main theorems have been established, however,

along with further tools, their actual use for statistical applications might be relatively

straightforward. In particular, functions of approximately normal variables are also ap-

proximately normal, as we learn in the subsection on delta methods.

Modes of convergence

Ex. 2.1 Almost surely implies pr implies d. Of the three modes of convergence, con-

vergence almost surely is the strongest, convergence in distribution the weakest, with

convergence in probability lying somewhere in the middle. In the following, Xn and

X are random vectors. In statistical applications, (Xn)n≥1 will often be a sequence of

estimators, and the limit a constant.

(a) Show that if Xn →a.s. X, then Xn →pr X. To show this, consider the sets An =

{|Xn −X| ≥ ε} for some ε > 0, and establish that ∩n≥1 ∪m≥n Am ⊂ A, where A is the

set where Xn does not converge to X, and take it from there.

(b) Show that if Xn →pr X then Xn →d X.

(c) Let Y be a nonnegative random variable, and show Markov’s inequality: for anyMarkov’s

inequality a > 0, Pr(Y ≥ a) ≤ E (Y )/a. Use this to show that if E ∥Xn −X∥p for some p ≥ 1, then

Xn converges in probability to X. In applications, we often have p = 2 and X constant,

equal to a parameter θ, say. Show that E ∥Xn − θ∥2 → 0 if and only if EXn → θ and

Var(Xn) → 0.

Ex. 2.2 The Borel–Cantelli lemma and convergence almost surely. Let A1, A2, . . . be a

sequence of events. Consider Ai.o. = ∩n≥1 ∪m≥nAm, the full-sequence event correspond-

ing to the An occurring infinitely often.

(a) Let A1, A2, . . . be a sequence of events, and let N be the total number of occurrences

of the Ai. Show that EN =
∑∞

i=1 Pr(Ai).

(b) Show that if
∑∞

n=1 Pr(An) is convergent, then Pr(Ai.o.) = 0. So sooner or later thereThe

Borel–Cantelli

lemma
will be a finite (but random n), such that none of the Am will ever occur, for m > n.
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(c) Assume in addition that the A1, A2, . . . are independent events. Show that if
∑∞

i=1 pi
is divergent, then Pr(Ai.o.) = 1. To show this, prove and use the inequality 1+x ≤ exp(x),

valid for all x ∈ R. In particular, for the case of independent events, there can’t be say

a 50 percent chance that there will be infinitely many occurrences.

(d) LetX1, X2, . . . be i.i.d. from the unit exponential distribution. Will there be infinitely

many cases with Xi ≥ 0.99 log i, with Xi ≥ log i, with Xi ≥ 1.01 log i?

(e) Let X1, X2, . . . be i.i.d. standard normal. Show first that

Pr(Xi ≥ a) = 1− Φ(a) =
ϕ(a)

a
(1 + o(1)), as a→ ∞.

Show that there will be infinitely many cases with |Xi| ≥ (2 log i)1/2.

(f) (xx one or two more. new records, Pr(Rn = 1) = 1/n. xx)

(g) Show that ∥Xn−X∥ →a.s. 0 is equivalent to |Xn,j−Xj | →a.s. 0 for each j. The same

is true for convergence in probability. Consider the random vectors Xn = (Xn,1, Xn,2)

and X = (X1, X2). Show that (Xn,1, Xn,2) →pr (X1, X2), by the definition of (2.1), is

equivalent to Xn,1 →pr X1 and Xn,2 →pr X2, that is, ordinary one-dimensional conver-

gence for each component. Generalise to higher dimensions.

Ex. 2.3 The converses do not hold. This exercise shows that the implications arrows in

Ex. 2.1 only point in one direction, that is, the converses do not hold.

(a) Let X1, X2, . . . be Bernoulli random variables with success probabilities p1, p2, . . ..

Show that Xn →pr 0 as long as pn → 0, but that Xn →a.s. 0 takes more. What is

the probability for having infinitely many Xn = 1, for pn = 1/n0.99, for pn = 1/n, for

pn = 1/n1.01? Conclude that we can have convergence in probability, but not almost

surely.

(b) Let U be unif (0, 1), and divide the unit interval in 2, 3, . . . pieces: A1 = [0, 1/2],

A2 = (1/2, 1], A3 = [0, 1/4], A4 = (1/4, 1/2], A5 = (1/2, 3/4], and so on. Define the

random variables Xn = I(U ∈ An), and show that Xn →pr 0, but not almost surely.

(c) Find an example where Xn →d X, but there is not convergence in probability.

(d) LetXn be a sequence of binary random variable with distributions Pr(Xn = an) = pn
and Pr(Xn = 0) = 1− pn. Construct the an and pn sequences such that Xn →pr 0, but

E |Xn| does not converge to zero. In the same vein, Let Xn = θ + εn, for θ ∈ R, where
ε1, ε2, . . . are independent random variable with distribution Pr(εn = 2n) = Pr(εn =

−2n) = 1/(3n) and Pr(εn = 0) = 1− 1/(3n). Show that Xn →pr θ, but that E |Xn − θ|
does not converge to zero.

Ex. 2.4 Partial converses. As we have just seen, the implication arrows of Ex. 2.1 only

point in one direction. We do, however, have certain partial converses.

(a) As as partial converse to Ex. 2.1(a), show that if Xn →pr X, then there is a sub-

sequence (nk)k≥1 such that Xnk
→a.s. X. To construct such a subsequence, you may
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use the Borel–Cantelli lemma. Since any subsequence of a sequence converging in prob-

ability also converges in probability, you have just proved that if Xn →pr X, then every

subsequence has a further subsequence converging almost surely.

(b) As a partial converse to Ex. 2.1(b), show that if Xn →d a for some constant a ∈ R,
then Xn →pr a. Generalise to higher dimensions.

(c) As a partial converse to Ex. 2.1(c), we have that if Xn →pr X and ∥Xn∥ is bounded

by a random variable Y such that |Y |p is integrable, then E ∥Xn −X∥p → 0, for some

p ≥ 1. Notice that this is a version of Lebesgue’s dominated convergence theorem (see

Ex. A.11(d), and you may consult that exercise before solving this one).

(d) Another partial converse to Ex. 2.1(c) is provided by (a version of) Scheffé’s lemma,

which states that if Xn is a sequence of nonnegative random vectors such that Xn →pr X

and EXn → EX, with X integrable, then E ∥Xn − X∥ → 0. Prove it first in one

dimension, where you may use that |y| = y + 2max(−y, 0), then generalise.

Ex. 2.5 Uniform integrability. Yet another partial converse to Ex. 2.1(c) is obtained

by introducing the concept of uniform integrability. A sequence X1, X2, . . . of random

variables is uniformly integrable if

lim
M→∞

sup
n≥1

E |Xn|I(|Xn| > M) = 0. (2.6)

As we show in this exercise, if (Xn)n≥1 is uniformly integrable and Xn →pr X, then

E |Xn − X| → 0. Thus, compared to Ex. 2.4(c) (which is essentially Lebesgue’s domi-

nated convergence theorem), the uniform integrability assumption takes the place of the

boundedness assumption imposed in the dominated convergence theorem. Moreover, as

we show in (c) and (i), uniformly integrability is a bit weaker than boundedness, and

turns out to be a necessary for convergence in mean.

(a) Show that E |X| <∞ is equivalent to limM→∞ E |X|I(|X| > M) = 0. This explains

why the property in (2.6) is called uniform integrability.

(b) Show that if (Xn)n≥1 is uniformly integrable, then supn E |Xn| < ∞. Exhibit a

sequence of random variables for which the converse does not hold.

(c) Show that if (Xn)n≥1 is dominated by an integrable Y , then it is uniformly integrable.

Construct a sequence of random variables that is uniformly integrable, but that is not

dominated by an integrable random variable.

(d) Let (Xn)n≥1 be a uniformly integrable sequence of random variables such that

Xn →a.s. X. Show that the limit X must be integrable. To show this you may first

consult Fatou’s lemma, see Ex. A.11(b) in the appendix.

(e) Let (Xn)n≥1 be as in (d). Show that E |Xn − X| → 0. The trick is to truncate

Yn = |Xn −X| and take it from there.

(f) Show that in (e), it is sufficient that Xn converges in probability to X.
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(g) Show that if (Xn)n≥1 is such that E |Xn|1+δ < ∞ for all n, for some δ > 0, then it

is uniformly integrable.

(h) Show that (Xn)n≥1 is uniformly integrable if and only if it is asymptotically uniformly

integrable, that is, limM→∞ lim supn→∞ E |Xn|I(|Xn| > M) = 0.

(i) Finally, (e) has a converse. Show that if (Xn)n≥1 and X are nonnegative and inte-

grable, Xn →a.s. X, and EXn → EX, then (Xn)n≥1 is uniformly integrable. Deduce

from this that if (Xn)n≥1 and X are integrable, Xn →a.s. X, and E |Xn −X| → 0, then

(Xn)n≥1 is uniformly integrable.

Ex. 2.6 Scheffé’s lemma. If we replace the random vectors in Ex. 2.4(d) with the

densities (fn)n≥1 and f , then the limit is automatically integrable, and we obtain the

lemma typically known by the name of Scheffé.

(a) Let Yn and Y be random vectors with densities fn and f , respectively. Show that if

fn(y) → f(y) for all y, then
∫
|fn(y)− f(y)|dy → 0. Conclude from this that Yn →d Y . Scheffé’s lemma

(b) Let X1, X2, . . . be i.i.d. unif (0, 1), and set Mn = maxi≤nXi. Use Scheffé’s lemma

to show that n(1−Mn) converges in distribution to a unit exponential. [xx this is not a

great examples xx]

(c) [xx a couple of simple examples here, where fn → f . xx]

(d) Show that under the conditions of (a) we have supB |Pr(Yn ∈ B)−Pr(Y ∈ B)| → 0.

Since Yn →d Y only requires Pr(Yn ∈ B) → Pr(Y ∈ B) for sets of the form B =

(−∞, y] (or, more generally for all continuity sets B, see Ex. 2.19), convergence Pr(Yn ∈
B) → Pr(Y ∈ B) uniformly in B is stronger than what is required for convergence in

distribution: For a classical example thereof, consider the sequence Yn = 1/n. Clearly,

Yn →d 0, but show that supB |Pr(Yn ∈ B) − Pr(Y ∈ B)| = 1. More examples are given

in Ex. 2.7.

(e) If Yn and Y have densities fn and f , and Yn →d Y , we should expect fn → f . This is

not alway happening, however. Consider the case of Fn(y) = y + (nπ)−1 sin(nπy). Plot

the Fn and its density fn, for some n. Show that Yn →d unif, but that fn(y) does not

converge to 1 for all y. It is also instructive to transform to the approximate normal scale,

via X = Φ−1(Y ). Show that X then has density gn(x) = ϕ(x){1 + cos(nπΦ(x))}, with
very notable oscillations, but where the c.d.f. Gn(x) nevertheless tends to the standard

normal.

Ex. 2.7 From discrete to continuous. Often enough discrete distributions have contin-

uous limits.

(a) Let Xn have distribution Pr(Xn = j/n) = 1/(n + 1) for j = 0, 1, . . . , n. Show that

Xn →d X, where X has the uniform distribution on the unit interval. Show also that

supB |Pr(Xn ∈ B)− Pr(X ∈ B)| does not converge to zero (cf. Ex. 2.6(d)).

(b) With perhaps similar techniques as in (a), consider Xn with distribution Pr(Xn =

j/n) = j/{n(n+ 1)/2} for j = 1, . . . , n. Find its limit distribution.
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(c) Let X1, X2, . . . be independent Bernoulli random variables with success probability

p. Only using (2.4), show that
√
n(X̄n− p)} →d X, with X a N(0, p(1− p)) distribution.

You may use Stirling’s formula n! ∼
√
2πn(n/e)n here; see Ex. 2.39.

(d) Suppose X ∼ Pois(λ) and that λ grows. Again, using only the definition in (2.4),

show that (X − λ)/λ1/2 →d N(0, 1).

Ex. 2.8 Many small probabilities give a Poisson. The Law of Small Numbers, der

Gesetz der kleinen Zahlen, says that if we sum a high number of 0-1 variables, with each

having a small probability of 1, then we’re close to a Poisson.

(a) Suppose Yn is binomial (n, pn), with pn becoming small with growing n in a way

which has npn → λ. Show that Yn →d Pois(λ).

(b) More generally, suppose X1, . . . , Xn are independent 0-1 Bernoulli variables with

pi = Pr(Xi = 1). Show that if maxi≤n pi → 0 and
∑n

i=1 pi → λ, then
∑n

i=1Xi →d

Pois(λ).

(c) Suppose X1, X2, . . . are independent Bernoulli with pi = i/n, and consider Yn(t) =∑
i≤t

√
nXi. Show that Yn(t) →d Pois( 12 t

2). The limit is actually a full Poisson process

in t, with independent increments (see Ch. 9).

(d) Suppose (Xn, Yn) has the trinomial distribution, with parameters (n, pn, qn), see

Ex. 1.4. Assume now that pn, qn become small with n, such that npn → λ1, nqn → λ2.

Show that the correlation betweem Xn and Yn tends to zero, and that (Xn, Yn) →d

(X,Y ), where X and Y are independent and Poisson with parameters λ1, λ2. Generalise

to a situation extending that of point (b); use the multinomial model of Ex. 1.5.

Ex. 2.9 Maximum of uniforms. Let X1, . . . , Xn be i.i.d. random variables with the

uniform distribution on (0, 1), and set Mn = maxi≤nXi.

(a) Show that Mn →pr θ, that is, the maximum of the observations is consistent for the

unknown endpoint.

(b) Find the limit distribution of Vn = n(θ−Mn), and use this result to find an approxi-

mate 90 percent confidence interval for θ, i.e., a random interval [Ln(Mn), Un(Mn)] such

that Pr(Ln ≤ θ ≤ Un) is approximately 0.95. on confidence intervals.

Ex. 2.10 Stochastic Opr and opr symbols. [xx can we make one or two nice exercises?

And where to place it? xx]

Convergence in probability and tail bounds

Ex. 2.11 Markov, Chebyshov, and the Law of Large Numbers. In view of the definition

of convergence in probability in (2.1), it is certainly useful to find mathematically man-

ageable bounds for so-called tail probabilities, i.e., Pr(|X| ≥ a) for a random variable

X. There are several such, as we learn here, with more to come in Ex. 2.17. Their uses

include assessing how likely it might be that an estimator is some distance off its target.



54 Large-sample theory

(a) Markov’s inequality was proven in Ex. 2.1(c): If X is nonnegative, then Pr(X ≥ a) ≤
E (X)/a for each a > 0. More generally, if h(x) nonnegative and nondecreasing, with

h(a) positive, show that Pr(X ≥ a) ≤ Eh(X)/h(a). From this, deduce the Chebyshov

inequality: if X has finite variance (but is not necessarily nonnegative), then the Chebyshov

inequality

Pr(|X − EX| ≥ ε) ≤ Var (X)/ε2, for ε > 0.

(b) With X1, . . . , Xn being i.i.d. from the same distribution as X, with mean ξ and

standard deviation σ, show that for the empirical mean X̄n that Pr(|X̄n − ξ| ≥ ε) ≤ the LLN via

Chebyshovσ2/(nε2). Since the right hand side tends to zero as n tends to infinity, you have now

proven the version of the Law of Large Numbers (LLN) that says that the empirical mean

of n i.i.d. random variables with finite second moments converges in probability to its

expectation as n tends to infinity.

(c) Let Y1, Y2, . . . be i.i.d. random variables with expectation θ and finite variance σ2.

Consider the weighted average θ̂ =
∑n

i=1 wiYi/
∑n

i=1 wi, for nonnegative and fixed

weights wi. Give a condition for consistency of the estimator, in terms of these weights.

What happens for wi = 1/i, and for wi = 1/i1.5?

(d) If X has mean ξ, and a finite fourth moment, show that Pr(|X − ξ| ≥ ε) ≤ E |X −
ξ|4/ε4. For X ∼ N(ξ, σ2), deduce that Pr(|X − ξ| ≥ ε) ≤ 3σ4/ε4.

(e) With X1, . . . , Xn i.i.d. from a distribution with finite fourth moment, write γ4 =

E {(Xi − ξ)/σ}4 − 3 for its kurtosis. Show that

E |X̄n − ξ|4 =
σ4

n4
{nγ4 + 3n(n− 1)} =

σ4

n2
{3 + (1/n)(γ4 − 3)}.

Show hence that Pr(|X̄n − ξ| ≥ ε) ≤ 3.01σ4/(n2ε2), for all large enough n. When is this

a sharper result than that of the Chebyshov inequality?

Ex. 2.12 Continuous mapping for convergence in probability. The theorem known as

the continuous mapping theorem (which will be proved in its entirety during the course

of this chapter) says that the three modes of convergence introduced above are preserved

under a continuous mapping. In this exercise we look at the convergence in probability

part of this theorem. Below you may take Xn and X as random vectors or variables, the

proofs are much the same.

(a) Suppose Xn →pr a, with a being a constant. Show that if g : Rk → Rm (so k =

m = 1 in the one dimensional case) is a function continuous at point x = a, then indeed

g(Xn) →pr g(a).

(b) Suppose more generally that Xn →pr X, with the limit being a random variable

or vector such that Pr(X ∈ C) = 1, for C ⊂ R or C ⊂ Rk, respectively. Show that if

g : Rk → Rm is uniformly continuous on C, then g(Xn) →pr g(X).

(c) Show that in (b) it is sufficient that g is continuous. [xx might include a hint or two

here xx].
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Ex. 2.13 The binomial and the empirical distribution function. For i.i.d. observa-

tions Y1, . . . , Yn, we form the empirical cumulative distribution function, the e.c.d.f.,

with Fn(t) = n−1
∑n

i=1 I(Yi ≤ t). Plotting Fn for a given dataset is informative, also for

comparing with given distributions.

(a) Before returning to Fn, consider Xn ∼ binom(n, p) and the familiar ratio p̂n =

Xn/n. Show that indeed p̂n →pr p. Historically speaking, this is the earliest clear LLN

statement. Explain that this also provides an interpretation of what probability means.

(b) Coming back to the empirical c.d.f., explain that Fn(t) for given t is just a binomial

proportion, and that Fn(t) →pr F (t) for each t. In particular, the events Fn(t) ≤ F (t)−ε
and Fn(t) ≥ F (t) + ε both have probabilities going to zero, for positive ε.

(c) We come back to finer analysis of Fn in Ex. 2.55 and 9.22, but find the variance of

Fn(t) and the covariance betweem Fn(t1) and Fn(t2).

Ex. 2.14 Quantiles. Here we learn that the empirical quantiles are consistent for their

population counterparts. Further informative analyses are in Ex. 3.18, including conver-

gence in distribution, but here we limit attention to direct convergence in probability.

(a) Suppose first that U1, . . . , Un are i.i.d. from the uniform distribution on the unit

interval, and letMn be the empirical median. With the empirical c.d.f. Fn from Ex. 2.13,

use the fact that Fn(t) →pr t, for each t, to show that Mn →pr
1
2 . Then generalise to the

case of observations Y1, . . . , Yn from a distribution with continuous and strictly increasing

c.d.f. F , showing for the empirical median that Mn →pr F
−1( 12 ).

(b) As in (a), let U1, . . . , Un are i.i.d. from the uniform distribution on the unit interval,

and Mn the empirical median. Use Scheffé’s lemma (Ex. 2.6) to show that
√
n(Mn −

1
2 ) →d N(0, 1/4).

(c) More generally, for a q ∈ (0, 1), let Qn = Qn(q) be the empirical q-quantile, defined

here to be Y(⌊nq⌋), the ⌊nq⌋ order statistic, where ⌊x⌋ = max{m ∈ Z : m ≤ x}. Show that

Qn is consistent for the population quantile F−1(q). [xx comment briefly on different

definitions of quantile, but this does not matter here, differences are small. xx]

(d) Show that the interquartile range, the 0.75 quantile minus the 0.25 quantile, is consis-

tent for the population interquartile range F−1(0.75)−F−1(0.25). Show more generally

that if θ = g(F−1(q1), . . . , F
−1(qr)) is any continuous function of a finite number of

quantiles, then θ̂ = g(Qn(q1), . . . , Qn(qr)) is consistent for θ.

Ex. 2.15 Smooth functions of means and quantiles. (xx write down. all the easy

consequences. continuous functions of means and quantiles are consistent. more to

come. xx)

Ex. 2.16 Improving on the weak LLN. We have seen in Ex. 2.11(a) that the LLN holds

if the distribution has a finite variance. Here we get rid of the finite variance condition.

For the almost sure version of the LLN see Ex. 2.52.
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(a) Let X1, X2, . . . be i.i.d. with finite mean ξ. Show X̄n = n−1
∑n

i=1Xi →pr ξ by

truncating the random variables involved, i.e., write Xi = XiI(|Xi| > M) +XiI(|Xi| ≤
M) for some M > 0, then show that

Pr(|X̄n − ξ| ≥ ε) ≤ 8M

nε2
E |X|+ 2

ε
EXIX>M ,

for any ε > 0; and conclude. You will need Jensen’s inequality, see Ex. A.15(f), at some

point in this argument.

(b) Let X1, X2, . . . be i.i.d. random variables with fininte variance σ2. Show that the

empirical variance n−1
∑n

i=1(Xi − X̄n)
2 is consistent for σ2.

Ex. 2.17 Further tail bound inequalities. In Ex. 2.11 we learned about the Markov and

Chebyshov inequalities; here we work out further tail bounds for our toolboxes.

(a) Suppose X has a finite moment-generating function (m.g.f.) M(t) = E exp(tX), as

per Ex. 1.30. Show that

Pr(X ≥ a) ≤ q(a) = min{t : exp(−ta)M(t)}.

Writing M(t) = exp{K(t)}, show that this leads to q(a) = exp{K(ta) − ata}, where ta
is the solution to K ′(ta) = a. Apply this to X ∼ N(0, 1) and a positive, and show that

Pr(X ≥ a) ≤ exp(− 1
2a

2). Show that this is indeed sharper than the tail bound 1/a2,

from the simpler Chebyshov inequality, for all a > 0.

(b) For X ∼ N(0, 1) and a positive, show that

Pr(|X| ≥ a) is smaller than each of
1

a2
,
3

a4
,
15

a6
, 2 exp(− 1

2a
2).

(xx a bit more here, rounding it off. more inequalities in Ch. 2. xx)

(c) (xx here or later, perhaps after the mgf things. we also do the expo, which is simpler

than the χ2. xx) Let X ∼ χ2
m, which has mean and variance m and 2m. Consider

pm(a) = Pr(X ≥ m+ am1/2). Show that

pm(a) ≤ min{t : (1− 2t)−m/2

exp{t(m+ am1/2)}
} = (1 + a/m1/2)m/2 exp(− 1

2am
1/2).

Compare this bound both with bounds from the Markov inequality, and with the exact

limit of pm(a), as m grows.

(d) Let X1, X2, . . . be i.i.d. with mean zero and variance one, so that
√
nX̄n →d N(0, 1),

but you don’t need to use that here. Assume the m.g.f.M(t) = E exp(tX1) = exp{K(t)}
is finite. Show that

Pr(
√
nX̄n ≥ a) ≤ M(t/

√
n)n

exp(ta)
= exp{nK(t/

√
n)− ta},

for each t. (xx then a bit more. tail inequality. not too far from good bound exp(− 1
2a

2).

briefly mention and point to large deviations theory. xx)
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Ex. 2.18 Bernshtĕın and Weierstraß. [xx Nils, can you fix the notation in this exercise.

I propose that we drop the
.
= notation, and use op(1), etc. instead xx] In c. 1885, Karl

Weierstraß proved one of the fundamental and insightful results of approximation theory,

that any given continuous function can be approximated uniformly well, on any finite in-

terval, by polynomials; see also Hveberg (2019). A generation or so later, such results had

been generalised to so-called Stone–Weierstraß theorems, stating, in various forms, that

certain classes of functions are rich enough to deliver uniform approximations to bigger

classes of functions. This is useful also in branches of probability theory. Here we give

a constructive and relatively straightforward proof of the Weierstraß theorem, involving

so-called Bernshtĕın polynomials. Let g : [0, 1] → R be continuous, and construct

Bn(p) = Ep g(Xn/n) =

n∑
j=0

g(j/n)

(
n

j

)
pj(1− p)n−j for p ∈ [0, 1],

where Xn ∼ binom(n, p). Note that Bn(p) is a polynomial of degree n.
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Figure 2.1: Left panel: The given non-polynomial function g(p) (full black curve), along

with approximating Bernshtĕın polynomials of order 10, 20, . . . , 100. Right panel: For the

function g2(p) = (2p− 1)4, the Bernshtĕın polynomials Bn, along with the bias-modified

ones B∗
n, or order 4, 6, 8, 10.

(a) Show that Bn(p) →pr g(p), for each p. Then show that the convergence is actually

uniform. In some detail, for ε > 0, find δ > 0 such that |x−y| < δ implies |g(x)−g(y)| < ε

(which is possible, as a continuous function on a compact interval is always uniformly

continuous). Then show

|Bn(p)− g(p)| ≤ ε+ 2M Pr(|Xn/n− p| ≥ δ),

with M a bound on |g(p)|. Show from this that indeed maxp |Bn(p)− g(p)| → 0.

(b) Consider the marvellous function

g1(p) = sin(2πp) + exp(1.234 sin3
√
p)− exp(−4.321 cos5 p2)
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on the unit interval. Compute the Bernshtĕın polynomials of various orders, and display

these in a diagram, alongside the curve of g. Construct a version of Figure 2.1, left

panel, which does this for n = 10, 20, . . . , 90, 100. How high n is needed for the maximum

absolute difference to creep below 0.01?

(c) Assuming smoothness of the g function, and writing p̂ = Xn/n for the binomial

fraction, use Taylor expansion g(p̂)
.
= g(p) + g′(p)(p̂− p) + 1

2g
′′(p)(p̂− p)2 to show that

Bn(p)
.
= g(p) + 1

2g
′′(p)p(1− p)/n. This invites a repaired Bernshtĕın polynomial, of the

form B∗
n(p) = Bn(p)− 1

2Cn(p)p(1−p)/n, with Cn(p) = Epg
′′(Xn/n). Explain that this is

still a polynomial, now of order n+2, and show in examples that it often succeeds better

than Bn in coming close to the target g(p). Make a version of Figure 2.1, right panel,

which shows the Bn and the B∗
n, of order 4, 6, 8, 10, for the case of g2(p) = (2p− 1)4.

(d) Assuming g has a derivative, construct a confidence band of the type Bn(p) ±
1.96 σ̂(p)/

√
n, for a certain σ̂(p), with the property that it for each given p covers the

underlying g(p) with probability tending to 0.95.

(e) Let now g(x, y) be an arbitrary function on the unit simplex, {(x, y) : x ≥ 0, y ≥
0, x+ y ≤ 1}. Construct a mixed polynomial Bn(x, y) of degree n such that it converges

uniformly to g on the simplex.

Convergence in distribution

Ex. 2.19 The Portmanteau theorem. So far we have taken as our definition of Xn →d X

(see (2.4)) that Fn(x) → F (x) for all continuity points x of F , where Fn and F are the

c.d.f.s of Xn and X, respectively. A limitation of this definition is that c.d.f.s are only

defined for random vectors, and since we soon enough want to study convergence in

distribution in spaces other than Rk, we need a more general definition. Let Pn and P

be probability measures on some measurable space (X ,B). We say that Pn converges

weakly to P , denoted Pn ⇒ P , if weak

convergence

Pn ⇒ P
∫
g dPn →

∫
g dP, for all g ∈ Cb(X ), (2.7)

where Cb(X ) is the collection of all continuous and bounded functions g : X → R. If Cb(X )

Pn and P are the distributions of random vectors Xn and X, then (2.7) is equivalent to

Xn →d X as defined in (2.4) (a fact we prove in (g)). As will become clear as we proceed,

however, the definition in (2.7) is vastly more general, in particular, it works when X is

a function space, see Ch. 9. It is also often much easier to work with. In this exercise

we first prove the ‘bare bones’ Portmanteau theorem, valid for all types of metric spaces,

then proceed to proving its equivalence with Xn →d X. Ex. 2.20 presents additional

equivalent statements. The Portmanteau theorem says the following four statements are

equivalent:

(i) Pn ⇒ P ;

(ii) lim supn Pn(F ) ≤ P (F ) for every closed set F ;

(iii) lim infn Pn(B) ≥ P (B) for every open set B;



Convergence in distribution 59

(iv) Pn(C) → P (C) for every set C that is P -continuous, in the sense that P (∂C) = 0,

where ∂C = C̄ \ C◦ is the boundary of C (the closure minus the interior);

Notice that in the case that Xn and X are random vectors, (i) can be written E f(Xn) →
E f(X) for all f ∈ Cb(Rk); and (ii) lim supn Pr(Xn ∈ F ) ≤ Pr(X ∈ F ) for every closed

set F ⊂ Rk; and so on. We follow the classical text Billingsley (1968) and prove the

Portmanteau theorem through a string of subexercises.

(a) Let d be a metric, and for any set A define d(x,A) = inf{d(x, y) : y ∈ A}, i.e., the
distance from x to A. For ε > 0 and a set A, define the function fA,ε(x) = η(d(x,A)/ε)

where

η(t) =


1, if t ≤ 0,

1− t, if 0 ≤ t ≤ 1,

0, if t ≥ 1.

The function fA,ε(x) will be used to approximate the indicator function IA. Let F = [a, b]

be a closed interval on the real line, and make a sketch of fF,ε(x) for some ε > 0. For

arbitrary closed sets F and ε > 0, show that fF,ε is continuous (it is clearly bounded),

that fF,ε = 1 for x ∈ F ; and that fF,ε(x) = 0 when d(x, F ) ≥ ε.

(b) Show that (i) implies (ii): Let F be a closed set. Given δ > 0 we can find ε > 0 such

that the open set B = {x : d(x, F ) < ∞} is such that P (B) < P (F ) + δ. Notice that

fF,ε(x) = 1 for all x ∈ B. Use these facts to show that lim supn Pn(F ) < P (F ) + δ, and

conclude.

(c) Show that (ii) and (iii) are equivalent.

(d) Show that (ii) implies (i): Let g be a bounded and continuous function, a ≤ g(x) ≤ b

for all x, say. Define f(x) = {g(x)−a}/(b−a), so that 0 ≤ f(x) ≤ 1. Why does it suffice

to prove the implication for f? Since f is continuous, the sets Fi = {x : g(x) ≥ i/k} =

f−1([i/k, 1]) for i = 0, 1, . . . , k are closed. Define the functions

fk,low(x) =

k∑
i=1

i− 1

k
IFi−1/Fi

(x), and fk,up(x) =

k∑
i=1

i− 1

k
IFi−1/Fi

(x).

Show that fk,low(x) ≤ f(x) ≤ fk,up(x) for all x, and that∫
fk,low dP =

1

k

k∑
i=1

P (Fi), and

∫
fk,up dP =

1

k
+

1

k

k∑
i=1

P (Fi),

and use these facts to prove the implication.

(e) Show that (ii) implies (iv).

(f) Show that (iv) implies (ii): For a closed set F and an arbitrary δ > 0, the boundary

∂{x : d(x, F ) ≤ δ} ⊂ {x : d(x, F ) = δ}. For any sequence of positive δk tending to zero

as k → ∞, Fk = {x : d(x, F ) ≤ δ} decreases to F as k → ∞. Explain why we can choose

these δk so that the Fk are continuity sets, and use this fact to prove the implication.
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(g) It is time to prove that the definition of Xn →d X, as we defined it in (2.4), is equiv-

alent to (i)–(iv) of the Portmanteau theorem. In this setting, Pn and P are the distribu-

tions of Xn and X, respectively, e.g., Pn = PrX−1
n , where Pr is the probability measure

on the space on which Xn is defined; and Fn(x) = Pn(−∞, x] and F (x) = P (−∞, x] are

the respective c.d.f.s. The reader is of course welcome to prove the equivalence with any

of the four statements of that theorem. Here we give a gentle push towards proving that

(2.4) implies (iii) for the case of random variables: Any open set B ⊂ R can be written

as a countable union of disjoint open intervals, B = ∪∞
j=1(aj , bj). Explain why we, for

any ε > 0 and each of these intervals, can find continuity points a′j and b′j of F such that

(a′j , b
′
j ] ⊂ (aj , bj) but P (a

′
j , b

′
j ] ≥ P (aj , bj)− ε/2j for j = 1, 2, . . .. Take it from here, and

try to generalise this proof to the setting where Xn and X are random vectors.

Ex. 2.20 More in the Portmanteau. In the exercise we add some equivalent statements

to the Portmanteau theorem, and look at some consequences. Throughout, Pn and P

are measures on R equipped with the Borel σ-algebra. Each of the equivalent statements

hold for general metric spaces, but the proofs pointed to in these exercises may then need

to be modified.

(a) Let f : R → R be a bounded and continuous function. Let X ∼ F and Z ∼ N(0, 1),

be independent, and σ > 0. Show that E f(X + σZ) = E fσ(X) where

fσ(x) =

∫
f(u)ϕ((u− x)/σ)/σ du,

and ϕ is the standard normal density; see Ex. A.35.Show that fσ(x) is bounded and

continuous, and has continuous derivatives of all orders.

(b) Let Z be a standard normal random variable independent of (Xn)n≥1. Show that

Xn + σZ →d X + σZ for all σ > 0 if and only if Xn →d X.

(c) From (a) and (b), to conclude that Xn →d X if and only if E f(Xn) → E f(X) for

all bounded and continuous functions, having continuous derivatives of all orders.

(d) Show that Xn →d X if and only if E f(Xn) → E f(X) for all continuous functions

that vanish outside of a compact set, i.e., for all continuous functions that are nonzero

only on a compact set.

(e) In fact, Xn →d X if and only if E g(Xn) → E g(X) for infinitely smooth functions

that vanish outside of a compact set. Let f be an infinitely smooth density with support

[−1, 1] (see Ex. A.17 for the existence of such a density), and let g be a continuous function

that vanishes outside of a compact set C. For some 0 < δ < 1, define fδ(x) = f(x/δ)/δ.

From Ex. A.17(e) we know that the convolution (g ∗ fδ)(z) =
∫
g(z − x)fδ(x) dx =∫

fδ(z − y)g(y) dy is also infinitely smooth and vanishes outside of a compact set. Find

a compact interval [−a, a] containing C, such that

sup
z∈[−a,a]

|(g ∗ fδ)(z)− g(z)| → 0, as δ → 0.

In words, the continuous function that vanish outside of a compact set can be uniformly

approximated by infinitely smooth functions that vanish outside of a compact set. These

latter functions then have bounded derivatives of all orders, a fact we exploit in Ex. 2.28.
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(f) Finally, prove the if-and-only-if statement at the start of (d).

(g) If f is a bounded function such that Pr(X ∈ Cf ) = 1, where Cf is the set of continuity

points of f , then, for any ε > 0, there exists bounded and continuous functions flow and

fup such that flow ≤ f ≤ fup and E fup(X) − flow(X) < ε. Consider the functions

flow,k(x) = infy{f(y) + k|x − y|} and fup,k(x) = supy{f(y) − k|x − y|} for k = 1, 2, . . .,

and show the existence of functions flow and fup as described. [xx cite Ferguson 1996 for

this one xx].

(h) Show thatXn →d X if and only if E f(Xn) → E f(X) for all bounded and measurable

functions such that Pr(X ∈ Cf ) = 1, where Cf = {x : f is continuous at x}.

(i) Let X,X1, X2, . . . and Y, Y1, Y2, . . . be random variables. Show that (Xn, Yn) →d

(X,Y ) is equivalent to both (1) E f(Xn)g(Yn) → E f(X)g(Y ) for all bounded and con-

tinuous f and g; and (2) E f(Xn)g(Yn) → E f(X)g(Y ) for all bounded and continuous

f , and all bounded g such that Pr(Y ∈ Cg) = 1, where Cg = {y : g is continuous at y}.

Ex. 2.21 Continuous mapping for convergence in distribution. Let X1, X2, . . . and XContinuous

mapping be k dimensional random vectors, and g : Rk → Rm a function that is continuous on a

set C ⊂ Rk such that Pr(X ∈ C) = 1. Suppose that Xn →d X.

(a) Show that g(Xn) →d g(X) when g is continuous on all of Rk, that is, when C = Rk.

(b) Now suppose that C is a subset of Rk, and show that h(Xn) →d h(X) in this more

general case as well. You may first show that for F a closed set, the closure of h−1(F )

is included in h−1(F ) ∪ Cc, then use the Portmanteau theorem. [xx try to find another

proof. Can use Portmanteau theorem (8) directly? xx].

Ex. 2.22 Skorokhod’s theorem [xx I’m not sure if this is the right place to introduce the

probability transform, nor am I sure Ex. 7.1 is (which repeats (a)). we can have it in

the appendix, and there use it to prove the existence of infinite sequences of independent

random variables xx]

(a) Let U ∼ unif(0, 1). For any c.d.f. F , define X(u) = inf{x : F (x) ≥ u} for 0 < u < 1,

so X(u) = F−1(u) whenever F is continuous. Show that X(U) ∼ F ..probability

transform

(b) Suppose that Fn ⇒ F and let ([0, 1],B, λ) be the unit interval equipped with its

Borel-σ-algebra and Lebesgue measure. On this space, construct the random variables

Yn(ω) = inf{x : Fn(x) ≥ ω} and Y (ω) = inf{x : F (x) ≥ ω}. Show that Yn →a.s. Y .

(c) Let (Xn)n≥1 and X be random variables. Show that if Xn →d X, then E∥X| ≤
lim infn E∥Xn|; and that if (Xn)n≥1 is uniformly integrable, then X is integrable and

EXn → EX.

(d) Show that Xn →d X if and only if f(Xn) →d f(X) for all f ∈ Cb(R).

Ex. 2.23 The Cramér–Slutsky rules. The utility of the three results in (c) below, to-

gether known as the Cramér–Slutksy rules, will become abundantly clear as we progress.

(a) Show that if Xn →d X, and Yn − Xn →pr 0, then also Yn →d X. This says that

variables which are essentially close, for growing n, have identical limit distributions.



62 Large-sample theory

(b) Show that if Xn and Yn are sequences of random vectors such that Xn →d X and

Yn → a, for a random variable X and a constant a, then (Xn, Yn) →d (X, a).

(c) Show that if Xn →d X and Yn →pr a, as above, then Cramér–Slutsky

(i) Xn + Yn →d X + a;

(ii) XnYn →d Xa;

(iii) Xn/Yn →d X/a, provided a ̸= 0.

Explain why rules (ii) and (iii) also hold when Yn and a are matrices.

(d) Let X1, . . . , Xn be i.i.d. Bernoulli(p). Look back at Ex. 2.7(c) and Ex. 2.16(b) and

show that
√
n(X̄n − p)/σ̂2

n →d N(0, 1), where σ̂2
n = n−1

∑n
i=1(Xi − X̄n)

2.

Ex. 2.24 Showing convergence in two steps. (xx needs xref and calibration, depending

on how it is presented and where applications follow. it is valid for any metric space with

distance d(x, y), not merely Rk. xx) Suppose one wishes to prove that Xn →d X, but

that technical issues make it easier to first prove that an approximation to Xn converges

to an approximation to X. With a suitable extra condition this might suffice. (xx may

point briefly to Story vii.7 to see this in use. xx)

(a) For the approximations An,k to Xn and Ak to X, suppose (i) that An,k →d Ak, for

each k; (ii) that Ak →d X as k → ∞; and also (iii) that

lim
k→∞

lim sup
n→∞

Pr(d(Xn, An,k) ≥ ε) = 0 for each ε > 0.

Show that Xn →d X.

(b) Suppose somebody clever has managed to prove the CLT for bounded i.i.d. variables

(for example using m.g.f.s): if A1, A2, . . . are i.i.d. with mean zero with variance one, and

|Ai| ≤ k, then Zn =
√
nĀn →d N(0, 1). How can you then prove that the CLT is valid

also for unbounded i.i.d. random variables, as long at only their variance is finite?

Ex. 2.25 Tightness, Helly, and Prokhorov. Consider the sequence (Xn)n≥1 of random

variables with distribution Pr(Xn = x) = 1/3 for x = 0, 1/2, n. You may verify that the

sequence Fn(x) = Pr(Xn ≤ x) of distribution functions converges pointwise the limiting

function,

G(x) =


0, x < 0,
1
3 , 0 ≤ x < 1

2 ,
2
3 , x ≥ 1

2 .

The function G(x) is a limit of distributions functions, but it is not itself a distribution

function: the problem is that G(∞) = 2/3, meaning that one third of the probability

mass of Fn(x) has escaped to inifinity! Tightness is a condition ensuring that a limit of

distribution functions is itself a distribution function. Here is the definition: A sequence

Y1, Y2, . . . of random variables is tight if for any ε > 0 there exists a constant K so that Tightness

Pr(|Yn| > K) < ε, for all n.
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You may verify that the sequence Xn defined above is not tight. A tight sequence of

random variables is also said to be bounded in probability (see Ex. 2.10).

We start with an exercise on other characterisations of tightness, before we proceed to

Prokohorov’s theorem, and finally Helly’s theorem which is key to proving Prokohorov’s.

In Ex. 2.40 the notion of tightness is extended to random vectors, and Prokohorov’s

theorem is proven for random vectors.

(a) Show first that any random variable is tight. Next, let (Yn)n≥1 be a sequence of ran-

dom variables with c.d.f.s Fn, and show that the following three statements are equivalent:

(i) (Yn)n≥1 is tight;

(ii) For any ε > 0 there is a K > 0 so that lim supn→∞ Pr(|Yn| > K) < ε;

(iii) For any ε > 0 there are a and b such that Fn(a) < ε and Fn(b) > 1− ε for all n.

(iv) For any sequence of constants a1, a2, . . . ≥ 0 tending to zero, anYn →p 0.

Finally, show that (v) if for some δ > 0 there is an M > 0 and an n0 ≥ 1 so that

E |Yn|δ ≤ M for all n ≥ n0, then (Yn)n≥1 is tight; and that (v) implies (i) if there is a

δ > 0 so that |Yn|δ is integrable.

(b) Prokhorov’s theorem says that

(i) If Xn →d X for some random variable X, then (Xn)n≥1 is tight;Prokhorov’s

theorem
(ii) If (Xn)n≥1 is tight, then there is a subsequence (nk)k≥1 such that Xnk

→d X for

some random variable X.

Use the Portmanteau theorem (Ex. 2.19) to prove the first part of Prokhorov’s theorem;

and Helly’s theorem, which we prove in (c), to prove the second part.

Notice that since any subsequence of a tight sequence must itself be tight, (ii) is

the same as saying that if (Xn)n≥1 is tight, then any subsequence (nk)k≥1 has a further

subsequence (nkj
)j≥1 such that Xnkj

converges in distribution.

(c) Let (Fn)n≥1 be a sequence of distribution functions on the real line. Helly’s theorem

says that for any such sequence there is a right continuous and nondecreasing function

F with range contained in [0, 1] and a subsequence (nk)k≥1 such that Fnk
(x) → F (x)

at every continuity point of F . Thus F has two of the defining properties of c.d.f.s (see

A.14(a)). The property that may be lacking is that F (x) may not tend to 0 or 1 as

x → −∞ or x → ∞, respectively. To prove Helly’s theorem, let Q = {q1, q2, . . .} be the

rational numbers, and consider the infinite arrayHelly’s theorem

F1(q1) F2(q1) F3(q1) . . .

F1(q2) F2(q2) F3(q2) . . .

F1(q3) F2(q3) F3(q3) . . .
...

...
...

Since Fn(qk) lies between zero and one for all n and k, each row of this array is bounded,

and, as we know from the Bolzano–Weierstrass theorem, every bounded sequence has

a convergent subsequence. In particular, there is a subsequence n1,1, n1,2, . . . so that
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Fn1,k
(q1) has a limit as k tends to infinity. Call this limit G(q1). Extract a further

subsequence n2,1, n2,2 from n1,1, n1,2, . . . along which Fn2,j
converges to a limit, sayG(q2),

as j tends to infinity. Continue like this and argue that the diagonal sequence nk = nk,k
of the array the diagonal

methodn1,1 n1,2 n1,3 . . .

n2,1 n2,2 n2,3 . . .

n3,1 n3,2 n3,3 . . .
...

...
...

is such that Fnk
(qj) → G(qj) for j = 1, 2 . . . as k tends to infinity. Define the function

F (x) = inf{G(q) : q > x},

and use that the rationals are dense in the reals to show that Fnk
(x) converges to F (x)

as k → ∞ for every continuity point x of F . Show that F necessarily has two of the

three defining properties of a c.d.f., but not necessarily the third, as described above.

(d) The following lemma is often useful for proving convergence in distribution, see

Ex. 2.27(c) and Ex. 2.29(c) for applications. Suppose that (Xn)n≥1 is tight, and that

every subsequence of Xnk
that converges weakly at all, converges to the same random subsequence

lemmavariable X. Show that then Xn →d X. To prove this, assume that (Xn)n≥1 does not

converge in distribution to X, and use Prokohorov’s theorem to derive a contradiction.

Ex. 2.26 Characteristic functions converging to a characteristic function. Let (Xn)n≥1

be a sequence of random variables with characteristic functions φ1(t), φ2(t), . . .. Suppose

that φn(t) → φ(t), and that we recognise φ(t) as the characteristic function of some

random variable X. In such cases we can conclude that Xn →d X without further ado.

(a) Suppose that Xn and X have characteristic functions φn(t) and φ(t), respectively,

and that φn(t) → φ(t). As an auxiliary assumption, suppose that φn(t) is dominated by

a function g(t) such that
∫
g(t) dt <∞, so that by Ex. A.35(h) the Xn have densities

fn(x) =
1

2π

∫
exp(−itx)φn(t) dt.

Show that under these assumptions Xn →d X.

(b) Next, we reduce the general case (i.e., the case of Xn that do not necessarily have

integrable characteristic functions) to the special case studied in (a), by using the result

from Ex. 2.20(b). Suppose that Xn and X have characteristic functions φn(t) and φ(t),

respectively, and that φn(t) → φ(t). Let Z be a standard normal random variable, and

σ some positive constant. Show that Xn + σZ →d X + σZ, and conclude from ?? that

φn(t) → φ(t) implies Xn →d X.

Ex. 2.27 Lévy’s continuity theorem and some more. In Ex. 2.26 we made two crucial

assumptions: that φn(t) → φ(t), and that the limiting function φ(t) is a characteristic

function. What if we drop the second assumption? That is, suppose that Xn is such that

its characteristic functions φn converge to some function φ(t), but we do not immediately
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know that this limit is a characteristic function. Lévy’s continuity theorem says that if

this limiting function is continuous at zero, then it is a characteristic function, for some

appropriate random variable X, and Xn →d X. The key to this theorem is that the

continuity of φ(t) at zero entails that Xn is tight. In fact, given that φn(t) → φ(t) for

some function φ(t), there is equivalence between the following three statements:

(i) φ(t) is continuous at zero;

(ii) The Xn sequence is tight;

(iii) φ(t) is a characteristic function.

In (a)-(b) we prove the implication (i)⇒(ii), which is Lévy’s continuity theorem; the

implication (ii)⇒(iii) is proven in (c); while the implication (iii)⇒(i) is immediate from

the uniform continuity of characteristic functions, see Ex. A.34(a).

(a) Start by using Fubini’s theorem (see Ex. A.16) to show that if X has characteristic

function φ and cumulative distribution function F , then∫ ε

−ε

{1− φ(t)} dt = 2ε

∫ (
1− sin(xε)

xε

)
dF (x).

In particular, the integral of φ(t) on a symmetric interval around zero is really a real

number, that is, the complex component disappears. Deduce that

1

ε

∫ ε

−ε

{1− φ(t)}dt ≥ 2

∫
|xε| ≥c

(
1− sin(xε)

xε

)
dF (x) ≥ 2(1− 1/c) Pr{|X| ≥ c/ε},

with the value c = 2 yielding the tail inequality

Pr{|X| ≥ 2/ε} ≤ 1

ε

∫ ε

−ε

{1− φ(t)} dt. (2.8)

(b) If we now have a collection of random variables, where their characteristic functions

have approximately the same level of smoothness around zero, then we should get tight-

ness from (2.8). Assume that X1, X2, . . . have characteristic functions φ1, φ2, . . ., and

that φn(t) converges to some function φ(t) that is continuous at zero. For a given ε′ > 0,

find ε > 0 such that |1− φ(t)| ≤ ε′ for |t| ≤ ε. Show that

lim sup
n→∞

Pr{|Xn| ≥ 2/ε} ≤ 1

ε

∫ ε

−ε

{1− φ(t)} dt ≤ 2ε′.

We’ve hence found a broad interval, namely [−2/ε, 2/ε], inside which each Xn lies, with

high enough probability, which means that the Xn sequence is tight, and thus establishes

the implication (i)⇒(ii).

(c) Now we prove the implication (ii)⇒(iii), i.e., that if (Xn)n≥1 is tight and φn(t)

converges to some function φ(t), then φ(t) must be the characteristic function of some

random variable. To prove this, assume that (Xn)n≥1 is tight and φn(t) → φ(t), but

that Xn →d X is false; then use tightness to extract a subsequence Xnk
converging to a

random variable X, and the lemma in Ex. 2.25(d) to extract another subsequence Xn′
k

converging to some other random variable Y ; and derive a contradiction.
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(d) Since we’re at it with tightness and characteristic functions: Show that if X1, X2, . . .

is a tight sequence of random variables with characteristic functions φ1, φ2, . . ., then

(φn)n≥1 is uniformly equicontinuous. That is, for each ε > 0 there is a δ > 0 such that

|t− s| < δ implies |φn(t)− φn(s)| < ε for all n.

Central limit theorems

Ex. 2.28 The central limit theorem, Lindeberg’s proof. Let X1, X2 . . . be i.i.d. random

variables with mean zero and unit variance, and define Xn,i = Xi/
√
n. The goal is

to show that E g(
∑n

i=1Xn,i) → E g(Z), for all infinitely smooth functions g with com-

pact support, where Z is a standard normal random variable, which is equivalent to∑n
i=1Xn,i →d Z, see the Portmanteau theorem, Ex. 2.19. Introduce Zn,i = Zi/

√
n,

where the Z1, Z2, . . . are i.i.d. standard normals, so that
∑n

i=1 Zn,i ∼ Z by Ex. A.35(g).

(a) What is in essence Lindeberg’s idea was to show that E g(
∑n

i=1Xn,i)−E g(
∑n

i=1 Zn,i)

tends to zero by replacing the summands Xn,i by the Gaussiand summands Zn,i, one by

one. Convince yourself that by so doing the difference g(
∑n

i=1Xn,i) − g(
∑n

i=1 Zn,i) is

equal to the telescoping sum on the right, that is,

g(

n∑
i=1

Xn,i)− g(

n∑
i=1

Zn,i) =

n∑
k=1

{g(
k∑

i=1

Xn,i +

n∑
i=k+1

Zn,i)− g(

k−1∑
i=1

Xn,i +

n∑
i=k

Zn,i)}.

(b) Since g is infinitely smooth with compact support, we have from Taylor’s theorem

that there exists a K <∞ and δ > 0 such that for any ε > 0,

|g(x+ y)− g(x)− g′(x)y − 1
2g

′′(x)y2| ≤ εy2, when |y| ≤ δ, and,

|g(x+ y)− g(x)− g′(x)y − 1
2g

′′(x)y2| ≤ Ky2, when |y| > δ.

Show that for each k = 1, . . . , n,

E {g(
k∑

i=1

Xn,i +

n∑
i=k+1

Zn,i)− g(

k−1∑
i=1

Xn,i +

n∑
i=k

Zn,i)} = E rn(Xk) + E rn(Zk),

where

rn(x) ≤
ε

n
x2 +

K

n
x2I(|x| ≥

√
nδ).

Please conclude, and you will have shown the CLT for i.i.d. random variables.

(c) Suppose Y1, Y2, . . . are i.i.d. with finite mean ξ and standard deviation σ. Show that

the random sum, normalised to have mean zero and variance one, i.e.,( n∑
i=1

Yi − nξ
)
/
√
nσ2 =

√
n(Ȳn − ξ)/σ,

tends to the N(0, 1) in distribution.

(d) We now extend the central limit theorem to independent random variables that do not

necessarily have the same distribution. Let X1, X2, . . . be independent mean zero random
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variables with variances σ2
1 , σ

2
2 . . ., and form Xn,j = Xj/Bn, where B

2
n = σ2

1 + · · · + σ2
n.

In view of the remainder term in (b), the Lindeberg condition is natural: Assume that

for every ε > 0, it is the case that

n∑
j=1

X2
n,jI{|Xn,j | ≥ ε} → 0, as n→ ∞.

Show that
∑n

j=1Xn,j →d N(0, 1) by making the appropriate modifications to the proof

of the i.i.d. case worked with in (a) and (b).

Ex. 2.29 Proving the CLT with moment-generating functions. In this exercise we prove

a central limit theorem for i.i.d. random variables X1, X2, . . . whose moment generating

functionsM(t) = E exp(tX1) exist on an interval around zero. See Ex. A.31 for what this

assumption entails about the random variables. Throughout, we assume that EX1 = 0

and Var(X1) = σ2. [xx we should perhaps move 1.30, jamfør fortellerproblem Nils

mentions xx]

(a) Show that M(t) = 1 + 1
2σ

2t2 + o(t2) as t→ 0.

(b) Show that
√
nX̄n = n−1/2

∑n
i=1Xi has moment generating function of the form

Mn(t) =M(t/
√
n)n = {1 + 1

2σ
2t2/n+ o(t2/n)}n,

and conclude that Mn(t) → exp( 12 t
2σ2) as n → ∞, where we recognise the limit as the

m.g.f. of the N(0, σ2) distribution (see Ex. 1.30). Exercise (c) gives us what we need

to conclude that this indeed implies that
√
nX̄n converges in distribution to a N(0, σ2)

distributed random variable.

(c) The result of this exercise can be seen as an m.g.f. analogue of Lévy’s continuity

theorem. Let (Xn)n≥1 have m.g.f.s {Mn(t)}n≥1 and suppose that all these m.g.f.s exist

on the same interval [−a, a]. Expand on Ex. 2.17(a) to show that

Pr(|Xn| ≥ K) ≤ exp(−Ka){Mn(a) +Mn(−a)}, for all n.

Show that if Mn(t) converges to some function M(t) for all t in some interval around

zero that contains [−a, a], then (Xn)n≥1 is tight; and Xn →d X where X is a random

variable with m.g.f. M(t). You may use Ex. 2.27(d) and Ex. A.38 to show this.

Ex. 2.30 Two useful lemmas. In proving the central limit theorems below, the following

two lemmas will be useful.

(a) Demonstrate that with zn,1, zn,2, . . . a sequence of real numbers coming closer to zero,

we have
∏n

i=1(1+ zn,i) → exp(z), provided (i)
∑n

i=1 zn,i → z; (ii) maxi≤n |zn,i| → 0; and

(iii)
∑n

i=1 |zn,i| stays bounded. It may be helpful to show first that

log(1 + x) = x− 1
2x

2 + 1
3x

3 − · · · = x+K(x)x2,

with K(x) a continuous function such that |K(x)| ≤ 1 for |x| ≤ 1
2 , and K(x) → − 1

2 when

x → 0. These statements are valid also when the zn,i and the x are complex numbers

inside the unit ball, in which case the logarithm is the natural complex extension of the

real logarithm.
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(b) Let x1, . . . , xn and y1, . . . , yn be complex numbers such that |xj |, |yj | ≤ 1 for all j.

Show that |x1x2 − y1y2| ≤ |x1 − y1|+ |x2 − y2|, and proceed by induction to show that

|
n∏

j=1

xj −
n∏

j=1

yj | ≤
n∑

j=1

|xj − yj |, for all n.

Ex. 2.31 The Lindeberg CLT via truncations. In this exercise we present a proof of

the CLT for independent random variables using m.g.f.s., but without assuming that the

m.g.f.s. of the random variables involved necessarily exist (this is a slight generalisation

of a proof presented in Inlow (2010)). Since the m.g.f. of a bounded random variable

always exists (prove it), the trick is to truncate the random variables involved: Let

X1, X2, . . . be independent random variables with mean zero and variances σ2
1 , σ

2
2 , . . ..

Write B2
n = σ2

1 + · · · + σ2
n and Xn,j = Xj/Bn for j = 1, . . . , n. We are to show that∑n

j=1Xn,j converges in distribution to a standard normal random variable, provided the

Lindeberg condition is satisfied, Ln(ε) =
∑n

j=1 EX
2
n,jI(|Xn,j | ≥ ε) → 0, for each ε > 0,

which we assume throughout.

(a) For some ε > 0, define µn,j = EXn,jI(|Xn,j | < ε), as well as the random variables

Yn,j = Xn,jI(|Xn,j | < ε)− µn,j and vn,j = Xn,jI(|Xn,j | ≥ ε) + µn,j . Verify that

Xn,j = Yn,j + vn,j .

Verify that |Yn,j | ≤ 2ε, which implies that the m.g.f. of Yn,j exist for all j and n. Show

that

E exp(tYn,j) = 1 + 1
2 t

2EY 2
n,j + rn,j(t),

where the remainders are so that |
∑n

j=1 rn,j(t)| ≤ ε exp(2ε) for |t| ≤ 1.

(b) By the first lemma of Ex. 2.30, showing that
∏n

j=1 E exp(tYn,j) → exp( 12 t
2) now

comes down to verifying that (i)
∑n

j=1 EY
2
n,j → 1; (ii) that maxj≤n EY

2
n,j → 0 and

maxj≤n |rn,j | → 0 ; and (iii) that lim supn→∞ |E exp(tYn,j) − 1| is finite. Please verify

these conditions (remember that it is sufficient to consider |t| ≤ 1).

(c) Finally, show that
∑n

j=1 vn,j →pr 0 and conclude that
∑n

j=1Xn,j →d N(0, 1).

Ex. 2.32 Proving the CLT with characteristic functions. It can be argued that the most

elegant, unified, and general proof of the CLT is obtained by the use of characteristic

functions. This is because, contrary to the m.g.f., the characteristic function of a random

variable always exists.

(a) Show that if X has finite mean ξ, then its characteristic function satisfies φ(t) =

1 + iξt + o(t) as t → 0. Also, its derivative exists, with φ′(t) = E iX exp(itX), and in

particular φ′(0) = iξ (see Ex. A.34 for more details).

(b) Show similarly that if X has finite variance σ2, then

φ(t) = 1 + iξt− 1
2 (ξ

2 + σ2)t2 + o(t2) as t→ 0.
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(c) If X1, X2, . . . are i.i.d. with mean zero and finite variance σ2, then show that Zn =√
nX̄n = n−1/2

∑n
i=1Xi has characteristic function of the form

φn(t) = {1− 1
2σ

2t2/n+ o(1/n)}n.

Prove the CLT from this.

Ex. 2.33 The Liapunov and Lindeberg theorems: main story. Let X1, X2, . . . be in-

dependent zero-mean variables with at the outset different distributions F1, F2, . . . and

hence different standard deviations σ1, σ2, . . .. Below we also need their characteristic

functions φ1, φ2, · · · . The question is when we can rest assured that the normalised sumLiapunov and

Lindeberg

theorems
Zn = (X1 + · · ·+Xn)/Bn =

n∑
i=1

Xi

/( n∑
i=1

σ2
i

)1/2
,

really tends to the standard normal, as n increases.

(a) Show that Zn has characteristic function

κn(t) = E exp(itZn) = φ1(t/Bn) · · ·φn(t/Bn).

(b) From Ex. A.34 we have that | exp(ix) − 1 − ix − 1
2 (ix)

2| ≤ 1
6 |x|

3 and that φi(s) =

1− 1
2σ

2
i s

2 + o(s) for small s, so the essential idea is to write

κn(t) =

n∏
i=1

{1− 1
2σ

2
i t

2/B2
n + εn,i(t)},

and prevail until one has found conditions that secure convergence to the desired exp(− 1
2 t

2).

In view of the first lemma in Ex. 2.30, this essentially takes (i)
∑n

i=1 εn,i(t) → 0; (ii)

maxi≤n σ
2
i /B

2
n → 0 and maxi≤n |εn,i(t)| → 0; and (iii)

∑n
i=1 |1 − φi(t/Bn)| staying

bounded. Show that

|φi(s)− (1− 1
2σ

2
i s

2)| =
∣∣∣ ∫ {exp(isx)− 1− isx− 1

2 (isx)
2} dFi(x)

∣∣∣
≤
∫

| exp(isx)− 1− isx− 1
2 (isx)

2|dFi(x) ≤ 1
6 |s|

3 E |Xi|3.

(c) This leads to the uslovie L�punova version of the Lindeberg theorem: show that

if the variables all have finite third order moments, with Bn → ∞ and

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣3 → 0,

then κn(t) → exp(− 1
2 t

2), which from Ex. 2.26 we know is equivalent to the desired

Zn →d N(0, 1). This is (already) a highly significant extension of the CLT. If the Xi

are uniformly bounded, for example, with B2
n/n having a positive limit, which would

rather often be the case, then the Lyapunov condition holds. It is also possible to refine

arguments and methods to show that

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2+δ

→ 0, for some δ > 0,

is sufficient for limiting normality.
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(d) The issue waits however for even milder and actually minimal conditions, and that

is, precisely, the Lindeberg condition:

Ln(ε) :=

n∑
i=1

E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε
}
→ 0 for all ε > 0. (2.9)

Show that if the Lyapunov condition is in force, then the Lindeberg condition holds (so

Lindeberg assumes less than Lyapunov).

Ex. 2.34 The Lindeberg theorems: nitty-gritty details. The essential story, regarding

Lyapunov and Lindeberg, has been told in the previous exercise. Here we tend to the

smaller-level but nevertheless crucial remaining details, in order for the ball to be shoven

across the finishing line after all the preliminary work. Again, let X1, X2, . . . be inde-

pendent, with distributions F1, F2, . . ., zero means, standard deviations σ1, σ2, . . ., and

characteristic functions φ1, φ2, . . .. The crucial random variable studied is

Zn =
X1 + · · ·+Xn

(σ2
1 + · · ·+ σ2

n)
1/2

=

n∑
i=1

Xi

Bn
,

with B2
n =

∑n
i=1 σ

2
i . We assume that the Lindeberg condition holds, i.e. (2.9) is true.

(a) Show that maxi≤n(σ
2
i /B

2
n) → 0, from the Lindeberg condition. Show further that

|φi(t/Bn)− 1| ≤
∫

| exp(itx/Bn)− 1− itx/Bn|dFi(x)

≤ 1
2 t

2

∫
(x/Bn)

2 dFi(x) ≤ 1
2 t

2 max
i≤n

(σ2
i /B

2
n),

so all φi(t/Bn) are eventually inside radius say 1
2 of 1. We are hence in a position to

take the logarithm of κn(t) = E exp(itZn), and work with log κn(t) =
∑n

i=1 logφi(t/Bn),

etc.; see the first lemma in Ex. 2.30.

(b) In continuation and refinement of arguments above, show that

rn(t) = φi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n),

can be bounded, as follows:

|rn(t)| =
∣∣∣ ∫ {exp(itx/Bn)− 1− itx/Bn − 1

2 (itx/Bn)
2} dFi(x)

∣∣∣
≤
∫

| exp(itx/Bn)− 1− itx/Bn − 1
2 (itx/Bn)

2|dFi(x)

≤
∫
|x|/Bn≤ε

1
6

|t|3|x|3

B3
n

dFi(x) +

∫
|x|/Bn>ε

(
1
2

|t|2|x|2

B2
n

+ 1
2

|t|2|x|2

B2
n

)
dFi(x)

≤ 1
6 |t|

3ε
σ2
i

B2
n

+ t2 E
∣∣∣Xi

Bn

∣∣∣2I{∣∣∣Xi

Bn

∣∣∣ ≥ ε
}
.

(c) Show that this leads to

n∑
i=1

∣∣φi(t/Bn)− (1− 1
2σ

2
i t

2/B2
n)
∣∣ ≤ 1

6 |t|
3ε+ t2 Ln(ε),
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with Ln(ε) as defined in (2.9) (the Lindeberg condition), and by way of the first lemma

in Ex. 2.30, that this secures what we were after, namely that

n∏
i=1

φi(t/Bn) → exp(− 1
2 t

2),

and hence triumphantly Zn →d N(0, 1), under the Lindeberg condition only.

(d) Suppose that α > 0 is so that Bn/n
α → σ2 > 0, and that the Lindeberg condition

1

nα

n∑
i=1

EX2
i I(|Xi| ≥ nα/2ε) → 0, for each ε > 0,

holds. Show that then n−α/2
∑n

i=1Xi →d N(0, σ2).

Ex. 2.35 Lindeberg, Liapunov, etc.. Let us summarise the implications related to

the various conditions mentioned in the preceding couple of exercises, and some more.

Let X1, X2, . . . be independent random variables with means µ1, µ2, . . . and variances

σ2
1 , σ

2
2 , . . .. Let B2

n = σ2
1 + · · · + σ2

n, and set Xn,i = (Xi − µi)/Bn. In Ex. 2.33(d)

it was established that the Liapunov condition implies the Lindeberg condition, i.e., if∑n
i=1 |Xn,i|2+δ → 0 for some δ > 0, then

∑n
i=1 E |Xn,i|2I(|Xn,i| ≥ ε) → 0 for each

ε > 0. Also, in Ex. 2.34(a) it was show that if the Lindeberg condition holds, then

maxi≤n σ
2
i /B

2
n → 0. In this exercise we explore some other implications related to the

Lindeberg condition.

(a) Show that if |Xi| < M for all i, and Bn → ∞, then the Lindeberg condition holds.

(b) Show that E |Xi|2+δ < M for all i, and the sequence of variances σ2
1 , σ

2
2 , . . . is either

(i) bounded below; or (ii) such that Bn/n → σ2 > 0; or (iii) σ2
i → σ2 > 0, then the

Lindeberg condition holds.

(c) Suppose that there is a sequence of constants K1,K2, . . . such that |Xi| < Ki almost

surely for each i, and that Kn/Bn → 0. Show that the
∑n

i=1Xn,i →d N(0, 1).

(d) Let Y1, Y2, . . . be i.i.d. random variables with finite second moments. Show that

max(Y1, . . . , Yn)/
√
n tends to zero in probability.

(e) Show that if Y1, Y2, . . . are i.i.d. with mean µ and variance σ2, then the Lindeberg

condition holds. Thus, the Lindeberg CLT contains the CLT for i.i.d. random variables.

Ex. 2.36 The Lindeberg CLT, yet again. Let (Xn,i)i≤n,n≥1 be a triangular array of

mean zero random variables with variances (σ2
n,i)i≤n,n≥1 such that Xn,1, . . . , Xn,n are

independent for each n. We say that the triangular array is rowwise independent. If∑n
i=1 σ

2
n,i → 1, and the Lindeberg condition holds, i.e.,

∑n
i=1X

2
n,iI(|Xn,i| ≥ ε) → 0 for

each ε > 0, then
∑n

i=1Xn,i →d N(0, 1). In this exercise we prove this fact using slightly

different means than in Ex. 2.33–2.34.
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(a) Let (Yn,i)i≤n,n≥1 be a triangular array of rowwise independent mean zero normally

distributed random variables with variances Var(Yn,i) = σ2
n,i for all i and n. Using the

second lemma of Ex. 2.30, show that for any ε > 0

|E exp(it

n∑
i=1

Xn,i)− E exp(it

n∑
i=1

Yn,i)| ≤ 1
3 |t|

3ε

n∑
i=1

σ2
n,i + Ln(ε) + L′

n(ε),

where Ln(ε) =
∑n

i=1X
2
n,iI(|Xn,i| ≥ ε) and L′

n(ε) =
∑n

i=1 Y
2
n,iI(|Yn,i| ≥ ε). Deduce that∑n

i=1Xn,i →d N(0, 1).

(b) (xx we invent one more point to make the exercise have both (a) and (b). xx)

Ex. 2.37 Limiting normality of linear combinations of i.i.d. variables. Let ε1, ε2, . . . be

i.i.d. from some distribution with mean zero and finite variance σ2. For a sequence of

multiplicative constants a1, a2, . . ., consider

Zn =

∑n
i=1 aiεi
Bn

=

n∑
i=1

(ai/Bn)εi, with B2
n =

n∑
i=1

a2i ,

which has mean zero and variance 1. The question is what should be demanded of the

ai sequence, to ensure that Zn →d N(0, 1) (even if the εi distribution might be looking

say skewed and multimodal and strange).

(a) Let Dn = maxi≤n |ai|/Bn. Writing G for the distribution of εi, show that

n∑
i=1

E
∣∣∣aiεi
Bn

∣∣∣2I(∣∣∣aiεi
Bn

∣∣∣ ≥ δ
)
≤

n∑
i=1

a2i
B2

n

E ε2i I(Dn|εi| ≥ δ) ≤
∫
|u|≥δ/Dn

u2 dG(u),

and conclude that Zn →d N(0, 1) provided Dn → 0.

(b) Under a variety of setups, one actually has Dn → 0, which is hence not at all a strict

condition. Verify that the condition holds, and hence limiting normality, in the following

cases: (i) ai = 1 (which corresponds to the plain CLT); (ii) all |ai| inside some positive

[b, c] interval; (iii) ai = i; (iv) ai = i2 (and generalise); (v) ai = 1/
√
i. Show however

that the condition does not hold for ai = 1/i.

(c) A grasshopper sits at zero and then starts jumping, to the right and left with equal

probability, and with jump sizes 1, 2, 3, . . .. With Sn her position after n jumps, show

that Sn/n
3/2 has a normal limit. Though she keeps on passing zero, she will not be in

that vicinity; show that Pr(|Sn| ≤ cn1.49) → 0, for each c.

(d) [xx fikse xx]Another important case to understand well is when the ai can be con-

sidered an i.i.d. sequence, drawn from their own distribution. Show that Dn →pr 0 if the

ai distribution has finite variance. (xx nils thinks this is if and only if, actually. what

happens with Zn if the ai are drawn from say the 1/|x|2 distribution, for |x| ≥ 1? xx)

Ex. 2.38 Higher-order expansions of m.g.f.s. (xx to be polished. the aim is to give

more info for CLT, of the type |Fn(t)−Φ(t)| ≤ c/
√
n for some c. xx) [xx intro text here,

perhaps by Nils. (xx nils pushes an earlier thing from Ch2 to this place; then we edit

and prune and clean. xx) ]
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(a) Consider a variable Y , with m.g.f.M(t) = E exp(tY ), assumed to be finite in at least

a neighbourhood around zero. We have seen in Ex. A.31 that EY r = M (r)(0). Write ξ

and σ2 for the mean and variance of Y . Show that M(t) = 1 + ξt + o(h), for |t| small.

Taking a Taylor expansion to the next step, show thatM(t) = 1+ξt+ 1
2 (ξ

2+σ2)t2+o(t2).

Deduce also that logM(t) = ξt+ 1
2σ

2t2 + o(t2).

(b) We may also take the expansion to the third order, but it is simpler and more

insightful to proceed from Y = ξ + Y0, with Y0 having mean zero. Show that

M(t) = exp(tξ) E exp(tY0) = exp(tξ){1 + 1
2σ

2t2 + 1
6γ3t

3 + o(|t|3)},

where γ3 = E(Y − ξ)3.

(c) Consider Y1, . . . , Yn i.i.d. from a distribution with mean zero and m.g.f. M(t) being

finite around zero. Show that Zn =
√
nȲ has

Mn(t) = E exp(tZn) =M(t/
√
n)n

= {1 + 1
2σ

2t2/n+ 1
6γ3t

3/n3/2 + o(|t|3/n3/2)}n.

Show from this that under the assumptions given, logMn(t) = 1
2σ

2t2 + 1
6γ3t

3/
√
n +

o(1/
√
n). Explain why this is a proof of the CLT (via criteria given in Ex. ??, with

attention to certain further details in Ch 3 xx).

(d) (xx round off, point to CLT, identify remainder term with skewness. xx)

Ex. 2.39 Proving the Stirling formula. The approximation formulathe Stirling

approximation

n!
.
= nne−n

√
2πn, in the sense of lim

n→∞

n!

nn exp(−n)(2πn)1/2
= 1,

is a famous one, named after J. Stirling (1692–1770) (xx though stated earlier by A. de

Moivre xx). Here we shall prove this formula via the CLT for Poisson variables.

(a) If Xn ∼ Pois(n), show that Zn = (Xn − n)/
√
n →d Z, a standard normal. Show

that exp(−n)(1 + n/1 + n2/2! + · · ·+ nn/n!) → 1
2 .

(b) Show that with ε small,

∑
n≤j≤n+ε

√
n

j − n√
n

exp(−n)n
j

j!

.
=

1

(2π)1/2
ε,

and attempt to prove Stirling from this. Show also that

E max(0, Zn) =
∑
j≥n

j − n√
n

exp(−n)n
j

j!
→ E max(0, Z),

that the left hand side may be written
√
n exp(−n)nn/n!, and that the right hand side

is 1/(2π)1/2. Deduce Stirling from this. As part of your solution, show that
∑

j≥n(j −
n)p(j, n) = np(n, n).
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Joint convergence in distribution

Ex. 2.40 Continuity theorem for vector variables. With X = (X1, . . . , Xp)
t a random

vector, in dimension p, we define its characteristic functions as

φ(t1, . . . , tp) = E exp(ittX) = E exp{i(t1X1 + · · ·+ tkXp)}

for t = (t1, . . . , tp)
t. See Ex. A.36 in the appendix for multi-dimensional inversion formu-

lae, and other properties of φ(t1, . . . , tp) that you will need in solving the this exercise.

In this exercise we concentrate on extending the results of Ex. 2.26 and Ex. 2.27 to the

multi-dimensional setting.

(a) Let Xn = (Xn,1, . . . , Xn,p)
t be a sequence of random vectors with characteristic

functions φn(t1, . . . , tp). Suppose that φn(t1, . . . , tp) → φ(t1, . . . , tp), where φ is the

characteristic function of some random vector X = (X1, . . . , Xp)
t. Mimic the steps

taken in Ex. 2.26 to show that then Xn →d X.

(b) Show that Xn →d X if and only if atXn →d a
tX for each a, i.e. if and only if all Cramér–Wold

theoremlinear combinations converge. This is the Cramér–Wold theorem.

(c) Show that a random pair (Xn, Yn) converges in distribution to the binormal N2(0,Σ),

with Σ having diagonal elements 1, 1, and correlation ρ, if and only if aXn + bYn →d

N(0, a2 + b2 + 2ρab) for each (a, b).

(d) A sequence of random vectors Xn = (Xn,1, . . . , Xn,p)
t is tight if for any ε > 0 there tightness in

dimension kis a K such that

Pr(∥Xn∥ > K) < ε for all n,

where ∥x∥ = (x1 + · · ·+ xk)
1/2. Show that all the Xn,1, . . . , Xn,p are tight if and only if

Xn is tight. Show also that Xn is tight if and only if any linear combination

atXn = a1Xn,1 + · · ·+ apXn,p,

is tight, where a = (a1, . . . , ap)
t.

(e) Show that if the sequence (Xn)n≥1 of random vectors is tight, then the corresponding

sequence of characteristic functions {φn(t1, . . . , tp)}n≥1 is uniformly equicontinuous.

(f) We must extend Prokohorov’s theorem, proven for the one-dimensional case in Ex. 2.25(b),

to the multi-dimensional case: Demonstrate that (i) if Xn →d X, then Xn is tight; and, Prokohorov’s

theorem in Rp

(ii) that if (Xn)n≥1 is tight, then there is a subsequence (nk)k≥1 such that (Xnk
)k≥1

converges in distribution.

(g) For each n, let ϕn be the characteristic function of the random vectorXn = (Xn,1, . . . , Xn,p).

Amend the derivations of Ex. 2.27 to show that for any ε > 0, Lévy’s

continuity

theorem in

dim. p
1

εp

∫ ε

−ε

· · ·
∫ ε

−ε

{1− φn(t1, . . . , tp)} dt1 · · · dtp ≥ 2p(1− 1/cp)Pr(|Xn,j | ≥ c/ε for all j).

Deduce from this that if ϕn(t1, . . . , tk) converges to a limit function that is continuous at

zero, say φ(t1, . . . , tp), then Xn →d X, where X is a random vector with characteristic

function φ(t1, . . . , tp). This is thus Lévy’s continuity theorem in dimension p.
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Ex. 2.41 The multi-dimensional CLT. In this exercise we prove the two central limit

theorems for random vectors taking values in Rp.

(a) Suppose X1, X2, . . . are i.i.d. random vectors with mean ξ and variance matrix Σ.multivariate

CLT Invoke the Cramér–Wold device to show that
√
n(X̄n − ξ) →d Np(0,Σ).

(b) Let X1, X2, . . . be independent random vectors in dimension p, with means ξ1, ξ2, . . .,

and with finite positive definite variance matrices Σ1,Σ2, . . .. Let Bn = (Σ1+· · ·+Σn)
1/2,

and write Zn,i = B−1
n (Xi − ξi). Show thatmultivariate

Lindeberg

theorem

Zn = (Σ1 + · · ·+Σn)
−1/2

n∑
i=1

(Xi − ξi) =

n∑
i=1

Zn,i →d Np(0, Ip),

provided the multivariate Lindeberg condition holds, i.e.,

n∑
i=1

E ∥Zn,i∥2I(∥Zn,i∥ ≥ ε) → 0, for each ε > 0. (2.10)

(c) Show that the multidimensional Liapunov condition
∑n

i=1 E ∥Zn,i∥2+δ → 0 for some

δ > 0, implies the Lindeberg condition in (2.10).

(d) In analogy with Ex. 2.34(d), suppose that B2
n/n converges to some positive definite

Σ, and that the Lindeberg condition

1

n

n∑
i=1

E ∥Xi − ξi∥2I(∥Xi − ξi∥ ≥
√
nε) → 0, for each ε > 0,

holds. Show that n−1/2
∑n

i=1(Xi − ξi) →d Np(0,Σ).

(e) Suppose that B2
n/n converges to some positive definite Σ and that the third moment

of each component of Xi−ξi is bounded for all i, i.e., there is a K so that E |Xi,j−ξi,j |3 ≤
K for j = 1, . . . , p and all i ≥ 1. Show that n−1/2

∑n
i=1(Xi − ξi) →d Np(0,Σ).

(f) Suppose X1, X2, . . . are i.i.d. with mean ξ and standard deviation σ. We assume that

also the skewness and kurtosis are finite, γ3 = E(Xi−ξ)3/σ3 amd γ4 = E(Xi−ξ)4/σ4−3.

Show from the two-dimensional CLT that(√
n(X̄n − ξ)√
n(σ̂2

0 − σ2)

)
→d N2(

(
0

0

)
,

(
σ2, γ3σ

3

γ3σ
3, σ4(2 + γ4)

)
),

where σ̂2
0 = n−1

∑n
i=1(Xi − ξ)2.

(g) Then show that with σ̂2 = n−1
∑n

i=1(Xi−X̄)2, which is a ‘real estimator’, as opposed

to σ̂2
0 , which uses ξ, then we have

√
n(σ̂2−σ̂2

0) →pr 0; see Ex. 2.23. Conclude that the two-

dimensional limit distribution result above continues to hold with
√
n(σ̂2−σ2) replacing√

n(σ̂2
0 − σ2).

(h) Let in particular the distribution of the Xi be normal, so Xi ∼ N(ξ, σ2). Show that

γ3 and γ4 are equal to zero, so the general result above simplifies to(√
n(X̄n − ξ)√
n(σ̂2 − σ2)

)
→d N2(

(
0

0

)
,

(
σ2, 0

0, 2σ4

)
).

For another instructive application, involving the Gamma distribution, see Ex. 3.25.
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The delta method

Ex. 2.42 The delta method: the basics. There are important and often reasonably simple

to use approximation methods, in probability theory and statistics, going by the name of

the delta method. It is related to functions of variables often being approximately linear,

if the variables in question are not too spread out, with consequences for approximate

normality.

(a) We start out in dimension one. Suppose in generic terms that
√
n(An − a) →d Z,

with random variables An and a constant a. The limits are taken with respect to the

index n tending to infinity, where n typically but not always is the size of an underlying

sample. that An →pr a. Now consider a function g, defined in at least a neighbourhood

around a, and assumed to have a continuous derivative there. Show via the mean value

theorem that g(An) − g(a) = g′(Bn)(An − a), for some Bn between An and a, and use

this to show that
√
n{g(An)− g(a)} →d g

′(a)Z.

(b) For the typical case where the limit is a zero-mean normal, say Z ∼ N(0, τ2), explain

that
√
n{g(An)− g(a)} →d N(0, g′(a)2τ2).

(c) For the vector case, assume
√
n(An − a) →d Z in dimension p, and consider a

smooth function g(a) = g(a1, . . . , ap), assumed to have continuous first order deriva-

tives in a neighbourhood around a. Explain that An →pr a, so An will be inside that

neighbourhood with probability tending to one. With c = g∗(a) the vector of deriva-

tives ∂g(a)/∂a1, . . . , ∂g(a)/∂ap, evaluated at a, show that
√
n{g(An)− g(a)} →d c

tZ =

c1Z1+· · ·+cpZp. In particular, if Z ∼ Np(0,Σ), explain that the limit ctZ is a N(0, ctΣc).

The main point is that the convergence in distribution, from the previous points, holds

also jointly.

(d) Sometimes one also needs the vector-to-vector extension of results above, leading to

the joint limit distribution of several such g functions. Let g = (g1, . . . , gq)
t : Rp → Rq

be such a function, with component functions having first order derivatives at position

a, yielding a Jacobi matrix J = ∂g(a)/∂a of dimension q × p. Show that
√
n{g(An) −

g(a)} →d JZ. In particular, if Z ∼ Np(0,Σ), then the limit is Nq(0, JΣJ
t).

(e) The delta method has been formulated here in terms of limit distributions, implying

approximate normality for function of approximately normal variables. Explain that in

the framework above, with
√
n(An−a) →d Np(0,Σ), then g(An) is approximately normal,

with mean g(a) and variance ctΣc/n. The delta method hence gives approximations also

to means, variances, and covariances of smooth functions of other variables.

(f) The
√
n factor above comes from the most typical uses of these methods, where

variances of estimators go to zero with speed 1/n, in terms of sample size. Show however

that the mathematics goes through for any increasing sequence; if dn(An−a) →d Z, with

dn tending to infinity, then dn{g(An) − g(a)} →d g
′(a)Z. There are indeed situations

where the rate might be n2/3 or n1/3.

Ex. 2.43 Applying the delta method. Here we exercise our delta method muscles, to see

how the general recipes of Ex. 2.42 may be applied in a few situations. As is clear, once
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we have established limiting normality for certain quantities, e.g. via the CLT, there is

a host of easy-to-harvest applications for functions of these start quantities.

(a) If
√
n(An−a) →d N(0, 1), find out what happens to

√
n(A3

n−a3), and to
√
n{exp(kAn)−

exp(ka)}, where k is a constant.

(b) For Y a binomial (n, p), we have of course Var p̂ = p(1−p)/n for the classic estimator

p̂ = Y/n. Use the delta method to find approximations to the means, variances, and

distributions of (i) the estimated odds ratio p̂/(1 − p̂); (ii) the estimated log-odds-ratio

log p̂ − log(1 − p̂); (iii) the transformed estimator γ̂ = 2arcsin(p̂1/2). In particular, for

the latter, show
√
n(γ̂ − γ) →d N(0, 1), with γ = 2arcsin(p1/2).

(c) Suppose p̂1 = Y1/n and p̂2 = Y2/n are two binomial estimates, with the same sample

size n. Then
√
n(p̂1 − p1) →d Z1 and

√
n(p̂2 − p2) →d Z2, where Zj ∼ N(0, pj(1− pj)).

Find the approximate normal distribution of p̂1/p̂2, viewed as an estimator of p1/p2.

Modify arguments appropriately to find a good approximation to the variance of p̂1/p̂2,

and its approximate normal distribution, also in the case of unequal sample sizes, say n1
and n2. [xx pointer to Story i.1. xx]

(d) Suppose Y1, . . . , Yn are independent from the geometric distribution with Pr(Yi =

y) = (1− p)y−1p for y = 1, 2, . . .. We learned in Ex. 1.24 that the mean and variance are

1/p and (1− p)/p2. Find first the limiting distribution of
√
n(Ȳ − 1/p) and then that of√

n(p̂− p), where p̂ = 1/Ȳ .

(e) Suppose (a, b) is a certain position on the map, where one only has estimates, say

An and Bn, for its x- and y-coordinates. Assume these are independent, approximately

unbiased, and approximate normal, after n measurements. We formalise a version of

this as
√
n(An − a) →d N1 and

√
n(Bn − b) →d N2, the limit variables N1, N2 being

independent and standard normal. Having observed An and Bn, explain how you can

put up 90 percent confidence intervals for a and b separately. Construct also a 90 percent

confidence circle for (a, b).

(f) Let us pass from Cartesian to polar coordinates, letting

Rn = ∥(An, Bn)∥ = (A2
n +B2

n)
1/2 and α̂n = arctan(Bn/An),

seen as estimators of the length r = ∥(a, b)∥ and angle α = arctan(b/a). Find the limit

distributions for
√
n(Rn − r) and

√
n(α̂n − α), and show that these are independent in

the limit.

(g) Suppose one observes (An, Bn) = (4.44, 2.22), with n = 100. Construct and display

an approximate 90 percent confidence circle for (a, b), and then approximate 90 percent

confidence intervals for the length r and angle α. How can you construct confidence

intervals for r and α jointly, say Ir,n and Iα,n, such that the probability that (r ∈
Ir,n) ∩ (α ∈ Iα,n) converges to 0.90?

Ex. 2.44 Limiting normality for multinomials. Consider the multinomial setup of

Ex. 1.5, with (Y1, . . . , Yk) counting the number of events of type 1, . . . , k in n independent
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experiments, each time with probabilities p = (p1, . . . , pk)
t. Here we sort out the basic

large-sample behaviour of the relative frequencies p̂j = Yj/n. This is used e.g. in the

Karl Pearson 1900 Story vii.1.

(a) Show that these p̂j = Yj/n are consistent, with
√
n(p̂j − pj) →d N(0, pj(1 − pj)).

Show more generally that there is full joint convergence in distribution here; Xn =√
n(p̂ − p) →d Z ∼ Nk(0,Σ), where Σ is the matrix with elements σj,ℓ = pjδj,ℓ − pjpℓ.

It may be written Σ = D − ppt with D diagonal with elements pj . Verify that this is

consistent with
∑k

j=1 Zj = 0.

(b) For γ = g(p1, . . . , pk) any smooth function of the relative frequencies, with natural

estimator γ̂ = g(p̂1, . . . , p̂k), show that
√
n(γ̂ − γ) →d N(0, τ2), with τ2 = ctΣc =

ctDc−(ctp)2, where c = ∂g(p)/∂p. Check what this says, for the case of γ = p1+ · · ·+pk.

(c) Consider (X,Y, Z) being trinomial (n, p, q, r). With p̂ = X/n, q̂ = Y/n, r̂ = Z/n, find

the limit distribution for γ̂ = p̂/(q̂r̂)1/2, as well as for δ̂ = 2arcsin(p̂1/2)− 2 arcsin(q̂1/2).

Ex. 2.45 Delta method calculus for the normal case. Let Y1, . . . , Yn be i.i.d. from the

normal N(ξ, σ2), with standard estimators ξ̂ = Ȳ and σ̂2 = (n− 1)−1
∑n

i=1(Yi − Ȳ )2. In

various exercises in Ch. 1 we have worked with exact finite-sample calculus, for certain

basic parameters, like the mean, variance, the quantile γq = ξ + zpσ. Here we show

how the delta method, starting with the basic limit distributions for the two parameters,

can be used to put up large-sample normal approximations for any functions of the

parameters, in cases where it might be too hard to carry out exact finite-sample calculus.

(a) Since the skewness and the kurtosis for the normal are zero, show that the general

result from Ex. 2.41 implies that (
√
n(Ȳ − ξ),

√
n(σ̂ − σ))t tends to say (A,B)t, with

these being independent and zero-mean normals with variances σ2 and 1
2σ

2. Show this

directly, from the normality assumptions, as opposed to deriving it as a special case of

the general statement. Note also that the
√
n(Ȳ − ξ) ∼ N(0, σ2) holds exactly, for each

finite n.

(b) With α = g(ξ, σ), for any smooth function of the two parameters, the natural esti-

mator is α̂ = g(Ȳ , σ̂). Show that
√
n(α̂− α) →d cA+ dB ∼ N(0, (c2 + 1

2d
2)σ2),

where c and d are the partial derivatives of g, evaluated at the position (ξ, σ). Show how

this leads to construction of confidence intervals for the α parameter.

(c) Consider the probability p = Pr(Y ≥ y0) = 1−Φ((y0−µ)/σ), for some given threshold

y0, and the associated estimator p̂ = 1 − Φ((y0 − Ȳ )/σ̂). Finr the limit distribution of√
n(p̂−p), and use this to put up a confidence interval for p, with coverage level converging

to 0.90. Compare with the simpler estimator p∗ = n−1
∑n

i=1 I(Yi ≥ y0), the binomial

proportion, which bypasses the normal assumption.

(d) Then consider the parameter κ = ξ/σ, the normalised mean (so its value is unchanged

when one passes from say millimetres to metres). Find the limit distribution for κ̂ = Ȳ /σ̂,

and construct an approximate 90 percent confidence interval. [xx also try exact inference

for this parameter, and compare. xx]
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(e) Assume ξ is positive, so that the so-called coefficient of variation γ = σ/ξ has a natural

interpretation. With γ̂ = σ̂/ξ̂ the plug-in estimator, show that
√
n(γ̂ − γ) tends to a

normal with variance τ2 = 1
2γ

2(1+2γ2). Find also a variance stabilising transformation,

from γ to γ∗ = h(γ), with the property that
√
n(γ̂∗ − γ∗) →d N(0, 1): one such is

h(γ) = log γ − log(1 + (1 + 2γ2)1/2). Explain how confidence intervals can be set for γ

via this.

Ex. 2.46 Estimating mean and standard deviation outside normality. Let Y1, . . . , Yn be

i.i.d. from a distribution with finite fourth moment, and consider the usual mean Ȳn and

empirical standard deviation Sn. Under normality we have precise finite-sample results

regarding their distributions, see Ex. 1.45, but here we investigate behaviour outside

normality.

(a) Let as on previous occasions γ3 and γ4 be the skewness and kurtotis of the distribu-

tion. Use the delta method, with previous results from Ex. 2.41, to show that(√
n(Ȳn − ξ)√
n(σ̂n − σ)

)
→d N2(

(
0

0

)
, σ2

(
1, 1

2γ3
1
2γ3,

1
2 + 1

4γ4

)
).

Explain that this implies Pr(|Ȳn − ξ| ≤ 1.96 σ̂) → 0.95, even outside normality; the

normality-based standard recipes regarding inference for the mean parameter is hence

not muich hampered by that modelling assumption.

(b) The situation is different when it comes to inference for the standard deviation,

however. Show that
√
n(σ̂ − σ)/κ̂ →d N(0, 1), if κ̂ is a consistent estimator for κ =

( 12 + 1
4γ4)

1/2. Construct indeed such an estimator; see also Ex. 3.12. For an application

of this, with sample size up to a million, see Story vii.2.

Ex. 2.47 Approximate variances and the delta method. We have built a well-working

apparatus around the delta method and seen various applications. Statements reached

are in terms of precise limit distributions, though without going into the quality of the

resulting approximations. The present exercise goes into the details of variances and

covariances for functions of sample averages.

(a) Suppose X1, . . . , Xn are i.i.d. with mean zero, variance σ2, and finite skewness γ3 =

E(Xi/σ)
3 and kurtosis γ4 = E(Xi/σ)

4 − 3. With X̄n as usual being the average, show

then that

E X̄2
n = σ2/n,

E X̄3
n = (σ3/n2)γ3,

E X̄4
n = (σ4/n2)(3 + γ4/n),

Var X̄2
n = (σ4/n2)(2 + γ4/n).

(b) Let then Y1, . . . , Yn be i.i.d., with finite mean ξ, standard deviation σ, skewness γ3,

kurtosis γ4. With Ȳn the sample average, consider then the variable

Zn = a0 + a1(Ȳn − ξ) + 1
2a2(Ȳn − ξ)2.
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Show that EZn = a0 +
1
2a2σ

2/n, and that

VarZn = a21σ
2/n+ (1/n2){ 1

4a
2
2σ

4(2 + γ4/n) + a1a2σ
3γ3}.

(c) Consider any smooth function Zn = g(Ȳn). Since Ȳn is close to ξ with high probability

(see Ex. 2.11), it makes sense to carry out a Taylor expansion,

Zn = g(ξ) + g′(ξ)(Ȳ − ξ) + 1
2g

′′(ξ)(Ȳ − ξ)2 + δn,

where δn is a smaller-sized remainder term – you may prove that n3/2δn is bounded in

probability, provided g has three derivatives in a neighbourhood around ξ. Show from

the above that

VarZn = g′(ξ)2σ2/n+ (1/n2){ 1
4g

′′(ξ)2σ4(2 + γ4/n) + g′(ξ)g′′(ξ)σ3γ3}+ o(1/n2).

There is hence a clear leading O(1/n) term for the variance, with other terms being of

size O(1/n2). Explain how this relates to the basics of the delta method from Ex. 2.42.

(d) Suppose A is a random variable with mean a and finite variance, and that g(y) is

smooth in a neighbourhood around a. Use the Taylor approximation

g(y) = g(a) + g′(a)(y − a) + 1
2g

′′(a)(y − a)2 +O(|y − a|3),

valid for y close to a, to show that

E g(A)
.
= g(a) + 1

2g
′′(a)VarY, Var g(Y )

.
= g′(a)2 VarY,

and indicate the sizes of the error terms involved.

Ex. 2.48 The empirical correlation coefficient under binormality. For i.i.d. data pairs

(Xi, Yi), the classical empirical correlation coefficient is

Rn =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

{
∑n

i=1(Xi − X̄)2}1/2{
∑n

i=1(Yi − Ȳ )2}1/2
= n−1

n∑
i=1

Xi − X̄

σ̂1

Yi − Ȳ

σ̂2
, (2.11)

with σ̂2
1 and σ̂2

2 the empirical variances n−1
∑n

i=1(Xi−X̄)2 and n−1
∑n

i=1(Yi− Ȳ )2. Here

we find the the limit distribution of Rn under binormality.

(a) Assume first that the (Xi, Yi) pairs are from a zero-mean binormal with variances 1

and correlation ρ ∈ (−1, 1); see Ex. 1.40. Use results from Ex. 1.41, including Yi |Xi ∼
N(ρXi, 1 − ρ2), to derive expressions for EX2

i Y
2
i , EX

3
i Yi, EXiY

3
i . Use these to show

that

Σ = Var

 X2
i

Y 2
i

XiYi

 =

 2, 2ρ2, 2ρ

2ρ2, 2, 2ρ

2ρ, 2ρ, 1 + ρ2

 .

Use the CLT to argue thatAn

Bn

Cn

 =
√
n

 n−1
∑n

i=1X
2
i − 1

n−1
∑n

i=1 Y
2
i − 1

n−1
∑n

i=1XiYi − ρ

→d

AB
C

 ∼ N3(0,Σ).

With Rn,0 = Cn/(AnBn)
1/2, use the delta method to show that

√
n(Rn,0 − ρ) →d Z =

− 1
2ρA− 1

2ρB + C, and that in fact Z ∼ N(0, (1− ρ2)2).
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(b) Then generalise to the situation where the (Xi, Yi) pairs are i.i.d. from a zero-mean

binormal, with standard deviations σ1, σ2 and correlation ρ. Show that we still have√
n(Rn,0 − ρ) →d N(0, (1− ρ2)2).

(c) Then go one step further, to the full five-parameter binormal situation, with unknown

means ξ1, ξ2, standard deviations σ1, σ2, and correlation ρ. Argue first that we must have√
n(Rn,1 − ρ) →d N(0, (1 − ρ2)), where Rn,1 is as in (2.11) but using ξ1, ξ2 instead of

(X̄, Ȳ ). Then, finally, show what we really are after, that
√
n(Rn − ρ) must have the

same limit distribution.

(d) Explain that if h(ρ) is a smooth function, then
√
n{h(Rn) − h(ρ)} →d h′(ρ)(1 −variance

stabilising

transformation
ρ2)N(0, 1). Show that with the particular choice ζ = 1

2 log{(1+ ρ)/(1− ρ)} the variance

is being stabilised, and
√
n(ζ̂ − ζ) →d N(0, 1), where ζ̂ = 1

2 log{(1 + Rn)/(1 − Rn)}.
This is called Fisher’s zeta. Show that ζ̂±1.645/

√
n becomes an approximate 90 percent

confidence interval for ζ, and transform this to an approximate 90 percent confidence

interval for ρ.Fisher’s zeta

Ex. 2.49 The empirical correlation coefficient, general case. Here we use some of

the arguments of Ex. 2.48 to find the limit distribution of the empirical correlation Rn

of (2.11) also outside binormality. Assume (X1, Y1), . . . , (Xn, Yn) are i.i.d. pairs from a

distribution with means ξ1, ξ2, standard deviations σ1, σ2, and correlation ρ. Write aj,k =

EU j
i V

k
j for cross moments of the standardised Ui = (Xi − ξ1)/σ1 and Vi = (Yi − ξ2)/σ2,

where it is assumed that fourth order moments a4,0 and a0,4 are finite.

(a) Show that
√
n(Rn−Rn,0) →pr 0, where Rn,0 is as Rn, but using the real ξ1, ξ2 instead

of their estimators X̄, Ȳ . Show also that the distribution of Rn and Rn,0 must depend

on ρ but not on ξ1, ξ2, σ1, σ2. We may hence carry out our large-sample investigation

with the standardised (Ui, Vi) rather than the (Xi, Yi). Work withAn

Bn

Cn

 =

 √
n(n−1

∑n
i=1 U

2
i − 1)√

n(n−1
∑n

i=1 V
2
i − 1)√

n(n−1
∑n

i=1 UiVi − ρ)

 ,

and show that (An, Bn, Cn)
t →d (A,B,C)t ∼ N3(0,Σ), for the variance matrix Σ of

(U2
i , V

2
i , UiVi)

t. Spell out the elements of this matrix, using the aj,k. Check that this

agrees with the Σ of Ex. 2.48 under binormality.

(b) Then show that
√
n(Rn − ρ) →d Z = − 1

2ρA− 1
2ρB + C, and give an expression for

the limit distribution variance τ2. Explain how τ may be estimated from the data, and

how this leads to confidence intervals of the type Rn ± 1.96 τ̂ /
√
n for ρ.

(c) For a concrete illustration, consider the joint density f(x, y) = 1+a(x− 1
2 )(y−

1
2 ) for

(x, y) in the unit square. Find the allowed parameter range for a, and a formula for the

correlation coefficient ρ in terms of a. Then apply the above to find the limit distribution

of
√
n(Rn − ρ).

Ex. 2.50 The delta method outside root-n terrain. (xx to come. not always
√
n(Xn −

a) →d N(0, τ2) terrain. different limits, different speeds. xx)
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Ex. 2.51 Stretching the delta method. (xx to be filled in. with
√
n(Xn − a) →d V ,

we have Zn =
√
n{g(Xn) − g(a)} →d g

′(a)V for a fixed g(x). here we consider Zn =√
n{gn(Xn) − gn(a)}. with g′′n(a) = o(

√
n) we may still have the right approximation.

example: Zn =
√
n{exp(cnXn)− 1}. xx)

The strong law of large numbers

Ex. 2.52 The Strong Law of Large Numbers: the basics. (xx to be cleaned. xx) Suppose

X1, X2, . . . are i.i.d. from a distribution with finite E |Xi|. Then the mean ξ = EXi exists,

and we are aiming to prove the strong LLN of (2.3), that the event

A = {X̄n → ξ} = ∩ε>0 ∪n0≥1 ∩n≥n0{|X̄n| ≤ ε}

has probability equal to one hundred percent. We may for simplicity and without loss of

generality take ξ = 0 below.

(a) Show that A is the same as ∩N≥1∪n0≥1∩n≥n0
{|X̄n| ≤ 1/N}, and deduce in particular

from this that A is actually measurable – so it does make well-defined sense to work with

its probability.

(b) Show that if Pr(AN ) = 1 for all N , then Pr(∩N≥1AN ) = 1 – if you’re fully certain

about a countable number of events, then you’re also fully certain about all of them,

jointly. This is actually not true with a bigger index set: if X ∼ N(0, 1), then you’re 100

percent sure that Bx = {X is not x} takes place, for each single x, but from this does it

not follow that you should be sure about ∩all xBx. Explain why.

(c) Show that Pr(A) = 1 if and only if Pr(Bn0
) → 0, for each ε > 0, where Bn0

=

∪n≥n0
{|X̄n| ≥ ε}. In words: for a given ε, the probability should be very low that there

is any n ≥ n0 with |X̄n| ≥ ε.

(d) A simple bound is of course Pr(Bn0) ≤
∑

n≥n0
Pr{|X̄n| ≥ ε}, so it suffices to show,

if possible, under appropriate conditions, that
∑

n≥1 Pr{|X̄n| ≥ ε} is a convergent series.

With finite variance σ2, show that the classic simple Chebyshov bound, see Ex. 2.11,

does not solve any problem here.

(e) (xx calibrate better with Ex. 2.11. xx) Show, however, that if the fourth moment is

finite, then

Pr{|X̄n| ≥ ε} ≤ 1

ε4
E |X̄n|4 ≤ c

ε4
1

n2
,

for a suitable c. So under this condition, which is moderately hard, we’ve proven the

strong LLN.

(f) One may squeeze more out of the chain of arguments below, which we indicate here,

without full details. Assume E |Xi|r is finite, for some r > 2, like r = 2.02. Then one

may show, via arguments in von Bahr (1965), that the sequence E |
√
nX̄n|r is bounded.

This leads to the bound

Pr{|X̄n| ≥ ε} ≤ 1

(
√
nε)r

E |
√
nX̄n|r,
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and these form a convergent series. We have hence proven (modulo the von Bahr thing)

that the strong LLN holds for finite E |Xi|2+ε, an improvement over the finite E |Xi|4
condition. – To get further, trimming away on the conditions until we are at the Kol-

mogorovian position of only requiring finite mean, we need more technicalities; see the

following Ex. 2.53.

Ex. 2.53 The Strong Law of Large Numbers: nitty-gritty details. This exercise goes

through the required extra technical details, along with a few intermediate lemmas,

to secure a full proof of the full LLN theorem: as long as E |Xi| is finite, the infinite

sequence of sample means X̄n will with probability equal to a hundred percent converge

to ξ = EXi.

(a) We start with Kolmogorov’s inequality: Consider independent zero-mean variables

X1, . . . , Xn with variances σ2
1 , . . . , σ

2
n, and with partial sums Si = X1 + · · ·+Xi. Then

Pr{max
i≤n

|Si| ≥ ε} ≤ VarSn

ε2
=

1

ε2

n∑
i=1

σ2
i .

Note that this is a much stronger result than the special case of caring only about |Sn|,
with Pr{|Sn| ≥ ε} ≤ VarSn/ε

2, which is the Chebyshov inequality. To prove it, work

with the disjoint decomposition

Ai = {|S1| < ε, . . . , |Si−1| < ε, |Si| ≥ ε} and A = ∪n
i=1Ai = {max

i≤n
|Si| ≥ ε}.

Show that ES2
n ≥ ES2

nI(A) =
∑n

i=1 ES
2
nI(Ai), that

ES2
nI(Ai) = E (Si + Sn − Si)

2I(Ai) ≥ ε2Pr(Ai),

and that this leads to the inequality asked for.

(b) Consider a sequence of independentX1, X2, . . . with means zero and variances σ2
1 , σ

2
2 , . . ..

Show that if
∑∞

i=1 σ
2
i is convergent, then

∑∞
i=1Xi is convergent with probability 1. – It

suffices to show that the sequence of partial sums Sn = X1 + · · · + Xn is Cauchy with

probability 1. Show that this is the same as

lim
n→∞

Pr
[
∪i,j≥n{|Si − Sj | ≥ ε}

]
= 0 for each ε > 0.

Use the Kolmogorov inequality to show this.

(c) A quick example to illustrate this result is as follows. ConsiderX = X1/10+X2/100+

X3/1000+ · · · , a random number in the unit interval, with the Xi independent, and with

no further assumptions. Show that X exists with probability 1.

(d) Prove that if
∑∞

i=1 ai/i converges, then ān = (1/n)
∑n

i=1 ai → 0. To show this,

consider bn =
∑n

i=1 ai/i, so that bn → b for some b. Show an = n(bn − nn−1), valid also

for n = 1 if we set b0 = 0, and which leads to
∑n

i=1 ai = nbn − b0 − b1 − · · · − bn−1.

(e) From the above, deduce that if X1, X2, . . . are independent with means ξ1, ξ2, . . .

and variances σ2
1 , σ

2
2 , . . ., and

∑∞
i=1 σ

2
i /i

2 converges, then X̄n − ξ̄n →a.s. 0. Here ξ̄n =

(1/n)
∑n

i=1 ξi.



84 Large-sample theory

(f) Use the above to show that if X1, X2, . . . are independent with zero means, and all

variances are bounded, then indeed X̄n →a.s. 0. Note that this is a solid generalisation

of what we managed to show in (xx calibrate xx) – first, the distributions are allowed

to be different (not identical); second, we have landed at a.s. convergence with the mild

assumption of finite and bounded variances, whereas we there needed the harsher condi-

tions of finite fourth moments.

(g) We’re close to the Pole. For i.i.d. zero mean variables X1, X2, . . ., split them up with

the little trick

Xi = Yi + Zi, with Yi = XiI(|Xi| < i), Zi = XiI(|Xi| ≥ i).

We have X̄n = Ȳn+Z̄n, so it suffices to demonstrate that Ȳn →a.s. 0 and Z̄n →a.s. 0 (since

an intersection of two sure events is sure). Use the Borel–Cantelli lemma, in concert with

E |Xi| =
∫∞
0

Pr(|Xi| ≥ x) dx, to show that only finitely many Zi are non-zero. Then use

previous results to demonstrate Ȳn − ξ̄n →a.s.→ 0 and ξ̄n → 0, where ξ̄n is the average

of ξi = EYi.

(h) So we’ve managed to prove the Strong LLN; good. Attempt also to prove the

interesting converse that if E |Xi| = ∞, then the sequence of sample means is pretty

erratic indeed:

Pr{lim sup
n→∞

X̄n = ∞} = 1, Pr{lim inf
n→∞

X̄n = −∞} = 1.

Simulate a million realisations from the density f(x) = 1/x2, for x ≥ 1, in your nearest

computer, display the sequence of X̄n on your screen, and comment.

Ex. 2.54 Yes, we converge with probability 1. We’ve proven that the sequence of

empirical means converges almost surely to the population mean, under the sole condition

that this mean is finite. This half-automatically secures almost sure convergence of

various other natural quantities, almost without further efforts.

(a) SupposeX1, X2, . . . are i.i.d. with finite variance σ2. Show that the classical empirical

standard deviation σ̂ = {
∑n

i=1(Xi − X̄n)
2/(n − 1)}1/2 converges a.s. to σ. Note again

that nothing more is required than a finite second moment.

(b) Suppose the third moment is finite, such that the skewness γ3 = E {(X − ξ)/σ}3 is

finite. Show that γ̂3,n = (1/n)
∑n

i=1(Xi − X̄n)
3/σ̂3 is strongly consistent for γ3.

(c) Then suppose the fourth moment is finite, such that the kurtosis γ4 = E {(X −
ξ)/σ}4 − 3 is finite. Construct a strongly consistent estimator for this kurtosis.

(d) Assume that (X1, Y1), (X2, Y2), . . . is an i.i.d. sequence of random pairs, with finite

variances, and define the population correlation coefficient in the usual fashion, as ρ =

cov(X,Y )/(σ1σ2). Show that the usual empirical correlation coefficient

Rn =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

{
∑n

i=1(Xi − X̄n)2}1/2{
∑n

i=1(Yi − Ȳn)2}1/2

converges with probability one hundred percent to ρ.
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(e) Formulate and prove a suitable statement regarding almost sure convergence of

smooth functions of means.

(f) Let X1, X2, . . . be an i.i.d. sequence of nonnegative variables such that E logXi = ξ

is finite. Show that the harmonic means Hn = (X1 · · ·Xn)
1/n converge with probability

1 to exp(ξ).

Ex. 2.55 Glivenko–Cantelli theorem. For i.i.d. observations Y1, . . . , Yn, we form the

empirical c.d.f., as in Ex. 2.13, with Fn(t) = n−1
∑n

i=1 I(Yi ≤ t). We have seen that

since Fn(t) is just a binomial ratio, Fn(t) →a.s. F (t), for each t. It is a remarkable

fact that this convergence also takes place uniformly, with probability 1. This is the

Glivenko–Cantelli theorem: with Dn = maxt |Fn(t) − F (t)|, the max taken over all t in

the domain in question, we have Pr(Dn → 0) = 1. This means that regardless of any

strange or complicated aspects of the distribution F , with enough data one will be able

to learn these. See also Ex. 3.9 and 9.22 for more information, regarding the speed with

which Dn → 0.Glivenko–

Cantelli

(a) Choose t1 < · · · < tm, creating a finite number of cells [tj , tj+1), where we take

t0 = −∞ and tm+1 = ∞. With Am,j the event that Fn(tj) → F (tj), argue that

Pr(∩m
j=1Am,j) = 1.

(b) Consider any t in the cell [tj , tj+1). Writing Dn(t) = Fn(t)− F (t), use monotinicity

of Fn and F to show that

Dn(tj)− {F (tj+1)− F (tj)} ≤ Fn(t)− F (t) ≤ Dn(tj+1) + F (tj+1 − F (tj).

Deduce that

max
tj≤t<tj+1

|Dn(t)| ≤ Bm + Cm,

where Bm = max1≤j≤m |Dn(tj)| and Cm = max1≤j≤m{F (tj+1)− F (tj)}.

(c) Show that Pr(lim supDn ≤ Cm) = 1.

(d) For each ε > 0, show that a partition into cells can be arranged, with high m if

required, so that Cm ≤ ε. Conclude that Pr(Dn → 0) = 1.

(e) Choose some moderately complicated normal mixture, of the type f =
∑k

j=1 pjN(µj , σ
2
j );

see Ex. 1.61. Then simulate a high number n of data from this distribution, and read off

Dn = maxt |Fn(t) − F (t)|. Check out how high n needs to be to have Dn ≤ 0.01, say,

with high probability, in a few situations.

Stable and conditional convergence, and nonnormal limits

Ex. 2.56 Stable convergence. This exercise introduces the notion of stable convergence of

random variables, which is a form of convergence lying between convergence in probability

and convergence in distribution (to paraphrase Jacod and Mémin (1981), an early article

on the topic). On a probability space (Ω,F ,Pr), let (Xn)n≥1 be a sequence of random
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variables, and let G ⊂ F . The sequence Xn converges G-stably to the random variable

X, where X is defined on an extension (Ω× R,G ⊗ B(R),Pr′), if

E ξf(Xn) → E′ ξf(X), (2.12)

for every bounded G-measurable random variable ξ, and every bounded and continu-

ous function f . See Ex. A.27 for extensions of probability spaces. Here E′(·) denotes

the expectation with respect to Pr′. We write Xn →G-st. X to indicate this form of

convergence.

(a) Show that if Xn →G-st. X then Xn →d X.

(b) To see that the converse of (a) is not true, consider the sequence Xn = I(n odd)Y +

I(n even)Y ′, where Y and Y ′ are i.i.d. random variables with common distribution F .

Show that Xn →d F , but that Xn fails to converge G = σ(Y ) stably, for example. This

example is from Aldous and Eagleson (1978).

(c) Suppose that (Xn, Y ) →d (X,Y ) for every G-measurable Y . We’ll soon see that this

is equivalent to Xn →G-st. X. For now, assume that the limit X is also G-measurable,

and show that then Xn →p X. – This illustrates that to have G-stable convergence of Xn

to X without also having convergence in probability, X must be realised in a fashion that

does not render it G-measurable, hence the extension of the original probability space.

(d) Show that the following are equivalent:

(i) Xn →G-st. X;

(ii) (Xn, Y ) →d (X,Y ) for every G-measurable random vector Y ;

(iii) (Xn, Y ) →G-st. (X,Y ) for every G-measurable random vector Y ;

(iv) (Xn, Yn) →d (X,Y ) for every sequence (Yn)n≥1 of random variables and every

G-measurable Y such that Yn →p Y ;

(v) E IGf(Xn) → E′ IGf(X) for every G ∈ G and every bounded and continuous f ;

(vi) E {f(Xn) |G} → E′ {f(X) |G}, for every G ∈ G with Pr(G) > 0, and every

bounded and continuous f ;

(vii) E IG exp(itXn) → E′ IG exp(itX) for every G ∈ G.

To prove this, Ex. ???? and Ex. A.28(c) might be of help.

(e) [xx rewrite xx] Let Qn and Q be versions of the conditional distributions of Xn and X

given G, respectively, and let Qnf =
∫
R f(x)Qn(·,dx), with Qf similarly defined. Show

that Xn →G-st. X is equivalent to E ξQnf → E ξQf , for every ξ and f as above.

(f) [xx cramer slutsky for stable convergence here xx]

Ex. 2.57 Conditional convergence.[xx introtext here xx]

(a) Suppose that (Xn, Yn) →d (X,Y ). Show that we then also have marginal conver-

gence, that is Xn →d X and Yn →d Y .
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(b) Show that (Xn, Yn) →d (X,Y ) is equivalent to

E {f(Xn) |Yn ∈ B} → E {f(Xn) |Yn ∈ B},

for all f ∈ Cb(R) and all sets B ∈ B(R) such that Pr(Y ∈ B) > 0 and Pr(Yn ∈ B) > 0

for all n, and Pr(Y ∈ ∂B) = 0, i.e., B is a continuity set of the distribution of Y .

(c) Suppose (Xn, Yn) →d (X,Y ), a binormal zero-mean limit, say N2(0,Σ), with

Σ =

(
σ2
X , ρσXσY

ρσXσY , σ2
Y

)
.

Deduce from (b) that Xn | (|Yn| ≤ ε) →d X | (|Y | ≤ ε) for each ε > 0, i.e., that the

conditional distribution of Xn given |Yn| ≥ ε converges in distribution to that of X given

|Y | ≥ ε. Show that X | (|Y | ≤ ε) →d X | (Y = 0) ∼ N(0, (1− ρ2)σ2
X) as ε→ 0.

(d) Consider a distribution for Xi with mean zero and variance σ2, where we indeed

know that
√
nX̄n →d N(0, σ2). Suppose Xi also has an integrable characteristic function

φ(t), implying by Ex. A.35 the existence of a smooth density f for Xi and also a density

fn for
√
nX̄n. Show that

fn(z) = 1/(2π)

∫
exp(−itz)φ(t/

√
n)n dt→ σ−1ϕ(σ−1z),

i.e., that there is convergence not merely for the cumulatives, but for the densities too.

To do so, you may split the domain of integration in two parts |t| > ε
√
n and |t| ≤ ε

√
n,

for some ε > 0, and use Ex. A.37.

(e) Suppose next that Xi is discrete, without a continuous density; for a concrete ex-

ample, consider Xi = ±1 with equal probabilities, and for which φ(t) = cos t. Then

Zn =
√
nX̄n does not have a density, but we may add a little Gaussian noise, to form

Z∗
n =

√
nX̄n + ξn, with ξn ∼ N(0, ε2n). Show that Z∗

n has density

f∗n(z
∗) = 1/(2π)

∫
exp(−itz∗)φ(t/

√
n)n exp(− 1

2ε
2
nt

2) dt,

and that this again converges to the normal density σ−1ϕ(σ−1z∗) provided merely that

εn → 0.

(f) We may use the same trick also in the vector case. Specifically, with a p-dimensional

Xi having zero mean and covariance matrix Σ, show (i) that if Xi has an integrable

characteristic function, then the density for Zn =
√
nX̄n tends to the Np(0,Σ) density;

and (ii) that if Xi is discrete, without a density, then Z∗
n =

√
nX̄n + ξn, with some small

Gaussian added noise ξn ∼ Np(0, ε
2
nΣ) with εn → 0, has a density f∗n(z

∗) which tends to

the same Np(0,Σ) density.

(g) Suppose (Xn, Yn)
t →d (X,Y )t, a zero-mean binormal. If there is also density conver-

gence, with (Xn, Yn) having density fn(x, y) tending to the appropriate binormal density

f(x, y), show that Xn | (|Yn| ≤ δn) tends to X | (Y = 0), as long as δn → 0. Show

that the same limiting distribution statement holds also when (Xn, Yn) has a discrete

distribution, using the ‘adding small Gaussian noise to get densities’ trick.
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Ex. 2.58 Limiting normality of rank sums statistics. (xx to be edited and polished;

nils rant so far. we put it in if it looks smooth enough, and with a brief pointer to Story

v.5. point to Swensen (1983). xx) In a population of n individuals, followed on some

continuous scale, a subgroup of interest, of size m, has ranks X1, . . . , Xm. These form

a randomly selected subset of size m from {1, . . . , n}, with all such
(
n
m

)
subsets equally

likely. The rank sum Zn = X1 + · · ·+Xm is the Wilcoxon statistic.

(a) Explain that one may write Zn =
∑n

i=1 iJi, where the 0-1 variables Ji are such that

precisely m of them are 1, and with all
(
n
m

)
subsets of such 1s being equally likely. Find

E Ji, VarJi, cov(Ji, Jj) for j ̸= i. Writing p = m/n for the sample ratio, show using

either of the representations
∑m

i=1Xi or
∑n

i=1 iJi that

EZn = 1
2m(n+ 1)

.
= 1

2n
2p, VarZn = (1/12)(n+ 1)m(n−m)

.
= (1/12)n3p(1− p).

(b) We aim indeed at showing limiting normality of Zn here, with both n andm becoming

larger, with m/n→ p. Explain that this must mean

(Zn − 1
2n

2p)/n3/2 →d N(0, (1/12)p(1− p)).

We cannot use CLT or Lindeberg for studying Zn, since the Xi are dependent, as are the

Ji. Consider however a different parallel setup, involving independent Bernoulli variables

J∗
1 , . . . , J

∗
n with Pr(J∗

i = 1) = p = m/n. Explain that the distribution of Zn is the same

as the distribution of Z∗
n =

∑n
i=1 iJ

∗
i given

∑n
i=1 J

∗
i = m. Show now that(

An

Bn

)
=

(
(1/

√
n)
∑n

i=1(i/n)(J
∗
i − p)

(1/
√
n)
∑n

i=1(J
∗
i − p)

)
→d

(
A

B

)
∼ N2(

(
0

0

)
,

(
1/3, 1/2

1/2, 1

)
).

(c) Find the distribution of A | (B = b), and show in particular that A | (B = 0) ∼
N(0, 1/12). This gives a clear limiting normality statement for Z∗

n, conditional on∑n
i=1 J

∗
i = m, and nicely solves our Wilcoxon problem; show that it corresponds pre-

cisely to the (Zn− 1
2n

2p)/n3/2 limiting statement above. (xx some extra care needed. but

an easy and instructive way to show normality for Wilcoxon, and also for other related

variables. to illustrate, find limiting normality for X
1/2
1 + · · ·+X

1/2
m =

∑n
i=1 i

1/2Ji. xx)

(d) (xx if we manage: also a link via the uniform order statistic process, and to integrals

of salt-and-pepper processes, with Wn =
∫ 1

0
([ns]/n) dCn(s), with the dCn(s) being ds or

0 with probabilities p and 1− p, but conditional on the random region
∫ 1

0
dCn(s) being

p = m/n. if we’re lucky there is a limit expressible as integral or Brownian bridge, for

Ch9. nils will attempt to fix this and at least make the idea more precise. xx)

Ex. 2.59 Nonnormal limits. (xx polish this. point to process version, with more results

for hitting times, etc., in Ch. 9. xx) Normally limits are normal, but not always. Here

we shall indeed work with variables with mean zero and variance one, where the sample

averages have nonnormal limits. The basic construction is as follows. Let U1, U2, . . .

be i.i.d., with mean zero and variance one, and with m.g.f. M0(s) = E exp(sUi) finite

in a neighbourhood around zero; in particular, all moments for the Ui are finite. Let



CLTs for dependent random variables 89

independently of these J1, J2, . . . be independent Bernoulli variables with Pr(Ji = 1) =

1/i, Pr(Ji = 0) = 1− 1/i. Then form

Zn =
1√
n

n∑
i=1

Ji
√
i Ui =

n∑
i=1

Ji
√
i/nUi.

A picture to have in mind is that most of the terms will be zero, with non-zero contri-

butions becoming both more rare and more big as time proceeds.

(a) Show that there will with probability one be infinitely many Ji = 1, i.e. non-zero

terms in the Zn sum as n grows.

(b) Show that the terms Ji
√
iUi have mean zero and variance one; hence also the nor-

malised sample average Zn has mean zero and variance one. Find also an expression for

the kurtosis κn = EZ4
n − 3 of Zn, and show that κn → 1

2a4, where a4 = EU4
i . Compare

this to what we are ‘used to’ from the Lindeberg theorem.

(c) We already know that if Zn has a limit distribution, it can’t be normal. Working

with the m.g.f., show that

Mn(t) = E exp(tZn) =

n∏
i=1

[
1 +

1

i
{M0(t

√
i/n)− 1}

]
,

for all t around zero for which M0(t) is finite.

(d) Show that

n∏
i=1

[
1 +

1

i
{M0(t

√
i/n)− 1}

]
→ exp

{∫ 1

0

M0(t
√
x)− 1

x
dx
}
.

Work first with Special Case One, where we let Ui have the simple symmetric two-point

distribution Pr(Ui = 1) = Pr(Ui = −1) = 1
2 . Find the limiting kurtosis for Zn in this

case. Show that M0(s) =
1
2e

s+ 1
2e

−s = 1+(1/2!)s2+(1/4!)s4+ · · · , and use this to find

an infinite-sum expression for the limit of Mn(t). Have you now proved that Zn has a

limit distribution?

(e) Then work with Special Case Two, where the Ui have a double exponential distri-

bution, of the form f(u) = 1
2

√
2 exp(−

√
2|u|) on the real line (the

√
2 factor is there to

ensure variance one). Find the m.g.f. M0(s) for the Ui, and then the m.g.f. M(t) for the

limit distribution of Zn.

(f) For most cases, regarding the distribution for the Ui, it is hard to learn the explicit

distribution for Zn (even in cases where there might be a clear distribution for its limit).

For Special Case Two, however, find the explicit distribution for Zn, for any given n.

CLTs for dependent random variables

Ex. 2.60 A CLT for 1-dependent variables. (xx decide later if these few should be

pushed to Ch. 12. xx) Consider a stationary sequence Y1, Y2, . . ., with mean zero and
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variance one, being 1-dependent. Stationarity means (Y1, . . . , Yr) having the same dis-

tribution as (Yi+1, . . . , Yi+r), for any i and block lengths r, and 1-dependence means

that Yi, Yi+1 may be dependent, but Y1, . . . , Yi is independent of Yi+2, Yi+3, . . .. This

exercise reaches a CLT for
∑n

i=1 Yi, representing a genuine extension of the usual CLT

and Lindeberg theorems from independence.

(a) Writing ρ = corr(Yi, Yi+1), show that (1/k)Var(Y1+ · · ·+Yk) = 1+2(1−1/k)ρ which

then goes to 1 + 2ρ for increasing k.

(b) For a given block length k, split Y1 + · · ·+ Yn into [n/k] blocks, and write block j of

these as Uj + Vj , with Uj as sum of k − 1 consecutive observations and Vj the last one

of that block. Write then

Zn = (1/
√
n)

n∑
i=1

Yi = (1/
√
n)
([n/k]∑

j=1

Uj +

[n/k]∑
j=1

Vj + En

)
,

with En any extra left after the k[n/k] variables captured in these first [n/k] blocks.

(c) Explain why U1, U2, . . . are independent, so that the usual CLT applies to these.

Show that (1/
√
n)
∑[n/k]

j=1 Uj →d N(0, τ2k ), with τ
2
k = (1/k)Var (Y1 + · · ·+ Yk−1).

(d) Then use Ex. 2.24 to prove that (1/
√
n)
∑n

i=1 Yi →d N(0, 1 + 2ρ), i.e. a CLT for

1-dependent variables.

(e) Assume X1, X2, . . . are i.i.d. with mean zero and variance one. Consider Zn =

(1/
√
n)(X1X2 +X2X3 + · · ·+Xn−1Xn). Show that Zn →d N(0, 1). Show also that

Z ′
n = (1/

√
n)

n−1∑
i=1

(Xi − X̄n)(Xi+1 − X̄n)

has the same limit distribution, where X̄n as usual is the sample mean.

Ex. 2.61 A CLT for m-dependent variables. In natural generalisation of Ex. 2.60,

consider a stationary m-dependent sequence Y1, Y2, . . ., with mean zero and variance σ2.

There is accordingly potential dependence among Y1, . . . , Ym, but for any i, (Y1, . . . , Yi)

is independent of (Yi+m+1, . . . , Yn).

(a) Writing cov(Yi, Yj) = σ2ρ(|j − i|), with the autocorrelation function ρ(·), show first

that in general terms,

(1/n)Var
( n∑
i=1

Yi

)
= σ2

{
1 + 2

n∑
j=1

(1− j/n)ρ(j)
}
.

Then show that for the case of m-dependence, for any k ≥ m, we have (1/k)Var(Y1 +

· · ·+ Yk) → σ2{1 + 2
∑m

j=1 ρ(j)},

(b) Extend arguments and techniques from Ex. 2.60 to show that (1/
√
n)
∑n

i=1 Yi tends

to a zero-mean normal with variance σ2{1 + 2ρ(1) + · · ·+ 2ρ(m)}.

(c) (xx a bit on how the acf works for an i.i.d. sequence:
√
nρ̂(j) →d N(0, 1), for each j.

xx)
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[xx new title xx]

Ex. 2.62 Local asymptotics. The CLT and Lindeberg machineries yield normal limits

and hence approximations in situations where independent observations come from given

models. It is sometimes useful to extend such results to situations where observations

stem from distributions close to, but not equal to, the postulated start models. The

standard
√
n speed of convergence for the CLT and relatives leads naturally to the notion

of O(1/
√
n) neighbourhoods. If there is limiting zero-mean normality of variables like√

n(θ̂− θ0), under a relevant null model at θ0, then such variables typically have limiting

non-zero-mean normal limits at such O(1/
√
n) alternatives.

(a) A simple setup illustrating such ideas is the following. Suppose X1, . . . , Xn are

i.i.d. from a distribution with mean ξ + δ/
√
n and variance σ2

n = σ2 + d/n. Consider

then Zn =
√
n(X̄n − ξ). Use the Lindeberg theorem, or a triangular version of the CLT,

to demonstrate that Zn →d N(δ, σ2).

(b) (xx for Ch. 5, an exercise with
√
n(θ̂ − θ0) →d N(bδ, J−1), when data stem from

f(y, θ0) + δ/
√
nh(y). natural special case: f(y, θ0, γ0δ/

√
n). xx)

(c) xx

Ex. 2.63 Approximate normality when combining information sources. (xx this is a nils

rant, so far. it needs intro sentences. the point is partly that yes, Lindeberg gives us

limiting normality of sums, but we also need consistent variance estimators. xx) To illus-

trate the general themes, in a situation exhibiting these general components, consider the

following setup. There are Poisson parameters θ1, . . . , θk, with associated independent

Poisson observations yj,, . . . , yj,mj
for θj , leading to θ̂j = ȳj = (1/mj)

∑mj

ℓ=1 yi,ℓ. The

object is to make inference for the linear combination ϕ = atθ =
∑k

j=1 ajθj , for which

we use the estimator ϕ̂ = atθ̂ =
∑k

j=1 aj θ̂j , with variance

B2
k = Var ϕ̂ =

k∑
j=1

a2jθj/mj .

(a) For Y ∼ Pois(θ), show that E (Y −θ)3 = θ. . . , and that this implies that its skewness

is 1/θ1/2. Show also that with Y1, . . . , Ym i.i.d. from this distribution, we have E (Ȳ −
θ)3 = θ/m, with skew(Ȳ ) = 1/(mθ)1/2. Thus the skewness tends to zero, indicating

limiting normality, as long as with θ, or m, or both, grow.

(b) Show furthermore that

skew(ϕ̂) = E
( ϕ̂− ϕ

Bk

)3
=

∑k
j=1 a

3
jθj/mj

(
∑k

j=1 a
2
jθj/mj)3/2

.

(xx then some Lindeberg things here, understanding when this tends to zero, leading to

Zk,0 = (ϕ̂− ϕ)/Bk →d N(0, 1). play a bit with aj ,mj . xx)

(c) (xx then wish to find a case where variance is not well enough estimated. xx) We

estimate the variance using B̂2
k =

∑k
j=1 a

2
j θ̂j/mj . To make inference for ϕ we need not
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merely the result of (b), but also relative consistency of the variance estimate. Show that

Vk = B̂2
k/B

2
k has mean 1 and variance

VarVk =

∑k
j=1 a

4
jθj/m

2
j

(
∑k

j=1 a
2
jθj/mj)2

.

(xx rigging the game so that Zk,0 →d N(0, 1), but not Zk. As a special case to consider,

take a common mj = m0 for all sample sizes, aj = j, and assume θj = 1/j. What

happens to Bk, B̂k, Vk, and the natural ratio Zk = (ϕ̂− ϕ)/B̂k? xx)

(d) (xx then find the typical behaviour of Vk, to ensure also Zn = (ϕ̂−ϕ)/B̂k →d N(0, 1).

make connections to chapter 4 stuff on deviance and wilks. the Wilks thing is close to

Z2
n. xx)

Ex. 2.64 Limiting normality of the sample variance matrix. (xx can be better placed,

inside Ch 3. results are used for Ex. ??. xx) Consider i.i.d. vectors Y1, . . . , Yn from the

multinormal Np(ξ,Σ), first with known mean vector ξ, which we for convenience then

set to zero. The estimated variance matrix is Σ̂ = (1/n)
∑n

i=1 YiY
t
i .

(a) Write σj,k for the elements of the p × p matrix Σ, and σ2
j for σj,j , the variance of

component j of Yi. Show that its estimator is σ̂2
j = (1/n)

∑n
i=1 Y

2
i,j , and that it has the

distribution of σ2
jχ

2
n/n. Show also that

√
n(σ̂j,j − σj,j) → Mj,j , with this limit having

the N(0, 2σ4
j ) distribution.

(b) Using first the one-dimensional CLT, show that
√
n(σ̂j,k − σj,k) has a normal limit

Mj,k, and find its variance.

(c) Then show that there is convergence in distribution of the full matrix, say
√
n(Σ̂ −

Σ) →d M , with M = (Mi,j)i,j=1,...,p multinormal with zero means, and that

cov(Mi,j ,Mk,l) = σi,kσj,l + σi,lσk,j .

(d) Assume Σ has full rank p. Show that limiting normality for Σ̂ implies limiting

normality for Σ̂−1, and that in fact
√
n(Σ̂−1 − Σ−1) →d M

∗ = −Σ−1MΣ−1. Writing

σj,k for the elements of Σ−1, show that cov(M∗
i,j ,M

∗
k,l) = σi,kσj,l + σi,lσj,k.

(e) In case of an unknown mean vector, one uses the sample variance matrix Σ̃ = (n −
1)−1

∑n
i=1(Yi − Ȳ )(Yi − Ȳ )t. Show that

√
n(Σ̃ − Σ̂) →pr 0, where Σ̂ = n−1

∑n
i=1(Yi −

ξ)(Yi − ξ)t uses the ξ. Deduce that
√
n(Σ̃ − Σ) →d M and

√
n(Σ̃−1 − Σ−1) →d M

∗ =

−Σ−1MΣ−1, i.e. with the same limits as above.

(f) (xx something to round if off. perhaps dimension 2. mention the Wishart distri-

bution, but here we derive limits without knowing or using that. also, not lost at sea

outside multinormality, but the covariance structure for the limitM becomes much more

complicated. xx)

Ex. 2.65 Summing geometrically many terms. Suppose Y1, Y2, . . . are i.i.d. with mean

zero, variance σ2, and m.g.f. M0(t). With Pr(N = n) = (1 − p)n−1p for n ≥ 1, i.e. a

geometric distribution, consider Zp = p1/2(Y1+ · · ·+YN ), with the Yi being independent

of N .
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(a) Show first that the generating function for N is E sN = ps/{1 − (1 − p)s} for |s| <
1/(1−p); see Ex. 1.35. Show that Zp has variance σ2, and that its m.g.f. may be written

Kp(t) = E exp(tZp) = pM0(p
1/2t)/{1− (1− p)M0(p

1/2t)}.

(b) Then use M0(t) = 1 + 1
2σ

2t2 + o(|t|2) to demonstrate that as p→ 0, with increasing

number of terms EN = 1/p, we have Kp(t) → 1/(1− 1
2σ

2t2) for |t| <
√
2/σ. This shows

that Zp →d Lσ, the Laplace distribution with standard deviation σ, see Ex. 1.32.

(c) For the particular case of a sum of randomly many normal terms, let the Yi be

i.i.d. standard normal. Show what Zp |N ∼ N(0, pN), and that pN →d Expo(1) as

p→ 0. Explain how this matches Ex. 1.32.(c).

(d) (xx one or two further illustrations, with Laplace limit of p1/2(Y1 + · · ·+ YN ). with

Yi = Qi − 1, Poisson, we learn p1/2(VN −N) →d L, where VN ∼ Pois(N). similarly with

p1/2(WN −N), where WN |N ∼ χ2
N , randomly many degrees of freedom. xx)

(e) (xx something to simulate, to illustrate the cusp behaviour at the centre. with the

Yi having mean ξ and variance 1, we have

p1/2(Y1 − ξ + · · ·+ YN − ξ) = p1/2N(Ȳ − ξ) = (pN)1/2N1/2(Ȳ − ξ) →d L1.

this gives different inference for ξ, and different predictions for Ȳ , than what we’re used to

from normal terrain. we’re also in scale mixtures of normal terrain, with random variance

tending to a unit exponential. i’ll look for variations. i do like the pN →d Expo(1), since

it gives the cool cusp in the limit for Zp, but other variations for pN →d V are ok too.

xx)

(f) (xx just ranting away a bit until things settle. xx) More generally, with Y1, Y2, . . .

being i.i.d. with zero mean and unit variance, consider

Zp = p1/2(Y1 + · · ·+ YN ) = (pN)1/2N1/2ȲN ,

with N having a distribution such that pN →d V , say, as p → 0. From the CLT,

N1/2ȲN →d N(0, 1), so this amounts to a situation with a normal limit, but a random

variance, as in X |V ∼ N(0, V ) but V random. Here E exp(tX) = E exp( 12 t
2V ) =

M0(
1
2 t

2), where M0(u) = E exp(uV ) is the mgf for V . Also, X has density

f̄(x) =

∫
ϕ(x/v1/2)(1/v1/2) dH(v),

with H the distribution of V . – The special case above amounts to N ∼ geom(1/p),

where pN tends to the unit exponential, and where X gets the Laplace distribution. For

another case, consider N |λ ∼ Pois(λ/p), and with λ having its own distribution with

mean and variance λ0 and τ20 , say. Show that E pN = λ0 and that Var pN → τ20 . Also

consider the special case for this setup where λ ∼ Gam(a, b). From

E {exp(−spN) |λ} = exp[−(λ/p){1− exp(−sp)}]
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deduce

E exp(−spN) =
1

[1 + (1/b)(1/p){1− exp(−sp)}]a
→ 1

(1 + s/b)a
,

and that pN →d Va,b, another Gam(a, b). With the construction above, the normal scale

mixture variable X has mgf 1/(1− 1
2 t

2/b)a, and density

f̄(x) =

∫
ϕ(x/v1/2)(1/v1/2)

ba

Γ(a)
va−1 exp(−bv) dv.

This is a Laplace, for a = 1. (xx but different, and interesting, for other a. round this

off. xx)

(g) (xx i think we can use these tools to form a full Laplace process, for BNP use or

otherwise. we should tune in to a Zp(t) = p1/2(Y1 + · · ·+YN(t)), with a clever N(t). will

look at N(t) being a negative binomial process with mean t/p. nils thinks this works: (i)

λ ∼ Gam(1, b), with mean λ0 = 1/n. (ii) N |λ ∼ Pois(λ/p). write down E (pN |λ) and
Var (pN |λ), then unconditional mean and variance for pN . (iii) find limit in distribution

of pN . (iv) study Zp = p1/2
∑N

i=1 Yi, close to (pN)1/2 times a normal, etc. (v) make it

into a full Laplace process, by having λt ∼ Gam(1, bt). xx)

Ex. 2.66 Maximum sample value of exponentials and the Gumbel distribution. (xx nils

reorganises some of these exercises which need tidying up. i now start with the gumbel

and the maximum of exponentials, before taking up other gumbel related matters. xx)

We define the Gumbel distribution on the real line by its cumulative distribution function the Gumbel

distributionG0(u) = exp{− exp(−u)}.

(a) Show that G0 is indeed a cumulative distribution function, that its density is g0(u) =

exp{−u− exp(−u)}, and that its Laplace transform is L0(s) = E exp(−sU) = Γ(1 + s),

in terms of the gamma function.

(b) Use properties of the gamma function to show that the mean and variance of the

Gumbel distribution is γe and π2/6, where γe = 0.5772... is the Euler constant. The the Euler–

Mascheroni

constant
latter has several equivalent definitions, among which is that Hn − log n → γe, where

Hn = 1 + 1/2 + · · ·+ 1/n is the partial sum of the divergent harmonic series.

(c) With U having the Gumbel distribution, show also that its mode is 0 and that its

median is − log(log 2) = 0.367. Find an expression for the q-quantile G−1
0 (q). Show that

Pr(−1.097 ≤ U ≤ 2.970) = 0.90.

(d) The Gumbel distribution turns up in various contexts concerning extreme values.

The simplest such case is as follows: let X1, . . . , Xn be i.i.d. from the unit exponential

model, withMn = maxi≤nXi their maximum. Show thatMn− log n→d U , the Gumbel

distribution.

(e) We may learn more about the distribution of Mn via first investigating the spacings.

With X(1) < · · · < X(n) being the order statistics, let D1 = X(1), D2 = X(2) − X(1),

up to Dn = X(n) − X(n−1). We have seen via Ex. 1.12 and 1.13 that the spacings are
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independent (for this special case of the exponential), with Di ∼ Expo(n− i+ 1). Show

that this leads to the representation

X(n) = D1 + · · ·+Dn = V1/1 + V2/2 + · · ·+ Vn/n,

with V1, . . . , Vn being i.i.d. and unit exponential.

(f) Show from this that Mn has mean Hn
.
= log n+ γe and variance

∑n
i=1 1/i

2, tending

to π2/6. This is agreement with the Gumbel limit for Mn − log n.

(g) Show that Mn −Hn →d U − γe, the zero-mean version of the Gumbel. Deduce from

this that

lim
n→∞

E exp{−s(Mn −Hn)} =

∞∏
i=1

exp(s/i)

1 + s/i
= Γ(1 + s) exp(γes).

This infinite-product form of the gamma function is actually equivalent to a famous

formula by Weierstraß. Show also that

∞∑
i=1

{s/i− log(1 + s/i)} = γes+ log Γ(1 + s) =

∞∑
j=2

(−1)j
ζ(j)

j
sj ,

valid for |s| < 1, where ζ(j) = 1 + 1/2j + 1/3j + · · · is Riemann’s zeta function, at j.

(xx two more sentences. here we derive these deep mathematical facts from a simple

convergence in distribution result; could also go the other way, if we start with gamma

function knowledge. xx)

(h) Yet another fruitful perspective on what we’ve learned above is in terms of an infinite

sum of smaller and smaller exponentials. Consider independent exponentialsW1,W2, . . .,

where Wi ∼ Expo(i), i.e. with mean 1/i. Show that W =
∑∞

i=1(Wi − 1/i) is finite, with

probability one, and that its distribution is that of U − γe, the zero-mean Gumbel.

Ex. 2.67 Weibull and Gamma maxima. The basic result of Ex. 2.66, concerning the

maximum of a sample of exponentials, leads to limit distribution results also for maxima

from other distributions.

(a) Suppose that X1, . . . , Xn are i.i.d. from the Weibull distribution, with cumulative

function F (x) = 1 − exp{−(x/a)b}, for certain parameters (a, b). With Mm the sample

maximum, show that (Mn/a)
b − log n tends to the Gumbel distribution.

(b) In two minutes, simulate n = 1000 values from the Weibull with (a, b) = (1, 12 ).

Guess in advance how large Mn will be, using the representation Mn = a(log n+Un)
1/b,

where Un tends to the Gumbel.

(c) Similarly consider the Gamma distribution with parameters (a, b) = (2, 1), where the

cumulative can be expressed as F (x) = 1 − exp(−x)(1 + x), see Ex. 1.9. With Mn the

maximum of a sample of size n from this distribution, show thatMn− log(1+Mn)− log n

tends to the Gumbel distribution. What is the approximate median for the Mn?
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(d) More generally, suppose F (x) = 1− exp{−A(x)}, with A(x) the cumulative hazard

rate, and let again Mn be the maximum value from a sample of size n. Show that

A(Mn)− log n tends to the Gumbel.

Ex. 2.68 Maximum of independent geometric variables. Let T have the geometric

waiting time distribution with parameter p, i.e. with point probabilities (1 − p)t−1p for

t = 1, 2, . . .. We write T ∼ geom(p) to indicate this distribution; see Ex. 1.24.

(a) Show that V = pT has mean 1 and variance 1 − p. Show also that if p → 0, then

V = pT tends to the unit exponential in distribution. Give an approximate formula for

the median of a geometric distribution with small p.

(b) Now suppose V1, . . . , Vn are independent geometric waiting times with parameter

1/n, hence with mean value n. With Zn = max(V1, . . . , Vn) the time until all waiting

times have been completed, we then have Zn/n = max(V1/n, . . . , Vn/n), which is close

in distribution to max(E1, . . . , En), with these Ei being independent unit exponentials.

By results of Ex. 2.66 we should there expect Zn/n − log n →d U , the Gumbel. Show

that indeed this holds. (xx needs some technicalities and a hint, see nils diehard. xx)

(c) (xx one more thing here. can we make something useful out of this, with mgf for

Zn/n. not easy. xx) we do have

Pr(Zn/n ≤ v) = Pr(Vi ≤ nv)n = [1− (1− 1/n)nv]n.

Ex. 2.69 Collecting cards: how long time? (xx nils will reorganise this a bit, after the

abels taarn things. plan is basic things T1 + · · · + Tn here, Gumbel limit, a bit more in

next exercise, this being Ch4. then likelihood things in Story iv.5 about estimating n

from Vr = T1+· · ·+Tr, time to having seen r different cards. then story about estimating

n from observed Vr. xx) Consider a deck of n cards, with X1, X2, . . . independent draws

from these, i.e. uniform on {1, . . . , n}. How many such random draws are necessary,

before you have seen all n cards? – There are several reformulations of this card collecting

problem, and with other metaphors. You may think of a fair die, with n faces, and ask

how many times you need to roll it until you’ve seen all faces.

(a) Show that the time needed, until we have seen all n cards, can be represented as

Vn = T1 + · · · + Tn, where Ti is geometric with parameter pi = (n − i + 1)/n. Hence

ETi = n/(n− i+1), and the card finding process is easy in the beginning, then steadily

harder. We may also re-order the Ti to Vn = T ′
1+ · · ·+T ′

n, where T
′
i ∼ geom(i/n), which

for some purposes is an easier representation.

(b) Let (N1, . . . , Nn) be the number of times cards 1, . . . , n have been seen, in the course

of z independent random draws from the deck. Show that this is a multiomial with

count z and probabilities (1/n, . . . , 1/n); in particular, Ni ∼ binom(z, 1/n). Show that

the correlation between Ni and Nj is −1/(n− 1).

(c) Show also that another representation of Vn is as max(W1, . . . ,Wn), where Wi is

the first time Ni ≥ 1. Show that Wi ∼ geom(1/n), with mean n. These are however

dependent, so the Gumbel limit result of Ex. 2.68 does not immediately apply. Show
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that the correlation betweenWi andWj is small, however, namely − 1
2/(n−1), indicating

that (Vn−n log n)/n should converge to the Gumbel, even with these waiting times being

dependent. (xx polish wording here. xx)

(d) (xx nils will coordinate and calibrate this with what is placed in Ex. 1.24. xx) For

Ti, with distribution (1− pi)
t−1pi for t = 1, 2, 3, . . ., show that

ETi =
1

pi
, VarTi =

1− pi
p2i

, E (Ti − 1/pi)
3 =

(1− pi)(2− pi)

p3i
,

so the skewness of Ti is E (Ti − 1/pi)
3/σ3

i = (2− pi)/(1− pi)
1/2.

(e) Show that

EVn = n(1 + 1/2 + · · ·+ 1/n) = nHn
.
= n(γ + log n),

using Ex. 2.66. Show also that

VarVn =

n∑
i=1

(n2
i2

− n

i

)
.
= n2(π2/6)− n(γ + log n).

(f) (xx limit of skewness. not zero. xx) Now consider

Un =
Vn − EVn
(Var vn)1/2

, Un,0 =
Vn − n(γ + log n)

nπ/
√
6

,

and show that Un − Un,0 →pr 0. Show further that

EU3
n =

∑n
i=1 E (Ti − pi)

3

(VarZn)3/2
.
=

2n3
∑n

i=1(1/i
3) +O(n2)

n3π3/63/2
→ 2 · 1.2021

π3/63/2
= 1.1396.

(g) So we’re outside limiting normality; show indeed that the Lindeberg condition cannot

hold here. (xx limit distribution. other things. xx)

(h) (xx check this. xx) With U ′
n = (Vn − n log n)/n = T̄n − log n, show that

E exp(−sU ′
n) = exp(s log n)

n∏
i=1

E exp{−(s/n)Ti}

= ns
n∏

i=1

(i/n) exp(−s/n)
1− (1− i/n) exp(−s/n)

= ns
(n!/nn) exp(−s)∏n

i=1{1− (i/n) exp(−s/n)}
.

Then show that U ′
n →d U . (xx hmm, have not landed this properly yet, but can be cool

story. and if we prove U ′
n →d U in some other way, we are automatically deriving the

side consequence

An(s) =

n∏
i=1

{1− (i/n) exp(−s/n)} .
=
ns exp(−n− s)(2πn)1/2

Γ(1 + s)
,
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or
n∏

i=1

{exp(s/n)− (i/n)} .
=
ns exp(−n)(2πn)1/2

Γ(1 + s)
,

which for s = 0 is Stirling. need a bit more work. xx)

(i) It is also useful to find the distribution of Gn(v) = Pr(Vn ≤ v) explicitly. Argue that

Vn ≤ v is equivalent to A1 ∩ · · · ∩ An, where Ai is the event that i is seen in the course

of the first z attempts. With Bi = Ac
i its complement, that i has not been seen during

these first v attempts. Use this to deduce that 1−Gn(v) can be written

Pr(B1 ∪ · · · ∪Bn) =

(
n

1

)
Pr(B1)−

(
n

2

)
Pr(B1 ∩B2) +

(
n

3

)
Pr(B1 ∩B2 ∩B3)− . . .

=

n∑
j=1

(−1)j−1

(
n

j

)
(1− j/n)v,

for v ≥ n. Use algebra to also derive

gn(v) = Pr(Vn = v) =

n∑
j=1

(−1)j−1

(
n− 1

j − 1

)
(1− j/n)v−1 for v ≥ n.

Use xn−1 + xn + · · · = xn−1/(1− x) for |x| < 1 to derive the identity

n−1∑
j=1

(−1)j−1

(
n

j

)
(1− j/n)n−1 = 1.

(j) Use the case (T1 = 1, . . . , Tn = 1) to derive

n∏
i=1

(i/n) =
n!

nn
=

n−1∑
j=1

(−1)j−1

(
n− 1

j − 1

)
(1− j/n)n−1,

and argue that these expressions are close to exp(−n)(2πn)1/2, by the Stirling approx-

imation. Show via arrangements of this formula that
∑n

j=0(−1)j
(
n
j

)
jn = n!. (xx

−4 · 1 + 6 · 16− 4 · 81 + 256 = 24, etc. xx)

(k) (xx pointer here to a different story, where we estimate n based on how long time it

took us to reach level r, i.e. Wr = T1 + · · · + Tr. it might be a CD story with Cr(n) =

Prn(Wr < Wr,obs) +
1
2Prn(Wr =Wr,obs). how many Italians in my neighbourhood? xx)

Ex. 2.70 The 2nd largest, 3rd largest, etc., for exponentials. Let as in Ex. 2.66

X1, . . . , Xn be i.i.d. from the unit exponential model. For the largest observation we

saw there that X(n) − log n → U , the Gumbel distribution with c.d.f. exp{− exp(−u)}.
Here we shall work with the 2nd largest, the 3rd largest, etc.

(a) For a positive, consider Wa, with density

ga(w) = Γ(a)−1 exp{−aw − exp(−w)} (2.13)

on the real line. Show that Va = exp(−Wa) has the gamma distribution with parameters

(a, 1), and that the Laplace transform becomes E exp(−tWa) = Γ(a + t)/Γ(a). The

Gumbel distribution is the case of a = 1, so we may consider (2.13) a generalised Gumbel.
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Figure 2.2: For n = 25, the dashed curves are limit-approximation densities (left panel)

and cumulatives (right panel) for order statistics 23, 24, 25 for i.i.d. exponentials, com-

puted via the limits log n+Wi for i = 1, 2, 3. The full curves are the real densities and

cumulatives, based on having simulated 104 outcomes for each.

(b) Deduce that Wa = log(1/Va) has mean −ψ(a) and variance ψ′(a), with ψ(a) =

∂ log Γ(a)/∂a the digamma function. Show that the c.d.f.s for g1, g2, g3 are

G1(w) = exp{−w − exp(−w)},
G2(w) = exp{−w − exp(−w)}{1 + exp(−w)},
G3(w) = exp{−w − exp(−w)}{1 + exp(−w) + 1

2 exp(−2w)}.

(c) With order statistics X(1) < · · · < X(n), consider Wn,i = X(n−i+1) − log n, for given

i; the case i = 1 is Wn,1 = X(n) − log n already considered in Ex. 2.66. Show that

Pr(X(n−i+1) − log n ≤ w) = Pr(U(n−i+1) ≤ 1− (1/n) exp(−w)),

in terms of the order statistics for the uniform. Use the Beta connection of Ex. 3.17 to

deduce that the density of Wn,i may be written

gn,i(w) = be(1− (1/n) exp(−w), n− i+ 1, i)(1/n) exp(−w)

in terms of the Beta density with parameters (n− i+ 1, i). Take the limit to prove that

Wn,i →d Wi.

(d) Construct a version of Figure 2.2, showing that the approximations based on the limit

distributions work well already for n = 25. The dashed curves are using the limits, with

x(n−i+1) = log n+Wi, wheras the dashed curves are the real densities and cumulatives,

obtained by 104 simulations from X(n−2), X(n−1), X(n). (xx these are kernel estimates so

need a pointer to Ch. 13. can we make a story out of this, insurance company cares for

these most extreme outcomes. xx)
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Ex. 2.71 How many records are set? Consider i.i.d. observations X1, X2, . . . from some

continuous distribution on the line. Define Rn = 1 if Xn is bigger than all previous

datapoints, i.e. a new record has been set.

(a) Explain first that the number of records set, in the course of the first n occasions, is

Zn =
∑n

i=1Ri. Show that Pr(Rn = 1) = 1/n, so that EZn = Hn = 1+1/2+· · ·+1/n, the

partial sum of the harmonic series. As we have noted earlier, Hn−log n→ γe = 0.5772...,

the Euler constant, so the number of records set is approximately log n+ γe.

(b) Show that R1, . . . , Rn are independent, and deduce from this that VarZn = Hn −∑n
i=1 1/i

2 .
= log n+γe−π2/6. Use the Lindeberg theorem to show that (Zn−Hn)/H

1/2
n →d

N(0, 1). Show also that (Zn − log n)/(log n)1/2 →d N(0, 1), which gives a simpler but

somewhat more crude approximation to Zn probabilities. Use these normal limits to give

a prediction band, with Pr(an ≤ Zn ≤ bn) → 0.95.

(c) Now consider An = Z2n − Zn, the number of records set during n, n + 1, . . . , 2n.

Show that An tends to the Poisson with mean log 2. Generalise.

Ex. 2.72 When the 00 box is hidden. Consider a 2 × 2 table setup with counts

N0,0, N0,1, N1,0, N1,1, corresponding to Ni,j counting the cases of (X = i, Y = j), for

i, j = 0, 1, for two factors X and Y . We take the four counts to be a multinomial vector

with probabilities p0,0, p0,1, p1,0, p1,1. Assume now that the 00 box is hidden, hence also

the total number N = N0,0+N0,1+N1,0+N1,1; one has observed counts N0,1, N1,0, N1,1,

but not the N0,0 in question. How can one estimate the hidden N0,0, and then in its turn

N? Such questions and estimation methods go back to Petersen (1896), who needed to

estimate fish populations in the 1890ies. Versions of methods methods developed below

is being used in Story iii.13 to estimate the number of killed persons in Srebrenica 1995.

See also Ex. ?? for generalisations.

(a) Assume in this exercise that factors X and Y are independent, with Pr(X = 1) =

p = p1,· and Pr(Y = 1) = q = p·,1; we use ‘·’ notation to indicate that the index in

question is being summed over. Show that

p0,0 = (1− p)(1− q), p0,1 = (1− p)q, p1,0 = p(1− q), p1,1 = pq.

(b) Argue that N1,·N1,·/N
2 and N1,1/N are both valid estimates of p1,1. Discuss condi-

tions under which N∗ = N1,·N1,·/N1,1 is a reasonable estimator of N .

(c) The N is unknown, but we may still study the usual ratios p̂i,j = Ni,j/N . Show that

there is joint convergence in distribution, say N1/2(p̂i,j − pi,j) →d Ai,j , as N increases,

with the Ai,j forming a four-dimensional mean zero normal. Give its variance matrix.

Under independence, show that (N∗−N)/N1/2 = N1/2(N∗/N−1) has limit distribution

U = (1/p)(A1,0 +A1,1) + (1/q)(A0,1 +A1,1)− {1/(pq)}A1,1

= {pA0,1 + qA1,0 + (p+ q − 1)A1,1}/(pq).

This is a normal (0, τ2); show that indeed τ2 = (1 − p)(1 − q)/(pq). How can this be

used to form a confidence interval for N? (More general schemes, for estimators and

confidence intervals, are developed in See Ex. ??.)
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(d) Show that the N∗ leads to the natural estimator p̂ = N1,1/N1,· for p. Find its

approximate distribution, and assess how much is lost in precision by not knowing N .

(xx check also with the implied N∗
0,0 = N∗ − (N0,0 +N0,1 +N1,0). xx)

(e) The setup and methods above can be used in a variety of setups, for estimating

the sizes of populations based on incomplete surveys; the N∗ estimator above goes back

to Petersen (1896), estimating the number of fish based on capture-recapture surveys.

Carry out a few simulation experiments, as follows. There are fish {1, . . . , N} in your

pond. Your first catch, with fish being caught as in a binomial setup with probability

p1, gives the index set A1; your captured fish are marked and released in the pond.

Similarly your second catch, with catch probability p2, gives index set A2. By counting

the numbers N1,0, N0,1, N1,1 in the associated Venn diagram, estimate the total number

of fish N (and your analysis should work without knowing p1, p2). Check if your 95

percent confidence interval captures the real N . To play with these methods, also to

understand how the catch probabilities p1, p2 influence estimates and precision, there are

helpful and easy-to-use algorithms in R, namely intersect, union, setdiff.

(f) (xx might bypass this point. but might include the case of three surveys, or leave it

to ℓprof(N) analysis in Ch 5. but we can ask for analysis of the estimator

n∗0,0,0 =
n1,0,0n0,1,0 + n1,0,0n0,0,1 + n0,1,0n0,0,1

n1,1,0 + n1,0,1 + n0,1,1
,

used in Lum et al. (2013). xx)

Notes and pointers

(xx to come. we point to certain famous things from the past: Kolmogorov (1933b),

Lindeberg (1922), Borel and Cantelli. tail bounds. emil’s extension of the Inlow (2010)

paper, from CLT to Lindeberg. more on Lindeberg and the history of CLT developments

in Cramér (1976), also see Schweder (1980, 1999). xx)

[xx the first of the two lemmas: Nils beta 1990. xx]

(xx include also something on Fra Preface i Life and Times of CLT: “For those

who teach a course in probability whose objective is to prove the Central limit theorem

of interest [...] is commentary on the characteristic function approach employed by

Lyapunov versus the ‘very simple’ proof, as Le Cam describes it, given by Lindeberg”.

also, LeCam (1986). xx)

[xx for Scheffé: see Scheffé (1947), but also Kusolitsch (2010), who explains that the

result is a special case of results published by F. Riesz in 1928. see also what Scheffe

says in his paper about comments he got from Morse. xx]

(xx push this to Notes. xx) Inlow (2010) has shown how one can prove the usual

CLT without the technical use of characteristic and hence complex functions. Essentially,

he writes the Xi in question as Yi+Zi with Yi = Xi I{|Xi| ≤ ε
√
n} and Zi = Xi {|Xi| >

ε
√
n}, after which ‘ordinary’ m.g.f.s may be used for the part involving the Yi, yielding

the normal limit, supplemented with analysis to show that the part involving the Zi

tends to zero in probability. – It is a non-trivial matter to extend Inlow’s arguments,
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from the CLT to the Lindeberg theorem, but this is precisely what is done in Stoltenberg

(2019). Check that note, on the book website, and make sure you understand its main

tricks and steps.

(xx When Jarl Waldemar Lindeberg was reproached for not being sufficiently active

in his scientific work, he said, ‘Well, I am really a farmer’. And if somebody happened

to say that his farm was not properly cultivated, his answer was, ‘Of course my real job

is to be a mathematics professor’. Hundred years ago!, i.e. in 1920, he published his

first paper on the CLT, and in 1922 he generalised his findings to the classical Lindeberg

Theorem, with the famous Lindeberg Condition, securing limiting normality of a sum of

independent but not identically distributed random variables. He did not know about

L�punov’s earlier work, and therefore not about uslovie L�punova, the Lyapunov

condition, which we treat below as a simpler-to-reach condition than the more general

one of Lindeberg. Other luminaries whose work touch on these themes around the 1920ies

and beyond include Paul Lévy, Harald Cramér, William Feller, and, intriguingly, Alan

Turing who (allegedly) won the war and invented computers etc. xx)

(xx point to a couple of characterisation theorems books, kagan linnik rao, one more.

xx)

(xx for Notes: The little log(1 + x) lemma is stated, proven, and used in Hjort

(1990b, Appendix). xx)

(xx the material is from Hjort and Pollard (1993) and Hjort (1986a). xx)

[xx For notes and pointers: Ex. 2.20(a) is from Jacod and Protter (2004, p. 166),

they have it from Pollard (1984) xx].

ToDo notes, of 12-August-2024.

Clean and calibrate. Include a couple of classic nonparametric test procedures, like

Wilcoxon, the sign test, more, to showcase the use of Lindeberg things to show limiting

normality of such statistics too. point to Hjort and Pollard (1993) and Hjort (1986a).

Include some non-normal limits. Can take µ̂∗ = {1− c(Dn)}µ̂narr+ c(Dn)µ̂wide from

model selection. And point to n2/5 rates for f estimation.



I.3

Parameters, estimators, precision, confidence

With data observed from a statistical model, the theme of this chapter is that of

constructing estimators for unknown statistical parameters, along with assessing

their precision. This provides ways of comparing competing estimation methods.

Basic concepts include the bias, the variance, the mean squared error of estimators.

The development also naturally leads to the important notion and basic machin-

ery of confidence intervals. General estimation methods covered here include the

method of moments and the method of quantiles; these can also be combined. For

regression setups, with response variables influenced by covariates, we go through

the method of least squares. To understand and utilise the properties of classes of

estimators in general models, we utilise the machinery of large-sample normal ap-

proximations, from Ch. 2. This also enables one to assess precision and to compare

different competing estimators. Similar remarks apply also for the more versatile

method of maximum likelihood, treated in Ch. 5.

Key words: approximations, confidence, estimators, linear regression, model param-

eters, moment matching, quantile matching, risk

Most statistical models have parameters, as we learn from the generous variety of models

in Ch. 1. Parameters may then be fine-tuned, or estimated, from data, which is the

grand theme of the present chapter. In generic terms, if a model has density f(y, θ),

with θ = (θ1, . . . , θp)
t its parameter vector, we use data D to construct an estimator

θ̂ = θ̂(D). Thus f(y, θ̂) is the fitted model, which we use for interpretation and inference,

themes we return to in more detail in later chapters. The data D can often be in the form

of direct independent observations y1, . . . , yn from the model, but can also be different

in character, involving censoring mechanisms, or measurement error.

A sensible minimum demand for an estimator is that it should tend to the right value,

with increasing data volume. Formally, if θ̂ = θ̂n is the estimator for some parameter

whose true value is θ0, based on a sample of size n, then we say that the estimator

(or, more pedantically, the sequence of estimators) is consistent provided θ̂n converges in

probability to θ0, i.e. θ̂n →pr θ0 in the terminology of Ch. 2.

One often needs estimates and inference methods for focus parameters, those of par-focus parameter

ticular and context-driven interest, which are one-dimensional functions ϕ = ϕ(θ1, . . . , θp)

103
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of the underlying model parameter vector. If ϕ̂ is an estimator for this parameter, we

often care about its mean, represented here as

Eθ ϕ̂ = ϕ+ b(θ). (3.1)

The footscript signals that the expectation operator is at work at the parameter position

θ. The b(θ) is termed the bias; in various cases it is a function of ϕ only, but in general

it depends on the full parameter vector θ. If Eθ ϕ̂ = ϕ, at all positions θ, we say the unbiased

estimatorestimator is unbiased. In addition to wishing for estimators with small bias, we care

about its variability, and often about its mean squared error mean squared

error

mse(ϕ̂, θ) = Eθ (ϕ̂− ϕ)2 = Varθ ϕ̂+ b(θ)2, (3.2)

the classic variance plus squared bias. This is a function of the unknown parameter,

and gives a way of understanding and comparing performance for competing estimation

schemes. When we can sort out the mathematics properly, depending on the situation

at hand, we then choose estimators with smaller mse than those of competitors.

The mse(ϕ̂, θ) of (3.2) is sometimes called the risk, or risk function, and relates to

having chosen squared error (ϕ̂− ϕ)2 as the underlying measure of quality. Other ways

in which to compare and rank performance, involving also different quality functions and

risk functions, will be dealt with in Ch. 8.

Fundamental and conspicuous instruments in the statistical toolkits, when sum-

marising and reporting findings of investigations, are confidence intervals and testing of

null hypotheses. The development in the present chapter deals with the former, regard-

ing interpretation, construction, properties, performance, whereas the following chapter

handles the latter, along with further connections.

Consider in general terms data y, perhaps a long vector or a data matrix, from a

model with parameter θ = (θ1, . . . , θp), with ϕ = ϕ(θ1, . . . , θp) a parameter of interest.

Then [L(y), U(y)] is a confidence interval, with confidence level α, like 0.90 or 0.95 or an

even higher 0.99, provided confidence

interval

Prθ{L(Y ) ≤ ϕ ≤ U(Y )} = α for all θ. (3.3)

Thus [L(Y ), U(Y )] is a random interval, and with a high number of repeated situations it

will capture the underlying ϕ a fraction α of the times. The reported confidence interval

is [Lobs, Uobs] = [L(yobs), U(yobs)], computed based on the actually observed data yobs.

Occasionally one also wants to construct confidence regions for a parameter vector, as

opposed to confidence intervals for each of its components. Thus is (a, b) is a parameter

pair in a model, a random region R, based on data, is a 95 percent confidence region

provided Prθ((a, b) ∈ R) = 0.95 for all model parameters θ.

In various setups one can study distributions, biases, variances, confidence etc. quite

accurately, as will be seen in many exercises below. Often enough this might be too

complicated, however, and one relies instead on good approximations. There is indeed a

host of normal approximations, sometimes with additional tools for finetuning these, as

studied in Ch. 2, with yet more to come in Ch. 5. These methods may be understood,

appreciated, seen in action, and used for new situations, without necessarily having been

through each δ and ε of Ch. 2.
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In this chapter we learn certain estimation principles, including those associated with

the method of moments and the method of quantiles. There is also room for combining

such methods, or for coming up with new estimators in unfamiliar waters. We go on to

more advanced models and hence estimation methods in later chapters (and in several

of our stories), but included below is the basics of linear regression and the least sum

of squares methods. The more versatile and often well-performing method of maximum

likelihood will be studied with care in Ch. 5.

(xx ToDo nils, not yet fully done as of 12-August-2024: moment method; quantile

method; both with transformation and delta method things from Ch3; least squares with

a bit more written out for linear regression. xx)

[xx In this brief intro there should be a figure, conveying some basic ideas. We may

snikinnføre confidence intervals, but that comes with more weight in Ch. 4, along with

testing and power and p-values. we do mention a few key concepts here in intro, like

unbiasedness, low variance, etc. xx]

Precise estimation in a few classical models

Ex. 3.1 Mean squared error. Suppose data lead to an estimator ϕ̂ for a focus parameter

ϕ = ϕ(θ), in a model with parameter θ.

(a) Verify the mse formula (3.2), and note its Pythagorean character. Make a little

right-angle triangle figure with absolute bias and standard deviation for the two short

sides and root-mse, rmse = mse1/2 on the long side. These root operations bring the risk

components down to the original scale of the measurements.

(b) For a simple situation, let Y ∼ N(θ, 1), with θ to be estimated. Find formulae for the

mean squared errors of the three estimators 0.9Y , Y , 1.1Y . Note the interplay between

bias and variance.

(c) Generalise to the case of Y1, . . . , Yn being i.i.d. from N(θ, 1). Find mse(θ̂, θ) for the

three estimators 0.99 Ȳ , Ȳ , 1.01 Ȳ , with Ȳ the sample average. Comment on what you

find.

(d) In somewhat more general terms, consider an i.i.d. sample Y1, . . . , Yn from a distri-

bution with unknown mean µ and variance σ2. Show that Ȳ is unbiased with variance

σ2/n. If your estimator for µ is cnȲ , what is required of cn, in order for the mean squared

error to go to zero with growing n?

Ex. 3.2 Binomial estimation. Consider Y being binomial (n, p), as in Ex. 1.3.

(a) To estimate p the canonical choice is p̂ = Y/n. Find its mean and variance, and a

formula for mse(p̂, p) = Ep (p̂− p)2.

(b) Then compare the simple binomial unbiased proportion with the estimator p̂B =

(Y + 1)/(n+ 2) Find its bias and variance, and a formula for mse(p̂B , p). Draw the two

mse functions in a diagram, for say n = 10. When is the Bayes estimator better than

the Y/n, according to this criterion?
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Ex. 3.3 Estimating the normal mean. Suppose we have independent observations

Y1, . . . , Yn from the normal distribution N(µ, σ2).

(a) Prove that the sample average Ȳ = n−1
∑n

i=1 Yi has the N(µ, σ2/n) distribution.

This Ȳ is the canonical estimator for µ. Find also a clear formula for its risk, or mean

squared error, namely mse(Ȳ , µ, σ) = Eµ,σ(Ȳ − µ)2. The subscript indicates that the

mean operator is with respect to the probability mechanism dictated by (µ, σ).

(b) Then generalise the above somewhat, by finding the mean and variance also for the

estimator µ̂ = bȲ , with b a constant (which might be close to 1). Use this to put up a

clear expression for

mse(bȲ , µ, σ) = Eµ,σ(bȲ − µ)2.

Illustrate this, for values b = 0.98, 1.00, 1.02, and comment. For what values of the

parameters (µ, σ) will the estimator 0.98 Ȳ be better than the classic Ȳ ? Are there

values of the parameters where 1.02 Ȳ is better than the plain 1.00 Ȳ ?

(c) Suppose the starting assumptions about the data at hand are changed to merely

saying that the Yi are i.i.d. with mean µ and standard deviation σ, i.e. we avoid saying

that the distribution of the error terms εi = (Yi−µ)/σ needs to be exactly normal. How

does this affect your findings and claims for the previous points?

Ex. 3.4 Estimating the normal variance. As in Ex. 3.3, suppose there are i.i.d. data

Y1, . . . , Yn from the N(µ, σ2). Here we care about the standard deviation parameter σ.

As we saw in Ex. 1.45, Z =
∑n

i=1(Yi − Ȳ )2 ∼ σ2χ2
m, where m = n − 1. Also, the Z is

stochastically independent of the sample mean Ȳ .

(a) Use the statement above to find the mean and variance of σ̂2 = cZ (where c ought

to be about 1/n). Find the mean squared error mse(cZ, σ) = Eσ (cZ − σ2)2. Check in

particular the result for c = 1/(n−1), the classical factor to make the estimator unbiased;

for c = 1/n, which comes out of the maximum likelihood paradigm (see Ch. 5); and for

c = 1/(n+ 1).

(b) Find the best possible constant c for estimators of this type cZ, using the mean

squared error on the σ2 scale as criterion.

(c) Find also the mean and variance of dZ1/2, seen as an estimator of σ, i.e. on the

standard deviation scale, not that of the variance. Find an expression for mse(dZ1/2, σ) =

Eσ (dZ
1/2 − σ)2. Find the best d, according to this criterion.

(d) We may also finetune σ estimation on the log-scale. Examine the risk function

mse(kZ1/2, σ) = Eσ {log(kZ1/2)− log σ}2, and find the best value of k.

(e) A different solution to the issue of determining ‘the best constant’ when estimating

σ, disregarding tradition and mathematical convenience, might be as follows. With

σ̂2 = Z/(n− 1) being the traditional sample variance, with 1/(n− 1) selected to achieve

unbiasedness on the σ2 scale, consider σ∗ = cnσ̂, with cn to be fine-tweaked perhaps

a little bit away from 1. Find the cn that makes risk(cnσ̂, σ) = Eσ |cnσ̂ − σ| smallest.
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This means relying on absolute error as loss function, and the solution needs numerical

minimisation of a function which needs numerical integration. Give a table with these

optimal cn for say n = 10, . . . , 30. Show that cn → 1 as n grows.

Ex. 3.5 Confidence interval for an exponential rate. Choose a sample size n, and

simulate i.i.d. variables Y1, . . . , Yn from the exponential distribution, see Ex. 1.8, with

parameter θ equal to say θ0 = 3.33.

(a) Construct a 90 percent confidence interval [L,U ] for θ. Check if θ0 is contained in

this interval, for the data you generated. Repeat the experiment say 100 times, and

record how often the intervals contain θ0. What is in fact the distribution of N , the

number of the 100 intervals which cover the truth?

(b) In addition to checking whether the intervals cover the truth, compute the length

D = U − L, and give a histogram of its distribution. Find ED. Repeat also these

experiments with a couple of other sample sizes, and comment.

Ex. 3.6 Confidence interval for a normal variance. Let Y1, . . . , Yn be i.i.d. from a

normal distribution. How can we set up confidence intervals for the standard deviation

σ (or, equivalently, for the variance σ2)? Writing m = n − 1, the sample variance is

σ̂2 = Z/m, with Z =
∑n

i=1(Yi − Ȳ )2 ∼ σ2χ2
m, from Ex. 1.45.

(a) Start with [a, b] = [Γ−1
m (0.05),Γ−1

m (0.95)], an interval covering the χ2
m with probability

0.90. Transform a ≤ mσ̂2/σ2 ≤ b to the confidence interval ci = [(m/b)1/2σ̂, (m/a)1/2σ̂].

Show in detail that indeed Prσ(σ ∈ ci) = 0.90.

(b) Most often one wishes to estimate and assess the σ parameter directly, being on

the same scale as the measurements, but once in a while it would be more natural to

communicate and interpret results on the variance scale. Show in suitable detail that

Prσ((m/b)σ̂
2 ≤ σ2 ≤ (m/a)σ̂2) = 0.90; confidence intervals can in this fashion be easily

transformed, say from θ to g(θ), as here, from σ2 to σ, or the other way around.

(c) The construction above is ‘equitailed’, starting with 0.05 probability to the left of a

and 0.05 probability to the right of b. One might somewhat more generally use any [a, b]

with 0.90 probability for the χ2
m, needing Γm(b) − Γm(a) = 0.90. The length of the 90

percent σ interval above is proportional to 1/a1/2 − 1/b1/2. Minimise this function, say

for m = 10, 20, 30, 40. Compare these length-minimising 0.90 intervals with the simpler

ones, and comment.

(d) (xx same exercise for minimising 1/a−1/b, for σ2. moral: it doesn’t matter so much,

and we’re largely happy with the equitailed scheme. xx)

(e) (xx simple illustration with an easy dataset. xx)

Ex. 3.7 Confidence interval for a normal mean. Here we go through the basics for

constructing confidence intervals for normal means. Since approximations to normality

abound in statistical theory and practice, what we learn here quickly finds use also outside

the strict normality assumptions.
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(a) Start with the simplest prototype setup, a single Y from the N(ξ, 1) model. Show

that the random interval [Y − 1.96, Y + 1.96] captures ξ with probability 0.95.

(b) Suppose Y1, . . . , Yn are i.i.d. from the N(ξ, σ2) model, at the moment with standard

deviation parameter σ taken known. With Ȳ as usual being the data average, show that√
n(Ȳ −ξ)/σ is standard normal, and deduce from this that Ȳ ±1.96σ/

√
n is a 95 percent

confidence interval for ξ.

(c) In most cases also the σ is unknown, however. Let σ̂ be the usual empirical standard

deviation, see e.g. Ex. 3.4. Show that the natural construction

t =
Ȳ − ξ

σ̂/
√
n
=

√
n(Ȳ − ξ)

σ̂
=

√
n(Ȳ − ξ)/σ

σ̂/σ
(3.4)

has a distribution not depending on the two parameters, and that this distribution, call

it Gn, is symmetric around zero. Deduce also that with t0,n = G−1
n (0.975), the random

interval Ȳ ± t0,nσ̂/
√
n covers ξ with probability 0.95.

(d) It is then ‘only’ a matter of finding and perhaps tabulating the distribution Gn of t.

It is in fact the celebrated t distribution, with df = n−1 degrees of freedom, see Ex. 1.46.

But even without that specific knowledge detail, we could easily have simulated a high

number for t, from (3.4), and read off the required quantile. (xx also: t0,n not far from

1.96 with n moderate to big. xx)

(e) In more generality, suppose β is a model parameter for which there is an estimator

β̂ with distribution N(β, c2nσ
2), say, with a known factor cn. Suppose also that there is

a statistically independent estimator σ̂ for σ, with the property that σ̂2/σ2 ∼ χ2
m/m, for

a known m. Then show that t = (β̂ − β)/(cnσ̂) ∼ tm. Put up a 0.99 confidence interval

for β based on this.

(f) Suppose X1, . . . , Xn1 and Y1, . . . , Yn2 are random samples from two normal groups

with equal variance, say N(ξ1, σ
2) and N(ξ2, σ

2). Find the distribution of the difference

of sample means Dn = X̄ − Ȳ , and construct a confidence interval for δ = ξ1 − ξ2. (xx

check for other cases in the book, testing, CDs. xx)

Ex. 3.8 Normal quantiles: estimation and confidence. Consider again the setup of

Ex. 3.3, with a sample of Yi from the normal N(µ, σ2) model. In the present exercise we

care about quantiles, as opposed to ‘only’ the mean or the standard deviation.

(a) Show that the c.d.f. of Yi may be written F (y) = Pr(Yi ≤ y) = Φ((y − µ)/σ), with

Φ(x) the c.d.f. for the standard normal (i.e. the pnorm function in R). Show that the q

quantile F−1(q) is equal to γq = µ + zqσ, with zq = Φ−1(q). Thus the 0.95 quantile is

γ0.95 = µ+ 1.645σ, etc.

(b) Find the mean and variance of the natural estimator γ̂q = Ȳ + zq σ̂, where σ̂ =

(Z/m)1/2, with Z as in Ex. 3.4 and m = n− 1.

(c) Show that we may write

γ̂q − γq ∼ µ+ (σ/
√
n)N + zqσ(Km/m)1/2 − µ− zqσ

= σ[(1/
√
n)N + zq{(Km/m)1/2 − 1}],
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in terms of N ∼ N(0, 1) and Km ∼ χ2
m, with these being independent. Verify that the

pivot

Wn,q =

√
n(γ̂q − γq)

σ̂
∼ N + zq

√
n{(Km/m)1/2 − 1}
(Km/m)1/2

has a distribution not depending on µ, σ. It can be simulated, for any given sample size

n and quantile level q. With an such that Pr(−an ≤ Wn,q ≤ an) = 0.95, convert this

to a 95 percent confidence interval for γq. Note that for q = 0.50, the median case, the

distribution of the Wn,q is the tm, the t with degrees of freedom m = n− 1.

(d) (xx nils calibrate better, in view of large-sample things coming below. xx) Use the

delta method of Ex. 2.47 to show that
√
n{(Km/m)1/2−1} →d N(0, 12 ), and explain that

Wn,q →d N(0, 1 + 1
2z

2
q ). Construct an approximate 95 percent confidence interval for γq

based on this. [xx simple data illustration, perhaps inside story xx]

(e) Consider more generally any smooth function γ = g(µ, σ). With γ̂ = g(µ̂, σ̂), use the

delta method to find the limit distribution of
√
n(γ̂ − γ). Use this to set up a confidence

interval for γ.

Ex. 3.9 The empirical distribution function. (xx nils will perestroik this in view of

exercises in Ch2. xx) Assume there is an i.i.d. dataset Y1, . . . , Yn from an unknown

distribution, with c.d.f. F (t) = Pr(Yi ≤ t). The empirical distribution function is Fn(t) =the empirical

distribution

function
n−1

∑n
i=1 I(Yi ≤ t), the simple binomial proportion of points falling in (−∞, t]. We saw

in Ex. 2.55 that Fn with probability 1 tends uniformly to F ; here we learn about how

fast this happens, via convergence in distribution.

(a) Explain that the empirical distribution function is the cumulative of the probabil-

ity measure that puts probability mass 1/n at each data point. This is the natural

nonparametric estimator of the unknown F .

(b) Construct a version of Figure 3.1, left panel, where n = 100 datapoints are simulated

from the distribution f = 0.50Expo(r1) + 0.50Expo(r2), with rates r1 = 2.00 and r2 =

4.00. The empirical Fn(t) is the natural nonparametric estimator of the underlying (and

typically unkwown) F .

(c) Since we know so much about the binomial, we quickly learn a few basic properties of

the Fn. Show that Fn(t) is unbiased for F (t), and that its variance is F (t){1−F (t)}/n.

(d) Consider the process Zn(t) =
√
n{Fn(t) − F (t)}. Show that it has mean zero, and

that Zn(t) →d Z(t), say, where Z(t) is a zero-mean normal with variance F (t){1−F (t)}.
Show also that

cov{Zn(t), Zn(t
′)} = F (t){1− F (t′)} for t ≤ t′.

Compute and display the Zn plot, using the same data values as for the previous figure;

in other words, construct a version of Figure 3.1, right panel. [xx nils emil: we might

contemplate putting comments such as the following in a ‘comments’ format, at the end
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Figure 3.1: Left panel: the real underlying data-generating F (t) (dashed, red), with

the empirical distribution function Fn(t) (full line, black), computed from a sample of

n = 100 data points from F . Right panel: the process Zn(t), computed for the data used

for the same data. In 95 percent of such cases, the maximum absolute value of the Zn

process will be below 1.358.

of certain exercises, with pointsrs to things to come, connections, etc. xx] Such plots may

e.g. be used to check model adequacy – if the data come from a distribution not close

to the F used to construct the plot, then the Zn plot will deviate aignificantly from the

zero line. To understand what might qualify as ‘significantly different from the zero line’

means we need theory for the behaviour of the full Zn process, not merely the pointwise

result that Zn(t) →d N(0, F (t){1− F (t)}).

(e) (xx some pointers: to Ch. 9. the 1.358 limit. kolmogorov-smirnov. and to Glivenko—

Cantelli theorem, in Ex. 2.55. the Fn is used in CoW Story. there is full process conver-

gence Zn →d Z, a Gaussian zero-mean process with covariance function F (y)(1−F (y′)),
see Ch. 9. kolmogorov-smirnov things. xx)

Ex. 3.10 Estimating the normal density. Most often the statistical interest lies in

estimating some parameter related to, or expressed through, the normal distribution,

like the mean, spread, or quantile, as illustrated above. In some situations one wishes

to estimate the density itself. Consider once again a sample Y1, . . . , Yn from the normal

N(µ, σ2).

(a) For the parameter σ, we shall again use Z =
∑n

i=1(Yi− Ȳ )2 ∼ σ2χ2
m, with m = n−1,

as in several previous exercises. With the traditional default estimator σ̂2 = Z/(n − 1)

of (1.5), find formulae for the mean of 1/σ̂2 and log σ̂.

(b) Construct unbiased estimators for 1/σ2 and for log σ, and then for the log-density

function log f(y, ξ, σ) = − log σ − 1
2 (y − µ)2/σ2 − 1

2 log(2π). In (xx pointer to exercise

Ch8) we also construct an unbiased estimator on the direct scale f(y, ξ, σ).
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(c) For independent samplesX1, . . . , Xn1 and Y1, . . . , Yn2 from normal populations N(ξ1, σ
2
1)

and N(ξ2, σ
2
2), construct an unbiased estimator for d(y) = log{f2(y)/f1(y)}.

Confidence via normal approximations

Ex. 3.11 Confidence intervals via normal approximations. (xx make connection to Wald

tests to come in Ex. 4.5. xx) As we’ve already seen in various situations of Ch. 2, there

are often estimators for interest parameters for which there is approximate normality.

Then various recipes under strict normality can still be used, but as approximations.

(a) Suppose ϕ is such a parameter of interest, for which there is an estimator ϕ̂, being

approximately normal, in the mathematical sense of
√
n(ϕ̂ − ϕ) →d N(0, τ2), for some

appropriate limiting variance τ2. Suppose also that there is a consistent estimator τ̂ of τ ,

with τ̂ /τ →pr 1. Show that Zn =
√
n(ϕ̂−ϕ)/τ̂ →d N(0, 1); you may check with Ex. 2.23.

(b) Show under these mild and very frequently met assumptions that

Pr(ϕ ∈ ϕ̂± 1.96 τ̂ /
√
n) → 0.95.

In other words, the [ϕ̂ − 1.96 τ̂ /
√
n, ϕ̂ + 1.96 τ̂ /

√
n] is an approximate or asymptotic 95

percent interval for ϕ. Note the grand generality here; this simple construction works in

a large variety of situations, also in nonparametric setups, cases with dependent data,

etc.

(c) The simplest interesting application of this standard recipe is for the unknown mean

ξ of a population. Verify via the CLT of Ch. 2 that
√
n(Ȳ − ξ)/σ̂ →d N(0, 1). Hence the

t-based interval Ȳ ± 1.96 σ̂/
√
n, for which we have very precise probability computations

under normality, is large-sample correct even if the data are not at all normal.

(d) Suppose (X,Y, Z) is trinomial (n, p, q, r), with p+ q + r = 1. Construct an approxi-

mate 90 percent confidence interval for d = q− p. – Check that you see how similar and

not complicated tasks can be tended to in the examples of Ex. 2.43.

Ex. 3.12 Confidence intervals for the standard deviation, outside normality. Consider

i.i.d. data Y1, . . . , Yn, from which we compute the classical

ξ̂ = Ȳ = n−1
n∑

i=1

Yi and σ̂ =
{ 1

n− 1

n∑
i=1

(Yi − Ȳ )2
}1/2

.

Here we illustrate the general large-sample methods by building confidence intervals for

σ, with no assumptions on the distribution of the data, like normality. The only mild

assumption we make is a finite fourth moment, in order for σ̂ to have a clear limit

distribution. See Figure 3.2 for 100 simulated confidence intervals, all attempting to

capture the true value, here σ = 1, for two different sample sizes.

(a) Make sure you understand and can prove that ξ̂ and σ̂ are consistent for ξ and σ,

from the LLN theorems of Ch. 2.
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Figure 3.2: Simulations, with datasets from the unit exponential, displaying lower and

upper confidence points for 90 percent intervals; the intervals attempt to cover the true

value σ = 1, and will succeed about 90 percent of the time. Left panel: with n = 333;

right panel: with n = 1000.

(b) For S2
n = n−1

∑n
i=1(Yi − Ȳ )2, use Ex. 2.41 to establish that

√
n(S2

n − σ2) tends to

N(0, σ4(2 + γ4)), in terms of the kurtosis parameter γ4 = E {(Yi − ξ)/σ}4 − 3. Then

transform this, from variance to its square root, getting back to the real scale of the

measurements: using the delta methods of Ch. 2, show that
√
n(σ̂ − σ) →d N(0, ( 12 +

1
4γ4)σ

2).

(c) Show that γ̂4 = (1/n)
∑n

i=1{(Yi − Ȳ )/σ̂}4 − 3 is consistent for γ4, and use this

to construct an approximate 90 percent confidence interval for σ. Note that this is a

nonparametric procedure, totally free of other distributional assumptions, like normality;

if one assumes normality, as an extra condition, one may do more, of course.

(d) For an illustration, consider the unit exponential distribution; show that the standard

deviation is 1 and that the kurtosis is γ4 = 6. Simulate a suitably high number of datasets

of size n = 333 from this distribution. For each simulated dataset, compute γ̂4, to check

how close it is to γ4, along with the approximate 90 percent confidence interval for σ.

Construct a version of Figure 3.2 (left panel for n = 333 and right panel for n = 1000).

Examine in particular the coverage of your intervals: how often do they contain the

correct σ? Use simulations to check How big n must be, in order for γ̂4 to be inside

[5.8, 6.2] with probability at least 95 percent.

(e) Coming back to the general situation, show that

( √
n(Ȳ − ξ)√
n(S2

n − σ2)

)
→d N2(

(
0

0

)
,

(
σ2, σ3γ3
σ3γ3, σ

4(2 + γ4)

)
),



Confidence via normal approximations 113

and also that (√
n(ξ̂ − ξ)√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1, 1

2γ3
1
2γ3,

1
2 + 1

4γ4

)
),

in terms of kurtosis γ4 and skewness γ3 = E {(Y − ξ)/σ}3.

(f) Generate a dataset of size n = 333 from the unit exponential, and construct an

approximate 90 percent confidence ellipsoid on your screen for (ξ, σ). Check if it contains

the true values.

Ex. 3.13 Inference for the normal density, via large-sample methods. Consider again

i.i.d. data Y1, . . . , Yn from a normal density f(y, ξ, σ). In Ex. 3.10 we constructed an

estimator f̂(y) with the property that log f̂(y) is exactly unbiased for log f(y, ξ, σ), for

any given n. Here we instead work out the large-sample approximations for the direct

estimator f∗(y) = f(y, ξ̂, σ̂), having plugged in the usual empirical mean and empirical

standard deviation.

(a) We have seen in Ex. 2.45 that (
√
n(ξ̂ − ξ),

√
n(σ̂ − σ)) tends to (A,B), independent

zero-mean normals with variances σ2 and 1
2σ

2. For fixed y, wite x = (y − ξ)/σ. Use the

delta method to explain that (i)
√
n(log σ̂ − log σ) →d (1/σ)B; (ii)

√
n((y − ξ̂)/σ̂ − (y −

ξ)/σ) →d (1/σ)(−A − xB); (iii)
√
n{(y − ξ̂)2/σ̂2 − x2} →d (1/σ)(−2xA − x2B). Then

combine these to show that

√
n{log f∗(y)− f(y, ξ, σ)} →d (1/σ)(−B + xA+ 1

2x
2B),

a zero-mean normal with variance τ2 = x2 + ( 12x
2 − 1)2 = 1

2 (1 + x4).

(b) Show that the log-unbiased estimator log f̂(y) is close enough to this log f∗(y) to

make the scaled difference
√
n{log f∗(y) − log f̂(y)} go to zero in probability; explain

that the two estimators therefore have the same limit distribution.

(c) Explain how a pointwise 90 percent confidence band can be constructed for the log-

density, of the type log f∗(y) ± 1.645 τ̂(y), which then may be transformed back to the

density scale.

Ex. 3.14 Variance of the variance estimator. Let Y1, . . . , Yn be i.i.d., with mean ξ,

variance σ2, and finite kurtosis γ4 = E(Yi − ξ)4/σ4 − 3.

(a) With A =
∑n

i=1(Yi− Ȳ )2, show that EA = (n−1)σ2. This says that σ̂2 = A/(n−1)

is unbiased for the variance, regardless of the underlying distribution.

(b) If the Yi are actually normal, then A ∼ σ2χ2
m, with m = n− 1. Show that Var σ̂2 =

2σ4/(n− 1).

(c) Outside normality, work out an expression for VarA, and show that

Var σ̂2 =
(
3 + γ4 −

n− 3

n− 1

)σ4

n
=

2σ4

n− 1
+
γ4σ

4

n
.
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(xx check carefully. use Ex. 2.47. with normality, γ4 = 0; show that it reduces to chi-

squared based formula above. may perhaps check with O’Neill (2014). simulate a high

number of samples of size n = 12 from the t distribution tm, with say m = 6, and ‘verify’

the formula. xx)

(d) (xx tie this to large-sample results, with (2 + γ4)σ
4 variances for limits, etc. xx)

Ex. 3.15 The binomial, the normal approximation, and confidence intervals. Consider

Yn, a binomial (n, p). To invoke the CLT it is practical to use the Yn = X1 + · · · +Xn

representation, in terms of Xi being i.i.d. Bernoullis.

(a) Use the CLT of Ch. 2 to deduce that the normalised variable

Wn =

∑n
i=1(Xi − p)

{Var
∑n

i=1(Xi − p)}1/2
=

Yn − np

{np(1− p)}1/2
=

p̂− p

{p(1− p)/n}1/2

converges to the standard normal N(0, 1) with increasing n. Discuss briefly the skewness

result from Ex. 1.3 above in light of the limiting normality.

(b) With p̂B = (Y + 1)/(n + 2), show that the difference between Wn and Wn,B =√
n(p̂B − p) is so small, for large n, that Wn,B must have the same normal limit. The

confidence intervals we construct below, based on p̂, can therefore alternatively be based

on p̂B .

(c) Verify from the above that Pr(−1.96 ≤Wn ≤ 1.96) → 0.95 as sample size increases,

and use this to construct an interval, based on having observed Yn = y in a given binomial

confidenceexperiment with known n, which covers the true p with probability approximately 95

percent.

(d) There are actually several constructions of such confidence intervals, with this prop-

erty. Here we shall point to one more such, since the method is famous and easy to

use, and since carefully considering these matters for the simple binomial model paves

and points the way to various partly related, partly similar findings and constructions

in more complicated situations, covered later in this chapter. Considering the basic es-

timator p̂ = Y/n again, write σ2
n = p(1− p)/n for its variance, and σ̂2

n = p̂(1− p̂)/n for

its estimated variance. Verify that both asymptotic

equivalence

Wn = (p̂− p)/σn and W ′
n = (p̂− p)/σ̂n

tend to the standard normal in distribution. Now show that the arguments above, used

for W ′
n in lieu of Wn, lead to the confidence interval p̂± 1.96 σ̂n instead. Exemplify, with

n = 100, for the three cases y = 22, y = 55, y = 77, where you compute both versions of

the 95 percent confidence interval for p.

(e) Suppose certain details related to your applied research project require that you

compute the probability p that L ≤ 1.33R, where

L = {(G1/G)(G2/G)(G3/G)(G4/G)}1/4, R = {(G5/G)(G6/G)(G7/G)}1/3,
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in terms of G1, . . . , G8 being i.i.d. from the χ2
12 distribution (the chi-squared with degrees

of freedom equal to 12), and G =
∑8

i=1Gi. Since it’s hard to find an exact formula, or an

exact answer in other ways, you simulate a high number sim of such vectors (G1, . . . , G8),

and check for each simulation whether the event just described takes place or not. How

large should sim be, in order for your simulation based estimate of p to be correct to three

decimal places? Carry out such simulations and thus find p. Display also a histogram of

simulated L/R.

Quantiles and sample quantiles

Ex. 3.16 The sample median. Let Y1, . . . , Yn be i.i.d. from a positive density f with

true median θ = F−1( 12 ).

(a) Suppose for simplicity that n is odd, say n = 2m+ 1. Show that Mn has density of

the form

gn(y) =
(2m+ 1)!

m!m!
F (y)m{1− F (y)}mf(y).

(b) Show then that the density of Zn =
√
n(Mn− θ) can be written in the form hn(z) =

gn(θ + z/
√
n)/

√
n. Prove that

hn(z) → (2π)−1/22f(θ) exp{− 1
24f(θ)

2z2},

where the Stirling approximation formula of Ex. 2.39 may be of use. The limit is the

density h(z) of the normal N(0, τ2), with τ = 1
2/f(θ). We have hence proved Zn →d

N(0, τ2), by Scheffé’s lemma; see Ex. 2.6.

(c) So when is the sample mean best, and when might the sample median be the better

estimator, when it comes to estimating the centre point θ of a symmetric density? This

is a matter of the ratio

ρ =
σ

1
2/f(θ)

= 2σf(θ),

where σ is the standard deviation for f . Explain that if ρ < 1, then the sample mean is

best, and that if ρ > 1, then the sample median is the best.

(d) Compare the limiting distributions for the sample mean and the sample median for

the normal density, the double exponential density 1
2 exp(−|y|), and the Cauchy density

(1/π)/(1 + y2).

(e) Consider t distribution, with degrees of freedom ν, see Ex. 1.46. find an expression for

the ratio ρ = ρ(ν), plot (ν, ρ(ν)) in a diagram, and comment. Show that ρ(ν) approaches

(2/π)1/2 = 0.7979 for large ν. Show that for ν < 4.678, there is roughness at the top,

and the median is best; whereas for ν > 4.678, there is a smoother density at the top,

and the mean is best. (xx See also Ex. 4.12. xx)

(f) Carry out a similar analysis for the binormal symmetric mixture model f = 1
2 N(−a, 1)+

1
2 N(a, 1). For which values of a is the sample median a better estimator of the centre
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point then the sample mean? [xx later on, another chapter: the estimator which says θ̂

is sample median if An and sample mean if Ac
n, where An is the event that 1

2/f̂(θ̂0) < σ̂.

xx]

Ex. 3.17 Uniform ordering. Consider U1, . . . , Un i.i.d. from the uniform distribution.

Order these, to U(1) < · · · < U(n).

(a) Show that U(i) has density connection to

Beta

distributions

gi(u) =
n!

(i− 1)! 1! (n− i)!
ui−1(1− u)n−i for u ∈ (0, 1).

Explain that U(i) ∼ Beta(i, n − i + 1), see Ex. 1.21, show that EU(i) = pi = i/(n + 1),

and that VarU(i) = pi(1− pi)/(n+ 2).

(b) With i < j, show that (U(i), U(j)) has density

gi,j(u, v) =
n!

(i− 1)! 1! (j − i− 1)! 1! (n− j)!
ui−1(v − u)j−i−1(1− v)n−j

for u < v. The idea behind the reasoning, and the ensuing notation, is that in order to

see U(i) ∈ [u, u + du] and U(j) ∈ [v, v + dv], there is a multinomial situation, with five

boxes [0, u], [u, u + du], [u + du, v], [v, v + dv], [v + dv, 1], inside which we need to find

i− 1, 1, j − i− 1, 1, n− j datapoints.

(c) For an i.i.d. uniform sample U1, . . . , Un on [0, 1], consider the uniform range Rn =

U(n) − U(1), where we know that U(1) ∼ Be(1, n). Show that given U(1) = u, U(n)

can be represented as u + Z, where Z is the maximum of another uniform sample, of

size n − 1, on [0, 1 − u]. Use this to show that the c.d.f. of Rn can be expressed as

Hn(r) = nrn−1(1− r) + rn = nrn−1 − (n− 1)rn, and show that this is the Be(n− 1, 2)

distribution. (xx pointer to exercises in Ch6, Ch7, or perhaps just to Story ii.5, depending

on how Abel story is written out. xx)

(d) In general, if Y1, . . . , Yn are i.i.d. from a density f , show that the joint density for

the full order statistic vector (Y(1), . . . , Y(n)) is n! f(y(1)) · · · f(y(n)), on the set where

y(1) < · · · < y(n). In particular, for order statistics from the uniform distribution, show

that the joint density of (U(1), . . . , U(n)) is flat and equal to n! on the set u(1) < · · · < u(n).

(e) Use this, in conjunction with Ex. 1.19, to demonstrate that connection to

Dirichlet

(U(1), U(2), . . . , U(n)) =d (D1, D1 +D2, . . . , D1 + · · ·+Dn)

=d (V1/S, (V1 + V2)/S, . . . , (V1 + · · ·+ Vn)/S),

with V1, . . . , Vn, Vn+1 being i.i.d. from the unit exponential, with sum S = V1+· · ·+Vn+1,

and (D1, . . . , Dn, Dn+1) is a flat Dirichlet (1, . . . , 1, 1). The differences Di = U(i)−U(i−1)

are called the spacings. We use ‘=d’ to signal equality in distributions. Show that this

leads to the representation of the order statistics process as

U([nq]) =

[nq]∑
i=1

Vi/

n+1∑
i=1

Vi for 0 ≤ q ≤ 1. (3.5)
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Here [nq] is the largest integer less than or equal to nq. (xx check things and where

they appear. Use the law of large numbers to show from this that U([nq]) →pr q. point

to things in Ch9 with full process convergence
√
n(U[nq] − q) →d W

0(q), the Brownian

bridge. xx)

Ex. 3.18 Sample quantiles. Suppose Y1, . . . , Yn are independent observations coming

from the same distribution, with positive density f and c.d.f. F . The sample mediansample

quantiles estimates the population median F−1(0.50), and similarly the sample quantile Qn(q), at

any prescribed level q ∈ (0, 1), estimates the population quantiles F−1(q). Built-in func-

tions like quantile(data,0.33) in R find such sample quantiles directly, so users do not

need the cumbersome linear interpolation fiddling between the two ordered observations

coming closest to nq, or to care too much about ties in the data due to rounding-off er-

rors. This exercise finds limit distributions for
√
n{Qn(q)−F−1(q)}, where the previous

exercise corresponds to q = 0.50.

(a) Suppose U ∼ unif and let Y = F−1(U). Show that Y has distribution F , and hence

density f .

(b) Explain that the full order statistic vector Y(1) < · · · < Y(n) may be represented via

a correspondingly ordered sample of the uniform, as F−1(U(1)) < · · · < F−1(U(n)), with

U(i) being the ith ordered observations in an i.i.d. sample U1, . . . , Un from the uniform,

studied in Ex. 3.17. In particular, Y(i) has the same distribution as F−1(U(i)).

(c) This also means that if we work out basic approximation results for the order statistics

from the uniform, we are a modest delta method step away from similar results for the

general case of a density f . In particular, suppose we manage to show
√
n(U([nq])− q) →

Zq, for some Zq. Show that we then will have
√
n{Qn(q)− F−1(q)} →d (F−1)′(q)Zq.

(d) To illustrate this point in a simple case first, show from what we already know

in Ex. 3.16 that
√
n(U([0.50n]) − 0.50) →d N(0, 0.502), for the uniform median. Then

show for a general density f that
√
n{Qn(0.50) − µ} →d N(0, 0.502/f(µ)2), with µ =

F−1(0.50) the population median. Here we used an exact expression for the density of

the median. There are actually several other ways of proving this median of uniforms

result. Such an alternative approach is to use the representation (3.5). Explain that

U([0.50n]) = An/(An +Bn), with An and Bn the averages of the first and second half of

i.i.d. variables V1, . . . , Vn+1 from the unit exponential. Use the CLT for the joint limit

distributions of
√
n(An − 1

2 ) and
√
n(Bn − 1

2 ), and then use the delta method to land

the N(0, 0.502) limit.

(e) Then generalise to the case of any given quantile level q. Show first that
√
n(U[nq] −

q) →d N(0, q(1 − q)), and then that the limit distribution is N(0, q(1 − q)/f(µq)
2) for√

n{Qn(q)− µq}, with µq = F−1(q).

(f) For the case of two quantiles jointly, like the lower and upper sample quartiles, show

for the uniform case that with q1 < q2,(√
n{Qn(q1)− q1}√
n{Qn(q2)− q2}

)
→d N2(

(
0

0

)
,

(
q1(1− q1), q1(1− q2)

q1(1− q2), q2(1− q2)

)
).

Prove this via the explicit density for (U(i), U(j)), given in Ex. 3.17.
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(g) It is also instructive to use representation (3.5) via i.i.d. unit exponentials. Do

this. Then generalise to the case of r quantiles, for levels q1 < · · · < qr. Show for the

uniform case that there is a joint multivariate normal limit, with variances qj(1−qj) and
covariances −qjqℓ for j < l. Then carry out the transformation arguments needed to

prove that for the case of an underlying positive density f , there is limiting joint normality

for
√
n(Qn,j − µj}, where the limit has variances qj(1 − qj)/f(µj)

2 and covariances

qj(1− qℓ)/{f(µj)f(µℓ)} for j < ℓ, where µj = F−1(qj). See Ex. 9.30 for convergence of

a full quantile process.

(h) (xx something here, or in new separate not long exercise: checking c(q){q(1−q)}1/2 =

{q(1−q)}1/2/f(F−1(q)) for a few densities, which tells us the sizes of confidence intervals

for quantiles, and more. link to q-q plots briefly discussed in Ch9. xx)

Ex. 3.19 Min and max of two uniforms. Suppose Y1, Y2 are i.i.d. from a density

f(y), and order them, to V1 < V2. (xx ask per august and martin why this particular

probability calculation was of value. xx)

(a) Show that (V1, V2) has joint density 2f(v1)f(v2), on the set where v1 < v2.

(b) Then consider the special case of two datapoints from the uniform distribution on

the unit interval, ordered to V1 < V2. Show that R = V1/V2 is another uniform on the

unit interval, and that W = Y2 − Y1 is a Beta(1, 2). Show that Pr(Y2 − Y1 ≤ c) =

Pr(Y2 − Y1 > c) = 1
2 , for c = 1− 1/

√
2 = 0.2929.

(c) Find also the joint distribution for (R,W ) here.

Ex. 3.20 Good and bad estimators. Suppose X1, . . . , Xn are i.i.d. from the density

f(x, θ) = exp{−(x− θ)} for y ≥ θ, i.e. a unit exponential starting at parameter θ.

(a) Explain that we have Xi = θ+Yi, with the Yi being i.i.d. from the unit exponential,

and hene that the order statistics can be represented as X(i) = θ + Y(i), cf. Ex. 1.13.

(b) For the smallest and largest observations, show that θ̂A = X(1) − 1/n and θ̂B =

X(n) − sn are unbiased estimators of θ, with sn = 1+ 1/2 + · · ·+ 1/n the partial sum of

the harmonic series. Find their variances.

(c) (xx a bit more. spell out that θ̂B is not consistent. a bit on X(i) − ci too, where

ci = 1/n+ · · ·+ 1/(n− i+ 1) = sn − sn−i. median is ok. xx)

Ex. 3.21 Ratios of ordered uniforms. (xx again, need checing and calibration, regarding

what is told where. xx) Let U1, . . . , Un be an i.i.d. sample from the uniform distribution

on the unit interval, and order these into U(1) < · · · < U(n). From these form the ratios

V1 = U(1)/U(2), V2 = U(2)/U(3), . . . , Vn−1 = U(n−1)/U(n), Vn = U(n)/1.

(a) Show that the inverse transformation leads to the representation

U(n) = Vn, U(n−1) = VnVn−1, . . . , U(2) = VnVn−1 · · ·V2, U(1) = VnVn−1 · · ·V2V1.
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(b) Find the joint probability density for (V1, . . . , Vn), and show in fact that these are

independent, with

V1 ∼ Beta(1, 1), V2 ∼ Beta(2, 1), . . . , Vn−1 ∼ Beta(n− 1, 1), Vn ∼ Beta(n, 1).

(c) Independently of the details above, find the density of U(i), and show that it is a

Beta(i, n− i+ 1). In particular, we have

EU(i) =
i

n+ 1
and VarU(i) =

1

n+ 2

i

n+ 1

(
1− i

n+ 1

)
.

The previous point then tells us that this Beta(i, n − i + 1) can be represented as a

product of different independent Beta variables.

(d) It is of course a somewhat cumbersome simulation recipe for generating a uniform

sample, but it is a useful exercise, opening doors & minds to fruitful generalisations:

For n = 10, say, generate ordered uniform samples of size n in your computer via the

representation above, in terms of products of Beta variables. Carry out some checks to

see that each single U(i) then has the right distribution, i.e. as described in (c).

(e) Work with the following generalisation of the construction above: Let X1, . . . , Xn be

an i.i.d. sample from the distribution with density f(x) = axa−1, i.e. a Beta(a, 1). Again

form the ratios Vi = X(i)/X(i+1) as above, leading to X(i) = ViVi+1 · · ·Vn. Show that

the Vi are again independent, now with Vi ∼ Beta(ai, 1).

(f) (xx just a bit more. indicate how this may be used to build more general models,

possibly in BNP. xx)

Ex. 3.22 Exercises with sample quantiles. [xx various things, using the general results

above. interquartile range Rn = Qn(0.75)−Qn(0.25), e.g. for the normal. for the Cauchy,

cool factoid:
√
n(Rn − 2) →d N(0, π2). Limit distribution of sample median, given the

two 0.25 and 0.75 quartiles. a little link to the nonparametric quantile processes of Hjort

and Petrone (2007) and the more general quantile pyramids of Hjort and Walker (2009).

also pointer to fuller process result in Ch. 9. the limit is (F−1)′(q)W 0(q). xx]

(a) (xx perhaps pushed to BNP chapter. xx) Consider building a model for V1 < V2 < V3
as follows: (i) V2 ∼ unif(0, 1); (ii) given V2 = v2, let independently V1 ∼ unif(0, v2) and

V3 ∼ unif(v2, 1). Show that (V1, V2, V3) has mean (1/4, 2/4, 3/4).

(b) Show that the densities of V1 and V3 become g1(v1) = − log v1 and g3(v3) = − log(1−
v3) on the unit interval.

(c) Generalise to the case of V1 < · · · < V7, thought of as random versions of the

seven octiles: (i) V4 ∼ unif(0, 1); (ii) given V4, let V2 ∼ unif(0, V4) and V6 ∼ (V4, 1),

independently; (iii) given V2, V4, V6, let V1, V3, V5, V7 be independent and uniform on the

intervals (0, V2), (V2, V4), (V4, V6), (V6, 1), respectively. Show that Vj has mean j/8, and

find the densities for each individual Vj .
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Ex. 3.23 Which order statistics interval contains the true median? (xx nilsrant, as

of 12-August-2024, to be properly cleaned and with motivation. xx) Let Y1, . . . , Yn be

i.i.d. from a positive and smooth density f , with cumulative F . With Y(1) < · · · < Y(n)
the order statistics, which of the subintervals (Y(i), Y(i+1)) will contain the true median,

µ = F−1( 12 )?

(a) Show that pi = Pr{µ ∈ (Y(i), Y(i+1))} = Pr{ 1
2 ∈ (U(i), U(i+1))}, in terms of the order

statistics from a uniform sample. We allow i = 0, 1, . . . , n, here, for the n+1 possibilities

for which interval shall contain µ, writing u(0) = 0 and u(n+1) = 1.

(b) Given U(i) = u, show that the distribution of U(i+1) is the same as that of u+(1−u)W ,

where W is the smallest of n− i observations from the uniforom in the unit interval. Use

this to show that

pi = Pr{U(i) <
1
2 < U(i+1)} =

∫ 1/2

0

Pr{U(i+1) >
1
2 |U(i) = u}gi(u) du

=

∫ 1/2

0

( 1
2

1− u

)n−i

be(u, i, n− i+ 1) du,

involving a Beta density, as per Ex. 3.18. Show that this indeed leads to the explicit

probability

pi = ( 12 )
n−i n!

(i− 1)! (n− i)!

∫ 1/2

0

ui−1 du =

(
n

i

)
( 12 )

n.

Hence we’ve reached the binomial probabilities, for a binom(n, 12 ), via direct probability

calculations. Try also to give a direct argument.

(c) (xx generalise to general quantile µp = F−1(p). xx)

Moment matching methods

Ex. 3.24 Moment matching estimators. Suppose Y1, . . . , Yn are i.i.d. from some model

f(y, θ), where θ = (θ1, . . . , θp)
t is of dimension p. The method of moments consists in

fitting the first p empirical moments to the theoretical ones. In detail, one computes method of

moments

M1 = Ȳ = n−1
n∑

i=1

Yi, M2 = n−1
n∑

i=1

(Yi − Ȳ )2, . . . ,Mp = n−1
n∑

i=1

(Yi − Ȳ )p,

and solves the p equations M1 = g1(θ), . . . ,Mp = gp(θ), where g1(θ) = Eθ Y , g2(θ) =

Eθ {Y − g1(θ)}2, up to gp(θ) = Eθ {Y − g1(θ)}p.

(a) For one-parameter models, explain that this amounts to fitting the empirical and

theoretical mean. If Y1, . . . , Yn are i.i.d. geom(p), see Ex. 1.24, use EYi = 1/p to find the

method of moments estimator for p. For another application, assume Y1, . . . , Yn follow

the distribution with c.d.f. yθ on [0, 1]. Find the method of moments estimator for θ.

(b) For two-parameter models, explain that the method of moments means fitting the

empirical mean and variance to the theoretical ones. If Y1, . . . , Yn are i.i.d. Beta(a, b),

see Ex. 1.18, find expressions for the method of moments estimators for a, b.
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(c) Define now hj(θ) = Eθ Y
j and Nj = n−1

∑n
i=1 Y

j
i , for j = 1, . . . , p. The ‘method of

direct moments’ is to solve the equations hj(θ) = Nj for j = 1, . . . , p. For p = 3, set ut

the two systems of three equations with three unknowns, i.e. gj(θ) =Mj and hj(θ) = Nj

for j = 1, 2, 3, and show that the solutions θ̂ = (θ̂1, θ̂2, θ̂3) are the same. Show in fact

that the two methods, fitting centralised or direct methods, are identical, in the general

case, for p ≥ 2.

(d) For a given application one may choose one’s method based on convenience and

practicality. Sometimes formulae for the direct moments are more easily found that

those for the centralised moments. The case for using centralised moments is partly

numerical safety; the Mj numbers may be much smaller than the Nj . Exemplify this by

seeting up the two equations, with two unknowns, both for the centralised moments and

for the direct moments, for the case of the Beta(a, b) distribution.

(e) Generate n = 100 data points via the equation yi = [exp{a(ξ + σNi)} − 1]/a, for

say (a, ξ, σ) = (0.33, 0.55, 0.77), with the Ni being standard normal. This is a skewed

extension of the usual normal model, which corresponds to a → 0 here. Find formulae

for the first three moments for this distribution. From your data, use the method of

moments to estimate the three parameters.

Ex. 3.25 Moment fitting estimators for the Gamma distribution. We now apply the

moment matching principle of Ex. 3.24 to the Gamma model with parameters (a, b), with

density proportional to ya−1 exp(−by) for y positive; see Ex. 1.9, where we also give the

mean, variance, skewness, kurtosis.

(a) With Ȳ and Vn the usual sample mean and sample variance, find explicit formulae

for the moment estimators â, b̂; show that â = Ȳ 2/Vn and b̂ = Ŷ /Vn.

(b) Use skewness and kurtosis formulae, in combination with Ex. ??, to show that( √
n(Ȳ − a/b)√
n(Vn − a/b2)

)
→d

(
U

W

)
∼ N2(

(
0

0

)
,

(
a/b2, 2a/b3

2a/b3, (2 + 6/a)a2/b4

)
).

Transform this, via the delta method, using Ex. ??(d), to find the limit distribution

for the moment estimators. (xx nils drafting for solution, all algebra needs check-

ing: first g1(x, y) = x2/y, derivatives 2x/y,−x2/y2 computed at the means become

(2a/b)/(a/b2) = 2b and −(a/b)2/(a/b2)2 = −b2. so
√
n(â − a) →d 2bU − b2W . then

g2(x, y) = x/y, derivatives 1/y,−x/y2 computed at the means become b2/a and−(a/b)/(a/b2)2 =

−b3/a. so
√
n(̂b− b) →d (b2/a)U − (b3/a)W . xx)

(c) (xx application in Story ii.1. delta method for g(â, b̂), like the median. xx)

(d) xx

Ex. 3.26 Moment method estimators for the exponential family. Consider an expo-

nential family type model, studied in Ex. 1.50, with density of the form f(y, θ) =

exp{θtT (y) − k(θ)}h(y). Here T (y) = (T1(y), . . . , Tp(y))
t is a collection of data func-

tions. As we saw in the exercise pointed to, many classical models are special cases. Now

suppose Y1, . . . , Yn are i.i.d. from such a model.



122 Parameters, estimators, precision, confidence

(a) Spell out the basic moment matching method, fitting empirical and model based

moments for Yi, Y
2
i , . . . , Y

p
i .

(b) The moment matching idea is however flexible enough to allow us to choose other

data functions than those associated with Yi, . . . , Y
p
i . Show that matching the moments

of T1(Yi), . . . , Tp(Yi) lead to solving the equations

T̄j = ξj(θ) = ∂k(θ)/∂θj for j = 1, . . . , p,

with T̄j = n−1
∑n

i=1 Tj(Yi).

(c) Consider the setup of Ex. 3.25, with the Gam(a, b) distribution. There we studied

moment matching estimators based on sample mean Ȳ and sample variance Vn. Show

that the principle above, using the exponential family structure, leads to fitting Ȳ = a/b

and n−1
∑n

i=1 log Yi = ψ(a)− log b.

Ex. 3.27 Mean and variance for background distribution for random sums. Suppose

there is a hidden background machine drawing first the number of dice N and then

reporting the sum Z = X1 + · · · + XN of outcomes from having thrown those N dice

(without reporting N).

(a) For the individual random Xi, show that the mean and variance are ξ = 3.50 and

σ2 = 35/12 = 2.9167. Use results from Ex. 1.37 to put of formulae for the mean and

variance of Z.

(b) If Z1, . . . , Zm are observed, from such a two-layer-random machine, with mean 33.33

and standard deviation 12.12, estimate the mean and standard deviation for N .

Quantile matching methods

Ex. 3.28 Quantile fitting estimators. [xx will be used for GoT story. and for CoW

story. fitting parameters by solving quantile matching equations. xx] An alternative

to the method of moments, described in Ex. 3.24, we may fit empirical and theoretical

quantiles (actually in several ways). If Y1, . . . , Yn are i.i.d. from a density f(y, θ), for

a parameter vector of length p, with quantiles Q(r, θ) = F−1(r, θ), we choose quantile

levels r1 < · · · < rp, and solve the p equations Qn(rj) = Q(rj , θ) with respect to the p

unknown parameters, where Qn(r) = F−1
n (r) is the empirical quantile. method of

quantiles

(a) Suppose the distribution to be fitted has c.d.f. F (y) = yθ on the unit interval. Find

the estimator corresponding to fitting the empirical to the theoretical median. Starting

with the limit distribution for the median, see Ex. 3.16, find the limit distribution for√
n(θ̂ − θ). More generally, find the estimator θ̂r corresponding to fitting the r level

quantile, and then the limit distribution for
√
n(θ̂r − θ).

(b) Consider Y1, . . . , Yn from the location Cauchy density f0(y − θ), with f0(x) =

(1/π)/(1+x2) the standard Cauchy. Its c.d.f. is F0(x) =
1
2 +(1/π) arctanx, see Ex. 1.16.

Show that the r level quantile is µ + F−1
0 (r), and that this leads to the estimator

µ̂r = Qn(r) − F−1
0 (r). Find the limit distribution for

√
n(µ̂r − µ). What quantile

level r leads to the sharpest estimator?
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(c) (xx the normal, with median and interquartile range. more generally Qn(1 − r) −
Qn(r), and find the best r. xx)

(d) (xx the Weibull, with two equations. xx)

(e) (xx point to more general versions, minimisingAn(θ) =
∑
wn(rj){Qn(rj)−F−1(rj , θ)}2.

xx)

Ex. 3.29 Moment fitting and quantile fitting for the Weibull. As a general illustration

of moment and quantile fitting estimation methods, consider the Weibull distribution

with c.d.f. F (t) = 1− exp{−(t/a)b} for t ≥ 0, see Ex. 1.54.

(a) Take e.g. (a, b) = (3.33, 1.44), and simulate n = 100 realisations. (i) Compute average

and standard deviation for these, and compute estimates (âm, b̂m). (ii) From 0.25 and

0.75 quantiles, fit the two relevant equations to compute (âq, b̂q). Take the trouble to

display three curves, the correct underlying cumulative hazard function A(t) = (t/a)b

along with the two estimated versions.

(b) Repeat the experiment many times, to see how close the two (â, b̂) is to (a, b). Also,

as an instance of a focused question, how close the two median estimates m̂ = â(log 2)1/b̂

is closest to the real median? Which of the two estimating schemes is best? We should

point here to the likelihood methodologies of Ch. 5; the maximum likelihood method

will be the winning strategy, beating both moment and quantile fitting, under model

conditions.

Minimum sum of squares and linear regression

Ex. 3.30 Linear regression and least squares estimation. Consider observed pairs (xi, Yi)

for i = 1, . . . , n, where Yi conditionally on covariate xi is modelled to have mean a0+ bxi
and common variance σ2. This is classical linear regression, widely used in theoretical

and applied statistics, most often analysed and used with the additional assumption

that the Yi are normally distributed. Importantly, the model is extended to the case

of multiple covariates below, see Ex. 3.31, 3.32, with more to come regarding statistical

testing (xx in Ex. 4.36 and one more xx). To see some of these classical methods in

action, check out Stories iii.1 and iv.1.

(a) It is helpful to reparametrise the regression line from a0 + bxi to a+ b(xi − x̄). Show

that minimising the sum of squares Q(a, b) =
∑n

i=1{yi − a− b(xi − x̄)}2 leads to

â = (1/n)

n∑
i=1

yi = ȳ, b̂ =

n∑
i=1

(xi − x̄)yi/Mn, with Mn =

n∑
i=1

(xi − x̄)2.

(b) Show that â and b̂ are unbiased, with zero covariance, and variances σ2/n and σ2/Mn.

(c) Let Q0 = mina,bQ(a, b) =
∑n

i=1{yi− â− b̂(xi− x̄)}2 be the minimum sum of squares.

Show that

Q(a, b) =

n∑
i=1

{yi − a− b(xi − x)}2 = Q0 + n(â− a)2 +Mn(̂b− b)2.

Use this to show that σ̂2 = Q0/(n− 2) is an unbiased estimator of σ2.
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(d) We have found natural and unbiased estimators for a, b, σ2, without yet making

assumptions of the underlying distributions for Yi, beyond means and variance. Assume

now, however, that the distributions are normal, so that Yi ∼ N(a+ b(xi − x̄), σ2). Show

that (i) â ∼ N(a, σ2/n); (ii) b̂ ∼ N(b, σ2/Mn); (iii) σ̂
2 ∼ σ2χ2

m/m, with m = n − 2; and

(iv) that these three statistics are mutually independent. For this last point, it may be

helpful to follow the line of proof for independence of sample mean and sample variance

for normal data, used in Ex. 1.45, now with an orthonormal matrix A with first row

(1/
√
n, . . . , 1/

√
n) and second row ((x1 − x̄)/M

1/2
n , . . . , (xn − x̄)/M

1/2
n ).

(e) Construct confidence intervals for b, for σ, and for E (Y |x0) = a + b(x0 − x̄), the

mean value at a given position x0.

Ex. 3.31 Linear multiple regression and least squares. The celebrated linear multiple

regression model remains a cornerstone success story of theoretical and applied statistics.

It is a bag of tools for investigating the extent to which covariates x influence the outcomes

of certain interest variables Y . The standard formulation of the model is as follows. The

data collected can be organised into (xi, Yi), for individuals or objects i = 1, . . . , n,

where xi = (xi,1, . . . , xi,p)
t is of dimension p and yi of dimension one. The model then

postulates that

Yi = xtiβ + εi = xi,1β1 + · · ·+ xi,pβp + εi for i = 1, . . . , n,

where the εi are i.i.d. from the normal N(0, σ2). Thus there are p+1 parameters at work

here, the regression coefficients β = (β1, . . . , βp)
t and the error distributiuon standard

deviation σ. – Note that the very classical case of yi = a + bxi + εi, associated with a

scatterplot of (xi, Yi), is a special case; see Ex. 3.30.

(a) With Y the vector of Yi, ε the vector of εi, and X the n × p matrix having

(xi,1, . . . , xi,p) as its row i, show that

Y = Xβ + ε ∼ Nn(Xβ, σ
2I),

with I the n× n identity matrix. This is a practical and compact linear algebra version

of the model formulation. We do assume that X is of full rank p, so that the symmetric

matrix XtX is invertible. This amounts to there being at least p linearly independent

covariate vectors in the X matrix; in particular, we must have n ≥ p to identify the βj
coefficients directly from data. [xx but quick pointers to later chapters with Bayes and

to regularisation and to lasso and ridge here. xx]

(b) The least squares estimator β̂ is the minimiser of Q(β) = ∥Y −Xβ∥2 =
∑n

i=1(Yi −
xtiβ)

2. Show that
∑n

i=1(Yi − xtiβ̂)xi = 0. With Σn the p × p matrix n−1
∑n

i=1 xix
t
i =

n−1XtX, show that

β̂ = (XtX)−1XtY = Σ−1
n n−1

n∑
i=1

xiYi.

Prove also that Q(β) = Q0 + n(β̂ − β)tΣn(β̂ − β), with Q0 = minall β Q(β) =
∑n

i=1 ε̂
2
i ,

writing ε̂i = Yi − xtiβ̂ for the estimated residuals.
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(c) Show that β̂ is unbiased and that its variance matrix can be written σ2(XtX)−1 =

(σ2/n)Σ−1
n .

(d) Show also that β̂ has a multinormal distribution, so that in fact β̂ ∼ Np(β, (σ
2/n)Σ−1

n ).

This is the key result about the least squares estimators. We also need precise information

for estimating σ; see Ex. 3.32.

Ex. 3.32 The residuals and their variances. The setup is an in the previous Ex. 3.31,

the Y ∼ Nn(Xβ, σ
2I) linear regression model. Above we focused on the least squared

method and the ensuing properties for the estimators of the regression coefficients, and

found β̂ ∼ Np(β, (σ
2/n)Σ−1

n ). We also need to deal carefully with estimators of σ, the

residual standard deviation, also since we encounter statistics of the type (β̂j − βj)/σ̂.

(a) From the basic Y = Xβ + ε we may define the estimated residuals as

ε̂ = Y −Xβ̂ = (I −H)Y, where H = X(XtX)−1Xt,

the so-called hat matrix, of size n×n. Show that H is symmetric and idempotent, which

means that Ht = H and H2 = H. This also implies (I −H)H = 0.

(b) Now consider the random minimum achieved by the Q(β) which was used in the

least squares operation,

Q0 = min{Q(β) : all β} = Q(β̂) = ∥Y −Xβ̂∥2 =

n∑
i=1

(Yi − xtiβ̂)
2.

The main result, arrived at below, is thatQ0/σ
2 ∼ χ2

m, with degrees of freedomm = n−p,
and that Q0 is independent of β̂. Show first that(

Xβ̂

ε̂

)
=

(
HY

(I −H)Y

)
∼ N2n(0, σ

2

(
H, 0

0, I −H

)
).

In particular, these two random vectors are independent; also, Q0 = ∥ε̂∥2 = Y t(I −H)Y

is consequently independent of Xβ̂.

(c) Show that (I−H)X = 0, which implies ε̂ = (I−H)Y = (I−H)(Y −Xβ) = (I−H)ε

and hence Q0 = εt(I −H)ε. We also reach the simple idenity

∥ε∥2 = εtHε+ εt(I −H)ε,

where the left-hand side is a σ2χ2
n and the two terms on the right-hand side being

independent. Show that the first term on the right-hand side is a σ2χ2
p. Via independence

and a moment-generating function argument show then that Q0 ∼ σ2χ2
n−p. [xx pointer

to Ex. A.33. might rearrange the sequence of exercises to have mgf before this. xx]

(d) (xx a few things regarding estimating σ. standard version is σ̂2 = Q0/(n−p) ∼ σ2χ2
m/m.

make clear that things we’ve learned for the simple i.i.d. normal setup can be used here

too, without further ado. xx)
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(e) (xx can put in estimation of γ = ctβ things here, or in separate exercise. t distribu-

tions, intervals, tests. and how to predict y0 for a new x0. xx)

Ex. 3.33 Confidence intervals for key parameters in linear regression models. Consider

the general linear regression setup of Ex. 3.31–3.32, where Yi = xtiβ+ εi for i = 1, . . . , n,

and the εi being i.i.d. N(0, σ2). The compact version of this is Y ∼ Nn(Xβ, σ
2I).

(a) Construct a 90 percent confidence interval for σ.

(b) From the general results obtained above, show that β̂j ∼ N(βj , σ
2rj/n), with rj the

diagonal (j, j) element of Σ−1
n . Show from this that tj =

√
n(β̂j − βj)/(r

1/2
j σ̂) has a tm

distribution, with degrees of freedom m = n− p, and construct a confidence interval for

βj from this. If a 99 percent confidence interval for βj is outside zero, how can this be

interpreted and used?

(c) More generally, consider γ = ctβ = c1β1 + · · · + cpβp, a linear combnination of the

regression coefficients. Find the distribution of γ̂ = ctβ̂, and construct a confidence

interval. This may be used to assess the size of β1 − β2, of β1 − 1
2 (β2 + β3), and similar

constrasts. (xx could go on to max over all contrasts, Scheffé things. xx)

(d) Show that n(β̂ − β)tΣn(β̂ − β) ∼ σ2χ2
p. Use this to construct a confidence region,

actually a confidence ellipsoid, for the full β vector.

Ex. 3.34 Predicting the next y. Suppose linear regression analysis has been carried

out, for a given dataset (x1, y1), . . . , (xn, yn). How can we predict what happens with

Y0, associated with another covariate vector x0? This could be for an individual outside

the dataset, or in a time context, speculating about the next datapoint in a sequence.

An illustration of methods given below is in Story iv.1.

(a) Assume the regression data are of the form yi ∼ N(xtiβ, σ
2) for i = 1, . . . , n, as

with Ex. 3.31, and consider a new x0, for which the not yet unobserved Y0 is inde-

pendent of the other data, and with distribution N(xt0β, σ
2). Show that ŷ0 = xt0β̂ ∼

N(xt0β, x
t
0Σ

−1
n x0 σ

2/n), and use this to form a confidence interval for the mean of Y0, as

opposed to for Y0 itself.

(b) Then show that

Y0 − ŷ0 ∼ N(0, σ2(1 + n−1xt0Σ
−1
n x0/n))

Construct a prediction confidence interval for Y0 based on this. Comment on the situation

with a large n, and on the difference between confidence for Y0 and its mean.

(c) Then consider the classic linear regression case with only one variable studied in

Ex. 3.30, with Yi ∼ N(a + b(xi − x̄), σ2). For predicting a not yet observed Y0 ∼
N(a+ b(x0 − x̄), σ2), demonstrate that

Y0 − {â+ b̂(x0 − x̄)} ∼ N(0, σ2{1 + 1/n+ (x0 − x̄)2/Mn}),

with Mn =
∑n

i=1(xi − x̄)2. Show that this leads to the 95 percent confidence band

Y (x0) ∈ â+ b̂(x0 − x̄)± cσ̂{1 + 1/n+ (x0 − x̄)2/Mn}1/2,
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for an appropriate range of x0 values, where c = t0.975,n−2 the t upper quantile. Illustrate

this with a simulated dataset, to see both where the band is tight and where it becomes

very broad. (xx two more sentences. easiest to predict for individuals not far from the

centre of the covariate distributions. xx)

Ex. 3.35 Linear regression outside normality. The aim here is to show and appreciate

that the classical coefficient estimators in linear regression setups are still approximately

normal, even when the error terms distribution is not normal. That this is so is essentially

thanks to basic large-sample theory, as partly summarised in Ex. 3.11, and specifically

to the Lindeberg type theorems of Ch. 2; see in particular Ex. 2.37. (xx pointer to other

regression large-sample results in Ch. 5. xx)

(a) We first deal with a simple setup with a single regression coefficient. Suppose yi =

xiβ + εi for i = 1, . . . , n, with covariates xi and error terms εi being i.i.d. from a zero-

mean distribution with finite variance σ2. Show that the estimator minimising Qn(β) =∑n
i=1(yi − xiβ)

2 is β̂ =
∑n

i=1 xiyi/Mn, where Mn =
∑n

i=1 x
2
i . Show further that β̂ is

unbiased with variance σ2/Mn.

(b) Then consider Zn =M
1/2
n (β̂ − β). Show that it has zero mean and variance σ2, and

that it can be written
∑n

i=1(xi/M
1/2
n )εi.

(c) Deduce that β̂ is approximately normal, even if the εi are not normal, provided

merely that Dn = maxi≤n |xi|/M1/2
n → 0. If in particular (1/n)

∑n
i=1 x

2
i stays bounded,

then the natural condition is (1/
√
n)maxi≤n |xi| → 0.

(d) Then consider the general linear regression model Yi = xtiβ + εi of Ex. 3.31, with

the xi being p-dimensional covariate vectors and β a p-dimensional vector of regression

coefficients. We take the εi to be i.i.d. with mean zero and finite variance σ2, but do

not stipulate normality. The least squares estimator is β̂ = Σ−1
n (1/n)

∑n
i=1 xiYi with

Σn = n−1
∑n

i=1 xix
t
i. It is unbiased with variance matrix (σ2/n)Σ−1

n , assumed to have

full rank. Assume Σn → Σ, a full rank matrix. Show that Zn =
√
n(β̂−β) →d Np(0,Σ),

under the condition Rn = (1/
√
n)maxi≤n ∥xi∥ → 0.

(e) Assume now that the xi are drawn i.i.d. from a distribution over the covariate space,

with finite variance matrix. Show that Rn →pr 0.

(f) Argue that the fine-tuned finite-sample confidence methods, developed in Ex. 3.31–

3.32 under exact normality, continue to hold in the large-sample sense, even if the distri-

butions are not normal. Give conditions for such results to hold.

(g) Suppose the same type of phenomenon is studied in both Denmark and Sweden, with

the same meaning for Y and covariates x1 and x2. This leads to regression estimators

β̂D and β̂S for the two analyses. Construct confidence intervals for dj = βD,j − βS,j , for

j = 1, 2.

Ex. 3.36 Least squares estimation in other setups. (xx to come. point is that minimising

Q(θ) =
∑n

i=1{yi − ξi(θ)}2 is a general principle, also outside linear regression. xx)

(a) (xx some easy cases. binomial. normal mean. poisson. xx)
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(b) Assume y1, . . . , yn are i.i.d. and gamma distributed (a, b), with known a. Find the

least squares estimator b̂. Then find the mean and variance of this estimator.

(c) (xx regression, with mean a+ bxi, then mean a exp(bxi). xx)

Notes and pointers

(xx to come. we point to various matters, genesis of crucial concepts, and also point to

chapters ahead. explain that yes, we’ve touched and used CLT and delta method and a

bit more here, but with details and more material to come in Ch 4. xx)

[xx CLT for binomials: associated with the famous names de Moivre (who showed a

version of this in 1733) and Laplace (who had a clearer and more general proof in 1812).

xx]

Briefly genesis of neravencvo Markova, the Markov, and the neravencvo Qebyxëva,
the Chebyshov (often anglisised to Chebyshev, but his name was really Qebyxëv). men-

tion Kahneman et al. (2020).



I.4

Testing, sufficiency, power

In previous chapters we have learned about classes of distributions, their param-

eters, ways of estimating these from data, along with assessment of precision and

confidence intervals. The present chapter goes on to the fundamental statistical re-

porting tool of hypothesis testing. Statistical testing of hypotheses are data-based

rules for when to reject (and hence, when not to reject) a hypothesis about the

parameters of a model. Theory is developed to construct such tests in quite gen-

eral setups. A test is constructed to have a certain significance level, like 0.05,

the intended low probability of rejecting the hypothesis if it is in fact true. It

also has has a power function, the probability of rejection as a function of how far

the model parameters might be from the hypothesis. We learn the basics of the

Neyman–Pearson theory for optimal testing, and see it panned out for many situ-

ations, including the general setting of exponential families. The fruitful concept

of sufficiency, the notion that a lower-dimensional vector of summaries contains all

statistical information about a model, is also developed in this chapter, with im-

plications for both estimation and testing. (xx more to come in Chapters 5, 7, 8.

xx)

Key words: ancillarity, completeness, conditional tests, exponential family, factori-

sation theorem, Neyman–Pearson optimality, power, p-value, sufficiency, testing,

Wald ratios

In the broad context of analysing data from models, the previous chapter dealt generally

speaking with estimators of relevant parameters, their precision, and comparisons, lead-

ing in particular to confidence intervals. The present chapter develops the methods and

applications further, in the direction of statistical testing of null hypotheses. Studying

such tests involves their interpretation, construction, properties, performance, along with

connections to confidence and yet other themes.

Consider in general terms data y stemming from a model with a parameter vector

θ = (θ1, . . . , θp), and suppose one wishes to test the null hypothesis H0 that θ is inside a

well-defined subset Θ0 of the full parameter region Θ. Precisely what constitutes a null

hypothesis is a matter of scientific and statistical context, often reflecting the intentions

and the overall aims of the data collection and its analysis. The null hypothesis is typically

a statement, concerning the nature of the mechanisms studied, the incorrect rejection

129
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of which one attempts to avoid. A simple illustration is testing whether a particular

regression coefficient is equal to zero (so H0 could be ‘β3 = 0’), or testing whether two

parameters, perhaps for two groups, are equal (so H0 would be ‘θA = θB ’).

A test for such a hypothesis is a rule saying ‘H0 is to be rejected if data y fall in

the set R’, along with the complementary statement ‘H0 is not rejected if data y fall

in the set Rc’. We talk here of the rejection region R and the acceptance region Rc. A

fundamental aspect of such a test to look for is its significance level, typically meant to

be a relatively small probability, like 0.05 or 0.01 or even smaller. We say that the test

has level α provided the level of a

test

Prθ(reject H0) ≤ α for all θ ∈ Θ0. (4.1)

With level 0.01 one is guaranteed such a low chance of falsely claiming that H0 is wrong,

if it is indeed correct. So for the illustrations briefly alluded to above, when statisticians

after careful analyses reject ‘β3 = 0’ or ‘θA = θB ’, therefore going on to claim that their

alternatives are valid, with ‘β3 ̸= 0’ and ‘θA ̸= θB ’, these claims are seen as trustworthy

(and may make into publications), since the probability of these claims being false is so

low.

Often tests are carried out via appropriate test statistics, as when constructing a

T = T (y), a function of the data y, with the property that T ought to be inside some

normal and well-understood range under H0 conditions (we shall meet many cases of

determining the null distribution of such test statistics), but bigger, if H0 is wrong. In

such cases, the rejection region takes the form R = {y : T (y) ≥ t0}, with t0 the rejection

threshold, chosen to have Prθ(T (Y ) ≥ t0) ≤ α for all θ congruent with H0. test statistic,

rejection

threshold
Conceptually and operationally, there is a certain direction implied when setting up

an hypothesis H0 and its alternative. Rejecting H0, with a test with low level testing

level α, leads to a positive claim about the alternative being true; the observed data have

landed in a region which if H0 were true has low probability. On the other hand, not

rejecting the null hypothesis should not be seen as ‘verifying’ H0; one needs to be content

with the not so bold statement ‘the observed data do not provide sufficient evidence for

claiming that H0 does not hold’.

We are also keenly interested in the power of a test, which is the detection chance

Prθ(reject H0) as a function of θ, in the alternative parameter domain Θ − Θ0. Thus

some tests are stronger than other tests with the same level, and we learn recipes for

constructing such in the exercises below. The power of a test clearly depends on the

quality of data, and typically of the sample size, as we shall see in exercises. Thus

detecing that θA ̸= θB , for parameters of two groups, in a setup where there really is a

difference, becomes more likely with more data.

Below we also define, discuss, and use p-values, which are commonly quoted in most

branches of applied statistics work, typically to indicate how clear a potential finding is.

The idea is to quantify how unlikely it is, to observe what is actually observed, if some

relevant null hypothesis H0 is actually true. If the test is set up to reject the null if an

appropriate test statistic T is sufficiently large, we’re after p = PrH0
(T ≥ tobs), with tobs

the observed T for the given dataset. Some care is needed since that probability might

depend on parameters under H0. The more careful version is the p-value
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p = max{Prθ(T ≥ tobs) : θ ∈ Θ0}. (4.2)

A small p-value, like p ≤ 0.01, casts serious doubt on H0, since the observed tobs is so

unlikely. A rephrasing of the testing scheme, with significance level say 0.01, is to reject

H0 if p ≤ 0.01.

A classic result for testing theory is the Neyman–Pearson Lemma, which in an

idealised setup with just two possible densities identifies the most powerful method for

testing one density against the other; see Ex. 4.7–4.9. This sharpens further questions

for more general setups, and we manage to find optimal tests in a variety of setups,

including for the broad exponential family class. This also necessitates exploring and

developing certain themes of independent interest and use, those of sufficiency, ancillarity,

completeness, conditional testing; see the string of exercises starting with Ex. 4.16. A

core idea in that terrain is that of data compression; for various models, a low-dimensional

vector of data summaries contains all relevant statistical information.

(xx then one paragraph with pointers to other chapters and perhaps to a few of the

stories. xx)

Testing, testing

Ex. 4.1 Testing a null hypothesis. Here we introduce the notion of null hypotheses and

their testing in a few simple setups.

(a) The probability p = Pr(A) of a certain event is meant to be p0 = 0.33, if the ma-

chinery around it works as it should. To test this one carries out the relevant experiment

n = 100 times, and the event takes place y = 44 times. Should you reject the 0.33 hy-

pothesis? Show that with Y ∼ binom(n, p), the statistic T = (Y − np0)
2/{np0(1− p0)}

is approximately a χ2
1, under the null assumption that p = p0. Show also that W tends

to be bigger than a χ2
1, if p ̸= p0. Show that when using T as test statistic, the p-value of

(4.2) becomes p = Prp0
(T ≥ tobs), with tobs the value of T seen with yobs = 44. Compute

this p-value, and decide whether the p = 0.33 hypothesis should be rejected at the 0.05

level.

(b) Suppose (X,Y, Z) is trinomial with sum n and probabilities (p, q, r); see Ex. 1.5.

For concreteness, suppose a theory holds that (p, q, r) = (0.20, 0.30, 0.50), and that

(X,Y, Z) = (42, 47, 111) is observed. Is this enough to reject the theory in question?

Show that

W = (X − np)2/(np) + (Y − nq)2/(nq) + (Z − nr)2/(nr)

has mean equal to 2, and that it is approximately a χ2
2, using the multidimensional CLT

for (X,Y, Z). Explain how this may be used to test the theory mentioned, and carry out

the test. This is actually the classic Pearson chi-squared test for multinomials; see Story

vii.1 for details, generalisations, and discussion.

(c) You’re rolling your die, but it takes you as many as yobs = 15 rolls to get your first

‘6’. Does this make you suspect that the probability p of a ‘6’ is not 1/6, but lower?

With testing level α = 0.05, what is the set of suspicious outcomes of Y , the number of

throws to get the first ‘6’?
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Ex. 4.2 Connections from confidence intervals to testing. Though confidence intervals

and testing are two different reporting tools, when summarising inference, there are

clear connections. Suppose ϕ is a parameter of inference, perhaps a function of model

parameters, for which we can build both confidence intervals and tests.

(a) Suppose one needs to test the one-point null hypothesis that ϕ = ϕ0, a given value,

and that [L,U ] is a 99 percent confidence interval. Show that the test consisting in

rejecting, if ϕ0 is outside this interval, has level 0.01.

(b) Suppose on the other hand that there is a well-defined 0.01 level test procedure for

testing ϕ = ϕ0, against ϕ ̸= ϕ0, for each candidate value ϕ0. Gather together in a set A

all the ϕ0 values which are not rejected by the corresponding 0.01 level test. Show that

Prϕ(ϕ ∈ A) = 0.99, making A a 99 percent confidence region.

(c) Go through the relevant details, from confidence interval to test and vice versa, for

the simple prototype case of the observation being Y ∼ N(θ, 1).

Ex. 4.3 Confidence intervals for quantiles. Let Y1, . . . , Yn be i.i.d. from a continuous

density, positive on its sample space. How can we construct confidence intervals for the

median µ = F−1( 12 ), and more generally for quantiles µq = F−1(q)? There are several

approaches here, but here we give the basic method via the empirical c.d.f.

(a) Let Fn be the empirical c.d.f. for the data, see Ex. 3.9. If µ0 is the true median,

show that Fn(µ0) is a simple Bn/n, with Bn ∼ binom(n, 12 ), and that this implies

Wn(µ0) =
√
n{Fn(µ0) − 1

2}/
1
2 being approximately a standard normal. Argue that a

natural 0.05 level test for µ = µ0 is to accept the hypothesis provided |Wn(µ0)| ≤ 1.96.

(b) Following the general testing-to-confidence connection of Ex. 4.2, show that the

associated 95 percent confidence interval becomes cin = {µ : |Fn(µ)− 1
2 | ≤ 1.96/(2

√
n)}.

In other words, we may read off the interval from a plot of Fn, without knowing or taking

on board the details of the exact or approximate distribution of sample quantiles, as with

Ex. 3.18.

(c) Generalise to the case of any quantile µq = F−1(q). Show that the recipe above

leads to the confidence interval cin = {µq : |Fn(µq) − q| ≤ zα{q(1 − q)}1/2/
√
n}, where

Pr(|N(0, 1)| ≤ zα) = α, the confidence leve. For an illustration of these methods, check

Story i.6, where we plot the empirical c.d.f. and read off confidence intervals for quantiles

F−1(q) at levels 0.10, 0.50, 0.90, for the weight of mothers pre pregnancy.

(d) Discuss ways in which more accurate confidence intervals can be constructed, using

the exact binomial distribution; for the median, for example, nFn(µ) ∼ binom(n, 12 ).

This leads to slight modification of the horizontal bands when reading off intervals from

the empirical c.d.f.

Ex. 4.4 t testing, one and two samples. Testing the mean based on a sample of normal

observations is a recurring problem, in several guises, and with the famous t test being

the canonical procedure; details are given below. We also go through the basics for

testing the difference of means for two normals samples. Due to the connections to
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confidence intervals discussed in Ex. 4.2 we also find accurate confidence intervals for

the key parameters. Beyond their concrete relevance and repeated use in these standard

setups, the t testing procedures are important since similar constructions can be worked

with in large classes of more complicated setups, but then typically with approximations

to key distributions, rather than the exact solutions found under these classic strict

modelling assumptions.

(a) Suppose X1, . . . , Xn are i.i.d. N(ξ, σ2), so far assuming σ to be known, and that

one wishes to test H0 : ξ = ξ0 against the alternative that ξ ̸= ξ0, where ξ0 is some

appropriate given value, like zero. Using the exact distribution of X̄, cf. Ex. 1.2, show

that Z = (X̄ − ξ0)/(σ/
√
n) =

√
n(X̄ − ξ0)/σ is standard normal under H0, and that |Z|

will tend to be bigger than a normal if H0 is not true. Explain that the test which rejects

H0 when |Z| > 1.96 has level 0.05.

(b) For the more realistic case of σ not being known, the natural construction is the t

statistic t =
√
n(X̄−ξ0)/σ̂, with σ̂ the empirical standard deviation. Show from Ex. 1.46

that t ∼ tn−1 under H0, and write down a precise 0.05 level test.

(c) Suppose now that the mean ξ for the population of Xi is to be compared with the

mean η for another population, where we have i.i.d. data Y1, . . . , Ym ∼ N(η, σ2). So the

task is to test H0 that ξ = η. Show first that Ȳ − X̄ ∼ N(η − ξ, σ2(1/m + 1/n). To

build a t statistic we need an estimator for the denominator. Writing σ̂1 and σ̂2 for the

empirical deviances for samples 1 and 2, show that with

σ̂2 = c1σ̂
2
1 + c2σ̂

2
2 , using c1 = (n− 1)/(n+m− 2), c2 = (m− 1)/(n+m− 2),

we have σ̂2 ∼ σ2χ2
n+m−2/(n + m − 2), independent of X̄ − Ȳ . Conclude that t =

(X̄ − Ȳ )/R ∼ tn+m−2 under H0, where R = σ̂(1/m+ 1/n)1/2.

(d) Use these building blocks to also construct a 90 percent confidence interval for d =

ξ − η.

Ex. 4.5 Wald tests. Here we present the basics of so-called Wald tests, a general

and practical way of forming tests via approximate normality. Such tests are used very

routinely when looking for and reporting findings about regression coeffiecients in all

standard regression models; see Story i.6 for an illustration of this. The Wald tests can

be constructed almost immediately, from the confidence interval construction of Ex. 3.11,

via the interval-to-test connection of Ex. 4.2, but we tend to a few details to allow for

potential simplifications of assumptions. – Assume Y1, . . . , Yn comprise the data (not

necessarily i.i.d.), from a suitable model with vector parameter θ. Suppose further that

ϕ = ϕ(θ) is a focus parameter, for which we need to test ϕ = ϕ0, for a given null value

ϕ0.

(a) Suppose there is an estimator ϕ̂ with the property that
√
n(ϕ̂− ϕ) →d N(0, τ2), and

that there is a consistent estimator τ̂ for this limit spread τ . Show as with Ex. 3.11 that

Wn =
√
n(ϕ̂ − ϕ)/τ̂ →d N(0, 1). Show that the arguments go through, with a limiting

standard normal, for Wn,0 =
√
n(ϕ̂ − ϕ0)/τ̂0, at the null hypothesis, as long as τ̂0 is
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consistent for τ at this null position; also, technically speaking, we only need to establish√
n(ϕ̂ − ϕ0) →d N(0, τ2) at the null hypothesis. Conclude that the test which rejects

ϕ = ϕ0 when |Wn,0| ≥ 1.96 has level approaching 0.05 (and of course similarly with other

chosen testing levels; level 0.01 corresponds to threshold 2.576, etc.).

(b) Explain that p = Pr(|N(0, 1)| ≥Wn,0,obs) is an approximation to the exact p-value.

(c) Suppose X ∼ binom(100, p), with a need for testing p = 0.33. Set up a Wald

test, and compute the p-value, if xobs = 44. Suppose then that there is an additional

Y ∼ binom(100, q), and that one wishes to test p = q. Set up a Wald test, and compute

the p-value, if (X,Y ) are observed to be (44, 55).

Ex. 4.6 When confidence intervals for two parameters overlap. Suppose confidence

intervals for parameters a and b overlap. It might sound plausible that the null hypothesis

a = b will then not be rejected. To check aspects of this and related questions, consider

a prototype setup where â ∼ N(a, 1) and b̂ ∼ N(b, 1) are independent.

(a) With confidence level 1− α, show that the canonical intervals are â± z0 and b̂± z0,

with z0 = Φ−1(1 − α/2), e.g. the standard 1.96 for level 0.95. Show that overlapping

intervals corresponds to |d̂| ≤ 2z0, where d̂ = b̂− â ∼ N(b− a, 2)

(b) Consider the test of a = b which rejects when the intervals for a and b are dis-

joint. Show that this test has considerably lower significance level than α; for 95 percent

intervals this level is 0.0056.

(c) Yes, it is possible to have overlapping 95 percent intervals and yet reject a = b at

level 5 percent. Identify the range of d̂ where this happens.

Neyman–Pearson optimal testing

Ex. 4.7 The Neyman–Pearson Lemma: the basics. (xx finetune the intro prose here.

xx) Suppose data y come from a density f , where there are just two possibilities: either

f = f0, which is the null hypothesis to be tested, or f = f1, the alternative. Here there’s

an optimal strategy, made clear by the so-called Neyman–Pearson Lemma, part of the

49-page landmark paper Neyman and Pearson (1933). For simplicity of presentation we

consider the continuous case, where f0 and f1 are densities on the relevant sample space

Y (which can be multidimensional). – A test function is a T : Y → [0, 1], with T (y) the

probability of rejecting f0 if the the data take on value y. This setup even allows the

possibility of an element of randomisation, as in ‘if y turns out be 3.33 I throw some coins

and I reject H0 with probability 0.77’. Once in a blue while this might be of relevance,

with discrete data, but in practice such a test function T (y) takes on only values 1, for

a rejection set R, and 0, for the complementary acceptance set Rc.

(a) Show that the probability of rejecting the null, if the null is true, can be written

Prf0(reject) =
∫
f0T dy.

(b) For a given testing level α, like 0.01, let T ∗ be the test which rejects when f1(y)/f0(y) ≥
c, with c tuned such that

Prf0(T
∗ rejects) =

∫
y : f1(y)/f0(y)≥c

f0(y) dy = α.
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Let T be any other test function with the same level α. Show that the power difference

at f1 can be written

πT∗(f1)− πT (f1) =

∫
f1(T

∗ − T ) dy =

∫
(f1 − cf0)(T

∗ − T ) dy.

(c) Show that among all possible tests, with level α, the T ∗ has the strongest detectionthe Neyman–

Pearson Lemma power at position f1.

(d) (xx a bit more, to cover discrete case; and we may also allow competitors with∫
f0T < α. xx)

Ex. 4.8 The Neyman–Pearson Lemma: more details. Here we tend to some further

details, related to the Neyman–Pearson Lemma and its proof, in Ex. 4.7.

(a) For two positive densities f0 and f1 defined on the same sample space, as with the

Neyman–Pearson Lemma, consider the event Ac = {f1(Y )/f0(Y ) ≥ c}. Show that the

function p(c) = Prf0(Ac) =
∫
f1(y)≥cf0(y)

f0(y) dy is a continuous and monotone function,

starting at 1 and ending at 0, when c travels through [0,∞). Hence deduce that there

for given α really is a unique c in the Neyman–Pearson recipe.

(b) Illustrate the p(c) = Prf0(Ac) in a few concrete situations, including (i) f0 ∼ N(0, 1)

and f1 ∼ N(1, 1); (ii) f0 ∼ Gam(2.2, 3.3) and f1 ∼ Gam(3.3, 2.2).

(c) (xx something about power at f1, when testing f0, is different from power at f0,

when testing f1. link to other exercise. xx)

Ex. 4.9 The Neyman–Pearson Lemma: applications. For the simple two-possibilities

setup we learn from the Neyman–Pearson lemma that there is a clear recipe for setting

up the optimal test for f = f0 against f = f1. Here are some examples.

(a) Suppose Y ∼ N(θ, 1). Show that the optimal test of level α = 0.01, for testing θ = 0

vs. θ = 1.234, is to reject if Y ≥ z0.99 = 2.326, the upper 0.01 point of the standard

normal.

(b) In this situation, verify that one finds the very same optimal 0.01 level test, for any

alternative point θ1 > 0. Hence the Y ≥ z0.99 test is uniformly most powerful, against

all positive alternative.

(c) Generalise this to the case of data Y1, . . . , Yn being i.i.d. from the normal N(θ, σ2),

with known σ. Show that the test which rejects θ = 0 against θ > 0 when Zn =
√
nȲ /σ >

z1−α is uniformly most powerful, among all tets with level α; here z1−α = Φ−1(1 − α).

Find its power function, and draw it in a diagram, for θ0 = 1.234, σ = 1, and for

n = 10, 20, 30.

(d) Let Y1, . . . , Yn be i.i.d. from the N(θ0, σ
2) distribution, with θ0 known. Consider the

problem of testing σ = σ0 against σ > σ0, at level say 0.01, where σ0 is a prescribed null

value. Show that the test which rejects when Vn =
∑n

i=1(Yi − θ0)
2 ≥ γn,0.99, the 0.99

quantile of the χ2
n, is uniformly optimal. Find its power function.
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(e) Consider f0, the standard normal, and f1(y) = 1
2

√
2 exp(−

√
2|y|); they have both

zero mean and unit variance. Find the optimal test for f0 against f1, with level 0.05,

and find its detection power at f1. Then do the opposite, constructing the best test at

level 0.05 for f1 against f0, and find the power at f0.

(f) (xx with n = 10 data points, not merely one. put up the tests, find their powers.

comment. make separate exercise to see optimal tests for f0 against f1, with n data

points, KL approximations. xx)

(g) Suppose Y1, . . . , Yn are i.i.d. from the exponential θ exp(−θy). Find the strongest

0.10 level test for θ = θ0 against an alternative θ1 > θ0. Your test will not depend on the

θ1, as long as it is to the right of θ0; hence this test is uniformly most powerful against

these alternatives.

Ex. 4.10 Density ratios and optimal testing: the normal and the Cauchy. The Neyman–

Pearson recipe is to reject when the density ratio f1(y)/f0(y) is sufficiently big. This

pans out differently in different situations, as illustrated here.
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Figure 4.1: Left panel: for the Cauchy density model, see Ex. 4.10, ratios f(y, θ1)/f(y, 0)

(full line) and f(y, θ2)/f(y, 0) (slanted) are shown, for alternative values θ1 = 0.50 and

θ2 = 1.00 to the null. Also indicated are the rejection intervals [a1, b1] and [a2, b2], for

the optimal tests against θ1 and θ2. Right panel: two pairs of power. Testing ξ = 0

against ξ > 0, see Ex. 4.12, for a normal sample of size 10 (lower pair) and 20 (upper

pair), at test level 0.05, as a function of ξ/σ. The lower power is for the t test (slanted,

red); the upper power if for the normal based test (full, black), which requires that σ is

known.

(a) For a single observation Y , consider testing f0 = N(0, 1) against f1 = N(θ1, 1), with

θ1 positive. Show that

f1(y)

f0(y)
=

exp{− 1
2 (y − θ1)

2}
exp(− 1

2y
2)

= exp(θ1y − 1
2θ

2
1).
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Verify that this is a monotone function in y, regardless of the value of θ1 > 0. Argue

that ‘reject f0 provided Y is big enough’ becomes the uniformly optimal test. Exhibit

the rejection threshold in Y ≥ c, if the significance level is to be 0.10.

(b) The situation is rather different for the case of the Cauchy density f(y, θ) = (1/π){1+
(y − θ)2}−1. Suppose we wish to test θ = 0 versus a positive θ1. Show that

f1(y)

f0(y)
=
f(y, θ1)

f(y, 0)
=

1 + y2

1 + (y − θ1)2
,

and draw this function in a diagram, for a few values of θ1.

(c) For a concrete illustration, work through the alternative cases θ1 = 0.50 and θ2 =

1.00, for each case finding the rejection interval, say [a1, b1] for the first and [a2, b2] for

the second, to give the optimal test, of level 0.10. (xx answers: [0.933, 1.804] for θ1;

[1.161, 2.388] for θ2. construct a version of Figure 4.1, left panel. xx) – The point is that

these rejection regions are different; the optimal test depends on the specific alternative,

and there can be no uniformly optimal test.

(d) Again for the sake of concreteness, compute the optimal possible power, for any 0.10

level test, at θ1 = 0.50 and at θ2 = 1.00. Compare these powers with that of the simple

test Y ≥ 3.078.

(e) (xx there are two drastic differences here, between the simple normal and the non-

simple Cauchy. the first is that the log-density-ratioR(y, θ0, θ1) = log f(y, θ1)−log f(y, θ0)

is monotone, for the normal, and not at all monotone for the Cauchy. the second is that

of there being a simple one-dimensional sufficient statistic, in the case of Y1, . . . , Yn from

the normal, whereas no such statistic exists for the Cauchy. where is sufficiency in kiosk?

xx)

(f) (xx something about more regularity with n data points; above we just did n = 1.

xx)

Ex. 4.11 Optimal average power. Supppose Y is observed, perhaps a full vector, from

a density f , where one wishes to test the null hypothesis f = f0, a given density. As we

saw in Ex. 4.10, there are cases where there is no uniformly optimal test, against all or

a subset of alternatives; the optimal test at f1 might be different from the one at f2. In

one-parameter models, this is caused by the log-density-ratio not being monotone.

(a) Consider alternative densities f1, . . . , fm, given nonnegative weights of importance

w1, . . . , wm. These may be taken to have sum 1. The weighted average power of a test

T , at these points and with these weights, is

π̄T =

m∑
j=1

wjπT (fj) =

m∑
j=1

wj

∫
fj(y)T (y) dy,

with πT (fj) the power at fj . Let f̄(y) =
∑m

j=1 wjfj . Show that this average power is

maximised, among all test functions T (y) with level α at the null, by the T ∗(y) which

rejects H0 when f̄(y)/f0(y) ≥ c, with c tuned to give rejection probability α at the null.
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(b) For a one-parameter model f(y, θ), consider testing of θ = θ0 against θ > θ0. For

any test function T (y) with rejection level α at the null, consider in general terms the

weighted average power

π̄T =

∫
θ>θ0

πT (θ) dw(θ),

with πT (θ) =
∫
f(y, θ)T (y) dy the power of the test at position θ. Show that π̄T =∫

θ>θ0
f̄(y)T (y) dy, featuring the density f̄(y) =

∫
θ>θ0

f(y, θ) dw(θ). This is the model

density averaged over all alternatives to the null, as weighted by the dw(θ) measure.

(c) Show that the test maximising this weighted average power is rejecting the null if

f̄(y)/f(y, θ0) ≥ c, with c tuned to have null level α.

(d) (xx a little more. the marginal density, or predictive density, with a link to Bayes, but

specifically with a ‘prior’ over the alternative space. can take Cauchy with a exp(−aθ)
over the halfline. xx)

(e) (xx can look at N(ξ, σ2) model, testing the null that f = N(0, 1), against the alter-

native that ξ > 0, or σ > 1, or both. show first that the NP test against alternatives

(1.1, 2.2) and (2.2, 3.3) are indeed different, so there is no uniformly most powerful test.

then maximise average power, using a weight density we give our readers, with

f̄(y1, . . . , yn) =

∫
ξ>0,σ>1

{ n∏
i=1

f(yi, ξ, σ)
}
dw(ξ, σ).

perhaps a data example. xx)

(f) (xx make sure we have a good version on board of a lemma which says the Wilks test

Dn = 2{ℓn,max − ℓn(θ0)} is an approximation to this optimal weighted power test. can

be in Ch 4, but then pointed to already here. xx)

Ex. 4.12 The t test and its power. Suppose Y1, . . . , Yn are i.i.d. from the N(ξ, σ2), with

testing of ξ = 0 required against ξ > 0. This is simple and standard, in the case of σ

being known, but needs the t test in the case of σ being unknown and estimated from

the data, as we have seen in Ex. 4.4, Setting up the test uses the relevant t distribution,

from t =
√
nȲ /σ̂ ∼ tn−1, but for studying the power function also the noncentral t

distribution is required.

(a) Consider first the case of σ being known. Show that z =
√
nȲ /σ is standard normal

under the null, and that the 0.05 level test becomes that of rejecting when z ≥ z0 =

Φ−1(0.95) = 1.645.

(b) Show that at a given ξ > 0, we have z ∼ N(
√
nξ/σ, 1), and that this leads to the

power function πn,N (ξ/σ) = Φ(
√
nξ/σ − z0). Compute and display this power function

for the case of n = 10 and n = 20, as with the black full curves of Figure 4.1 (right

panel).
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(c) Then consider the more complex situation where σ is not known, needing the empir-

ical standard deviation σ̂ of (1.5). We have seen in Ex. 1.46 that

t =

√
nȲ

σ̂
=

√
nȲ /σ

σ̂/σ
∼ N(0, 1)

(χ2
df/df)

1/2
,

with nominator and denominator being independent, and where the degrees of freedom is

df = n− 1. The probability density gdf(x) and cumulative distribution Gdf(x) of this tdf
distribution are moderately complicated, see the exercise mentioned, but that does not

concern us much, as long as we can consult a table or run an algorithm to find associated

quantiles and probabilities. Show hence that the t test, with level 0.05, must consist of

rejecting when t ≥ t0 = G−1
df (0.95). Using qt(0.95,df) in R, we find 1.833 and 1.729

for n = 10 and n = 20. Check that qt(0.95,df) becomes close to 1.645 as df increases,

and explain why.

(d) For the power of the t test, show that πn,t(ξ/σ) = Prξ/σ(t ≥ t0), where

t =

√
nȲ

σ̂
∼ N(

√
nξ/σ, 1)

(χ2
df/df)

1/2
,

again with nominator and denominator independent. Explain that the power function

therefore can be written

πn,t(ξ/σ) = Prξ/σ(t ≥ t0.m) = 1−Gm(t0,m,
√
nξ/σ),

with Gm(x, λ) denoting the cumulative distribution for this noncentral t with degrees of

freedom m and noncentrality parameter λ. This function is complicated, but can easily

be found numerically via e.g. pt(x,m,lambda) in R. Construct a version of Figure 4.1,

right panel, perhaps with other sample sizes than 10, 20. Comment on your findings.

(e) Describe how the two-sided tests and power functions pan out here, whem ξ = 0 is

to be tested against ξ ̸= 0. Make a corresponding version of Figure 4.1, right panel, with

the relevant two-sided power functions.

Ex. 4.13 Establishing that a parameter is close to zero. Suppose δ is some effect

parameter, where the scientific context relates to establishing that it is close to zero. In

such situations it might be natural to test H0 : |δ| ≥ ε, for some known small threshold ε,

against the alternative that δ ∈ (−ε, ε). In some applications the δ might be the difference

between two effect parameters, aiming to infer that these are close. This is turning the

tables, somehow, compared to the more traditional setups, where the hypothesis to be

tested is that a parameter is close to zero, against the alternative that it is some distance

away.

(a) To study the main features of such a situation, consider a prototype setup with

i.i.d. observations Y1, . . . , Yn being N(δ, 1). Show that
√
nȲ ∼ N(

√
nδ, 1), which implies

Zn = nȲ 2 ∼ χ2
1(nδ

2).

(b) Explain that it is natural to reject the null, and hence claim that |θ| is small, if

|
√
nȲ | ≤ c, or equivalently Zn ≤ c2, for c calibrated to reach testing level e.g. α = 0.05.

This is equivalent to Zn ≤ c2. Show that Prδ(|
√
nȲ | ≤ c) = Γ1(c

2, nδ2), in terms of the

c.d.f. for the noncentral χ2
1.
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Figure 4.2: Left panel: power functions for the bioequivalence tests of Ex. 4.13, with

n = 200 (slanted curve) and n = 400 (full curve), and threshold ε = 0.20. Right panel:

limiting local power functions for the two tests of Ex. 4.14, for θ ≤ θ0 against θ > θ0, in

terms of the local alternatives parameter δ, with θn = θ0 + δ/
√
n. The more powerful

test is based on Ȳ , the other on the median Mn.

(c) Explain that to have significance level 0.05, we need Γ1(c
2, nε2) = 0.05. Find the full

power curve πn(δ) = Prδ(Zn ≤ c2), and comment on the level of its maximum. Construct

a version of Figure 4.2, left panel, for threshold ε = 0.20, for sample sizes n = 200 and

n = 400.

Ex. 4.14 Power and local power: a particular case. This exercise studies a prototype

situation in some detail; the type of calculations and results will be seen to be rather

similar in a long range of different situations. Let Y1, . . . , Yn be i.i.d. data from N(θ, σ2).

One wishes to test H0 : θ = θ0 vs. the alternative that θ > θ0, where θ0 is a known value

(e.g. 3.14). Two tests will be considered, based on respectively Ȳn = n−1
∑n

i=1 Yi and

the median Mn.

(a) For a given value of θ, prove that
√
n(Ȳn − θ) →d N(0, σ2) and

√
n(Mn − θ) →d

N(0, (π/2)σ2). Note that the first result is immediate and actually holds with exactness

for each n; the second result requires more care and follows from Ex. 3.16.

(b) Working under the null hypothesis θ = θ0, show that

Zn =

√
n(Ȳn − θ0)

σ̂
→d N(0, 1), Z∗

n =

√
n(Mn − θ0)

(π/2)1/2σ̂
→d N(0, 1),

where σ̂ is any consistent estimator of σ.

(c) With z0.95 = Φ−1(0.95) = 1.645, conclude from the above that the two tests that

reject H0 provided respectively

X̄n > θ0 + z0.95σ̂/
√
n and Mn > θ0 + z0.95(π/2)

1/2σ̂/
√
n,
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have the required asymptotic significance level 0.05; αn = Pr{reject H0 | θ = θ0} → 0.05.

(There is one such αn for the first test, and one for the other; both converge however to

0.05.)

(d) Our object is then to study the local power, the chance of rejecting the null hypothesis

under alternatives of the type θn = θ0+δ/
√
n, i.e. close to the null value. In generalisation

of (b), show that

Zn =

√
n(Ȳn − θ0)

σ̂
→d N(δ/σ, 1), Z∗

n =

√
n(Mn − θ0)

(π/2)1/2σ̂
→d N((π/2)1/2δ/σ, 1),

where the convergence in question takes place under the indicated θ0 + δ/
√
n parameter

values. Here we need to generalise the result of Ex. 3.16, to the case where θn moves with

n. Writing Fn for the distribution of Yi, you may do this by first showing that Mn has

the same distribution as F−1
n (M0

n) = θ0 + δ/
√
n + σΦ−1(M0

n), where M
0
n is the median

for an i.i.d. sample from the uniform, and then using the delta method.

(e) Use these results to show that

πn(δ) = Pr{reject with Ȳn test | θ0 + δ/
√
n} → Φ(δ/σ − z0.95),

π∗
n(δ) = Pr{reject with Mn test | θ0 + δ/

√
n} → Φ((2/π)1/2δ/σ − z0.95),

for the two power functions. Draw these in a diagram, and compare, as with Figure 4.2,

right panel.

(f) Assume one wishes n to be large enough to secure that the power function is at least

at level β for a certain alternative point θ1. Using the local power approximation, show

that the required sample sizes are respectively

nA
.
=

σ2

(θ1 − θ0)2
(z1−α + zβ)

2 and nB
.
=

σ2/c2

(θ1 − θ0)2
(z1−α + zβ)

2

for tests A (based on the mean) and B (based on the median), with c =
√
2/π. With

level α = 0.05, compute these sample sizes for the case of β = 0.95 and θ1 = θ0 +
1
2σ.

(g) One sometimes defines the ARE, the asymptotic relative efficiency of test B with

respect to test A, as

ARE = limnA(θ1, β)/nB(θ1, β),

the limit in question in the sense of alternatives θ1 coming closer to the null hypothesis at

speed 1/
√
n. Show that the ARE in this particular situation becomes c2 = 2/π = 0.6366;

test A needs only ca. 64 percent as many data points to reach the same detection power

as B needs.

Ex. 4.15 Power and local power: general results. In Ex. 4.14 we examined two particular

estimators and tests, for the mean parameter in the normal distribution, and found

precise limit distributions and local power functions, for alternatives of order 1/
√
n from

the null hypothesis. Here we go through the appropriate generalities. The setup is that of
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data, of sample size n, informing us about a key parameter θ, where the null hypothesis

H0 : θ = θ0 is to be tested against the alternative θ > θ0, with θ0 some specified value.

We assume the data leads to one or more estimators θ̂, with the basic premise that at

the null parameter θ0, we have An =
√
n(θ̂ − θ0) →d N(0, κ2), for the appropriate κ.

(a) With κ̂ an estimator for κ, under H0 conditions, show that Zn =
√
n(θ̂− θ0)/κ̂0 →d

N(0, 1) under H0. Explain that the test which rejects when Zn ≥ z1−α = Φ−1(1−α) has
asymptotic testing level α, i.e. αn = Pr0(Zn ≥ z1−α) → α.

(b) We now make two more assumptions, concerning natural smoothness in a O(1/
√
n)

size local neighbourhood around θ0: (i) if the true parameter behind the data is θn =

θ0 + δ/
√
n, then the same limit N(0, κ2) obtains for A′

n =
√
n{θ̂− (θ0 + δ/

√
n)}; (ii) the

estimator κ̂ still converges to the same κ in probability. Show that Zn →d N(δ/κ, 1),

and that this gives a limiting local power function,

πn = Pr(reject | θ0 + δ/
√
n) → π(δ) = Φ(δ/κ− z1−α).

Show that this limit power function has derivative ϕ(z1−α)/κ at zero.

(c) The above result is useful in its own right, providing an easy approximation to the

power function for alternatives not far from the null hypothesis value. It may also be

used for comparing different tests, built as above, for different estimators, say θ̂j . Assume

the conditions above hold for these, with
√
n(θ̂j − θ0) →d N(0, κ2j ), leading to estimators

κ̂j for κj and to test statistics Zn,j =
√
n(θ̂j − θ0)/κ̂j . Explain that the best estimators

lead to the best tests, with derivatives ϕ(z1−α)/κj at zero.

(d) (xx briefly about ARE, as above. xx)

Sufficiency, factorisation theorem, completeness

Ex. 4.16 Sufficiency. (xx below we use the Bayes theorem; where should we point. xx)

Flip a coin ten times and record the number of heads. It is intuitively clear that the

number of heads in the ten tosses is as informative about the unknown θ = Pr(heads) of

the coin, as the exact ordering in which the heads and tails occurred. In fact, the ordering

in which the heads and tails occurred appear irrelevant for making inference about θ.

This leads us to the notion of a sufficient statistic. If X is your data, stemming from sufficient

statistica member of the family of distributions P = {Pθ : θ ∈ Θ}, and T = T (X) is a statistic

(i.e., any function of the data, real of vector valued, not depending on the parameter),

then T is sufficient for P, we often just say for θ, if the distribution of X given T is the

same for all values of the parameter θ. We look more into this definition in Ex. 4.18.

(a) Here are a few examples. (i) Let X1, . . . , Xn be independent Bernoulli(θ) random

variables, and set T =
∑n

i=1Xi. Use the Bayes theorem to show that Prθ(X1 =

x1, . . . , Xn = xn |T = t) = 1/
(
n
t

)
on {(x1, . . . , xn) : xi = 0, 1,

∑n
i=1 xi = t}, from

which we conclude that T is sufficient for θ. (ii) Let Y1, . . . , Yn be i.i.d. Pois(θ) and

set S =
∑n

i=1 Yi, and, again, use the Bayes theorem to show that Prθ(Y1 = y1, . . . , Yn =

yn |S = s) = (
∏n

i=1 1/yi!)/(n
s/s!), on {(y1, . . . , yn) : yi = 0, 1, 2, . . . ,

∑n
i=1 yi = s},
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which shows that S is sufficient for θ. (iii) Let Z1, . . . , Zn be i.i.d. unif(0, θ) and let

T = maxi≤n Zi. Provide an intuitive argument for T being sufficient for θ. (iv) Let

W ∼ N(0, σ2) and consider T = |W |. Again, provide an intuitive argument for why T is

sufficient for σ2.

(b) In view of Ex. (a) we may deduce the following result: Let X1, . . . , Xn be discrete

random variables and T = T (X1, . . . , Xn) a statistic. Show that T is sufficient if and

only if

θ 7→ Prθ{X1 = x1, . . . , Xn = xn}
Prθ{T (x1, . . . , xn) = t}

(4.3)

is constant for every x1, . . . , xn. In Ex. 4.18(f) we will see that this result holds more

generally, that is, if X = (X1, . . . , Xn) has density fθ and T = T (X) has density gθ(t),

then T is sufficient if and only if θ 7→ fθ(x)/gθ(T (x)) is constant for every x.

(c) The problem with the approach in (b) is that one has to make a guess at a sufficient

statistic, find its distribution, and then compute the ratio in (4.3). The Fisher–Neyman

factorisation theorem provides us with an automatic way for finding sufficient statistics.Fisher–Neyman

factorisation

theorem
Suppose that X1, . . . , Xn are random variables with joint density (e.g., joint p.m.f. or

joint p.d.f.) fθ(x1, . . . , xn), and let T = T (X1, . . . , Xn) be a statistic. The factorisation

theorem says that T is sufficient if and only if there exists nonnegative functions h and

gθ so that for all θ and x

fθ(x1, . . . , xn) = gθ(T (x1, . . . , xn))h(x1, . . . , xn).

Prove the discrete version of this theorem, that is, the version where fθ(x1, . . . , xn) =

Prθ(X1 = x1, . . . , Xn = xn). For a general proof of this theorem, i.e., one in which fθ is

any density, see Ex. 4.18.

(d) Use the factorisation theorem verify that the statistics from (a) are indeed sufficient.

Find also a sufficient statistic based on an independent sample from the unif(θ, θ + 1)

distribution. Compared to the four other sufficient statistics of this exercise, what is

particular about this latter?

(e) A sufficient statistic is not unique, and different sufficient statistics may provide

varying degress of data compression. At one extreme are sufficient statistics not providing

any compression of the data: (i) If X1, . . . , Xn stem from a distribution with density fθ,

then then full sample is sufficient. Prove it. (ii) Let X1, . . . , Xn be i.i.d. from an unknown

continuous distribution F , and let T = (X(1), . . . , X(n)) be the order statistics. Show that

the conditional distribution of X1, . . . , Xn given T does not depend on F .

(f) For the lack of uniqueness, you can use the factorisation theorem to prove that any

one-to-one transformation of a sufficient statistic is sufficient. And, for an example of

increasing data compression, let X1, . . . , Xn be i.i.d. N(0, σ2) and consider the statistics

T1 = (X1, . . . , Xn), T2 = (X2
1 , . . . , X

2
n), T3 = (X2

1 + · · · + X2
k , X

2
k+1 + · · · + X2

n), and

T4 = X2
1 + · · · +X2

n. Clearly, T4 is a function of T3, T3 is a function of T2, and T2 is a

function of T1, so the data compression is increasing in the indices. Use the factorisation

theorem to prove that they are all sufficient.
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Ex. 4.17 Simulating data based on sufficient statistics. A sufficient statistic T contains

all the information provided by the original sample X = (X1, . . . , Xn) about some pa-

rameter θ. Thus, given the sufficient statistic T , one may throw away the original data,

and create an equally good data set X ′ = (X ′
1, . . . , X

′
n). What makes this possible is,

of course, that the conditional distribution of X given T does not depend on θ. That

X ′ is as good as X means that X ′ has the same distribution as X, so, for example, an

estimator based on X ′ will be as good (i.e., same risk, see Ch. 8) as the same estimator

computed from X. Let us look at a few examples.

(a) Let X and Y be independent Expo(θ). Show that T = X + Y is sufficient for θ.

Consider the random variables X ′ = UT and Y ′ = (1 − U)T , where U is unif(0, 1)

and independent of X and Y . Think of U as a random variable you simulate on your

computer knowing T . Show that (X ′, Y ′) ∼ (X,Y ).

(b) Let X and Y be independent unif(0, θ) for some θ > 0. Show that T = max(X,Y )

is sufficient for θ. Consider the random variables X ′ = ηUT + (1 − η)T and Y ′ = (1 −
η)UT +ηT , where U ∼ unif(0, 1) and η ∼ Bernoulli( 12 ) are independent and independent

of X and Y . Show that (X ′, Y ′) ∼ (X,Y ). Find the conditional distribution of (X,Y )

given T = t.

(c) Prove the general version of the above results, as discussed in the classical article

Halmos and Savage (1949). That is, let X ∈ Rn be a random variable with distribution

Prθ, and assume that T is sufficient for θ. Suppose we use a random number generator to

simulate X ′ ∈ Rn from the conditional distribution Qt(B) = Prθ(X ∈ B |T = t). Show

that X ′ ∼ X for all θ.

Ex. 4.18 The factorisation theorem. Above, in Ex. 4.16(b) we proved the factorisation

theorem for discrete random variables. In this exercise we prove the general version,

valid for any distribution dominated by a σ-finite measure (see Ex. A.2(a) for definition

of σ-finiteness). First, we must be more formal in our definition of a sufficient statistic.

Let {Pθ : θ ∈ Θ} be a family of probability distributions on a measurable space (X ,A).

The statistic T is sufficient for {Pθ : θ ∈ Θ} if there is a function p(A, x) of A ∈ A and

x ∈ X , not depending on θ, such that for all A ∈ A and θ ∈ Θ,∫
G

p(A, x) dPθ(x) =

∫
G

IA(x) dPθ(x), for all G ∈ G.

Using the terminology introduced in Ex. ?? on conditional expectation, this means that

p(A, ·) is a version of the conditional probability Pθ(A |T ) for all A ∈ A and θ ∈ Θ. Here,

Pθ(A |T ) is shorthand for the more cumbersome Pθ(A |σ(T )), with σ(T ) the σ-algebra

generated by T .

We now turn to the factorisation theorem. Suppose that the family {Pθ : θ ∈ Θ} is

dominated by a σ-finite measure µ. For each θ, let fθ be the density of Pθ with respect

to µ. The statistic T is sufficient for {Pθ : θ ∈ Θ} if and only if there exist nonnegative

functions h and gθ such that

fθ(x) = gθ(T (x))h(x),
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for all θ ∈ Θ. The proof of the factorisation theorem relies on the existence of a proba-

bility measure Q dominating {Pθ : θ ∈ Θ}, i.e., Pθ ≪ Q for all θ, with this dominating

probability measure on the form Q =
∑∞

j=1 ajPθj , with aj > 0 and each Pθj belonging

to the family {Pθ : θ ∈ Θ}. In the following string of exercises we first prove the factori-

sation theorem assuming the existence of such a probability measure Q, and defer the

construction of Q to Ex. (d) [xx or perhaps the appendix? xx].

(a) Before we get to the proof of the factorisation theorem, let us work through some

preliminaries. Let Q be as just described. First, show that Q is indeed a probability

measure. Second, show that Pθ ≪ µ if and only if Q≪ µ. Finally, show that when µ is

σ-finite, dQ/dµ =
∑∞

j=1 ajdPθj/dµ.

(b) Suppose that {Pθ : θ ∈ Θ} ≪ Q≪ µ, as described above. Assume that T is sufficient

for {Pθ : θ ∈ Θ}, i.e., there exists p(A, ·) that is a version of Pθ(A |T ) for every θ ∈ Θ.

First, show that ∫
G

Q(A |T )(x) dQ(x) =

∫
G

p(A, x) dQ(x),

for all G ∈ σ(T ). This shows that T is sufficient for the augmented family {Pθ : θ ∈ Θ}∪
{Q}. Next, since Pθ ≪ Q, we can switch measure, dPθ = (dPθ/dQ) dQ (see Ex. ??). Use

this measure switching in combination with the tower property of conditional expectation

to show that

Pθ(A) =

∫
gθ(T (x))h(x) dµ(x),

for all A ∈ A, where h(x) = dQ/dµ(x) and gθ(T (x)) = Eθ{dPθ/dQ |σ(T )}(x), which
proves (why?) one way of the factorisation theorem.

(c) To prove a converse of (b), still under the {Pθ : θ ∈ Θ} ≪ Q ≪ µ assumption, show

first that if, for all θ ∈ Θ, the density of Pθ with respect to Q only depends on x through

T (x), and is hence σ(T )-measurable, then Q(A |σ(T )) is a version of Pθ(A |σ(T )) for all
θ ∈ Θ. Next, assume that fθ(x) = gθ(T (x))h(x) as described in the theorem. Appeal

to (a) and Ex. ?? in the appendix, to show that

dPθ

dQ
(x) =

gθ(T (x))∑∞
j=1 ajgθj (T (x))

,

and conclude that T is sufficient.

(d) [xx construction of Q here or in appendix xx]

(e) Suppose that {Pθ : θ ∈ Θ} satisfies the conditions of the factorisation theorem, and

let T be a sufficient statistic, taking values in the measurable space (T , C). Thus, for

every θ ∈ Θ, the density of Pθ with respect to µ is fθ(x) = gθ(T (x))h(x). For every

θ, we let PT
θ (B) = Pθ({x ∈ X : T (x) ∈ B}) for B ∈ C, be the distributions induced

by T on (T , C). Let Q =
∑∞

j=1 ajPθj be as described above, let (QT−1)(B) = Q({x ∈
X : (T (x) ∈ B}) be the measure induced on (T , C) via Q, and define a measure ν on
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(T , C) by ν(B) =
∫
B

∑∞
j=1 ajgθj (t) d(QT

−1)(t), for B ∈ C. Use what you found in (c)

and the change of variable formula (see Ex. A.15(c)), to show that

PT
θ (B) =

∫
B

gθ(t) dν(t),

for every B ∈ C. This shows that PT
θ has density gθ(t) with respect to ν.

(f) Use (e) and the factorisation theorem to prove the general version of (4.3) in Ex. 4.16.

(g) Let us look at the result in (e) for a concrete example. Suppose X1, . . . , Xn are

i.i.d. Expo(θ), and let T =
∑n

i=1Xi. Show that the joint density of X1, . . . , Xn can

be written fθ(x1, . . . , xn) = gθ(T (x1, . . . , xn))h(x1, . . . , xn), and conclude that T is suffi-

cient. To find the marginal distribution of T , show that the m.g.f. of T is Eθ {exp(aT )} =

(1 − a/θ)−n, a < θ, from which we get that T ∼ Gamma(n, θ). Find a measure ν on

the range of T , with respect to which PT
θ (B) = Pθ(T ∈ B) has density gθ(t). Convince

yourself that ν is σ-finite.

Ex. 4.19 The exponential family class, II. (xx some technical but important things for

the expo family. calibrate how and when we do sufficiency. xx)

(a) Suppose Y1, . . . , Yn are i.i.d. from an exponential family model f(y, θ) = exp{θtT (y)−
k(θ)}h(y). From the factorisation theorem (Ex. 4.16(c)), the statistic T̄ = (T̄1, . . . , T̄p)

t,

with T̄j = (1/n)
∑n

i=1 Tj(Yi) for j = 1, . . . , p, is clearly sufficient for the natural param-

eter θ = (θ1, . . . , θp). Use Ex. 4.18(e) to show that T̄ has a distribution following the

same exponential form, i.e., a distribution with density, say

gn(t, θ) = exp{θ1t̄1 + · · ·+ θpt̄p − kn(θ)}hn(y1, . . . , yn),

for suitable kn and hn.

(b) (xx about conditioning. Point to Ex. 4.32. Rewrite this exercise xx). Let {Pa,b : (a, b) ∈
Θ = Θa×Θb} be a family probability measures having densities of the exponential family

form fa,b(y) = exp{atU(y) + btV (y) − k(a, b)}h(y) with respect to µ. By the form of

fa,b(y), you might, in view of the factorisation theorem, conjecture that for each a, V is

sufficient for b. To see this, fix a, write the density fa,b as

fa,b(y) = exp{btV (y)− ka(b)}ha(y),

where ka(b) = k(a, b) and ha(y) = exp{atU(y)}h(y), and appeal to the factorisation

theorem. That V is sufficient means that there exists a version of the conditional prob-

ability Pa,b(A |V ) not depending on b, say P
U |V
a (A). The distribution of U conditional

on V is then P
U |V
a (U ∈ B) = P

U |V
a U−1(B), for B a measurable set in the range of

U . It remains to construct a measure λv dominating PaU
−1, and an expression for the

conditional density (dP
U |V
a U−1/dλv)(u) belonging to the exponential class.

Ex. 4.20 The exponential family class, III. (xx more on the exponential family, more

general parametrisations, examples. the moderate jump from (1.6) to

f(y, θ) = exp{Q1(θ)T1(y) + · · ·+Qp(θ)Tp(y)− k(θ1, . . . , θp)}h(y),

with Q1(θ), . . . , Qp(θ). and, crucially, lift to regression models. xx)
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(a)

(b)

Ex. 4.21 Minimal sufficiency. In Ex. 4.16(e) we saw that for any model there are

many different sufficient statistics, often with some providing more compression of the

data than others. Since the purpose of sufficient statistics is to compress the data, this

naturally leads to a search for a sufficient statistic providing the maximum amount of

data compression, while still retaining all the information about the unknown parameter

of interest. Such a statistic is called a minimal sufficient statistic.

The formal definition is as follows: Let T be sufficient for {Pθ : θ ∈ Θ}. Then T isminimal

sufficient minimal sufficient if for any other sufficient statistic S, there is a measurable function g

so that T = g(S) almost surely, for all values of θ. Another way of saying this is that if

T is such that the implication ‘if S(x) = S(y) then T (x) = T (y)’ holds for any sufficient

statistic S, then T is minimal sufficient.

(a) (xx emil, what is U here. xx) Let X ∼ N(0, σ2). Show that both X and |X| are
sufficient for σ2. Let X ′ = U |X|+ (1− U)|X|, and show that X ∼ X ′. We see that |X|
provides more data compression than X, but is it minimal? We will soon have the tools

to find out.

(b) Suppose that T is minimal sufficient, and let S be some sufficient statistic. Show

that the σ-algebra generated by T must be contained in the σ-algebra generated by S.

Show that any one-to-one function of a minimal sufficient statistic is minimal sufficient.

(c) The following theorem say the mapping from data to likelihood function, that is,

x 7→ {fθ(x) : θ ∈ Θ}, is minimal sufficient. The proof is based on the observation that

from the factorisation fθ(x) = fX |S(x | s)fSθ (s), the likelihood θ 7→ fθ(x) is proportional

to θ 7→ fSθ (s), for any sufficient statistic S. In other words, the likelihood function fθ(x)

is a function of the likelihood function fSθ (s) of any sufficient statistic S, and therefore

the fθ(x) is minimal sufficient.

Here is the theorem: Let fθ(x) be the density of X. Suppose there is a function

T (x) is such that T (x) = T (y) if and only if for some h(x, y) > 0

fθ(x) = fθ(x)h(x, y) for all θ.

Then T (X) is minimal sufficient. To prove this, first, use the factorisation theorem to

show that T is sufficient. Second, introduce another sufficient statistic S, and again use

the factorisation theorem to show that T must be a function of S.

(d) (i) With X ∼ N(0, σ2), show that the absolute value |X| is minimal sufficient. (ii)

Let X1, . . . , Xn be i.i.d. N(µ, σ2), and show that (X̄n, Sn) with X̄n = n−1
∑n

i=1Xi and

Sn =
∑n

i=1(Xi−X̄)2 is minimal sufficient. (iii) Let Y1, . . . , Yn be i.i.d. from a distribution

with density fθ(y) = exp(−(y−θ)) for x > θ and θ ∈ R. Find a minimal sufficient statistic

for θ.

(e) Let g(x) be a positive and integrable function on (−∞,∞). Set c(a, b)−1 =
∫ b

a
g(x) dx,

and define fa,b(x) = c(a, b)g(x)I(a,b)(x). Let X1, . . . , Xn be i.i.d., from the distribution

with density fa,b(x). Find a minimal sufficient statistic for (a, b).
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(f) Let X1, . . . , Xn be i.i.d. from a distribution with density fθ(x) = 1/2 exp(−|x −
θ|), x, θ ∈ R. Show that the order statistics are minimal sufficient.

(g) Let Y1, . . . , Yn be i.i.d. from a distribution with a density of the exponential class

fθ(y) = exp{
∑p

j=1Qj(θ)Tj(y)− k(θ1, . . . , θp)}h(y) of full rank (see Ex. 4.20). Show that

T̄ = (T̄1, . . . , T̄p), where T̄j = n−1
∑n

i=1 Tj(Yi) is minimal sufficient for (θ1, . . . , θp). (xx

coordinate this with Ex. 4.23 completeness below. xx) In fact, a stronger result holds,

namely that T̄ is complete (see, e.g., Schervish (1995, Theorem 2.74, p. 108) for a proof

of this fact, and Ex. ?? for a proper treatment of completeness). That T̄ being complete

and sufficient (the latter follows from the factorisation theorem) is stronger than minimal

sufficiency, is proven in Ex. ??(g).

(h)

Ex. 4.22 Ancillary statistics. The opposite of sufficiency, in a sense, is ancillarity. If

X ∼ Pθ, a statistic U = U(X) is ancillary if its distribution is the same for all θ. In ancillary

statisticother words, U by itself does not provide any information about θ. This does not mean

that U should be disregarded when making inference on θ. It just means that if you only

learn U = u, you have not learned anything about θ.

(a)

(b) [xx ancillary stat in location families, and in scale families xx]

Ex. 4.23 Completeness. Often, models are so harmoniously constructed that there are

clear one-to-one connections between estimators (perhaps based on a set of summary

statistics) and estimands, in the sense that there for each estimand is only one unbiased

estimator. Clarifying such regularity leads to the concept of completeness, which turns

out to be useful also when coming to conditional testing and optimal power in exercises

below. Technically, suppose some vector T = (T1, . . . , Tp)
t has a distribution f(t, θ),

with the property that Eθ h(T ) = 0 for all θ ∈ Θ implies Prθ{h(T ) = 0} = 1 for all θ,

i.e. h(t) = 0 almost everywhere. We then say that T , or more formally its distribution,

over the relevant parameter region, is complete. complete

(a) Let X ∼ binom(n, θ), with θ ∈ (0, 1). Show that X is complete; zero is the only

unbiased estimator of zero. (You may appeal to properties of power series.) Show that

X is complete as long as the parameter region contains an open interval. Show similarly

that if X ∼ geom(p), see Ex. 1.24, then X is complete, again requiring only that the

parameter range for p contains an open interval.

(b) With Y1, . . . , Yn i.i.d. from the uniform on [0, θ], consider M = maxi≤n Yi. Show

that if the parameter region is the full halfline θ > 0, then M is sufficient and complete,

but that M is not complete if it is a priori known that θ ≥ 1.234, i.e. with a restricted

parameter range.

(c) Suppose Y1, . . . , Yn are i.i.d. from the uniform distribution over [θ − 1, θ + 1]. Show

that (Y(1), Y(n)), the smallest and largest, is sufficient, but not complete.



Sufficiency, factorisation theorem, completeness 149

(d) Consider Y being uniform on {1, . . . , θ}, where θ ∈ {1, 2, . . .} is an unknown param-

eter. Show that Y is complete. When the parameter region is e.g. {4, 5, . . .}, however,
show that Y is not complete.

(e) If T is complete, show that any one-to-one transformation variable T ′ = a(T ) is also

complete.

(f) Consider Y1, . . . , Yn an i.i.d. sample from the double exponential with density f(y, θ) =
1
2 exp(−|y− θ|). Show that the full set of order statistics (Y(1), . . . , Y(n)) is sufficient, but

not complete; do this, by exhibiting two different unbiased estimators of θ.

Ex. 4.24 Completeness for the exponential family. For the large class of exponential

family models, see Ex. 1.50 (xx and follow-up exercises above xx), there is a completeness

lemma, as follows. Suppose Y1, . . . , Yn are i.i.d. from the model f(y, θ) = exp{θtT (y) −
k(θ)}h(y), with T = (T1, . . . , Tp)

t and θ = (θ1, . . . , θp)
t varying in an open set, then the

vector of sample averages (T̄1, . . . , T̄p)
t is not merely sufficient, as seen in Ex. 4.21, but also

complete. We shall freely use this lemma. (xx but point to proof, check BickelDoksum orcompleteness

lemma for

exponential

family

Johansen or Brown or Schervish. perhaps requiring analyting continuation arguments.

point is that a(θ) = Eθ h(T̄ ) is a super smooth functions with all derivatives smooth. xx)

(a) Let Y1, . . . , Yn be i.i.d. from the N(ξ, 1). Show that the full set (Y1, . . . , Yn) is not

complete, but that the sample mean Ȳ is.

(b) Consider Y1, . . . , Yn i.i.d. from the Gam(a, b) model. Show that (
∑n

i=1 Yi,
∑n

i=1 log Yi)

is sufficient and complete. Identify similarly a sufficient and complete pair of statistics

for a sample from the Beta(a, b).

(c) Consider an i.i.d. sample Y1, . . . , Yn from the N(ξ, σ2). Show that (
∑n

i=1 Yi,
∑n

i=1 Y
2
i )

is sufficient and complete, and also that (Ȳ , σ̂) is sufficient and complete. Suppose then

that the variance is postulated to be equal to the squared mean, so that the sample

is from N(θ, θ2). Construct two different unbiased estimators of θ, and show that this

means that (Ȳ , σ̂) is not complete. You may similarly construct two different unbiased

estimators of θ2.

(d) Consider the linear regression model with Yi ∼ N(a + bxi, σ
2), studied in Ex. 3.30.

With â, b̂ the least squares estimators, and Q0 =
∑n

i=1{Yi−â− b̂(xi−x̄)}2, show that the

log-likelihood can be written −n log σ− 1
2{Q0+n(â−a)2+Mn(̂b− b)2}2/σ2, with Mn =∑n

i=1(xi − x̄)2. Write this in the exponential family fashion, with natural parameters

1/σ2, a/σ2, b/σ2. Argue via the general exponential family results that (Q0, â, b̂) is both

sufficient and complete. Extend this, arguments and results, to the general multiple

linear regression model of Ex. 3.31.

Ex. 4.25 Basu’s Lemma. Consider a setting with data Y from some parametric family,

indexed by θ ∈ Θ, where a suitable T is sufficient and complete.

(a) Assume that a suitable statistic Z = Z(Y ) has a distribution not depending on the

θ. Show that Z is independent of T . This is called Basu’s Lemma. You may followBasu’s lemma

this path: start writing Prθ(Z ∈ A) = p, by assumption not depending on θ. Show that

p = Eθ h(T ), for all θ, where h(t) = Prθ(Z ∈ A |T = t), another function not depending

on θ. Explain that this implies Prθ(Z ∈ A |T = t) = p for all θ.
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(b) Consider the familiar setup with Y1, . . . , Yn being i.i.d. from N(µ, σ2). For σ fixed,

show that the mean Ȳ is sufficient and complete for µ; explain that all statistics Z with

distribution not depending on µ must be independent of Ȳ . Explain hence in particular

that
∑n

i=1(Yi − Ȳ )2 is independent of Ȳ . This has been demonstrated in different ways

in Ex. 1.44 and 1.45.

(c) In this normal sample setting, argue that the classic t ratio t =
√
n(Ȳ − µ)/σ̂, with

σ̂ the sample standard deviation, is independent of (Ȳ , σ̂).

(d) We have seen in Ex. 1.51 that the five-parameter binormal distribution is inside

the exponential family class. With (X1, Y1), . . . , (Xn, Yn) i.i.d. from the binormal, show

first that (X̄, Ȳ , σ̂1, σ̂2, Rn) is complete and sufficient, with Rn the empirical correlation

coefficient. Show that Rn is independent of X̄, Ȳ , σ̂1, σ̂2 (xx check this with care xx).

Optimal conditional testing

Ex. 4.26 Conditional tests. Suppose in general terms that data y are observed from a

model with parameter θ, where the null hypothesisH0 : θ ∈ Θ0 is to be tested, against the

alternative that θ /∈ Θ0. Assume one computes U = U(y) and V = V (y). A conditional

test, with respect to V , with level α, is then to find a rejection region R(v), using the

distribution of U given V (y) = v, with conditional

tests

Prθ{U(Y ) ∈ R(v) |V (Y ) = v} ≤ α for all θ ∈ Θ0.

Such tests are natural and important in multiparameter setups, as we shall see, and

various constructions succeed in ‘reducing the dimensionality’ down to the analysis of a

one-parameter family, where e.g. Neyman–Pearson more readily applies.

(a) Even when such a test has been constructed in a conditional modus, ‘what is unlikely

null behaviour of U given that V = v’, it may of course be translated or paraphrased

without the conditioning: one rejects if U(Y ) ∈ R(V ). Show that the test also has

unconditional level α.

(b) From unconditional to conditional: Conditional tests as above have the form T (U, V ) =

I(U ∈ R(V )), built to have Eθ {I(U ∈ R(v)) | v} = α. Assume now that V is complete

at the boundary ∂Θ0 of the null hypothesis parameter region; see Ex. 4.23. Show that

if any test T (U, V ) has constant level α at this boundary, then it is a conditional test,

with this level; Eθ {T (U, V ) |V = v} = α for all θ ∈ Θ̄0. (It might be useful to check the

function h(v) = Eθ {T (U, V ) |V = v} − α.)

Ex. 4.27 Conditional tests: pairs of exponentials. Suppose X ∼ Expo(a) and Y ∼
Expo(a+ δ), and that one wishes to test δ = 0, i.e. equal distributions, against δ > 0.

(a) Show that the joint density may be written a(a+ δ) exp(−az − δy), with z = x+ y.

Find the distribution of Z = X + Y , and show that the distribution of Y given Z = z

has the density

gδ(y | z) =
δ exp(−δy)∫ z

0
δ exp(−δy′) dy′

=
δ exp(−δy)

1− exp(−δz)
for 0 ≤ y ≤ z.
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In particular, it does not depend on the θ. For the null hypothesis case of δ = 0, show

that Y | z is uniform on [0, z].

(b) The natural conditional 0.05 level test is then to first compute z, and then to reject

if y ≤ 0.05 z. Show that it indeed has level 0.05, and that is the power optimal test

among all conditional tests, using Y given z. Verify that this conditional test is the same

as the unconditional test of rejecting when R = Y/(X + Y ) ≤ 0.05. Compute the power

function of the T ∗ = I(Y ≤ 0.05Z) test (in the testing function parlance of Ex. 4.7),

conditional on z, and unconditionally.

(c) At the boundary of the null, where δ = 0, show that Z is complete. Show hence that

any test with level 0.05 also must be a conditional on Z 0.05 level test, via Ex. 4.27.

(d) We know that T ∗(y, z) = I(y ≤ 0.05 z) is the most powerful conditional test with

level 0.05; we now wish to extend this statement to T ∗ actually being the most powerful

among all tests with level 0.05. For any competing test T (Y,Z) with level 0.05, show,

since it must be a z-conditional 0.05 level test, where it cannot beat T ∗, that

Ea,δ {T ∗(Y,Z) | z} ≥ Ea,δ {T (Y,Z) | z} for all δ > 0, z > 0.

There is equality, to 0.05, at δ = 0. Show from this that T ∗ is more powerful than such

T , unconditionally; in suitable power function symbols, πT∗(a, δ) ≥ πT (a, δ) for all δ > 0.

(e) Suppose now that there are m independent pairs, Xi ∼ Expo(ai) and Yi ∼ Expo(ai+

δ), with sums Zi = Xi+Yi; there are hence m+1 parameters with 2m data points. Show

that the optimal test is to reject when Um = Y1 + · · · + Ym is small, given z1, . . . , zm.

Explain how the null distribution of Um can be evaluated via simulations. For an illustra-

tion, suppose three pairs (xi, yi) are observed: (0.927, 0.819), (1.479, 0.408), (3.780, 1.311).

Carry out the test of δ, and compute the p-value.

Ex. 4.28 Conditional tests: normal. (xx various situations with distribution of U | (V =

v), followed by natural conditional test. xx) Consider a pair of normals, where interest

lies in assessing their difference in means. This may of course be parametrised in different

ways, but one natural way is x ∼ N(θ, 1) and y ∼ N(θ + δ, 1). One wishes to test δ = 0

vs. δ > 0, equivalent, of course, to testing equality of the means vs. E y > Ex.

(a) Show that the joint likelihood can be written

f(x, y, θ, δ) = (2π)−1 exp[− 1
2{(x− θ)2 + (y − θ − δ)2}]

= (2π)−1 exp{θz + δy − 1
2x

2 − 1
2y

2 − 1
2θ

2 − 1
2 (θ + δ)2},

where z = x + y, and with the main interaction between parameters and data being in

the θz + δy part.

(b) Show that (y, z) is a binormal, and set up its mean vector and variance matrix.

Then use Ex. 1.41, or other algebraic methods, to show that y | z ∼ N( 12 (z + δ), 12 ); in

particular, its conditional distribution does not depend on θ.
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(c) Through the conditioning on z the testing problem has been reduced from a two-

parameter to a one-parameter situation. For y | z ∼ N( 12 (z+δ),
1
2 ), show that the optimal

test is to reject when y− 1
2z > (1/

√
2)c, with c = Φ−1(1−α) the standard normal quantile.

(d) Show that the above test, constructed to be optimal in the model for y | z, is equiv-
alent to that of rejecting whem D = y − x >

√
2c. (xx so the conditional test is an

ordinary unconditional test in disguise, or vice versa, in this particular situation. the

point is the general principle. xx)

(e) (xx Consider m pairs of normal data, of the form xi ∼ N(θi, 1) and yi ∼ N(θi + δ, 1).

do the math, with the steps above. log joint density
∑m

i=1(θizi + δyi), with zi = xi + yi.

conditional test,
∑k

i=1 yi big given z1, . . . , zk. xx)

(f) (xx something re power. xx)

Ex. 4.29 Conditional tests: Poisson. (xx various situations with distribution of U | (V =

v), followed by natural conditional test. xx)

(a) We start with a single pair of Poissons, x with mean θ, y with mean θγ. Show that

the joint distribution becomes exp(−θ − θγ)θx+yγy/(x! y!). This inspires inspecting the

distribution of y given z = x+ y. Show that y | z ∼ binom(z, γ/(γ + 1)).

(b) To test γ = 1 against γ > 1, describe in details the natural conditional test which

rejects when y is big, given z = x+ y.

(c) Next consider independent Poisson pairs xi, yi for i = 1, . . . ,m, where xi has mean θi
and yi mean θiγ. The model hence has m+ 1 parameters for the 2m observations, with

γ the common multiplicative factor. Show that the joint distribution may be written

f = exp
[
−

m∑
i=1

(θi + θiγ) +

m∑
i=1

{(xi + yi) log θi + yi log γ}
] 1

x1! y1! · · ·xm! ym!
.

With zi = xi+yi, find the distribution of yi | zi, and also the distribution of S =
∑m

i=1 yi
given z1, . . . , zm.

(d) Find the power optimal test for γ = 1 against γ > 1, among all those based on S

given z1, . . . , zm.

(e) (xx more, rounding off. something with limit. point to Ch7 optimal CD. also do Y ∼
Pois(m0θ0) and Y1 ∼ Pois(m1θ1), with m0 and m1 exposure time. With interest being in

the ratio parameter γ = θ1/θ0, show that Y1 | (Z = z) is binomial (z,m1γ/(m0 +m1γ)).

xx)

Ex. 4.30 Conditional tests: 2 × 2 tables. (xx various situations with distribution of

U | (V = v), followed by natural conditional test. xx)

(a) Consider two binomials y0 ∼ binom(m0, p0) and y1 ∼ binom(m1, p1). The outcomes

in such situations are often presented as a two-by-two table,

y0, m0 − y0
y1, m1 − y1
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Consider the so-called logistic parametrisation

p0 = H(θ) =
exp(θ)

1 + exp(θ)
and p1 = H(θ + γ) =

exp(θ + γ)

1 + exp(θ + γ)
.

Show that θ = log{p0/(1 − p0)} and θ + γ = log{p1/(1 − p1)} in terms of the so-called

log-odds. Show that the joint distribution can be written

f =

(
m0

y0

)(
m1

y1

)
exp(θ(y0 + y1))

{1 + exp(θ)}m0

exp(γy1)

{1 + exp(θ + γ)}m1
.

(b) (xx in view of ... check, calibrate. xx) This inspires reaching inference for γ via the

conditional distribution of y1 given z = y0 + y1. Show that this distribution becomes

gγ(y1 | z) =
(

m0

z − y1

)(
m1

y1

)
exp(γy1)

/ ∑
y′
1≤min(m1,z)

(
m0

z − y′1

)(
m1

y′1

)
exp(γy′1)

for y1 = 0, 1, . . . ,min(m1, z). In particular, this so-called excentric hypergeometric dis-

tribution depends on γ but not θ. We recognise the ordinary hypergeometric for γ = 0;

see Ex. 1.62.

(c) Show that the optimal 0.05 level conditional test for the null hypothesis of equality,

p0 = p1, is to reject when y1 > c(z), with c(z) the highest number with
∑

0≤y1≤c(z) g0(y1 | z) ≤
0.95.

(d) (xx the power. xx)

(e) (xx to k two-by-two tables, pi,0 = H(θi) and pi,1 = H(θi + γ), k + 1 parameters.

optimal conditional test for
∑k

i=1 y1,i given z1, . . . , zk, with zi = yi,0 + yi,1. point to

Story i.10. xx)

Ex. 4.31 The t test as an optimal conditional test. Let Y1, . . . , Yn be i.i.d. from the

normal (ξ, σ2), where we wish to test ξ = 0 against ξ > 0. The canonical classical

test, of level say 0.05, is based on t =
√
nȲ /σ, rejecting if t ≥ tn−1,0.95, the upper 0.05

point of the tn−1 distribution; see also Ex. 3.7 and (3.4). We cannot use the Neyman–

Pearson lemma directly to demonstrate optimality of the t test, however. One of several

optimality properties may be derived via conditioning.

(a) Write U =
√
nȲ and V =

∑n
i=1 Y

2
i , so that in particular W =

∑n
i=1(Yi − Ȳ )2 =

V − U2. Show that the joint density of the data can be written

f =
1

(2π)n/2
1

σn
exp
{
− 1

2

1

σ2

n∑
i=1

(yi − ξ)2
}

=
1

(2π)n/2
1

σn
exp
{ ξ

σ2

√
nU − 1

2

1

σ2
V − 1

2

ξ2

σ2

}
.

Note that the testing problem is equivalent to testing λ = 0 against λ > 0, with λ = ξ/σ2,

the mathematics indicating that this is a parameter easier to work with than ξ.
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(b) Find the distribution of U | (V = v), and show in particular that it depends on the

parameters only via λ = ξ/σ2. It is convenient here to work with

T =
U

{W/(n− 1)}1/2
= (n− 1)1/2

U

(V − U2)1/2
.

(c) Show that the power optimal test, among all tests based on U | (V = v), is to reject

when U is big, say U ≥ c(v), with Pr0{U ≥ c(v) |V = v} = 0.05. Then show that this is

actually the same as the t test.

(d) Show via arguments used in Ex. 4.27 and in other places above that the t test is not

merely optimal among all conditional tests, for given level α, i.e. given V , but among all

tests with level α.

Ex. 4.32 Conditional tests: multiparameter exponential models. In the rather simple

situation of Ex. 4.27, with the exponential pair X ∼ Expo(a) and Y ∼ Expo(a + δ),

with sum Z = X + Y , we learned that (i) there is a clear level α conditional test for

δ = 0 vs. δ > 0, in terms of Y |Z; (ii) that test is uniformly most powerful against all

δ > 0, among all conditional tests; and (iii) all other level α competitors are in fact also

Z-conditional. Hence the winning test, reject if Y ≤ αZ, is the uniformly most powerful

level α test. – We shall see now that the same arguments essentially go through for

the wide class of all exponential families. Consider data Y from a density of the form

f(y, a, b) = exp{aU(y) + btV (y) − k(a, b)}h(y), as in Ex. 4.19, with one-dimensional U

and p-dimensional V . Suppose we need to test a = a0 against a > a0, for some given

null hypothesis value a0.

(a) We have seen in the exercise pointed to that U | (V = v) has a density depending

on a but not b, and that it has an exponential form. Assume for simplicity that the

distribution of U is continuous; mild formalistic additional arguments are required if the

distribution is discrete. Deduce that there is a most powerful conditional level α test,

say T ∗(y) = I{U > c(V )}, with c(v) determined from Pra0(U > c(v) |V = v) = α, and

with consequent power function π(a, b) = Pra,b {U > c(V )}.

(b) Then consider any competing test T (U, V ) with level α. From Ea0,b T (U(Y ), V (Y )) =

α, for all b, use completeness in b of V (Y ) for fixed a0 to prove that

Ea0,b {T (U(Y ), V (Y )) |V (y) = v)} = α

for all v (except perhaps in a region of probability zero), and for all b. Thus the T

competitor is also a level α V -conditional test, and we have proved that the conditional

test is uniformly most powerful among all level α tests.

(c) The theory extends fruitfully to the case of testing H0 : a ≤ a0 against a > a0. Show

that the test T ∗ = I{U > c(V )} above, with c(v) determined from Pra0
(U > c(v) |V =

v) = α at the boundary, is still of level α. Then show that this test is uniformly most

powerful against all competing tests with constant level α at the boundary a = a0; one

says that such tests are unbiased. This latter very mild limitation is in order for the

completeness argument to go through.
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(d) (xx briefly about two-sided tests. still based on U | (V = v). xx)

(e) When U | (V = v) has a discrete distribution, the arguments still go through, but one

cannot expect to find c(v) with e.g. Pra0{U > c(v) |V = v} = 0.05. There are two ways

out of this mild quandary. The first is to be satisfied with level 0.042, say, if that is how

close one comes to 0.050, by appropriate choice of c(v). The other, if one pedantically

insists on 0.05, is to finetune c(v) such that Pra0
{U > c(v) |V = v} is just below 0.05,

and then identify the probability r such that

Pra0
{U > c(v) |V = v}+ rPra0

{U = c(v) |V = v} = 0.05,

So one rejects if U > c(V ), or, but then with probability r, if U = v(C).

(f) (xx go through the previous exercises about conditional tests, once more, make sure

that the tests found there are really uniformly most powerful among all unbiased tests.

xx)

Ex. 4.33 Optimal t testing in linear regression. Consider the classic linear regression

setup with Yi ∼ N(a + bxi, σ
2) for i = 1, . . . , n, see Ex. 3.30, and for simplicity of

presentation here we assume the xi have been centred, so x̄ = 0. The three estimators

are then â = Ȳ , b̂ =
∑n

i=1 xiYi/Mn, with Mn =
∑n

i=1 x
2
i , and σ̂2 = Q0/(n − 2), with

Q0 =
∑n

i=1(Yi − â− b̂xi)
2.

(a) With V =
∑n

i=1 Y
2
i , show that Q0 = V − nâ2 −Mnb̂

2, and that the likelihood may

be written

L =
1

σn
exp
{
− 1

2

1

σ2

n∑
i=1

(Yi − a− bxi)
2
}

=
1

σn
exp
{
− 1

2

V

σ2
+

a

σ2
nâ+

b

σ2
Mnb̂− 1

2

na2 +Mnb
2

σ2

}
,

which is in the exponential family form, with natural parameters 1/σ2, a/σ2, b/σ2.

(b) Explain from the general exponential family testing theory that the uniformly most

powerful test for b = 0 against b > 0, among all level α tests is to reject when b̂ is large

enough, in its conditional distribution given (V, â). We need to find c(V, â) such that

Pra,σ (̂b > c(V, â) |V, â) = α

under b = 0. But this may be transformed to

W =
b̂

(V − nâ2)1/2
=

b̂

(Q0 +Mnb̂2)1/2
=

b̂/Q
1/2
0

(1 +Mnb̂2/Q0)1/2
>

c(V, â)

(V − nâ2)1/2
.

But W is a smooth increasing function of t = b̂/(σ̂/Mn), the classic t ratio, which has

the tn−2 distribution under b = 0. Argue that W is therefore independent of (V, â), and

that the optimal test is to reject when t > t0, the upper α in the tn−2 distribtion. You

have now shown that the traditional t test is optimal.
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(c) Generalise the above to general linear multiple regression models, giving the result

that the traditional t tests, for each of the βj coefficients, are optimal.

Ex. 4.34 A generalised Poisson distribution. For a count variable Y , consider the model

with point probabilities

f(y, λ, γ) = k(λ, γ)−1λy/(y!)γ for y = 0, 1, 2, . . . ,

where k(λ, γ) is the normalisation constant
∑∞

y=0 λ
y/(y!)γ . For γ = 1 we’re back to

ordinary Pois(λ), with k(λ, 1) = exp(λ). This two-parameter generalised Poisson model

is from Schweder and Hjort (2016, Examples 4.18, 8.16). A regression version model of

this type is used in Story iv.6, to assess potential overdispersion in Poisson counts.

(a) Pick some λ, and compute and display curves of the mean ξ(λ, γ) and the variance-

to-mean ratio ρ(λ, γ), for an interval of γ around 1. Show that this ratio is decreasing

in γ; hence γ < 1 indicates overdispersion and γ > 1 underdispersion, relative to the

Poisson. Also show that the mean of log(Y !) is decreasing in γ.

(b) Show that the distribution is of the exponential family form, and that the suffi-

cient statistics, after having observed a sample Y1, . . . , Yn, is T =
∑n

i=1 Yi and U =∑n
i=1 log(Yi!). Show also that the joint distribution of these two must take the form

gn(t, u) = exp{t log λ− uγ − rn(λ, γ)}hn(y1, . . . , yn),

for appropriate functions rn and hn.

(c) For an observed sample Y1, . . . , Yn, to test the Poisson assumption, against overdis-

persion, show that the optimal test is to reject when U is sufficiently small, given T = t.

In other words, with level the classic 0.05, for example, we reject when U ≤ u0(t), where

u0(t) is the 0.95 quantile of the distribution of U given T = t, computed at γ = 1,

i.e. under Poisson conditions. (xx this needs more care; distribution of U | (T = t) needs

a formula or two, so we see that U significantly small indicates γ < 1. xx)

(d) There is no table or simple formula for the distribution of U | (T = t), but show that it

depends on γ, but not λ. Show that under γ = 1, (Y1, . . . , Yn) | (T = t) is a multinomial

with count t and probabilities (1/n, . . . , 1/n). Explain then how the distribution of

U | (T = t) may be simulated under Poisson conditions.

(e) (xx give them a dataset. nils checks the football matches dataset. decide later if this

is a Story or an exercise. xx)

Ex. 4.35 Testing for correlation. Consider binormal i.i.d. pairs (Xi, Yi), with parameters

ξ1, ξ2, σ1, σ2, ρ, as in Ex. 1.51. Suppose we need to test ρ = 0 vs. ρ > 0.

(a) Argue as in the exercise pointed to that the binormal distribution is inside the

exponential family class, with natural parameters

ξ1
(1− ρ2)σ2

1

,
1

(1− ρ2)σ2
1

,
ξ2

(1− ρ2)σ2
2

,
1

(1− ρ2)σ2
2

,
ρ

(1− ρ2)σ1σ2
,

associated with data functions Xi, X
2
i , Yi, Y

2
i , XiYi. Explain that the testing problem is

equivalent to testing λ = 0 vs. λ > 0, where λ = ρ/{(1− ρ2)σ1σ2}.
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(b) Then argue from the general testing theory for the exponential class that there for

given testing level α is a uniformly most powerful test, consisting in rejecting the null

provided An = n−1
∑n

i=1XiYi is big enough, in its conditional null distribution given

(X̄, n−1
∑n

i=1X
2
i , Ȳ , n

−1
∑n

i=1 Y
2
i ). Formally, the rejection threshold c, which depends

on these variables, is determined by

Pr0{An > c | (X̄, n−1
n∑

i=1

X2
i , Ȳ , n

−1
n∑

i=1

Y 2
i )} = α,

with the footscript 0 indicating probability under ρ = 0.

(c) Write σ̂2
1 = n−1

∑n
i=1X

2
i − X̄2 and σ̂2

2 = n−1
∑n

i=1 Y
2
i − Ȳ 2 for the empirical vari-

ances. Explain that in the conditional situation, given values for X̄, Ȳ , σ̂1, σ̂2, the re-

quirement above can be transformed to Pr0{Rn > d | (X̄, Ȳ , σ̂1, σ̂2)} = α, with Rn the

empirical correlation coefficient, see (2.11).

(d) Then explain that Rn is actually independent of X̄, Ȳ , σ̂1, σ̂2, under the null, so that

the optimal test becomes the simpler one, of rejecting if Rn > d, where Pr0(Rn > d) = α.

(e) For this optimal test regime to be specified fully, it remains to find the null distribu-

tion of Rn. Explain that this null distribution does not depend on the actual values of

(ξ1, ξ2, σ1, σ2), which we therefore may take to be (0, 0, 1, 1). For practical purposes one

may simulate a high number of Rn and then read off the d quantile; explain also that√
nRn →d N(0, 1), from Ex. 2.48, so that z1−α/

√
n is an approximation to the upper α

point. We show however in the following point that Tn = m1/2Rn/(1−R2
n)

1/2 has a tm
distribution, under the null, with m = n− 2 degrees of freedom. With e.g. n = 25, find

the 0.95 quantile of the Rn distribution.

(f) So let us find the null distribution for Rn. Write s2x =
∑n

i=1(Xi − X̄)2, s2y =∑n
i=1(Yi − Ȳ )2, sxy =

∑n
i=1(Xi − X̄)(Yi − Ȳ ), so that Rn = sxy/(sxsy). We may now

use results from linear regression of the Yi with respect to the Xi. Study in particular

the least squares estimators â, b̂, minimising Q(a, b) =
∑n

i=1{Yi − a − b(Xi − X̄)}2, as
with Ex. 3.30. Using results from that exercise, show (i) that â = Ȳ and b̂ = sxy/s

2
x; (ii)

that Q0 = Q(â, b̂) = s2y − s2xb̂
2; and (iii) that T = b̂/{(Q0/m)1/2/sx} = m1/2sxb̂/Q

1/2
0

has the tm distribution, with m = n− 2 degrees of freedom. Show that this implies

Rn = b̂
sx
sy

=
sxb̂

(Q0 + s2xb̂
2)1/2

=
T/m1/2

(1 + T 2/m)1/2
.

Solve for T to get the T = m1/2Rn/(1 − R2
n)

1/2, pointed to and used in the previous

point. Go on to work out the density of Rn, via the density gm for the tm; show that it

becomes

hn(r) = gm

( m1/2r

(1− r2)1/2

) m1/2

(1− r2)3/2
=

Γ( 12 (m+ 1))

Γ( 12m)
√
π

(1− r2)(m−2)/2

for r ∈ (−1, 1). As a curiosum, check that it is U-shaped for n = 3, uniform for n = 4,

and then bell-shaped for n ≥ 5.
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Ex. 4.36 Inference for linear multiple regression. [xx to be done. point back to Ex. 3.31,

3.32, 3.33, and point to one or two stories. xx] in this exercise we show typical and not so

typical inference methods for the linear multiple regression model, using the key results

reached in the previous exercise. confidence intervals, tests, also for σ, for a p quantile

F−1(q |x0) = xt0β+zqσ, and delta method for things like Pr(Y ≤ y0 |x0). and prediction.

xx]

(a) (xx typical things first. show that β̂j ∼ N(βj , k
2
jσ

2/n), where k2j = σj,j
n the diagonal

elements of Σ−1
n . from this show tj = (β̂j − βj)/(kj σ̂/

√
n) is a tn−p. then ci for each βj .

and test of βj = 0. also ok for βj − βk etc. xx)

(b) (xx inference for σ. xx)

(c) For a given individual, with covariate vector x0, the outcome Y0 has the distribution

N(xt0β, σ
2). Consider the inference task for a quantile in this distribution. Show that

the q-quantile becomes γq = xt0β+ zqσ, with Φ(zq) = q. With estimator γ̂q = xt0β̂+ zqσ̂,

show that

Wq =
γ̂q − γq
σ̂

=
xt0(β̂ − β) + zq(σ̂ − σ)

σ̂
=

N(0, xt0Σ
−1
n x0/n) + zq{(χ2

m/m)1/2 − 1}
(χ2

m/m)1/2
.

(xx round off. the point is that Wq can be simulated. also approximated with a normal.

give data example. xx)

(d) (xx prediction, what will Y0 be, at position x0. also Pr(Y ≤ y0 |x0). xx)

Ex. 4.37 How much of the variance is explained? (xx the below to be polished and

illustrated, and with a clearer link to R2. exact cc(ρ) to come in Ch. 7. point to

illustration in Story i.6. xx) In the linear regression model, the extent to which the

covariates influence the outcomes may be assessed in several ways, one of which is to

decompose the variance of the outcomes into a covariate part and a ‘remaining variability’

part. Such assessments relate also to ‘signal plus noise’ viewpoints; how strong is the

signal?

(a) We start out writing the regression model as

Yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi = β0 + xtiβ + εi for i = 1, . . . , n,

again with the εi seen as i.i.d. N(0, σ2), and further assume that the covariates have been

centred, having their means subtracted, so that
∑n

i=1 xi,j = 0 for j = 1, . . . , p. This

gives β0 the interpretation as the overall mean of the Yi. With Σn = (1/n)
∑n

i=1 xix
t
i

the empirical p × p variance matrix for the xi, show that the least squares estimators

become

β̂0 = Ȳ ∼ N(β0, σ
2/n), β̂ = Σ−1

n (1/n)

n∑
i=1

xiYi ∼ Np(β, (σ
2/n)Σ−1

n ),

and that these two are independent.
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(b) Write µ̂i = β̂0+x
t
iβ̂ for the model based estimate of the outcome at xi. For the sum

of squared residuals, show that Q0 =
∑n

i=1(Yi − µ̂i)
2 =

∑n
i=1(Yi − Ȳ )2 − nβ̂tΣnβ̂. In

other words,

Vn =

n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

(Yi − µ̂i)
2 + nβ̂tΣnβ̂,

a neat decomposition of the full variability of outcomes as a sum of squared residuals

and the covariate part nβ̂tΣnβ̂.

(c) (xx place a little caveat below, regarding interpretation; we need to think about the

population being sampled from. xx) Standard themes for the linear regression model are

developed with analyses carried out conditional on the covariates. Allow now a change

in this narrative, where the xi are seen as having their own covariate distribution, with

mean zero and variance matrix Σn. Show that a randomly selected outcome Yi then has

variance βtΣnβ + σ2. Show that the covariate part of the full variability becomes

ρ =
βtΣnβ

βtΣnβ + σ2
=

λ

λ+ 1
, with λ = βtΣnβ/σ

2.

With σ̃2 = Q0/n (rather than the unbiased σ̂2 = Q0/(n − p − 1)), show that this leads

to

ρ̃ =
β̂tΣnβ̂

β̂tΣnβ̂ + σ̃2
=
Vn −

∑n
i=1(Yi − µ̂i)

2

Vn
= 1−

∑n
i=1(Yi − µ̂i)

2∑n
i=1(Yi − Ȳ )2

.

This is often called the coefficient of determination, or R2.

(d) To carry out precise inference for ρ, show first that nβ̂tΣnβ̂/σ
2 ∼ χ2

p(nλ); check with

Ex. 1.48. Then show that with λ̂ = β̂tΣnβ̂/σ̂
2, we have

F = nλ̂/p = nβ̂tΣnβ̂/(pσ̂
2) ∼ F (p,m, nλ),

the noncentral F, see Ex. ??, with m = n− (p+ 1) the degrees of freedom for σ̂2.

(e) Explain how this may be used to set confidence intervals for λ and hence for ρ. You

may check with Ex. 7.15 how this may be used to construct full confidence distributions

for the fraction ρ of variation explained by the covariates; for an illustration, see Story

i.6.

Ex. 4.38 Inference for ratios of standard deviations. Suppose two independent samples,

of sizes n1 and n2, come from two populations, with standard deviations σ1 and σ2. From

the empirical standard deviations σ̂1 and σ̂2, form the ratio R = σ̂1/σ̂2, to be used for

inference about the underlying ratio ρ = σ1/σ2.

(a) Suppose first that the two distributions are normal. We then saw in Ex. 1.49 that

R2 = ρ2F , where F ∼ Fm1,m2
, an F distribution with degrees of freedom (m1,m2) =

(n1−1, n2−1). Construct a 95 percent confidence interval for ρ based on this. Also give

a 0.05 level test for the equality hypothesis σ1 = σ2. this gives c.i. for ρ, and tests for

ρ = 1. (xx answer: with Pr(a ≤ F ≤ b) = 0.95, with (a, b) found from quantiles of the

F, we find [R/b1/2, R/a1/2]. test: accept if a < R2 < b. xx)
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(b) Then consider inference for the ratio ρ outside the assumption of normally distributed

data. From Ex. 3.12, find the representation

R =
σ̂1
σ̂2

.
=
σ1
σ2

1 + (1/n1)
1/2( 12 + 1

4γ4,1)
1/2Nn1

1 + (1/n2)1/2(
1
2 + 1

4γ4,2)
1/2Nn2

,

in terms of the kurtoses γ4,1 and γ4,2, where Nn1
and Nn2

are independent variables

tending to standard normals as sample sizes increase. Use the delta method to deduce

that R/ρ ≈d N(1, τ2), with τ2 = (1/n1)(
1
2 +

1
4γ4,1)+(1/n2)(

1
2 +

1
4γ4,2). For normal data,

show that this matches the distributional approximation F 1/2 ≈d N(1, 1/(2n1)+1/(2n2)).

(c) Construct an approximate 95 percent confidence interval for σ1/σ2, valid also outside

normal data. For an application, see the Bach and Reger Story ii.12.

(d) (xx one more point. xx)

Ex. 4.39 Testing equality across groups. (xx mention below that k = 2 is simple, with

pairwise comparisons, t type things. xx) Suppose a parameter has the same interpretation

across groups, say θj for groups j = 1, . . . , k. associated with estimators, perhaps of

different precision. How can we test the null hypothesis of no difference, i.e. H0 : θ1 =

· · · = θk?

(a) Suppose first that Yj ∼ N(θj , σ
2), with independence, and the same known precision,

i.e. σ. Explain from classic results of Ex. 1.44–1.45, that Z =
∑k

j=1(Yj− Ȳ )2/σ2 ∼ χ2
k−1,

with Ȳ = (1/k)
∑k

j=1 Yj the natural estimator for the common parameter under H0.

Explain that in the case of σ not being known, we still have Z∗ =
∑k

j=1(Yj − Ȳ )2/σ̂2 →d

χ2
k−1, as long as σ̂ is consistent, with growing information for each group.

(b) A useful generalisation of the basic results for i.i.d. normal data is as follows. Suppose

Yj ∼ N(0, 1/aj), with the aj positive and a =
∑k

j=1 aj . Define Y ∗ =
∑k

j=1(aj/a)Yj and

then Z =
∑k

j=1 aj(Yj−Y ∗)2. Show that Z =
∑k

j=1 ajY
2
j −a(Y ∗)2, that it is independent

of Y ∗, and that its distribution is a χ2
k−1. The classical case, leading to the distribution

of the empirical variance and then to the t test, corresponds to all aj = 1.

(c) A natural variation of the previous point is as follows. Assume in general terms

that Yj ∼ N(θ, σ2
j ), with independence, for j = 1, . . . , k. Show that the minimiser of

Q(θ) =
∑k

j=1(Yj − θ)2/σ2
j is θ̂ = (

∑k
j=1 Yj/σ

2
j )/(

∑k
j=1 1/σ

2
j ), and that Qmin = Q(θ̂)

is χ2
k−1, independent of θ̂. Demonstrate also that of all unbiased estimators θ∗ =∑k

j=1 cjYj of θ, θ̂, with weights proportionao to inverse variances, has the smallest vari-

ance. Again, if the σj are consistently estimated, as opposed to known, explain that

with θ∗ = (
∑k

j=1 Yj/σ̂
2
j )/(

∑k
j=1 1/σ̂

2
j ), we still have Q

∗ =
∑k

j=1(Yj − θ∗)2/σ̂2
j tending to

χ2
k−1.

(d) Consider correlations ρ1, . . . , ρk for k groups of binormal data, with sample sizes

n1, . . . , nk, summing to the total n. Via Ex. 2.48, explain that n
1/2
j (ζ̂j − ζj) →d N(0, 1),

where ζ̂j = 1
2 log{(1 + ρ̂j)/(1 − ρ̂j)} is Fisher’s zeta transform. Deduce that Q =∑k

j=1 nj(ζ̂j − ζ∗)2 →d χ
2
k−1, with ζ∗ =

∑k
j=1(nj/n)ζ̂j . This is accordingly a natural

test statistic for ρ1 = · · · = ρk.
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(e) Situations similar to that of the previous point abound in applied statistics, when

needing to compare more groups than two. Suppose p̂j = Yj/nj is estimating a binomial

pj , for independent experiments, for j = 1, . . . , k. Then form p̂ =
∑k

j=1(nj/n)p̂j , and

show that under p1 = · · · = pk conditions, Q =
∑k

j=1 nj(p̂j − p̂)2 →d p(1−p)χ2
k−1, using

p to denote the common value of the pj . Construct a test for equality of the pj .

(f) (xx one more. could test equality of medians in k groups. xx)

Ex. 4.40 Testing equality across groups, vector parameter case. In Ex. 4.39 we developed

a recipe for testing equality across groups for any one-dimensional parameter. Here we

lift those methods to the case where the θ1, . . . , θk in question have dimension p ≥ 2. We

wish again to test equality of these. (xx to be used in Story iii.7. xx)

(a) Assume Yj ∼ Np(θj ,Σj) for j = 1, . . . , k, with known positive definite variance

matrices. Under H0 of θ1 = · · · = θk, show that Q(θ) =
∑k

j=1(Yj − θ)tΣ−1
j (Yj − θ) is

a χ2
kp, and that it is minimised by θ̂ = A−1

∑k
j=1 Σ

−1
j Yj , with A =

∑k
j=1 Σ

−1
j . Show

further (i) that θ̂ ∼ Np(θ,A
−1); (ii) that the full ensemble of Yj − θ is independent of

θ̂; and (iii) that the natural test statistic Q0 = Q(θ̂) =
∑k

j=1(Yj − θ̂)tΣ−1
j (Yj − θ̂) is a

χ2
(k−1)p.

(b) This Q0 may be used as a test statistic for θ1 = · · · = θk, with an exact chi-

square null distribution, provided the Σj matrices are known. In various applications

these are estimated from data, with Σ̂j using data for group j. This leads to θ̂ =

Â−1
∑k

j=1 Σ̂
−1
j Yj , with Â =

∑k
j=1 Σ̂

−1
j . Show that if these Σ̂j are consistent, then

Q∗ = Q∗(θ̂) =
∑k

j=1(Yj − θ̂)tΣ̂−1
j (Yj − θ̂) tends to the χ2

(k−1)p, under the null.

(c) Suppose we have normal datasets with sample sizes nj , yielding the usual parameter

estimates (ξ̂j , σ̂j), for groups j = 1, . . . , k, From these compute ξ̂ =
∑k

j=1(nj/n)ξ̂j , the

overall mean, and σ̂ =
∏k

j=1 σ̂
nj/n
j . Show that

Q =

k∑
j=1

{nj(ξ̂j − ξ̂)2 + 2nj(log σ̂j − log σ̂)2}

tends to χ2
2(k−1) under the hypothesis of common (ξ, σ). Write also down the Wilks test,

based on attainde log-likelihood maxima. (xx do both, for the mothers and babies story,

for the three ethnic groups. xx)

(d) Consider a probability distribution b = (b1, . . . , bs) for suitable outcomes 1, . . . , s,

and suppose we have multinomial estimators b̂j = (̂bj,1, . . . , b̂j,s) for each of groups

j = 1, . . . , r, resulting from sample sizes n1, . . . , nk, with total sum n. In other words,

b̂j = (Nj,1, . . . , Nj,s)/nj , for the multinomial experiment for group j. The hypothe-

sis to be tested is that of equal probability distribution across groups. Explain that

b̂j ≈d Ns(b,Σ/nj), where Σj has bj(1 − bj) on the diagonal and −bjbℓ outside. As in

Story vii.1, write Σ0 for the (s − 1) × (s − 1) submatrix of Σ, needed since Σ does not

have full rank, with b̂0 and b̂j,0 similarly being the shorter (s− 1)-length vectors, so that
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the general method above can be applied. Then show that the test statistic Q0 from the

general recipe above can be written

k∑
j=1

nj (̂bj,0 − b̂0)
tΣ̂−1

0 (̂bj,0 − b̂0) =

k∑
j=1

nj

s∑
r=1

(̂bj,r − b̂r)
2

b̂r
=

k∑
j=1

s∑
r=1

(Nj,r − Ej,r)
2

Ej,r
,

which then tends to χ2
(k−1)(s−1) under the null. Show that this is actually precisely

identical to the Pearson statistic from Story iii.7, for testing independence between the

two factors ‘group’ and ‘bin’.

Ex. 4.41 One-way layout. (xx a point about k = 2 at the end, where F i suppose

becomes simply t2, with usual t test. xx) The most prominent special case of the setup

from Ex. 4.39 is that with an i.i.d. normal sample for each of the groups in question, with

the same variance for all data. Consider therefore Yj,1, . . . , Yj,nj
i.i.d. from N(ξj , σ

2), for

group j, and with overall sample size n =
∑k

j=1 nj . This is the so-called normal one-way

layout, with the chief hypothesis to be tested is H0 : ξ1 = · · · = ξk.

(a) Let Ȳj = (1/nj)
∑nj

r=1 Yj,r be the group averages. Explain that we for the over-

all average have Ȳ = (1/n)
∑k

j=1

∑nj

r=1 Yj,r =
∑k

j=1(nj/n)Ȳj . Show then that Q =∑k
j=1 nj(Ȳj − Ȳ )2 has EQ = (k − 1)σ2 +

∑k
j=1 nj(ξj − ξ̄)2, with ξ̄ =

∑k
j=1(nj/n)ξj .

Explain that Q ∼ σ2χ2
k−1, under equality of means, so that the test statistic W = Q/σ̂2

approximately has the χ2
k−1 distribution under H0, as long as σ̂ is consistent. This is

already a satisfactory answer to the one-way layout testing problem, without further

fine-tuning.

(b) In this setup further fine-tuning is available, however. Show thatQ0 =
∑k

j=1

∑nj

r=1(Yj,r−
Ȳj)

2 ∼ σ2χ2
n−k, making σ̂2 = Q0/(n− k) the natural unbiased estimator of σ2. Explain

also that Q0 is independent of Q. Under the null of equal means, then, deduce that

F =
Q/(k − 1)

Q0/(n− k)
=
Q/(k − 1)

σ̂2
=

∑k
j=1 nj(Ȳj − Ȳ )2/(k − 1)∑k

j=1

∑nj

r=1(Yj,r − Ȳj)2/(n− k)

has the F distribution Fk−1,n−k. Checking whether an observed F is too big, compared

to this null distribution, is then a way to assess the hypothesis ξ1 = · · · = ξk. For an

illustration, see Story i.6.

(c) (xx a short thing estimating contrasts. xx)

Ex. 4.42 Testing equality of multinormal means. (xx a brief thing, used in Story ii.7,

can point to ML theory too. establish the following, then apply in two-three settings. xx)

Suppose A ∼ Np(a,Σ1) and B ∼ Np(b,Σ2) are independent multinormal data vectors,

with known variance matrices. How can we test a = b? Show that W = (B − A)t(Σ1 +

Σ2)
−1(A−B) ∼ χ2

p under the null.

Notes and pointers

(xx confidence intervals. testing. connections. power. Neyman–Pearson. point to

Lehmann. and to later chapters, Ch. 7 for CDs. point to interplay between modelling,

probability calculus, thinking, a bit of philosophy, and practice. xx)
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(xx one-way layout: primarily to test equality of means, so ‘anova’ is arguably a

slight misnomer. xx)

Basu’s lemma: from Basu (1955), see also Ghosh (2002).

ToDo notes, as of 12-August-2024:

Lots, though the chapter is shaping up. There are lots of ‘test θ = θ0 against θ > θ0
prose in exercises, since it’s easiest and cleanest, with NP etc. But we need to say a

couple of times that all of this generalises to θ ̸= θ0 etc.

the Lindqvist and Taraldsen things, for simulating from U(x) | {V (x) = v}. do the

handball model from CLP.

Do the bioequivalence: test the H0 that θ is outside [−ε, ε] against the alternative

that it is inside. Diffent type of tests, and different looking power function.

Do sample size things, and efficiency; πn(θ)
.
= Φ(

√
n(θ−θ0)/σ−z0), with informative

derivative ϕ(0)
√
n/σ at θ0. Efficiency things.

Make an example or two, perhaps with Cauchy again, to see that the confidence

region might not be an interval.

Point to Cox (1958) and also interviews with him regarding conditional stuff.





I.5

Minimum divergence and maximum likelihood

Consider the joint density of a dataset Y from a parametric model, say ffull(y, θ).

The likelihood function, a fundamental concept in parametric inference, is just this

density, but seen as a function of θ, with y fixed at the observed dataset yobs. In this

chapter we go through the fundamental likelihood inference methods, in particular

with results for the maximum likelihood estimator, the maximiser of the likelihood,

and for the attained maximum value itself. It is useful to see this general likelihood

theory as a special case of the more flexible machinery of minimum divergence meth-

ods. Here statistical divergences, often seen as a distance from one fixed model to

a collection of approximation models, lead to empirical divergence functions, then

to be minimised to find the best approximation. In fact we develop general theory

for minimum divergences first, below, after which likelihod theory is a relatively

easy consequence, in that maximum likelihood corresponds to one particular diver-

gence, namely the Kullback–Leibler. The divergence and likelihood methods are

practical and versatile, as is demonstrated in several exercises and stories, also for

say non-standard regression models. With models outside the most familiar ones,

inference analysis essentially flows from being able to programme the log-likelihood

function or divergence function. Further material connected to likelihood theory

are Cramér–Rao information inequalities, Wilks theorems, influence functions, and

certain flexible robustification methods. Crucially, the theory developed does not

in general presuppose that the parametric model worked with is correct, as results

are established both under and outside the precise model conditions. (xx perhaps

there is room for empirical likelihood. xx)

Key words: BHHJ, Cramér–Rao lower bounds, Fisher information matrix, influ-

ence function, Kullback–Leibler, least false parameters, log-likelihood, maximum

likelihood, minimum divergence, regression models, score function, Wilks tests

In earlier chapters we have met and worked with several methods for estimation param-

eters in different settings. Sometimes one estimates population parameters directly from

data, like the mean, the median, the standard deviation, the skewness, the correlation,

the median difference between groups, etc., without necessarily using parametric models.

Very frequently, however, the most fruitful data analyses involve fitting some parametric

model to the data, as in regression models, where regression coefficients are estimated

and assessed to learn how covariates influence the main outcomes. In Chs. 3-4 we have

165
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already worked with methods associated with moment fitting, quantile fitting, and least

squares for regression models, but the present chapter has a wider aim and applicability,

specifically developing methodology for minimum divergence function estimators, and its

primary special case, maximum likelihood estimators.

In general terms, suppose data y have been modelled via a parametric model, leading

to a joint probability density ffull(y, θ), with θ in some relevant parameter region Θ. Then

the likelihood function is L(θ) = ffull(yobs, θ), studied as a function of the parameters,

with y held fixed at the observed yobs. The maximum likelihood (ML) estimator is the ML

estimatorthe value θ̂ maximising the likelihood, or equivalently the log-likelihood function ℓ(θ) =

log ffull(yobs, θ). The simplest setup is that of i.i.d. observations Y1, . . . , Yn to be fitted to log-likelihood

functionsome parametric f(y, θ), with θ a parameter vector inside its relevant parameter region.

The log-likelihood function is then

ℓn(θ) =

n∑
i=1

log f(Yi, θ). (5.1)

The apparatus of minimum divergence function and likelihood estimation carries over to

regression models too, where the density of Yi given a covariate vector xi is modelled via

some f(yi |xi, θ).
Generally speaking there are two valid viewpoints when developing the required

theory. The first takes the model to be correct, so there is a true parameter θ0 to be

estimated, with associated inference. The second takes the parametric model to be

a sensible approximation to the real and unknown data-generating mechanism. With

i.i.d. data, the model density f(y, θ) is consequently seen as an approximation to the real

underlying density g(y). Estimation and inference then involves the least false parameter

θ0, in a suitable sense making f(y, θ0) coming as close to the real g(y) as possible.

A generic and powerful statistical idea is to estimate parameters by minimising

a relevant distance or divergence from the true mechanism to the data. Our chapter

starts with general ways in which to construct relevant distance functions, often tied to

divergence ideas about the distance from one density to another, which in various settings

define the best parameter θ0 to be minimiser of such functions. This is then followed up

by constructing the parameter estimator θ̂ as the minimiser of an empirical version of the

same distance function. The arguably most important estimation method, the maximum

likelihood method, is the special case associated with the Kullback–Leibler divergence

KL(g, fθ). Apart from clarifying the concepts, defining parameters and estimators, in

such ways, developing the theory amounts to establishing clear results for the behaviour

and performance of these estimators and related data-driven tests, confidence methods,

etc. This again involves limiting normality, assessing and estimating variability, and so

on. All of this leads to a fruitful and indeed practical general theory, which also in new

situations, with models constructed for new purposes, allows the statistician to estimate,

to reach relevant confidence statements, test and compare, predict, etc.

In brief, this chapter has these connected parts, with associated groups of exercises.

(i) Motivating and building an apparatus for defining parameters and their estima-

tors via minimum divergence functions, initially for i.i.d. setups. The most important

method, the maximum likelihood (ML) method, briefly described above, is a special case,



Divergences, Kullback–Leibler, likelihoods 167

associated with the KL divergence.

(ii) Analysing ML methods involves studying score functions, information functions,

and the Fisher information matrix, for general parametric models. This again relates to

‘information inequalities’, specifically of the Cramér–Rao type, establishing lower bounds

for how small variances can be, with a given model and a given sample size n. The ML

methods achieve these lower bounds, under model conditions, for growing n.

(iii) Methods are developed for deriving the basic properties, concerning limiting

normality of estimators, chi-squared type results for profiled versions for focus parame-

ters, and quadratic forms for classes of test criteria, via the mechanics of minimisers of

random functions.

(iv) Importantly, the i.i.d. setup is then lifted to classes of regression models. In-

trigruingly, with attention to certain crucial details, these extensions turn out to be

not too strenuous, partly with Lindeberg theorem arguments replacing CLT details for

the simpler case. The general likelihood theory in particular then makes it relatively

straightforward to define and work with not only multiple linear regression, but logistic

regression, Poisson regression, gamma type regressions, and more.

Carrying out data analyses using tools from this chapter is often even surprisingly

straightforward, even in new situations with new models. This is partly due the general

well-working theory, but also to the modern conveniences of software packages for nu-

merical optimisation, easy calculation of derivatives and second derivatives, and so on,

after having programmed the basic empirical distance function to be used. For maximum

likelihood methodology, in particular, this is showcased in Story i.6, with a logistic full-

data model for how covariates influences birthweights, Story vii.4, concerning models for

time-to-failure of machine components, and in Story iv.6, with regression models for the

number of bird species on islands outside Ecuador. These applications are also meant

to inspire the invention of new parametric models in new situations, perhaps along with

context relevant distance functions.

(xx can briefly point to extensive use of likelihood theory in Ch. 7, 10, 11, 12. to

be clearer, also using Notes: M-estimators, Z-estimators. the general wondrous recipes

around θ̂ ≈d Np(θ0, Ĵ
−1
obs). make robustness aspects clearer. xx)

Divergences, Kullback–Leibler, likelihoods

Ex. 5.1 Maximising the log-likelihood. (xx check that we don’t repeat too similar things

later on. xx) Here we work through some examples of setting up the log-likelihood

function and finding the ML estimator.

(a) Suppose Y ∼ binom(100, θ) and that you observe yobs = 22. Set up the log-likelihood

function ℓ(θ) and plot it. Show that its maximiser is θ̂ = 0.22.

(b) Simulate ten values of Y from the binomial (100, 0.25), and plot the resulting ten log-

likelihood functions. Note how they vary, giving different ML estimates of the underlying

true θ0 = 0.25. With your code, experiment a bit with different sizes of the binomial n.

For bigger n, the peak is sharper; show this mathematically.

(c) With i.i.d. observations Y1, . . . , Yn from some parametric f(y, θ), show that the log-

likelihood function becomes ℓn(θ) =
∑n

i=1 log f(Yi, θ). With such data points from the
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two-parameter normal N(ξ, σ2) model, give a clear formula for the log-likelihood function

ℓn(ξ, σ). Show that the ML estimators are ξ̂ = Ȳ and σ̂2 = Q0/n, with Q0 =
∑n

i=1(Yi −
Ȳ )2. Compared to the classical empirical variance Q0/(n−1), see Ex. 1.45, we learn that

the ML estimator has a small negative bias, but that the difference is small for moderate

to large n.

(d) With data y1, . . . , y100 from the exponential density θ exp(−θy), set up the log-

likelihood function and find a formula for its maximiser θ̂.

(e) Simulate 50 points from the uniform [0, θ], with true value θ0 = 1. Find and plot the

log-likelihood function, and read off the ML estimate θ̂.

(f) Simulate 100 values yi from the Gam(a0, 1) distribution (see Ex. 1.9), with e.g. a0 =

3.33. Set up and plot the log-likelihood function. Set up a little experiment where you

keep track of the ML estimators â in repeated experiments from the samme Gam(a0, 1).

Ex. 5.2 The likelihood and log-likelihood functions. Consider the one-parameter model
with density f(y, θ) = exp(−θy1/2)θ/(2y1/2) for y > 0, and assume n = 12 data points
have been observed:

0.233 0.334 0.067 0.148 0.007 0.639 0.017 0.298 0.030 0.120 0.061 0.063

(a) Show that f(y, θ) indeed is a density, write down the log-likelihood function ℓn(θ),

and show that it is maximised at θ̂ = 1/Wn, with Wn = n−1
∑n

i=1 y
1/2
i . Find also a

formula for the Hessian at the maximum position, Ĵobs = −ℓ′′n(θ̂).

(b) Find the limit distribution of
√
n(Wn − 1/θ), using the CLT of Ch. 2, and use the

delta method to find that the limit distribution of
√
n(θ̂ − θ) is N(0, θ2). You may

verify already that this is what comes out of the general ML theory developed below, see

e.g. Ex. 5.17.

(c) Anticipating general ML theory to come, check again with Ex. 5.17, it will be seen

that θ̂ ≈d N(θ, 1/Ĵ), under model conditions. Explain that this leads to approximate

confidence intervals of the type θ̂ ± z0/Ĵ
1/2 = θ̂(1 ± z0/

√
n), with z0 the appropriate

normal quantile. We’ve actually simulated these few data points above from the model,

with true parameter θ0 = 3.33. Construct a version of Figure 5.1, left panel.

(d) In general the ML estimator might have a complicated distribution (though it is

approximately normal, as we have seen here). In this particular model its precise distri-

bution may be worked out, however; show that θ̂ ∼ θ (2n)/χ2
2n. Use this to find a precise

90 confidence interval for θ, and compare to the approximation given above.

(e) To simulate data from this model, show that Yi is equal in distribution to (Vi/θ0)
2,

with the Vi i.i.d. from the unit exponential. Make a computer programme to simulate

n points from the f(y, θ0) model, and which then finds the log-likelihood function, the

ML estimator, and the approximate 90 percent confidence interval, as above. Run such a

programme for say 88 more points, forming a bigger dataset with n = 100 datapoints, and

comment on what you find. Produce a version of Figure 5.1, right panel. Comment on
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Figure 5.1: Left panel: The log-likelihood function ℓn(θ) for the simple n = 12 dataset of

Ex. 5.2. The maximum is attained at θ̂ = 2.803. The blue bars indicate the 90 percent

confidence interval coming from standard ML estimation theory, see Ex. 5.17, and is

[1.472, 4.134]. The true value behind the data, θ0 = 3.33, is indicated as the red bar.

Right panel: as for the left, but now with the bigger data set of n = 100 datapoints, from

the same distribution, where the first 12 are as above. The minus second derivative Ĵ

at the ML position has increased from 1.527 to 11.103, causing the ML based confidence

interval to become considerably tighter, and is [2.507, 3.494].

the main features here, including that Ĵ becomes bigger with more data, yielding sharper

confidence intervals. We would usually plot the log-likelihood and related aspects, as the

confidence curves of Ch. 7 for a shorter range of parameter values than in this right panel,

but we here choose to plot using the same range for both n = 12 and n = 100.

Ex. 5.3 Minimising L2 distance. Suppose i.i.d. data Y1, . . . , Yn come from some data

generating density g which we wish to approximate with some parametrically modelled

fθ. The L2 distance between g and fθ is

D(g, fθ) =

∫
(g − fθ)

2 dy =

∫
f2θ dy − 2

∫
gfθ dy + a(g),

where a(g) does not depend on θ.

(a) Use this to motivate what we may call the minimum L2 estimator θ̂, the minimiser

of Dn(θ) =
∫
f2θ dy − 2n−1

∑n
i=1 f(Yi, θ). Operationally, this is easiest when there is a

closed-form formula for
∫
f2θ dy, but numerical minimisation might be carried out even

without this. Simulate 100 detapoints from a Gam(a, b), where you choose (a, b) as you

wish, and estimate these using this method.

(b) Carry out a similar simple experiment with 100 datapoints drawn from a normal,

i.e. estimate the mean and standard deviation using the minimum L2 method. Then do

the following variation: push one of the 100 datapoints far away from the others, which
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will cause the traditional estimates of µ and σ to be off; show however that the minimum

L2 estimates are far less affected. – The minimum L2 method is a special case of the

BHHJ method, see Ex. 5.9.

Ex. 5.4 Estimating means via minimum divergence. Suppose again i.i.d. data Y1, . . . , Yn
stem from some data generating density g. The point to convey here is that key param-

eters can be seen as minimisers of natural distance functions, or divergences, leading to

recipes for estimating them.

(a) For any distribution G, let ξ(G) be the minimiser of H(ξ) = EG (Y − ξ)2, with

estimator the minimiser ξ̂ of the empirical version Hn(ξ) = n−1
∑n

i=1(Yi−ξ)2. Show, for
this simple illustration of minimum divergence function methods, that ξ(G) is the mean

EG Y and that ξ̂ = Ȳ , the sample mean.

(b) For characterising and then estimating both mean and standard deviation, consider

h(y, ξ, σ) = (y − ξ)2 + {y2 − (ξ2 + σ2)}2, and let (ξ, σ) be the minimiser of the distance

function H(ξ, σ) = EG h(Y, ξ, σ). Show that ξ(G), σ(G) are the mean and standard

deviation, and work out expressions for ξ̂, σ̂, the minimisers of the empirical distance

function Hn(ξ, σ) = n−1
∑n

i=1 h(Yi, ξ, σ).

(c) For positive Yi data, to be fitted to the Gam(a, b), consider the function h(y, a, b) =

(y − a/b)2 + (y2 − (a/b2 + a2/b2))2, constructed in view of a/b and a/b2 being the

formulae for the mean and variance for a Gamma. Explain that the empirical version of

the distance function H(a, b) = EG h(Y, a, b) becomes Hn(a, b) = n−1
∑n

i=1{(Yi−a/b)2+
(Y 2

i − (a/b2 + a2/b2)}2. Show that the minimum divergence function estimators (â, b̂)

are equivalent to the moment estimators, worked with in Ex. 3.25, i.e. the solution to

the two equations Ȳ = a/b and σ̂2 = a/b2.

Ex. 5.5 Minimum divergence function estimators: general setup. We learn from Ex. 5.3–

5.4 that classes of estimators may be formed via minimisation of suitable empirical

distance functions; these estimate the corresponding minimisers of distance functions

operating on the underlying distributions. We call these minimum divergence function

estimators or minimum distance estimators. In general terms, for observations Y1, . . . , Yn
from some distribution G, consider a parameter θ0 = θ(G) defined as the minimiser of

the function H(θ) = EG h(Y, θ), for a suitable h(y, θ). It is assumed that θ0 thus defined,

which may also be multidimensional, is the unique minimiser. The empirical version of

H(θ) is Hn(θ) = n−1
∑n

i=1 h(Yi, θ), so a natural estimator for θ0 is θ̂ = argmin(Hn). In

fact many important estimators are of this or related types, perhaps minimising some-

what more complicated random functions, as we shall see in this chapter. In exercises

below we shall develop clear results for how the minimum divergence function estimators

behave, under sets of natural assumptions, but the present exercise is meant to illustrate

the basic construction via different types of examples. minimum

divergence

function

estimators
(a) Explain that Hn(θ) can be written

∫
h(y, θ) dGn(y), with Gn the empirical distri-

bution, having mass 1/n at each datapoint; see Ex. 3.9. Explain why Hn(θ) →pr H(θ)

for each θ, and find the limit distribution of
√
n{Hn(θ)−H(θ)}. What we need, tended

to in several exercises to follow, are conditions under which θ̂ = argmin(Hn) tends to

θ0 = argmin(H), along with a limit distribution.
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(b) For one-dimensional Yi, work through the details of h(y, θ) = (y−θ)2. Then consider

h(y, θ) = [exp{c(y−θ)}−1−c(y−θ)]/c2, with c a balance parameter. Draw 100 datapoints

from a normal N(θ, 1), with θ of your choice, and estimate θ in this minimum Hn fashion,

for a few values of the balance parameter c. Show that c close to zero corresponds to the

mean.

(c) Let generally h(y, θ) = {r(y) − θ}tV {r(y) − θ}, for some r(y) = (r1(y), . . . , rp(y))

and a symmetric positive definite matrix V . Show that θ0 = EG r(Y ) and that θ̂ =

n−1
∑n

i=1 r(Yi).

(d) Consider h(y, ξ, τ) = p(τ)+ 1
2 (y− ξ)

2/τ2, where p(τ) is a smooth increasing function

of τ > 0. Find a recipe for computing the estimates (ξ̂, τ̂) associated with the distance

function n−1
∑n

i=1 h(Yi, ξ, τ). Check in particular the case of p(τ) = log τ .

(e) Consider h0(x) = x arctanx − 1
2 log(1 + x2), and define θ0 as the minimiser of

EG h0(Y − θ). Show that θ̂, the minimiser of Hn(θ) = n−1
∑n

i=1 h0(Yi − θ), is also the

unique solution to
∑n

i=1 arctan(Yi−θ) = 0. (xx so connection from minimum divergence

estimator to M estimator. round off. xx)

(f) There are connections here to the moment matching estimation method, as worked

with in Ex. 3.24. For a one-parameter model first, with EY = m(θ), consider h(y, θ) =

{y−m(θ)}2. Show that the implied best parameter is form(θ0) = EY , or θ0 = m−1(EY ),

and that the minimum divergence function method leads to solvingm(θ) = Ȳ . Generalise

to the case of there being two parameters in the model, and then to the general vector

parameter case.

Ex. 5.6 The Kullback–Leibler divergence and the maximum likelihood method. With

i.i.d. data Y1, . . . , Yn from a density g, to be approximated with a parametric fθ, the

particularly important maximum likelihood estimation method is worked with here, seen

as the natural cousin to the Kullback–Leibler divergence as a measure of distance from

the true density to the parametric approximation. Development in exercises below give

a precise description of how the method actually behaves.

(a) For two densities g and f , defined on a common support, the Kullback–Leibler

distance, interpreted to be ‘from the first density to the second’, isthe Kullback–

Leibler distance

KL(g, f) =

∫
g log

g

f
dy. (5.2)

It is an important concept and tool for communication and information theory, as for

probability theory and statistics. The log(g/f) term will be both positive and negative,

in different parts of the domain. Show nevertheless that indeed KL(g, f) ≥ 0, perhaps

via the Jensen inequality, and that KL(g, f) = 0 only when the two densities are equal

a.e. In Ex. 5.7 we learn more details about the KL distance, and look into illustrations,

but here the main point is to see its close connection to ML estimation.

(b) We now apply the general minimum divergence machinery of Ex. 5.5, with basic

function h(y, θ) = − log f(y, θ). Show that this defines θ0 = θ(G) as the minimiser of
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KL(g, fθ), and that minimising the implied distance function Hn(θ) is the same as max-

imising the function ℓn(θ) =
∑n

i=1 log f(Yi, θ), as in (5.1). This function is sufficiently

famous and pervasive to have earned its own name, the log-likelihood function (here for

i.i.d. observations). As explained above, the ML estimation method, seen here to be

equivalent to minimum divergence with the underlying divergence being the Kullback–

Leibler, from true density to parametric approximation. maximum

likelihood

(c) As a simple illustration (to be returned to in Ex. 5.9), generate say n = 100 points

from the uniform distribution, and use the parametric density f(y, θ) = θyθ−1 on the

unit interval. Write down and plot the log-likelihood function, and find the ML estimate.

Also show that the implied best parameter value, if the data stem from some g, rather

than from the model, is θ0 = 1/Eg log(1/Y ).

Ex. 5.7 The Kullback–Leibler distance: details and illustrations. (xx repair here. xx) In

Ex. 5.6 and other exercises above we have seen that the machinery of maximum likelihood

is intimately related to the KL distance KL(g, f) =
∫
g log(g/f) dy. Here we work on

illustrations to learn more.

(a) For two normal densities, N(a, 1) and N(b, 1), show that the KL distance becomes
1
2 (b − a)2. Prove also the somewhat more general result, that with g ∼ N(ξ1, σ

2) and

f ∼ N(ξ2, σ
2), the KL distance is 1

2 (ξ2 − ξ1)
2/σ2.

(b) Find the KL distance from one Poisson to another.

(c) The KL distance is also perfectly well-defined and meaningful in higher dimension.

Show that the KL distance from Np(ξ1,Σ) to Np(ξ2,Σ) can be expressed as 1
2δ

2, where the

Mahalanobis

distance
δ = {(ξ2 − ξ1)

tΣ−1(ξ2 − ξ1)}1/2 is the so-called Mahalanobis distance between the two

populations.

(d) For several of these examples we find KL distances being symmetric, between the

two densities in question, but this is not true in general. Compute the KL distance from

N(ξ, σ2
1) to N(ξ, σ2

2), and compare to the reciprocal case.

(e) (xx may consider a little reshuffle of exercises. xx) Consider a parametric den-

sity f(y, θ), with score function u(y, θ) = ∂ log f(y, θ) and information matrix J(θ) =

Varθ u(Y, θ); see Ex. 5.14 for more on these. Show here that

KL(f(·, θ), f(·, θ + ε)) = 1
2ε

tJ(θ)ε+O(ε3).

(f) Start from d(g, f) = −
∫
g log{1 + (f/g− 1)} dy, for densities which are not far from

each other, and use Taylor expansion to find

KL(g, f) ≈ 1
2

∫
g(f/g − 1)2 dy = 1

2

(∫
f2/g dy − 1

)
.

(xx some words indicating that the root-KL might have an easier interpretation. xx)

(g) (xx a bit of text, more than a question. xx) As noted the KL distance is not

symmetric, so ‘distance’ has a direction. In various statistical setups it makes sens to
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interpret d(g, f) as the the distance from ‘home density g’ to ‘approximation candidate

f ’. As also becoming clear from examples above, it’s somehow quadratic in nature, so

when numbers are involved, measuring the KL distances, it would typically make more

sense to give their square roots, as with {d(g, fθ)}1/2, the degree of closeness of the

parametric approximant fθ to the ground truth g.

Ex. 5.8 KL approximation. (xx to be edited. xx) For the following cases the point

is to set up a data generating density g, and then check how well a certain parametric

family f(y, θ) does the approximation job. For each case, this tells us how well the ML

can do its job, with enough data. For the various cases, find the minimiser, i.e. the best

approximation; find the minimum square-root distance d(g, f(·, θ0))1/2 (since this gives a

better picture than on the KL scale itself); and plot the true g alongside the parametric

approximant.

(a) Let g = 0.33N(−1, 1) + 0.67N(1, 1). Find the best normal approximation.

(b) Let g be a Gamma with parameters (2.22, 3.33). Find the best Weibull approximant,

and also the best log-normal approximant. Similarly, start with a Weibull distribution,

with parameters say (3.33, 2.22), and find the best Gamma distribution approximation.

(c) Let g = 0.95Expo(1)+0.05Expo(0.01), which roughly means that about five percent

of the data come from a distribution which much higher mean than the mainstream

exponential data. Find the best exponential model approximation, and also the best

Gamma and Weibull approximations. Display the true g and these three best parametric

approximations in the same diagram.

(d) Suppose data really come from N(0.333, σ2
1), with σ1 = 1.111, where a statistician fits

the simpler N(0, σ2) model. First, find out what happens to the ML estimator. Secondly,

illustrate ‘what goes on’ by drawing e.g. ten samples of size n = 50 from the true density,

and then display the ten versions of n−1ℓn(σ), along with its limit C(σ). Comment on

your findings.

BHHJ, the minimum divergence process, and its limit

Ex. 5.9 The BHHJ density power divergence method. Here we set up the basics for

the so-called density power divergence method. It involves raising the density function

f(y, θ) to some power a, as one of its ingredients. In the literature it is sometimes called

the BHHJ divergence method, from its inventors Basu, Harris, Hjort, Jones (Basu et al.

(1998), Jones et al. (2001)). We shall see in later exercises that it amounts to a robust

modification of the ML method.

(a) For a density g, in what follows to be seen as the true underlying data-generating

model, consider measuring the distance to an approximate fθ(y) = f(y, θ) density as

da(g, fθ) =

∫ {
f1+a
θ −

(
1 +

1

a

)
gfaθ +

1

a
g1+a

}
dy, (5.3)

with a a positive tuning parameter. Show that da(g, fθ) ≥ 0, and that the distance is

zero only when g = fθ a.e. Note that this for a = 1 is the same as the L2 distance of

Ex. 5.3.
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(b) Use Taylor expansion for faθ and ga for small a, to demonstrate that the integrand

in (5.3) may be written

fθ − g + g log(g/fθ)− a(g − fθ) log fθ +
1
2ag{(log g)

2 − (log fθ)
2}+O(a2).

Hence show that for a small, we have da(g, fθ) = KL(g, fθ) + O(a), with the Kullback–

Leibler distance
∫
g log(g/fθ) dy, assuming that the functions g log fθ, fθ log fθ, g(log fθ)

2,

g(log g)2 have finite integrals.

(c) Suppose Y1, . . . , Yn are i.i.d. from some unknown g, and that we wish to estimate θ

by making the distance da(g, fθ) small. The point is now that the third term of da does

not depend on θ, and that we may accurately estimate the two first, using

Hn,a(θ) =

∫
f(y, θ)1+a dy − (1 + 1/a)n−1

n∑
i=1

f(yi, θ)
a. (5.4)

Show that this is also coming out of the general minimum divergence function apparatus

of Ex. 5.5, with h(y, θ) =
∫
f1+a
θ dy − (1 + 1/a)f(y, θ)a. Show indeed that Hn(θ) is

an unbiased estimator of the two first terms of da(g, fθ), and give an expression for its

variance. We call the minimiser θ̂ of Hn(θ) the BHHJ estimator. the BHHJ

estimator

(d) Return to the ML estimator illustration of Ex. 5.6, with n = 100 points drawn from

the uniform, fitted to the θyθ−1 density. For some values of a, compute and plot the

Hn,a function, finding also the BHHJ estimate θ̂a. After having computed this for a grid

of a, plot the resulting θ̂a as a function of a, and comment.

Ex. 5.10 Integrals for BHHJ estimation. Using the BHHJ method of Ex. 5.9 for

estimating the parameters of models f(y, θ), we are very much helped, algorithmically

and numerically, by having formulae for the term A(a) =
∫
f1+a
θ dy.

(a) For the normal N(ξ, σ2), show that

A(a) =

∫
f(y, ξ, σ)1+a dy = (2π)−a/2(1 + a)−1/2σ−a.

Generalise to the multinormal case of Np(ξ,Σ), with

A(a) =

∫
f(y, ξ,Σ)1+a dy = (2π)−ap/2(1 + a)−p/2|Σ|−a/2.

(b) For the gamma model, with Y ∼ Gam(a, b), show that∫ { ba

Γ(a)
ya−1 exp(−by)

}1+α

dy =
Γ(a+ αa− α)

Γ(a)1+α

bα

(1 + α)a+αa−α
.

(c) For the log-normal model, where Y is such that log Y ∼ N(ξ, σ2): Show that∫ ∞

0

f(y, ξ, σ)1+a dy = (2π)−a/2σ−a(1 + a)−1/2 exp{−aξ + 1
2a

2σ2/(1 + a)}.
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(d) For the Weibull, with c.d.f. 1− exp{−(y/a)b} for y ≥ 0, show that∫ ∞

0

f(y, a, b)1+α dy =
( b
a

)α Γ(1 + α− α/b)

(1 + α)1+α−α/b
.

(e) For robust estimation of the three-parameter t distribution, consider the density

f(y, ξ, σ, ν) = gν((y − ξ)/σ)(1/σ) for Y = ξ + σtν , with gν the t density with ν degrees

of freedom. Find∫
f1+a dy =

1

σa

∫
g1+a
ν dx

=
1

σa

Γ(((1 + a)ν + a)/2)

Γ((1 + a)(ν + 1)/2)

{Γ((ν + 1)/2)

Γ(ν/2)

}1+a 1

(ν π)a/2
.

Ex. 5.11 Maximum weighted likelihood estimation. Another fruitful generalisation of

the ML method of Ex. 5.6, in addition to the BHHJ method of Ex. 5.9, starts from

adding a weight function to the Kullback–Leibler KL(g, f) divergence.

(a) Show that KL(g, f) may be written
∫
{g log(g/f)− (g− f)} dy, that the integrand is

nonnegative, and is zero only if g = f a.e. With any nonnegative weight function w(y)

on the sample space, deduce that

KLw(g, f) =

∫
w(y)

[
g(y){log g(y)

f(y)
− {g(y)− f(y)}

]
dy

is a divergence, i.e. nonnegative, and is zero only if g = f on the support set of w. In

particular, for g fixed and parametric f(·, θ), show that KLw(g, fθ) can be expressed as∫
w(−g log fθ + fθ) plus other terms not depending on θ.

(b) For data Y1, . . . , Yn from a generating density g, to be approximated with a para-

metric f(y, θ), explain that the general minimum divergence function method leads to

maximisation of

ℓn,w(θ) =

n∑
i=1

w(yi) log f(Yi, θ)− nB(θ),

with B(θ) =
∫
wfθ dy. We call the maximiser θ̂w the maximum weighted likelihood esti-

mator, associated with weight function w(y). The classic ML estimator then corresponds

to constant weight function w(y) = 1. Properties of θ̂w are derived in Ex. 5.20.

(c) For an illustration, access the birthweight dataset for Oslo children, reported on in

Story i.5. For the boys and the girls, fit normal distributions, using maximum weighted

likelihood, with weight function w(y) being one on [2.5, 4.5] kg and zero outside. Plot the

estimated densities in a diagram, This requires programming a function for optimisation.

Compare with curves estimated via full ML.

Ex. 5.12 Minimum divergence function estimators: a limit process and main heuris-

tics. After having motivated and worked through particular instances of the minimum

divergence function estimators, we now return to the general case, aiming to demonstrate
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both limiting normality and other associated results, finding recipes for large-sample ap-

proximations in the process. The aim of the present exercise is to go through the basic

ideas, involving also two main heuristics. These then apply to large classes of estimators

and associatead minimum divergence function minima. To make these heuristics precise

we need more conditions and details, to which we return in further exercises below. In

particular, results derived here and in a few of the following exercises will apply imme-

diately to ML estimators, BHHJ estimators, MWL estimators, via their definitions in

Ex. 5.6, 5.9, 5.11.

So θ0 = θ0(G) is the minimiser of H(θ) = EG h(y, θ), and θ̂ is its estimator, the min-

imiser of Hn(θ) =
∫
h(y, θ) dGn(y), with Gn the empirical distribution for an observed

i.i.d. sample Y1, . . . , Yn from G. To present the basic ideas and main heuristics we shall

start with these regularity conditions: (i) The true θ0 = θ0(G) is an inner point in its

parameter space inside Rp. (ii) The h(y, θ) is smooth in θ, in a neighbourhood around

θ0, with at least two derivatives, say h′(y, θ) (a vector, with components h′a), h
′′(y, θ) (a

matrix, with components h′′a,b). (iii) The matrix J = EG h
′′(Y, θ0) is finite and positive

definite. (iv) The first derivative h′(Y, θ0) has finite variance matrix K.

(a) A key idea is to work with the following random function. Write

An(s) = n{Hn(θ0 + s/
√
n)−Hn(θ0)}

=

n∑
i=1

{h(Yi, θ0 + s/
√
n)− h(Yi, θ0)} = U t

ns+
1
2s

tJns+ rn(s),

with Un = (1/
√
n)
∑n

i=1 h
′(Yi, θ0), Jn = n−1

∑n
i=1 h

′′(Yi, θ0). Show that An(s) is prop-

erly defined for all large enough n, that Un has mean zero and tends to U ∼ Np(0,K),

and that Jn →pr J .

(b) It is also clear from the Taylor expansion argument that with moderate further

regularity, the remainder term rn(s) will go to zero in probability, for each s. There

is then convergence An(s) →d A(s) = U ts + 1
2s

tJs, for each s. Heuristic One is then

to go from An →d A to argmin(An) →d argmin(A). Explain that this then leads to√
n(θ̂ − θ0) →d −J−1U , which is a Np(0, J

−1KJ−1). We call this limit distribution

variance matrix J−1KJ−1 the sandwich matrix. the sandwich

matrix

(c) Similarly, Heuristic Two is to go from An →d A to min(An) →d min(A). Argue that

this entails Wn = 2n{Hn(θ0)−Hn(θ̂)} →d W = U tJ−1U . Show for this quadratic form

that its mean and variance are Tr(J−1K) and 2Tr(J−1KJ−1K).

(d) (xx give an easy example, to identify J and K. xx)

Ex. 5.13 Minimum divergence function estimators: from heuristics to proofs. (xx nils

and emil check details carefully. repair and edit. xx) The general setup is as with the

previous Ex. 5.12, with minimum divergence function estimator θ̂ minimising Hn(θ) =

n−1
∑n

i=1 h(Yi, θ), with observations coming from G. In addition to regulatity conditions

(i)–(iv) given there, we postulate (v), that also third derivatives of h(y, θ) exist, say

h′′′a,b,c(y, θ), and that these have finite means in a neighbourhood around θ0. We use the

process An(s) = n{Hn(θ0 + s/
√
n)−Hn(θ0)} from the previous exercise.
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(a) Explain first that the minimiser of An is αn =
√
n(θ̂ − θ0), where we shall also

study the overall minimum An,min = An(αn) below. Let Bn(s) = U t
ns +

1
2s

tJns be

the quadratic approximation to An, with minimiser βn and overall minimum Bn,min =

min{Bn(s) : all s}. Show that

βn = −J−1
n Un →d −J−1U ∼ Np(0, J

−1KJ−1),

Bn,min = − 1
2U

t
nJ

−1
n Un →d − 1

2U
tJ−1U.

So things are simple and clear for the quadratic approximation Bn; we need to show that

the same results obtain for the real thing, the An.

(b) Supposing |rn(s)| ≤ δ for all s in a subset S, show from An = Bn + rn that

|min
s∈S

An(s)−min
s∈S

Bn(s)| ≤ δ.

We next establish that αn cannot be far away. Show that when ∥s∥ ≥ cn1/8, Bn(s) ≥
Dnn

1/4, with Dn positive and bounded in probability; and that when ∥s∥ ≤ cn1/8,

then |rn(s)| ≤ En/n
1/8, with En also bounded in probability. Show from this that

αn = Opr(n
1/8), and that An,min −Bn,min →pr 0.

(c) Then consider Bn a certain distance away from the minimum. For given small ε,

show that for v with ∥v∥ ≥ ε, we have

Bn(βn + v) = Bn,min + 1
2v

tJnv ≥ Bn,min + 1
2jnε

2,

where jn is the smallest eigenvalue of Jn. Show then that the event Ωn, where An(βn +

v) ≥ Bn,min + 1
4jnε

2 for all v with ∥v∥ ≥ ε, must have Pr(Ωn) → 1. Prove from these

established statements that αn − βn must tend to zero in probability. Conclude that

√
n(θ̂ − θ0) →d −J−1U ∼ Np(0, J

−1KJ−1),

2n{Hn(θ0)−Hn(θ̂)} →d W = U tJ−1U.
(5.5)

Score function, Fisher information matrix, Cramér–Rao lower bounds

Ex. 5.14 Score functions and the Fisher information matrix. Consider a parametric

model with density f(y, θ) with respect to some measure µ, where θ = (θ1, . . . , θp)
t, the

parameter of the model is contained in some open parameter space Θ. Introducescore function

u(y, θ) = ∂ log f(y, θ)/∂θ and i(y, θ) = ∂2 log f(y, θ)/∂θ ∂θt,

called the score function, with p components, and the information function, a p×pmatrix.

These partial derivatives are assumed to exist and, for the maximum likelihood theory

below, they must be continuous; [xx check this with Nils xx] note that this concerns

smoothness in the parameter θ, not necessarily smoothness in y. We also assume thatFisher

information

regularity

conditions

the support for the distribution, the smallest closed set for which the density is positive,

does not depend on θ. Cases falling outside such assumptions are, e.g., the uniform on

an unknown interval [0, θ]. Finally, we assume that
∫
f(y, θ) dµ(y) can be differentiated

under the integral sign with respect to each coordinate of θ.
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(a) The score function has mean zero: show that Eθ u(Y, θ) =
∫
f(y, θ)u(y, θ) dµ(y) = 0.

Let nextthe Fisher

information

matrix
K(θ) = Varθ u(Y, θ) and J(θ) = −Eθ i(Y, θ),

and show that indeed J(θ) = K(θ), the so-called Bartlett identity. This matrix is often

called the Fisher information matrix for the model. It provides a measure of how much

information about a parameter a dataset provides. Note that the calculation of both

J(θ) and K(θ) is taking place under the assumption that the model is actually correct. the Bartlett

identity

(b) For the exponential model, with density θ exp(−θy), find the score function, and

compute the Fisher information function in two ways. The second (derivative) way of

computing the Fisher information here was quite simple.

(c) Consider the general exponential family, with its natural parametrisation f(y, θ) =

exp{θtT (y) − k(θ)}h(y), see Ex. 1.50. Explain that the score function becomes T (y) −
k′(θ), with Fisher matrix J(θ) = k′′(θ), that of the second order derivatives of k(θ).

(d) For the normal N(ξ, σ2) model, show that the score function can be expressed as

u(y, ξ, σ) =

(
1
σ (y − ξ)/σ

1
σ{(y − ξ)2/σ2 − 1}

)
=

1

σ

(
z

z2 − 1

)
,

writing z = (y − ξ)/σ, which is a standard normal when y comes from the model.

Demonstrate that the Fisher information matrix becomes

J(ξ, σ) = Varξ,σ u(Y, ξ, σ) =

(
1/σ2 0

0 2/σ2

)
.

(e) (xx Check with a few more of your favourite parametric models, where you find the

score function and the information function, and where then formulae for both J(θ) and

the variance matrix K(θ) of the score function, verifying that they are the same. ask for

poisson, for binomial with parametrisation p = exp(θ)/{1 + exp(θ)}, geometric. xx)

(f) (xx more care here, since we do CR a bit later. xx) If Y has the uniform distribution

on [0, θ], which of the regularity conditions listed above fail? In this situation, one might

try to define the Fisher information to be 1/θ2. Assuming that this is indeed the Fisher

information, use the Cramér–Rao lower bound to derive a contradiction.

Ex. 5.15 Cramér–Rao lower bounds for estimators. A certain basic and classic in-

equality provides a lower bound for the variance of any unbiased estimator of a given

parameter. There are various versions and generalisations, some of which we go through

here. Inequalities of the type encountered here are sometimes called ‘information inequal-

ities’, as they may be used to define and analyse how much information there can be in

a finite set of data. We also discover clear links to log-likelihoods and ML estimation;

the behaviour of ML estimators for growing sample size, described in Ex. 5.17, exactly

matches the Cramér–Rao lower bound for variances.
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(a) To begin simply, suppose Y is an observation from the density f(y, θ), assumed

smooth in its one-dimensional parameter. Let u(y, θ) = ∂ log f(y, θ)/∂θ be the score

function, with finite variance, by definition equal to the Fisher information, J(θ) =∫
f(y, θ)u(y, θ)2 dy. Let T = T (Y ) be any estimator unbiased for θ, and assume that

f(y, θ) satisfies the conditions of Ex. A.12(g). From Eθ T =
∫
T (y)f(y, θ) dy = θ, use

the conditions on f(y, θ) to deduce that (d/dθ)
∫
T (y)f(y, θ)u(y, θ) dy = 1. Show that

covθ (T, u(Y, θ)) = 1, and, consequently 1 ≤ Varθ T Varu(Y, θ), from which the we get

one-dimensional classic Cramér–Rao inequality

Varθ T ≥ 1/J(θ).

(b) It is easy to generalise the above to the more interesting case of having more obser-

vation than one. Suppose Y1, . . . , Yn are i.i.d. from the parametric model f(y, θ). Show

that the arguments above still hold, essentially since Y = (Y1, . . . , Yn) can be consid-

ered a single datum from the model with joint density f(y1, θ) · · · f(yn, θ). Show that

the score function now becomes u(y1, . . . , yn, θ) =
∑n

i=1 u0(yi, θ), writing for emphasis

u0(y, θ) = ∂ log f(y, θ)/∂θ for the score function for a single observation. Deduce that

the combined Fisher information for the full sample is Jn = Varθ u(Y1, . . . , Yn) = nJ0,

with J0 = Varθ u0(Yi, θ) the information in a single observation.

(c) Show from this that if T = T (Y1, . . . , Yn) is an unbiased estimator for θ, thenCramér–Rao

lower bound

Varθ T ≥ 1

nJ0(θ)
=

1/J0(θ)

n
.

This says that there is a clear limit to how well one might estimate a parameter in a

model, with n observations. If you’re not entirely satisfied with Varθ T = 0.10, say,

and wish for variance 0.05 instead, then shell out more money to get twice as many

observations.

(d) Show more generally that if T = T (Y1, . . . , Yn) is an estimator for θ, with mean

Eθ T = θ + b(θ), i.e. with a certain bias b(θ), then

Varθ T ≥ 1

n

{1 + b′(θ)}2

J0(θ)
.

In particular, show that there’s a lower bound on the mean squared error for any estimator

(i.e. not merely the unbiased ones):

mse(θ) = E {T (Y1, . . . , Yn)− θ}2 ≥ n−1{1 + b′(θ)}2/J0(θ) + b(θ)2.

(e) Go through the following examples, in each case finding the score function, the infor-

mation J0(θ), and the lower bound for any unbiased estimator of the model parameter.

(i) y is binomial (n, θ). (ii) y is Poisson θ. (iii) y is normal (θ, σ2), with σ known. (iv) y

is normal (θ, σ2), with θ known, and σ to be estimated. Comment on the implications

of your findings.

Ex. 5.16 Cramér–Rao bounds for the multidimensional case. In generalisation of the

above situation to the case of multiparameter models, assume first that y is a single
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observation from the model f(y, θ), with θ = (θ1, . . . , θp) of dimension p. Let u0(y, θ) =

∂ log f(y, θ)/∂θ be the score function, for such a single y, with the p×p Fisher information

matrix J0(θ) = Varθ u0(Y, θ) assumed positive definite.

(a) For a symmetric p× p matrix A we write A ≥ 0 provided it is nonnegative definite,

i.e. that ctAc ≥ 0 for all c. Show that the covariance matrix of a random vector is neces-

sarily nonnegative, and that A ≥ 0 is is equivalent to its eigenvalues being nonnegative.

Explain that aii ≥ 0, for the diagonal elements, but that we may still have ai,j < 0 for

some off-diagonal elements. With two symmetric matrices, we write A ≥ B if A−B ≥ 0,

which is the ordering of variance matrices we use below.

(b) Assume that T = T (Y ) is an unbiased estimator of θ, which also means that

Eθ Tj(Y ) = θj for each component j. With Ip the identity matrix of size p × p, de-

duce from Eθ T =
∫
T (y)f(y, θ) dy that

(∂/∂θ) Eθ T =

∫
T (y)f(y, θ)u0(y, θ)

t dy = Ip.

(c) Then work out that

Varθ {T − J0(θ)
−1u0(Y, θ)} = Eθ {T − θ − J0(θ)

−1u0(Y, θ)}{T − θ − J0(θ)
−1u0(Y, θ)}t

can be expressed as Varθ T − J0(θ)
−1. We have then shown a multidimensional version

of the Cramér–Rao inequality, that Varθ T ≥ J0(θ)
−1.

(d) Generalise the above to the case of n i.i.d. observations Y1, . . . , Yn from the model.

Show that the information matrix for the full data set becomes

Jn(θ) = Varθ
∂ log{f(Y1, θ) · · · f(Yn, θ)}

∂θ
= nJ0(θ),

and that for any unbiased estimator T = T (Y1, . . . , Yn) of θ, we must have Cramér–Rao

lower bound,

matrix caseVarθ T ≥ {nJ0(θ)}−1 = n−1J0(θ)
−1.

More generally, if independent observations Y1, . . . , Yn come from densities f1(y, θ), . . . ,

fn(y, θ), with Fisher information matrices J1(θ), . . . , Jn(θ), show that any unbiased esti-

mator T of θ has Varθ T ≥ {J1(θ) + · · ·+ Jn(θ)}−1.

(e) Suppose now that ϕ = ϕ(θ1, . . . , θp) is a one-dimensional parameter in focus, and

that T = T (Y ) is an unbiased estimator. With c(θ) = ∂ϕ(θ)/∂θ the p× 1 gradient, show

that

Varθ {T − c(θ)tJ(θ)−1u0(Y )} = Varθ T − c(θ)tJ(θ)−1c(θ),

and conclude the lower bound Varθ T ≥ λ(θ) = c(θ)tJ(θ)−1c(θ). Generalise to the case

of Y1, . . . , Yn being i.i.d. from f(y, θ): if Tn = T (Y1, . . . , Yn) is unbiased for ϕ, show that

Varθ T ≥ λ(θ)/n. We learn also a bit more from these arguments. Show that

Varθ

{
Tn − n−1

n∑
i=1

c(θ)tJ(θ)−1u0(Yi, θ)
}
= Varθ Tn − λ(θ)/n,

so Tn having a variance coming close to the lower bound means Tn −ϕ being equal to or

close to the random variable n−1
∑n

i=1 c(θ)
tJ(θ)−1u0(Yi, θ).
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(f) (xx something here, tying these matters to ML. consider T ∗
n = θ+n−1J(θ)−1

∑n
i=1 u0(Yi, θ).

show that this T ∗
n is unbiased and achieves the Cramér–Rao lower bound. this happens

in exponential families, give pointer. the point is then that ML in the general case is

close to this with growing n. xx)

(g) Also other estimators for θ deserve to be studied, even when they are not exactly

unbiased. We start with a single observation Y from f(y, θ), with score function u0(y, θ)

as above, and then generalise to n observations afterwards. Assume therefore that T =

T (Y ) is such that

Eθ T =

∫
T (y)f(y, θ) dy = θ + b(θ) =

θ1 + b1(θ)
...

θp + bp(θ)

 ,

for suitable bias functions b1(θ), . . . , bp(θ), perhaps not far from zero. Show that

(∂/∂θ) Eθ T =

1 + ∂b1(θ)/∂θ
...

1 + ∂bp(θ)/∂θ

 =

∫
T (y)f(y, θ)u0(y, θ)

t dy.

Then work with Varθ [T − {Ip + b′(θ)}J0(θ)−1u0(Y, θ)] to demonstrate that

Varθ T ≥ {Ip + b′(θ)}J0(θ)−1{I + b′(θ)}t.

(h) Generalise to the case of n i.i.d. observations, to reach

Varθ T ≥ n−1{Ip + b′(θ)}J0(θ)−1{I + b′(θ)}t.

(i) xx a bit more to round it off. an example or two. CR lower bound not always

attained, in some models only for growing n, but that’s ok. i make a separate point that

the arguments also lead to bounds of type

Varθ T ≥ {J1(θ) + · · ·+ Jn(θ)}−1,

in cases with different situations or types of information sources, for the same θ. tie it

all to the large-sample ML results. xx

Ex. 5.17 Maximum likelihood estimators. Thanks to the general efforts in exercises

above, in particular 5.12–5.13, we may already learn the basic properties of the most

important of all estimation methods, namely the ML method, introduced in Ex. 5.6. We

do return to further details, extensions, results, illustrations, applications in exercises

to come. The basic setup, to be generalised later, is that of observations Y1, . . . , Yn
being i.i.d. from some g(y), to be fitted to a parametric fθ(y) = f(y, θ), and with θ̂ the

maximiser of ℓn(θ) =
∑n

i=1 log f(Yi, θ). The log-density derivatives u(y, θ) and i(y, θ) are

those studied in Ex. 5.14. There is a short list of regularity conditions to secure results

reached below, inherited from those called (i)-(v) in Ex. 5.13.
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(a) Arguably the first natural question, for any estimation method, is what it aims for.

Show that θ̂ →pr θ0, the minimiser of KL(g, fθ), assumed here to be unique and an inner

point in the parameter space. So we’ve uncovered what goes on in the mindset of the

ML operator; it aims for this least false parameter, the θ0 minimising the KL distance

from the truth to the model approximation. the least false

parameter value

(b) With p the dimension of θ, show that the two crucial p× p matrices J and K, from

the general treatment of Ex. 5.13, become

J = −EG i(Y, θ0) and K = VarG u(Y, θ0).

We have seen in Ex. 5.14 that these are equal under model conditions, i.e. that g(y) =

f(y, θ0) for all y.

(c) Via efforts in previous exercises, show (i) that Un = n−1/2
∑n

i=1 u(Yi, θ0) →d U ∼
Np(0,K); (ii) that Jn = −n−1

∑n
i=1 i(Yi, θ0) →pr J ; and the basic log-likelihood process

convergence result

An(s) = ℓn(θ0 + s/
√
n)− ℓn(θ0)

= U t
ns− 1

2s
tJns+ rn(s) →d A(s) = U ts− 1

2s
tJs,

(5.6)

for each s. This drives much of the largs-sample results for likelihood inference, including

the important Wilks theorems we return to in Ex. 5.28, along with further generalisations

for e.g. regression models. Show also that

Bn(s) = ℓn(θ̂ + s/
√
n)− ℓn(θ̂) = − 1

2s
tĴns+ r′n(s) →d B(s) = − 1

2s
tJs,

for each s, i.e. r′n(s) →pr 0, where Ĵn = −n−1∂2ℓn(θ̂)/∂θ ∂θ
t is the normalised observed

Fisher information matrix.

(d) Let ℓn,max = ℓn(θ̂) be the maximised log-likelihood. From (5.5), deduce that

√
n(θ̂ − θ0) →d J

−1U ∼ Np(0, J
−1KJ−1),

2{ℓn,max − ℓn(θ0)} →d W = U tJ−1U,

in which U ∼ Np(0,K). Remarkably, we have been able to reach these general results for

ML estimators without going into special cases, and without caring about there being

explicit formulae for these or not.

(e) As simple corollaries, we are also reaching the important and very frequently used

consequences for ML estimation in general smooth parametric models, under model con-

ditions: with J = J(θ0) the Fisher information matrix, at the underlying true parameter

value, show that

√
n(θ̂ − θ0) →d Np(0, J(θ0)

−1) and 2{ℓn,max − ℓn(θ0)} →d χ
2
p. (5.7)

Ex. 5.18 The J , K, and sandwich matrices for the BHHJ method. (xx place inside prose

here that we also need estimation of these matrices, to which we return in Ex. 5.27. xx)

When fitting a parametric family f(y, θ) to observations, we have seen in Ex. 5.12-5.13
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that the behaviour of minimum divergence function estimators is characteriserd by (i)

the implied least false parameter θ0 = θ0(G) and then (ii) the crucial matrices J and K,

leading to the sandwich matrix Σ = J−1KJ−1. As above G, with density g, is the data

generating mechanism. Here we consider the BHHJ estimation method Ex. 5.9, with the

estimator θ̂ minimising Hn,a(θ) of (5.4). Again, a is a positive finetuning parameter, and

for small a the method is close to ML estimation. For the following points, we assume

regularity conditions (i)-(v) are in place, from Ex. 5.12-5.13, and in particular that there

is a unique minimiser θ0 = θ0,a = θ0,a(G) of the da(g, fθ) of (5.3).

(a) Explain that the theory developed in these earlier exercises implies that θ̂ →pr θ0.

In the following points, write for simplicity f0(y) = f(y, θ0), u0(y) = u(y, θ0), i0(y) =

i(y, θ0). Show also that θ0 is characterised as the solution to
∫
f1+a
θ uθ dy =

∫
gfaθ uθ dy.

For this vector, evaluated at θ0, we write

ξa =

∫
gfa0 u0 dy =

∫
f1+a
0 u0 dy.

(b) As seen in Ex. 5.9, the BHHJ method corresponds to using h(y, θ) =
∫
f1+a
θ dy −

(1+ 1/a)f(y, θ)a in the general minimum divergence function setup. Find the derivative

h′(y, θ) and deduce that

Ka = (1 + a)2
{∫

gf2a0 u0u
t
0 − ξaξ

t
a

}
,

(xx find Ka. with simplified at model. xx)

(c) (xx check this carefully. also: when estimating Ja, we don’t need such a formula, as

we get it as the Hessian of the minimisation. xx) Find then an expression for the second

derivative h′′(y, θ), and derive a formula for the J matrix:

Ja = (1 + a)

∫
{f1+a

0 u0u
t
0 + (f1+a

0 − gfa0 )(i0 + au0u
t
0)} dy.

Ex. 5.19 BHHJ precision under model conditions. The BHHJ method is designed to

do well when the parametric model used is not perfect. We may however also study

its precision when the model actually holds. For matrices studied in Ex. 5.18 there are

simplified expressions under model conditions, i.e. when g(y) = f(y, θ0) for all y.

(a) Under such model conditions, and with f0, u0 notation from Ex. 5.18, show that

Ja = (1 + a)

∫
f1+a
0 u0u

t
0 dy, Ka = (1 + a)2

(∫
f1+2a
0 u0u

t
0 dy − ξaξ

t
a

)
,

with a consequent simplified sandwich matrix Σa = J−1
a KaJ

−1
a . Show that for a → 0,

Σa → J−1
0 , with J0 = J(θ0) the Fisher information matrix for the model.

(b) We may now check the loss of efficiency of the BHHJ method, with tuning parameter

a, compared to the ML method, under model conditions, by comparing J−1
a KaJ

−1
a to the

inverse Fisher information matrix. Carry out the relevant computations for estimation

θ in the exponential θ exp(−θy) model. For the case of the N(ξ, σ2) model, check with

Story vii.5. For small a, there is significant gain in robustness at a low cost in efficiency.
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(c) For the following, assume

A =

∫
f0 log f0 u0u

t
0 dy, B =

∫
f0(log f0)

2 u0u
t
0 dy, c =

∫
f0 log f0 u0 dy

are finite; A and B are p × p matrices and c a p × 1 vector. Below we carry out Taylor

expansions to order a2, and use
.
= to indicate the consequent approximations for small

a. Show that to this order

Ja
.
= (1 + a)(J0 + aA+ 1

2a
2B), Ka

.
= (1 + a)2{J0 + 2aA+ a2(2B − cct)}.

As a useful interlude, consider p × p symmetric matrices M and ε, where M is positive

definite and ε is smaller, in the technical sense that the eigenvalues of M−1ε are smaller

than 1 in absolute value. Show that

(M + ε)−1 =M−1 −M−1εM−1 +M−1εM−1εM−1 + · · · .

Use this to reach

(J0 + aA+ 1
2a

2B)−1 .
= J−1

0 − aJ−1
0 AJ−1

0 + a2(J−1
0 AJ−1

0 AJ−1
0 − 1

2J
−1
0 BJ−1

0 ).

It is then a matter of bureaucratic algebra to reach an informative approximation to the

sandwich matrix

Σa
.
= (J0 + aA+ 1

2a
2B)−1{J0 + 2aA+ a2(2B − cct)}(J0 + aA+ 1

2a
2B)−1.

Show that this leads to Σa
.
= J−1

0 + a2D, with D = J−1
0 (B − cct − AJ−1

0 A)J−1
0 . This

indicates indeed that for small a, the efficiency loss is small.

Ex. 5.20 The J , K, and sandwich matrices for the maximum weighted likelihood method.

(xx check all this. xx) Just as we for the BHHJ estimation method worked out the basics

for Ja, Ka, J
−1
a KaJ

−1
a in Ex. 5.18, we here tend to their parallels for the maximum

weighted likelihood method of Ex. 5.11. For a parametric model f(y, θ), and with a

given weight function w(y), it consists in maximising the weighted log-likelihood function

ℓn,w(θ) =
∑n

i=1 w(yi) log f(Yi, θ)−nB(θ), with B(θ) =
∫
w(y)f(y, θ) dy. We assume the

regularity conditions of Ex. 5.13 are in force.

(a) When observations Y1, . . . , Yn stem from G, with density g, show that the MWL es-

timator θ̂ tends to θ0 = θ0(G), the minimiser of the weighted KL divergence KLw(g, fθ).

When g is not inside the parametric family, this least false parameter value depends

also on the weight function. Show also that θ0 is characterised as the solution to∫
w(y){g(y)−f(y, θ0)}u(y, θ0) dy = 0. As for Ex. 5.18 we write f0, u0, i0 for the functions

f(y, θ0), u(y, θ0), i(y, θ0), and ξ0 =
∫
wgu0 dy =

∫
wf0u0 dy.

(b) Explain that maximising ℓn,w(θ) is the same as minimising n−1
∑n

i=1 h(Yi, θ), with

h(y, θ) = w(y) log f(y, θ) − B(θ), or solving n−1
∑n

i=1 h
′(Yi, θ) = 0, with h′(y, θ) =

w(y)u(y, θ)− ξ(θ), where ξ(θ) = ∂B(θ)/∂θ =
∫
w(y)f(y, θ)u(y, θ) dy. Show that

Kw =

∫
w2gu0u

t
0 dy − ξ0ξ

t
0.

Under model conditions, we have ξ0 = 0, and the above simplies to Kw =
∫
w2f0u0u

t
0 dy.
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(c) Then show that Jw = −
∫
wgi0 dy+ ∂2B(θ0)/∂θ ∂θ

t. Under model conditions, Jw =

−
∫
wf0i0 dy.

(d) (xx find sandwich, and compare with J−1 under model. xx)

Ex. 5.21 Maximum weighted likelihood for multinomial models. The weighted likelihood

ideas of Ex. 5.11, 5.20 can also be used to estimate parameters in models for multinomial

probabilities, allowing different weights of importance for different outcomes. (xx pointer

to Story ii.8. xx)

(a) Show first that p log p/q−(p−q) is always nonnegative, for p, q in (0, 1). Now consider

(Y1, . . . , Yk) being multinomial with count n and probability vector p = (p1, . . . , pk), as

with Ex. 1.5. Then

dw(p, pθ) =

k∑
j=1

wj{pj log(pj/pj,θ)− (pj − pj,θ)},

is a proper nonnegative divergence, from p to some pθ, as long as the weights w1, . . . , wk

are nonnegative. With equal weights, show that this is the Kullback–Leibler divergence

KL(p, pθ). If pθ = (p1(θ), . . . , pk(θ)) is some postulated model, with θ of dimension r,

say, show that the minimum divergence method amounts to maximising the weighted

and modified log-likelihood

ℓn,w(θ) = n

k∑
j=1

wj{p̂j log pj(θ)− pj(θ)} =

k∑
j=1

wjYj log pj(θ)− n

k∑
j=1

wjpj(θ),

with p̂j = Yj/n. This generalises the usual ML method, which corresponds to equal

weights.

(b) Let p = (p1, . . . , pk) denote the true probability vector. Explain that the weighted

likelihood estimator θ̂w, maximising ℓn,w(θ), tends in probability to the least false param-

eter maximising
∑k

j=1 wj{pj log pj(θ)− pj(θ)}, i.e. to the minimiser of the weighted KL

distance dw(p, pθ). Writing uj(θ) = ∂ log pj(θ)/∂θ, show that the least false parameter

is also the solution to
∑k

j=1 wj{pj − pj(θ)}uj(θ) = 0, assumed here to be unique. Show

furthermore that

Un = n−1/2 ∂ℓn,w(θ0)

∂θ
=

k∑
j=1

wj

√
n{p̂j − pj(θ0)}uj(θ0) →d U =

k∑
j=1

wjZjuj(θ0),

using results and notation from the multinomial CLT worked with in Ex. 2.44. Deduce

that U ∼ Nr(0,Kw), with

Kw =

k∑
j=1

w2
jpjuj(θ0)uj(θ0)

t − ξ0ξ
t
0, with ξ0 =

k∑
j=1

wjpjuj(θ0).

(c) Next demonstrate that the normalised Hessian matrix Ĵn,w = −n−1∂2ℓn,w(θ̂)/∂θ∂θ
t

tends in probability to a well-defined Jw. In fact, writing ij(θ) = ∂2 log pj(θ)/∂θ∂θ
t,



186 Minimum divergence and maximum likelihood

show that Jw = Jw(θ0), where

Jw(θ) = − ∂2

∂θ∂θt

k∑
j=1

wj{pj log pj(θ)− pj(θ)}

=

k∑
j=1

wj

[
pj(θ)uj(θ)uj(θ)

t − {pj − pj(θ)}ij(θ)
]
,

with the expression simplifying under model conditions. Use this in conjunction with the

general minimum divergence theory to establish that
√
n(θ̂w−θ0) →d J

−1
w U ∼ Nr(0,Σw),

with the sandwich matrix Σw = J−1
w KwJ

−1
w .

(d) (xx a simple example here, with pointer to Story ii.8. xx)

Ex. 5.22 Completing increasingly simpler tasks. In a certain game of learning a player

needs to complete tasks 1, 2, . . . , n, which become increasingly simpler with each passing

of a new level. Assume that the time needed to complete these tasks are V1, . . . , Vn, with

these being independent with Vi ∼ Expo(i/θ), where θ is an unknown parameter. – For

the following questions, you may encounter the partial sums

an = 1 + 1/2 + 1/3 + · · ·+ 1/n, bn = 1 + 1/22 + 1/32 + · · ·+ 1/n2.

Here the first is slowly divergent, with an
.
= log n+0.5772, and the second is convergent,

with bn → π2/6, as shown by Euler in 1734, bringing him instant world fame.

(a) Find expressions for the mean and variance of Tn = V1 + · · ·+ Vn, the time it takes

the player to complete all tasks. In particular, show that Tn has mean anθ. Put up the

unbiased estimator based on Tn, say θ̂. Find its variance, and show that the estimator

is consistent.

(b) Then work out a formula for the log-likelihood function, based on having observed

not merely the total time Tn, but the individual waiting times V1, . . . , Vn. Find the

maximum likelihood estimator, say θ∗. Show that also this estimator θ∗ is unbiased, and

compare its variance to that of θ̂. Find also the Cramér–Rao lower bound for variances

of unbiased estimators for θ, and comment.

(c) Assume the game goes on, up to level 2n, and consider the time a player needs to

pass the last half of these levels, i.e. T ∗
n = T2n − Tn. Show that T ∗

n tends in probability

to a certain limit as n grows.

Ex. 5.23 Profiling quadratic functions. Consider some quadratic function A(s) = 1
2s

tJs,

with J symmetric and positive definite of dimension p×p. It is useful to sort out minima

of A under different types of side constraints.

(a) We start out examining the minimum of A(s) over all s with cts = x, for some

given vector c and level x. The Lagrange multiplier way of solving such a problem is to

minimise the function 1
2s

tJs − λ(cts − x), with no constraint on s, and in the process

find the λ agreeing with the constraint. Taking derivatives, show that minimum occurs

for s0 = λJ−1c, leading to cts0 = λctJ−1c, which should then equal x. Explain that this

leads to minimiser s0 = x/(ctJ−1c) and attained minimum Amin = 1
2x

2/(ctJ−1c).
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(b) Generalising the above, from a scalar to a vector, consider a p0 × p matrix C and an

x of dimension p0, where it is assumed that CJ−1Ct has full rank. The task is to work

out the minimiser and minimum of 1
2s

tJs over all s with Cs = x. Work out that the

minimiser is

s0 = J−1Ctλ = J−1Ct(CJ−1Ct)−1x with Amin = 1
2x

t(CJ−1Ct)−1x.

(xx we should find the following from this; round off. xx) with ϕ = k(θ) = (ϕ1, . . . , ϕp0
),

n(Hn,min,narr −Hn,min,wide) →d
1
2U

tJ−1C(CtJ−1C)−1CtJ−1U.

Ex. 5.24 Profiling a minimum divergence function, I. For data Y1, . . . , Yn from some

distribution G, we have in Ex. 5.5 considered estimating a parameter θ0 = argmin(H),

for H(θ) = EG h(Y, θ), by minimising the distance function Hn(θ) = n−1
∑n

i=1 h(Yi, θ).

For a focus parameter ϕ = k(θ), a smooth function of θ = (θ1, . . . , θp), it is useful to

work with the associated profile functionprofiling a

distance

function
Hn,prof(ϕ) = min{Hn(θ) : k(θ) = ϕ}.

(a) As an introductory illustration, consider estimating the parameters (a, b) of a Gamma

distribution via minimum L2, as in Ex. 5.3. Simulate 100 datapoints from a gamma;

compute (â, b̂); and compute and display also the profile function Hn,prof(µ) for the

mean parameter µ = a/b.

(b) From the full model, with ensuing minimum divergence function estimator θ̂, show

that the consequent ϕ̂ = k(θ̂) becomes normal. With setup and notation as in Ex. 5.13,

prove indeed that
√
n(ϕ̂ − ϕ0) →d c

tJ−1U , with c = ∂k(θ0)/∂θ, and that the limit is a

zero-mean normal with variance ctJ−1KJ−1c. Show also that this ϕ̂ is identical to the

minimiser of the profile function.

(c) In other words we already know the basic story for any focus parameter estimator

ϕ̂, thanks to the delta method. It is however fruiful to work with representations and

approximations stemming from examining the associated profile function. With methods

from Ex. 5.13, show that

n{Hn(θ̂ + s/
√
n)−Hn(θ̂)} = 1

2s
tJns+ rn(s), with rn(s) = Opr(∥s∥3/

√
n).

For the profiling, therefore, we must minimise this expression over all s such that k(θ) =

k(θ̂ + s/
√
n) = ϕ. With k(θ) = ϕ̂+ ctns/

√
n+Opr(∥s∥2/n), here writing cn = ∂k(θ̂)/∂θ,

the essence is to minimise 1
2s

tJns under ctns =
√
n(ϕ − ϕ̂) = xn, say. Appealing to

Ex. 5.23, show that this minimum becomes 1
2x

2
n/c

t
nJ

−1
n cn = n(ϕ̂− ϕ)2/ctnJ

−1
n cn. Fill in

more details to prove that with ϕ0 = k(θ0) the true parameter in question,

2n{Hn,prof(ϕ0)−Hn,prof(ϕ̂)} =
n(ϕ̂− ϕ0)

2

ctnJ
−1
n cn

+ opr(1) →d
(ctJ−1U)2

ctJ−1c
∼ κχ2

1,

with κ = ctJ−1KJ−1c/ctJ−1c.
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(d) (xx explain that this often leads to better approximations than the direct limiting

normality thing. then an illustration of this. and pointer to Wilks. and pointer to

regression versions of these methods and results; the Yi need not at all be i.i.d. xx)

Ex. 5.25 Profiling a distance function, II. In Ex. 5.5, 5.13, 5.24 we have considered

parameters defined as minimisers of functions H(α) = EG h(Y, α), and developed the

basic theory for the associated minimum divergence function estimators. We now consider

situations where some of the components of the argmin(H) parameter are specified. Such

occur when one tests for lower-dimensional structure, etc. This invites setting up the

following framework, with a wide model having α = (θ, γ) of length p + q, and the

narrow model considered has (θ, γ0), with θ unknown but γ = γ0 fixed. Estimators (θ̂, γ̂)

in the wide model minimise Hn(θ, γ) =
∫
h(y, θ, γ) dGn(y) whereas θ̃ for the narrow

model minimises Hn(θ, γ0) =
∫
H(y, θ, γ0) dGn(y). The theory developed in the previous

exercises mentioned holds for the wide and the narrow models, separately, and below we

postulate that the regularity conditions (i)–(v) put up in Ex. 5.13 are in force. Efforts of

linear and matrix algebra are required in order to handle these models jointly, however.

Define therefore

Jwide = EG
∂2H(Y, θ0, γ0)

∂α∂αt
=

(
J00, J01
J10, J11

)
with inverse J−1

wide =

(
J00, J01

J10, J11

)
,

where J00 = Jnarr is of size p × p, etc. There is similarly a (p + q) × (p + q) matrix

Kwide, with submatrices K00,K01,K10,K11, the variance matrix of U = (U t
0, U

t
1)

t, the

first derivative ∂H(Y, θ0, γ0)/∂α.

(a) The following developements are under the γ = γ0 constraint, so α0 = (θ0, γ0) is the

true parameter, determined by the distribution G. Argue that(√
n(θ̂ − θ0)√
n(γ̂ − γ0)

)
→d −J−1

wide

(
U0

U1

)
,

√
n(θ̃ − θ0) →d −J−1

00 U0.

Show also, again using results reached earlier, that

n{Hn,wide −Hn(θ0, γ0)} →d − 1
2U

tJ−1
wideU,

n{Hn,narr −Hn(θ0, γ0)} →d − 1
2U

t
0J

−1
00 U0,

with Hn,wide = Hn(θ̂, γ̂) and Hn,narr = Hn(θ̃, γ0). Deduce that

Wn = 2n(Hn,narr −Hn,wide) →d W = U tJ−1
wideU − U t

0J
−1
00 U0. (5.8)

Show that this limit variable has mean Tr(J−1
wideKwide)− Tr(J−1

00 K00).

(b) (xx clean and simplify this. xx) We tend to a few matrix and submatrix identities

here, as they come in handy for some of the technical arguments below. The q×q matrix

J11 has an important role, here and on later occasions (as with the FIC in Ch. 11). Show

that

Q = J11 = (J11 − J10J
−1
00 J01)

−1. (5.9)

Similarly, we have J00 = J−1
00 +J−1

00 J01QJ10J
−1
00 . Show also that J00−J−1

00 = J01J10J
−1
00 ,

J10 = −QJ10J−1
00 .
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(c) We now use the structure of Kwide to transform (U0, U1) to (U0, V ), with V =

U1−K10K
−1
00 U0, the point being that U0 and V become independent. Work through the

details of(
U0

V

)
=

(
U0

U1 −K10K
−1
00 U0

)
∼ Np+q(0,

(
K00 0

0 K11 −K10K
−1
00 K01

)
).

Show also that the variance of V is the same as (K11)−1 (xx check with care xx).

(d) With this transformation, work out the following formula for W , in terms of the

independent U0 and V (xx check all this xx):

W = U t
0(J

00 − J−1
00 )U0 + (V +K10K

−1
00 U0)

tQ(V +K10K
−1
00 U0)

+ 2U t
0J

01(V +K10K
−1
00 U0)

= V tQV + U t
0(J

00 − J−1
00 +K−1

00 K01QK10K
−1
00 + 2 J01K10K

−1
00 )U0

+U t
0(J

01 +K−1
00 K01Q)V + V t(J10 +QK10K

−1
00 )U0.

(e) There are additional informative and insightful representations of theW above. Start

by showing
√
n(γ̂ − γ0) →d −Z, where

Z = J10U0 + J11U1

= J10U0 +Q(V +K10K
−1
00 U0) = QV + (J10 +QK10K

−1
00 )U0,

Show that Z ∼ Nq(0,Σ11), with Σ = J−1KJ−1 the sandwich matrix. The point is now

to demonstrate that W above is identical to W ′ = ZtQ−1Z. Verify first that its mean

Tr(Q−1Σ11) is identical to the formula found above for EW . Work out that

W ′ = [QV + (J10 +QK10K
−1
00 )U0]

tQ−1[QV + (J10 +QK10K
−1
00 )U0]

= V tQV + U t
0(J

01 +K−1
00 K01Q)Q−1(J10 +QK10K

−1
00 )U0

+U t
0(J

01 +K−1
00 K01Q)V + V t(J10 +QK10K

−1
00 )U0.

Prove W =W ′ by by checking the separate terms. One needs to verify that A = A′, in

A = J00 − J−1
00 +K−1

00 K01QK10K
−1
00 + J01K10K

−1
00 +K−1

00 K01J
10,

A′ = (J01 +K−1
00 K01Q)Q−1(J10 +QK10K

−1
00 ).

(xx nils cleans and checks all of this. xx)

(f) For the special case J = K, which we meet for ML estimation under model conditions,

show thatW ∼ χ2
q. For the caseK = cJ , which turns up in certain overdispersion setups,

show that W ∼ cχ2
q.

(g) (xx give an example. can simulate from limit distribution. clarify connections to the

case of narrow model p − 1, wide model p, i.e. profiling over a 1-dimensional ϕ = k(θ).

xx)
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Ex. 5.26 ML and minimum divergence function estimators in practice. In previous ex-

ercises we have learned that θ̂, the minimiser of Hn(θ) = n−1
∑n

i=1 h(Yi, θ), is a natural

estimator for θ0, the minimiser of EG h(Y, θ), and that its distribution approaches normal-

ity. In order to use such results in practice, for testing, setting confidence intervals, etc.,

we need to estimate the two crucal matrices J = EG h
′′(Y, θ0) and K = VarG h

′(Y, θ0).

These comments apply in particular to ML estimation, with J = −EG i(Y, θ0) and

K = VarG u(Y, θ0), see Ex. 5.17.

(a) Consider first, in general terms, some function p(y, θ) with finite mean in a neighbour-

hood of the true θ0, with θ̂ an estimator of θ0. Explain first that pn = n−1
∑n

i=1 p(Yi, θ0)

tends to p0 = EG p(Y, θ0). The best we may do for estimating p0 in practice is p̂n =

n−1
∑n

i=1 p(Yi, θ̂). Show that if |p(y, θ0 + ε)− p(y, θ0)| ≤M(y)∥ε∥, for all small ∥ε∥, for
some function M(y) with finite mean, then indeed p̂n →pr p0.

(b) Give conditions under which the natural estimators

Ĵ = n−1
n∑

i=1

h′′(Yi, θ̂) and K̂ = n−1
n∑

i=1

h′(Yi, θ̂)h
′(Yi, θ̂)

t

are consistent for J and K. Deduce that when such hold, the empirical sandwich matrix

Σ̂ = Ĵ−1K̂Ĵ−1 is consistent for Σ = J−1KJ−1. Note also that Ĵ = H ′′
n(θ̂) is the Hessian

matrix of the criterion function Hn, often computed directly when using numerical min-

imisation methods for finding θ̂ in the first place. (xx nils emil small note: where do we

say that An →pr A and Bn →pr B for matrices implies AnBn →pr AB, etc.? xx)

(c) Explain how confidence intervals for the components of θ may be read off from this.

More generally, for any focus parameter ϕ = k(θ), with estimator ϕ̂ = k(θ̂), show that

ϕ̂±1.96 κ̂/
√
n is an approximate 95 percent interval for ϕ, where κ̂2 = ĉtĴ−1K̂Ĵ−1ĉ, and

ĉ = ∂k(θ̂)/∂θ.

(d) The case of ML estimation is a special case of the setup above, see Ex. 5.17. Show

that the estimated matrices become

Ĵ = −n−1
n∑

i=1

∂2 log f(Yi, θ̂)

∂θ∂θt
and K̂ = n−1

n∑
i=1

ûiû
t
i,

where ûi = u(Yi, θ̂). Note also that Ĵ = −n−1ℓ′′n(θ̂), the normalised Hessian matrix of

the log-likelihood function computed at the ML position.

(e) To illustrate how the above machinery works in practice, simulate 100 points from

the standard normal, and then estimate the two normal parameters (ξ, σ) via minimum

L2, as in Ex. 5.5. Explain that this means minimising the empirical distance function

Hn(ξ, σ) =

∫
f(y, ξ, σ)2 dy − 2

n

n∑
i=1

f(yi, ξ, σ) =
1
2/π

1/2

σ
− 2

n

n∑
i=1

1

σ
ϕ
(yi − ξ

σ

)
.

Carry out this minimisation using e.g. nlm in R, a non-linear minimisation algorithm,

which finds both (ξ̂, σ̂) and the Hessian Ĵ . Compute also K̂, and find confidence intervals

for ξ, for σ, and for p(y0) = Pr(Y ≥ y0), with say y0 = 1.00.
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(f) Change one or two of your simulated datapoints to somewhat far-off values, e.g. y99 =

d and y100 = d, with d = 5.00 (which indeed is really far off for the standard normal).

Observe what then happens to the ordinary ML estimators, and compare with what

happens with the minimum L2 estimators. The point is the the minimum L2 method is

much more robust than the ML method.

(g) For the ML method, we know from the Bartlett identity that the two matrices J

and K are equal under model conditions. For various models we would then have two

different estimators, with the same aim, and perhaps different precision; this does not

matter for the first-order large-sample theory, since consistency is what matter for Ĵ and

K̂, and specifically for the estimated sandwich matrix Σ̂ = Ĵ−1K̂Ĵ−1. For illustration,

consider Yi from the Pois(θ) model. Show that J = 1/θ0 and K = τ20 /θ
2
0, in terms of

the true mean and variance θ0 and τ20 of the underlying distribution. The recipes above

lead to Ĵ = 1/Ȳ and K̂ = Vn/Ȳ
2, in terms of sample mean and sample variance. Under

model conditions, both aim for 1/θ0. Show also that the consequent estimated sandwich

becomes Σ̂ = Vn. The general recipes hence lead to two somewhat different confidence

intervals for θ, namely θ̂ ± z0κ̂/
√
n, with either κ̂ = Ȳ 1/2 of κ̂ = V

1/2
n . Argue that both

are valid, with both aiming for the same quantity under Poisson conditions, whereas the

second option might be preferred if there might be overdispersion.

(h) (xx profiling too, to illustrate, for p(y0). again handled by the general theory. inter-

vals need κ = ctJ−1KJ−1c/ctJ−1c. xx)

Ex. 5.27 BHHJ analysis in practice. We have seen how the behaviour of the model

robust BHHJ estimators, defined in Ex. 5.9, is described via the two crucial matrices Ja
and Ka worked with in Ex. 5.18. Here we go into the details of their estimation. The

setting is having i.i.d. data Y1, . . . , Yn from some density g, fitted to a parametric f(y, θ)

by minimising Hn,a(θ) of (5.4). We let θ̂ be this BHHJ estimator, computed for the given

balance parameter a. Below, we write ûi = u(Yi, θ̂) and f̂i = f(Yi, θ̂).

(a) Show that ξ̂a = n−1
∑n

i=1 f̂
a
i ûi is equal to

∫
f(y, θ̂)1+au(y, θ̂) dy, and that it is

consistent for the ξa defined in Ex. 5.18.

(b) Show next that Ĵa = H ′′
n,a(θ̂), the Hessian matrix associated with minimisation of

the criterion function, is consistent for the Ja matrix.

(c) Show that

K̂a = (1 + a)2
{
n−1

n∑
i=1

f̂2ai ûiû
t
i − ξ̂aξ̂

t
a

}
= (1 + a)2 n−1

n∑
i=1

(f̂ai ûi − ξ̂a)(f̂
a
i ûi − ξ̂a)

t

is consistent for Ka.

Ex. 5.28 Wilks theorems. (xx repair and round off. log-likelihood profiling, deviance

functions, Wilks theorems. setup as in Ex. 5.17. we harvest from earlier profiling efforts.

xx)
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(a) Consider a one-dimensional focus parameter ϕ = k(θ), and the consequent profile

log-likelihood function

ℓn,prof(ϕ) = max{ℓn(θ) : k(θ) = ϕ}.

Show first that its maximum is reached for ϕ̂ = k(θ̂), so this ϕ̂ is also maximising the

profile function, and is rightly the ML estimator of ϕ. With ϕ0 = k(θ0), the least false

parameter value for ϕ, write also c = ∂k(θ0)/∂θ for the gradient vector. Show from

Ex. 5.24 that the deviance

function

Dn(ϕ0) = 2{ℓn,max − ℓn,prof(ϕ0)} →d (ctJ−1U)2/ctJ−1c ∼ κχ2
1,

with κ = ctJ−1KJ−1/ctJ−1c. This Dn(ϕ), when computed for a range of ϕ values, is

called the deviance function for that parameter. Under model conditions, Dn(ϕ0) →d χ
2
1,

which is one of several so-called Wilks theorems.

(b) Explain that this Wilks theorem may be used rather directly, without the need to

estimate the J matrix, to construct confidence intervals for the focus parameter ϕ = ϕ(θ),

assuming that the f(y, θ) model holds. With Cn(α) = {ϕ : Γ1(Dn(ϕ)) ≤ α}, writing Γ1(·)
for the c.d.f. of the χ2

1, show in fact that Prθ{ϕ ∈ Cn(α)} → α, for any desired confidence

level α. This is a key method for constructing full confidence distributions, the core topic

of Ch. 7.

(c) To formulate and prove a Wilks theorem for testing a submodel within a bigger

model, via ML estimation, consider Y1, . . . , Yn i.i.d. from a parametric model of the form

f(y, α), with α = (θ, γ). We call this the wide model, of dimension p+q, with p and q the

dimensions of θ and γ, and then study the narrow model, of dimension p, corresponding

to γ = γ0 for some fixed γ0. Let ℓn,max,wide and ℓn,max,narr be the log-likelihood maxima

for the wide and the narrow models. Show now via Ex. 5.25 that if the narrow model

holds, with data arising from f(y, θ0, γ0) for some θ0, that

Wn = 2(ℓn,max,wide − ℓn,max,narr) →d W = ZtQ−1Z.

Here Z ∼ Nq(0, Q), with Q = J11 the lower right q × q submatrix of J−1, as in (5.9).

Under the narrow model conditions, then, Wn →d χ
2
q, another Wilks theorem.

(d) (xx choose a simple illustration, one covered in score function exercise above. may

point to a couple of stories. xx)

Ex. 5.29 log-likelihood and ML for the binomial, trinomial, multinomial. Working

through the likelihood mechanics of the binomial, trinomial, multinomial models provide

good illustrations of the developed methodology. We already know the basic large-sample

behaviour for the natural estimators in these models, via Ex. 2.44, but here we connect

such results to the general likelihood theory. See also Story vii.1.

(a) For X ∼ binom(n, p), a sum of independent Bernoulli variables, show that its log-

likelihood function is ℓn(p) = X log p + (n − X) log(1 − p), with maximiser p̂ = X/n.

Show that nJ = n/{p(1− p)}, here with J defined relative to a single Bernoulli variable.
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Explain that we may hence read off the limit distribution of
√
n(p̂−p) being N(0, p(1−p)),

without necessarily even knowing the X/n formula, or about the CLT for binomials. One

may even argue the other way, starting with the X/n formula: since we know the limit is

N(0, p(1−p)), via the CLT, we must have J−1 = p(1−p), hence J must be 1/{p(1−p)}.

(b) For further illustration of the binomial likelihood mechanics, draw the log-likelihood

function ℓn(p), computing both its maximiser, its maximum, and its second derivative at

the maximum, for cases (i) n = 20, y = 4, (ii) n = 40, y = 8, (iii) n = 200, y = 40. Note

how Ĵobs = −ℓ′′n(p̂) becomes bigger and the implied estimated standard deviance 1/Ĵ
1/2
obs

becomes smaller.

(c) Let (X,Y ) be trinomial (n, p, q), and use r = 1 − p − q and Z = n −X − Y . Show

that the log-likelihood function becomes X log p+ Y log q+Z log(1− p− q), and for the

Fisher information matrix that

J =

(
1/p+ 1/r, 1/r

1/r, 1/q + 1/r

)
with J−1 =

(
p(1− p), −pq
−pq, q(1− q)

)
.

Conclude, even before finding or perhaps without caring that there are clear formulae

p̂ = X/n and q̂ = Y/n for the ML estimators, that (
√
n(p̂− p),

√
n(q̂ − q)) tends to the

binormal zero-mean distribution with the J−1 covariance matrix. This may of course

also be shown, for (X/n, Y/n), without knowing that these are ML estimators.

(d) Generalise the above to the full multinomial model, with data (X1, . . . , Xk) with sum

n and probabilities p1, . . . , pk summing to 1 over k boxes. The model has k−1 parameters,

since pk is known when (p1, . . . , pk−1) is known. Find the J and J−1 matrices, of size

(k − 1)× (k − 1).

Ex. 5.30 The maximum likelihood estimator: examples. Here we work through some

examples, where the task is to set up the log-likelihood function and if feasible also

explicit formulae for the ML estimators.

(a) With Y1, . . . , Yn from the normal model N(µ, σ2), write down the log-likelihood func-

tion. Find the ML estimator for σ when µ is a known value, and find also the ML

estimators (µ̂, σ̂) in the case where both parameters are unknown.

(b) Suppose Yi ∼ Pois(wiθ), with known exposure times wi, and that the observations

are independent, for i = 1, . . . , n. Write down the log-likelihood function, find the ML

estimator, and find its mean and variance.

(c) (xx one or two more, with explicit formulae for ML. xx)

(d) Let Y1, . . . , Yn be i.i.d. from the uniform model on [0, θ], with θ the unknown endpoint.

Set up the likelihood function and find the ML estimator.

Ex. 5.31 Maximum likelihood for the Beta and Gamma models. Consider the Beta and

Gamma two-parameter models, with densities

be(y, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1 and g(y, a, b) =

ba

Γ(a)
ya−1 exp(−by),

for y ∈ (0, 1) and y > 0, respectively. The task is in each case to estimate the parameters

based on an i.i.d. sample Y1, . . . , Yn.
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(a) We start with the Beta distribution, see Ex. 1.18, where we in particular have found

formulae for the mean and variance in terms of (a, b). With empirical mean and variance

ȳ and σ̂2, show how (a, b) can be fitted by solving the two equations ȳ = EY and

σ̂2 = VarY . With solutions (âm, b̂m) for these moment estimators, and assuming the

Beta model is correct, explain how you can find limit distributions of
√
n(âm−a, b̂m−b).

(b) Write down the log-likelihood function, say ℓn(a, b). Show that the ML estimators

(â, b̂) are the solutions to the two equations

n−1
n∑

i=1

log Yi = ψ(a)− ψ(a+ b), n−1
n∑

i=1

log(1− Yi) = ψ(b)− ψ(a+ b),

where ψ(x) = ∂ log Γ(x)/∂x is the so-called digamma function. There are no explicit

formulae here, but the two equations may be easily solved numerically. Explain how

the limit distribution for
√
n(â− a, b̂− b) may be found, via the two-dimensional central

limit theorem. – Here it turns out (i) that the ML estimators are more precise than the

moment estimators, and (ii) that finding the limit distribution is rather easier via the

general results about ML behaviour, already sorted out in Ex. 5.17.

(c) Then turn attention to the two-parameter Gamma model, where arguments and

results will be similar. Show that the mean and variance are a/b and a/b2, and find

moment estimators âm, b̂m based on this. Find the limit distribution of
√
n(âm−a, b̂m−b)

using Ex. ??.

(d) Then write down the log-likelihood function, take derivatives, and show that the ML

estimators (â, b̂) are the solutions to the two equations

Ȳ = a/b, n−1
n∑

i=1

log Yi = ψ(a)− log b.

Explain how the limit distribution of
√
n(â − a, b̂ − b) may be obtained. Again, this is

rather easier via the general recipes worked out in Ex. 5.17; also, we shall again find that

ML estimators under model conditions are more precise than the moment estimators.

Ex. 5.32 Log-linear mixing of densities. How far have we moved, from A to B? Suppose

i.i.d. data Y1, . . . , Yn come from a density which is percieved of as being ‘betweeen’ given

densities fA and fB . There are various ways of creating probabilistic bridges from A

to B, via which one then can estimate the position of the current density, e.g. to assess

whether it is close to A or to B. One such model takes f(y, λ) = fA(y)
1−λfB(y)

λ/R(λ),

with R(λ) the normalisation constant
∫
f1−λ
A fλB dy. This creates such a bridge, with

λ ∈ [0, 1], and with A and B corresponding to λ = 0 and λ = 1.

(a) Explain that R(0) = R(1) = 1, and that the derivative of R(λ), at the endpoints 0

and 1, can be written

R′(0) = −KL(fA, fB), R′(1) = KL(fB , fA).

in terms of the Kullback–Leibler distances discussed in Ex. 5.7 and later on. In particular,

the R(λ) has negative derivative at the start and positive derivative at the end.
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(b) For a concrete illustration, suppose fA is N(0, 1) and fB is N(c, 1), with c positive.

Show that R(λ) = exp{− 1
2c

2λ(1 − λ)}. From this explain that the score function is

u(y, λ) = cy−λc2 and that the Fisher information becomes the constant c2. Show indeed

that f(y, λ) is N(λc, 1), that the ML estimator becomes λ̂ = Ȳ /c, truncated to [0, 1].

From general ML theory, explain that if the real λ is inside (0, 1), then
√
n(λ̂ − λ) →d

N(0, 1/c2). For c small the variance will be very big, signifying that it is a hard task to

estimate the balance parameter when fA and fB are close.

(c) Returning to the general setup, write S(y) = log fB(y) − log fA(y). Show that the

log-likelihood function becomes

ℓn(λ) = n{λS̄n − logR(λ)}, with S̄n = n−1
n∑

i=1

S(yi).

Explain that the ML estimator λ̂ hence is the solution to S̄n = R′(λ)/R(λ). (xx a bit

more. and example. limiting normality. evaluate for λ = 0 and λ = 1. xx)

(d) Bayes posterior: π(λ) exp[n{λSn − logR(λ)}].

(e) (xx there is perhaps hope for the semiparametric construction f̂(y) = f0(y)
1−λ

fn(y)
λ/Rn(λ), resembling the Hjort–Glad estimator, see Hjort and Glad (1995). xx)

Convex processes, log-concave likelihoods

Ex. 5.33 Minimisers of convex processes, I.We have seen useful constructions, methods,

and results for minimum divergence function estimators in Ex. 5.5 and 5.24, in particular

when applied to ML estimators, as with the general apparatus of Ex. 5.17. There are

issues worth refining and generalising, however. The regularity conditions required for the

Taylor expansion based arguments to go fully through are a bit cumbersome, and there

are important constructions where the distance function h(y, θ) in H(θ) = EG h(Y, θ) is

not smooth. Here we give the basics for how matters simplify, with weaker conditions, if

the distance function is convex.

(a) From pointwise to uniform: Suppose An(s) is a sequence of convex random functions

defined on an open convex set S of Rp, which convergences in probability to some A(s),

for each s ∈ S. Show that the convergence is automatically uniform; maxs∈S |An(s) −
A(s)| →pr 0.

(b) Nearness of argmins: Suppose An(s) is convex and is approximated by Bn(s). Let

αn and βn be the argmins of An and Bn. Then there is a probabilistic bound on how far

these minimisers can be from each other: show that

Pr(||αn − βn∥ ≥ δ) ≤ Pr{∆n(δ) ≥ 1
2hn(δ)},

in which

∆n(δ) = sup
∥s−βn∥≤δ

|An(s)−Bn(s)| and hn(δ) = inf
∥s−βn∥=δ

Bn(s)−Bn(βn).
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(c) Basic corollary: Suppose An(s) is convex and can be represented as 1
2s

tJs+ U t
ns+

Cn+rn(s), where J is symmetric and positive definite, Un is stochastically bounded, Cn is

arbitrary, and rn(s) →pr 0 for each s. For the approximation Bn(s) =
1
2s

tJs+U t
ns+Cn,

show that βn = −J−1Un is its argmin. Then demonstrate that their minimisers as

well as their minima are close. Specifically, show (i) that αn − βn →pr 0; and (ii) that

An,min −Bn,min →pr 0.

(d) Show that if in addition Un →d U , then αn →d −J−1U , and that Bn,min − Cn as

well as An,min−Cn tend to − 1
2U

tJ−1U . These two statements are what we worked hard

for in Ex. 5.13, 5.25 see (5.5)–(5.8), now obtained in a simpler fashion and with weaker

smoothness assumptions, though bought with the extra convexity condition.

(e) Prove the following modest but useful generalisation of the above: the statements

continue to hold if a random matrix Jn replaces V , provided Jn →pr J .

Ex. 5.34 Minimisers of convex processes, II. The framework worked with now is as in

Ex. 5.5 and 5.24, with Y1, . . . , Yn being i.i.d. from some G, a possibly multidimensional

parameter θ0 defined as the minimiser of H(θ) =
∫
h(y, θ) dG(y), with estimator θ̂ the

minimiser of the distance function Hn(θ) =
∫
h(y, θ) dGn(y) = n−1

∑n
i=1 h(Yi, θ). Here

we put in one more condition, however, that h(y, θ) is convex in θ. The point is that

this both simplifies various technical arguments, via methods of Ex. 5.33, and allows for

nonsmooth distance functions.

(a) With h(y, µ) = |y − µ|, show that µ0 = med(G), the median, with µ̂ = Mn, the

sample median. More generally, for some q ∈ (0, 1), consider

hq(y, µ) = q(y − µ)+ + (1− q)(µ− y)+ =

{
q(y − µ) if y ≥ µ,

(1− q)(µ− y) if y ≤ µ.

Show that µ0 = G−1(q), the q quantile.

(b) For an α ≥ 1, consider the parameter θ0 being the minimiser of EG |Y − θ|α. Show

that the distance function indeed is convex, and that the special cases α = 1 and α = 2

correspond to the median and the mean, respectively.

(c) We now work through regularity conditions ensuring control over the behaviour of

such estimators. Part of the point is that we avoid needing smooth derivatives in θ.

Suppose that

h(y, θ0 + ε)− h(y, θ0) = D(y)tε+R(y, ε),

for a D(y) with mean zero under G, and that

E {h(Y, θ0 + ε)− h(Y, θ0)} = ER(Y, ε) = 1
2ε

tJε+ o(∥ε∥2) as ε→ 0

for a positive definite J . Assume furthermore that the variance matrixK = VarGD(Y ) is

finite and that VarR(Y, ε) = o(∥ε∥2). Show that
√
n(θ̂−θ0) = −J−1(1/

√
n)
∑n

i=1D(Yi)+

opr(1). In particular, it tends to Np(0, J
−1KJ−1). Show also that

Wn(θ0) = 2n{Hn(θ0)−Hn(θ̂)} →d U
tJ−1U,

and explain how this may be used to find a confidence region for θ0.
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(d) The median: Suppose Y1, . . . , Yn are i.i.d. from a distribution G with a density g

positive at the median µ. For the median distance function |y − µ|, show that

|y − (µ+ ε)| − |y − µ| = D(y)ε+R(y, ε),

with D(y) = I(y ≤ µ)− I(y > µ) and

R(y, ε) =

{
2{ε− (y − µ)} I(µ ≤ y ≤ µ+ ε) if ε > 0,

2{(y − µ)− ε} I(µ+ ε ≤ y ≤ µ) if ε < 0,

with R(y, 0) = 0. Verify from this that ER(Y, ε) = g(µ)ε2 + o(ε2) and ER(Y, ε)2 =

(4/3)g(µ)|ε|3 + o(|ε|3). Deduce that
√
n(Mn − µ) →d N(0, 1/{4g(µ)2}).

(e) Generalise to the case of µq = G−1(q), with Qn,q = G−1
n (q) the empirical q quantile.

Show in fact that

Zn(q) =
√
n(Qn,q − µq) = −g(µq)

−1
√
n{Gn(µq)− q}+ εn(q),

where εn(q) →pr 0 for each q. Derive from this that the limit is a N(0, q(1− q)/g(µq)
2).

We saw this in Ex. 3.18, but here the technique is distinctly different, and we find an

interesting representation in terms of the empirical Gn(µq).

(f) Let ξα be the minimiser of E |Yi−ξ|α, with estimatorMn,α minimising
∑n

i=1 |Yi−ξ|α.
Show that

√
n(Mn,α − ξα) →d N(0, τ2α) with τ2α =

E |Y − ξα|2(α−1)

{(α− 1)E |Y − ξα|α−2}2
.

Explain that if the distribution is symmetric, then the ξα is the same for each α. Compute

and display τα, for α ∈ [1, 2], i.e. the range from median to mean, for the normal and for

the Laplace,

Ex. 5.35 Maximum likelihood asymptotics with log-concave likelihood. (xx edit with

care. regularity condition on R. point to expofamily in later exercise. xx) Suppose

Y1, . . . , Yn are i.i.d. from a density g, modelled as f(y, θ), where log f(y, θ) is concave in

θ for each y; the θ = (θ1, . . . , θp) is allowed to be multidimensional. Let ℓn(θ) be thelog-concave

density log-likelihood, with ML estimator θ̂. From efforts of Ex. 5.17 we know θ̂ is consistent for

the least false parameter θ0, the KL minimiser, assumed here to be an inner point in the

parameter space.

(a) Show first that ℓn is concave. To start with mild conditions, assume merely that

log f(y, θ0 + ε)− log f(y, θ0) = D(y)tε+R(y, ε), (5.10)

for a D(y) with mean zero, and that ER(Y, ε) = 1
2ε

tJε+o(∥ε∥2) as ε→ 0 for some posi-

tive definite J , along with VarR(Y, ε) = o(∥ε∥2). Show via the convexity driven methods

of Ex. 5.33 and 5.34 that
√
n(θ̂−θ0) = J−1Un+opr(1), where Un = (1/

√
n)
∑n

i=1 u(Yi, θ0).

Here Un →d U ∼ Np(0,K), with K = Varg u(Y, θ0) assumed finite. Deduce the two fun-

damental results

Zn =
√
n(θ̂ − θ0) →d Np(0, J

−1KJ−1),

Wn = 2{ℓn,max − ℓn(θ0)} →d U
tJ−1U,

(5.11)
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with simplifications under model conditions. Show also that consistency of the ML

estimator for θ0 is a simple consequence of the first statement. We have seen such results

before, see Ex. 5.17 and in particular (5.7); the point is that they have now been derived

more simply and under weaker conditions, as long as there is log-density concavity.

(b) Work through the details for the case of the Laplace distribution with f(y, θ) =
1
2 exp(−|y − θ|). The point is that with log-concavity, we reach the required results of

(5.11) even without needing full smoothness in the parameter; here the score function is

not defined for all values, etc. Usually, though, the D(y) is the score function u(y, θ0) =

∂ log f(y, θ0)/∂θ and J = J(θ0) is the variance matrix of this score function, i.e. the

Fisher information matrix, evaluated at the true position in the parameter space.

(c) (xx a couple of illustrations. for each, find the limit distribution of
√
n(θ̂ − θ0).

the poisson. gamma. beta. normal. also something like Yi ∼ Pois(eiθ), with different

exposures wi, the point is non-i.i.d. nils does this after mild extra editing for Ex. 5.33

and 5.34, with a bit of Lindeberg too. xx)

(d) (xx to polish. xx) something nontrivial. can do

f(y, θ) = (1/k) exp{(y − θ) arctan(y − θ)}/{1 + (y − θ)2}1/2,

which has log-density (y − θ) arctan(y − θ)− 1
2 log{1 + (y − θ)2} and nice score function

arctan(y − θ). something nontrivial II. and f = (1/k) exp(−|y − θ|1.5).

Ex. 5.36 Differentiability in quadratic mean. The key to proving asymptotic normality

of the ML estimator for the log-concave densities in Ex. 5.35 was the assumption that

log f(y, θ0 + ε) − log f(y, θ0) = D(y)tε + R(y, ε), where D(y) and R(y, ε) satisfy the

conditions specified in (a) of that exercise. This raises the question of what conditions

are needed for such an expansion of the log-likelihood ratio to hold.

(a) Suppose that θ 7→ log f(θ, y) is three times continuously differentiable for every

y. Assume that u(θ, y) is square integrable, that J(θ0) exists and is nonsingular, and Classical

maximum

likelihood

conditions

that the third derivative of log f(θ, y) is bounded by some integrable function k(y) (not

depending on θ). Provided that θ̂n is consistent for θ0 you may now Taylor expand

0 = Un(θ̂n) around θ0 to show that
√
n(θ̂n − θ0) = J(θ0)

−1n−1/2Un(θ0) + opr(1). Do it.

(b) Retain the classical assumptions from (a), except the consistency assumption (as it

plays no role here). Show that the expansion in (5.10) of Ex. 5.35(a) holds.

(c)

Ex. 5.37 The exponential family class and ML. The ML and log-likelihood machinery

works particularly well for the exponential family class of models, see Ex. 1.50, 4.19,

4.20. This is due the log-linear structure for parameters and sufficient statistics, and

also to the consequent log-concavity of densities. Consider i.i.d. data Y1, . . . , Yn from a

density g, modelled with the generic parametric f(y, θ) = exp{θtT (y)− k(θ)}h(y), with
θtT (y) = θ1T1(y) + · · ·+ θpTp(y) involving basic data functions T1, . . . , Tp.

(a) Show that the score function is u(y, θ) = T (y) − ξ(θ), with ξ(θ) = ∂k(θ)/∂θ. Also,

the information function becomes i(y, θ) = −J(θ), with J(θ) = ∂2k(θ)/∂θ ∂θt.
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(b) Under model conditions, show that Eθ T (Y ) = ξ(θ) and Varθ T (Y ) = J(θ). Outside

model conditions, with g not belonging to the fθ, assume merely that T (Y ) has true mean

ξ0 and true variance K. Show that the least false parameter θ0 minimising KL(g, f(·, θ))
is characterised by ξ0 = ξ(θ0). This may also be written θ0 =M(ξ0), with M the inverse

map. Write also J = J(θ0), the Fisher information matrix computed at the least false

parameter position.

(c) Show that the log-likelihood function becomes ℓn(θ) = n{θtT̄ − k(θ)}, in terms of

sample averages T̄ = (T̄1, . . . , T̄p)
t, and that it is concave. Deduce that the ML estimator

has ξ(θ̂) = T̄ , of θ̂ =M(T̄ ).

(d) We have Un =
√
n(T̄−ξ0) →d U ∼ Np(0,K), by the CLT. For the basic log-likelihood

function process, show that

An(s) = ℓn(θ0 + s/
√
n)− ℓn(θ0) =

√
nT̄ ts− n{k(θ0 + s/

√
n)− k(θ0)}

= U t
ns− 1

2s
tJ(θ0)s+ o(∥s∥3/

√
n) →d A(s) = U ts− 1

2s
tJs.

This is as with (5.6), but now established rather simply and directly, with a minimum of

regularity conditions. By appealing to Ex. 5.12, 5.13, deduce also that

√
n(θ̂ − θ0) →d N(0, J−1KJ−1), 2{ℓn,max − ℓn(θ0)} →d W = U tJ−1U.

Under model conditions, the sandwich matrix is J(θ0)
−1 and W ∼ χ2

p. Also, the Wilks

theorems of Ex. 5.28 hold, for focus parameters and for testing submodels.

(e) (xx a bit more. xx) From θ̂j = Mj(T̄ ), for components M1, . . . ,Mp of the mapping

θ0 =M(ξ0), write

θ̂j =Mj(ξ0) +M ′
j(ξ0)

t(T̄ − ξ0) +
1
2 (T̄ − ξ0)

tM ′′
j (ξ0)(T̄ − ξ0) +Opr(1/n

3/2).

Show that this implies E θ̂j = θ0,j +
1
2cj/n+ o(1/n), with cj = Tr(M ′′

j (ξ0)K).

(f) (xx a simple example here. xx)

Ex. 5.38 ML asymptotics under model conditions: applications. (xx cleaning required,

and more of the directly useful up front; we estimate parameters and have confidence,

almost automatically, via normality and delta method. xx) Results reached in Ex. 5.17

are central in applied statistics. The versatile ML machinery allows the statistician to

construct good estimators for even complicated functions of parameters in new models,

and to supplement these estimators with confidence intervals, tests, etc. We will also see

that the general ML asymptotics results may be used to verify what we already knew,

so to speak, regarding estimators in the more familiar models. (xx check all this to make

sure that we don’t become repetitive. xx)

(a) Let Y be binomial (n, p). Even before you find a formula for the ML estimator for

p, show that
√
n(p̂− p) → N(0, p(1− p)). By all means, show also that p̂ = Y/n.

(b) In a similar vein, study the classic case of Y1, . . . , Yn being i.i.d. from the normal

(ξ, σ2). Using the Fisher information matrix found in Ex. 5.14, show that the ML es-

timators ξ̂ and σ̂ must be independent, in the limit, with approximate distributions
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N(ξ, σ2/n) and N(σ, 12σ
2). Remarkably, these results follow from the ML apparatus even

without or before knowing any formulae for the estimators, and without or before know-

ing any finite-sample theory for these. As we know (xx crossref here xx) there is exact

independence here, and the distribution for ξ̂ is exactly correct, for each n.

(c) (xx something with Gam(a, b), and approximate distribution for µ̂, estimator for the

median µ = µ(a, b). illustrate also Wilks. which can be used without explicit formulae.

xx)

(d) (xx the Weibull F (t) = 1− exp{−(t/a)b}. perhaps an earlier exercise where we find

J(a, b). xx)

(e) Consider random i.i.d. pairs (Xi, Yi) from the standardised binormal distribution

with zero means, unit variances, and correlation ρ. Set up the log-likelihood function

ℓn(ρ), show that the Fisher information becomes J(ρ) = (1 + ρ2)/(1 − ρ2)2, and find

the limiting distribution of the ML estimator. How much better is the ML estimator

compared to the usual empirical correlation coefficient Rn? (xx kladd to be pushed to

solutions follows. xx)

log f(x, y, ρ) = − 1
2 log(1− ρ2)− 1

2 (x
2 + y2 − 2ρxy)/(1− ρ2),

score function

u(x, y, ρ) =
1

(1− ρ2)2
{ρ− ρ2 + (1 + ρ2)xy − ρ(x2 + y2)},

where we may check that the mean is zero. We find VarXY = 1 + ρ2, Var (X2 + Y 2) =

4(1 + ρ2), cov(XY,X2 + Y 2) = 4ρ, and this leads to Fisher information J(ρ) = (1 +

ρ2)/(1− ρ2)2.

Ex. 5.39 Examples of agnostic ML operations. It is useful to go through a list of special

cases, to see how the agnostic ML theory pans out in practice. Note that convergence

to the normal Np(0, J
−1KJ−1) takes place in general, model after model after model

(including those you might invent next week), without any need for working with explicit

formulae for the ML estimators etc.

(a) For the exponential model θ exp(−θy), show that the score function is u(y, θ) =

1/θ − y, that its least false parameter value is θ0 = 1/ξ0, in termas of the true mean

ξ0 = EY . Show that
√
n(θ̂ − θ0) has limit distribution N(0, σ2

0θ
4
0), where σ

2
0 is the true

variance. Show that this generalises the ‘usual result’ derived under model conditions.

(b) Then do the normal: assume data follow some density g, and the normal N(ξ, σ2)

model is used. We already know that the least false parameters are ξ0 and σ0, the

true mean and standard deviation (i.e. even if g is far from the normal). Assume that

the fourth moment is finite, so that skew = EZ3 and kurt = EZ4 − 3 are finite, with

Z = (Y − EY )/sd(Y ) = (Y − ξ0)/σ0. Working with the score function, and the second

order derivatives, show that

J =
1

σ2
0

(
1, 0

0, 2

)
and K =

1

σ2
0

(
1, γ3
γ3, 2 + γ4

)
.
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(c) For the ML estimators ξ̂ and σ̂, show from this that(√
n(ξ̂ − ξ)√
n(σ̂ − σ)

)
→d N2(

(
0

0

)
, σ2

(
1, 1

2γ3
1
2γ3,

1
2 + 1

4γ4

)
).

Note that this is a ‘rediscovery’ of what we found in Ex. ?? and 2.46, but here we

managed to find the limit distribution fully without knowing (or caring) about the exact

expressions for the ML estimators.

(d) (xx one more case to come here. xx)

Ex. 5.40 An average power optimality property. (xx we shall see how this pans out, and

how it can be best told. make connection to BIC of Ch. 11. xx) Suppose Y1, . . . , Yn are

i.i.d. from a smooth parametric model f(y, θ), where we need to test θ = θ0, a given value,

against θ ̸= θ0. In general there is no uniformly most powerful test. We have seen in

Ex. 4.11, however, that there is a well-defined test maximising the weighted average power

π̄n =
∫
πn(θ) dw(θ), with πn(θ) the power at position θ and dw(θ) a given probability

measure on the alternative region, here θ ̸= θ0. This optimal strategy is to use the

Neyman–Pearson Lemma for the marginal density f̄(y1, . . . , yn) =
∫ ∏n

i=1 f(yi, θ) dw(θ).

(a) Let ℓn(θ) be the log-likelihood function, with θ̂ the ML estimator, and write also f0
for the model at the null value θ0. Show that the Neyman–Pearson ratio can be expressed

as

Rn =
f̄(y1, . . . , yn)

f0(y1, . . . , yn)
=

∫
exp{ℓn(θ)− ℓn(θ0)} dw(θ)

= exp{ℓn(θ̂)− ℓn(θ0)}
∫

exp{ℓn(θ)− ℓn(θ̂)} dw(θ).

(b) For θ close to θ̂, use Taylor expansion to get

ℓn(θ)− ℓn(θ̂)
.
= − 1

2n(θ − θ̂)tJn(θ − θ̂),

with Jn = −n−1∂2ℓn(θ̂)/∂θ ∂θ
t the normalised Hessian matrix at the max point.

(c) The optimal test consists in rejecting when Rn is above its null distribution threshold.

Show that the above leads to

Rn
.
= exp( 12Dn)(2π)

p/2|nJn|1/2w(θ̂),

2 logRn
.
= Dn − p log n+ log |Jn|+ p log(2π) + 2 logw(θ̂).

Here Dn = 2{ℓn,max − ℓn(θ0)} is the Wilks or log-likelihood-ratio test statistic, with its

χ2
p limiting null distribution.

(d) Conclude that the Dn test is an approximation to the maximum averaged power

test, almost regardless of the weighting measure.

(e) (xx round this off. example. xx)
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Divergences and likelihoods in regression models

Ex. 5.41 Extending theory and methods to regression setups, I. Above we have dealt

with likelihood methods, involving ML estimation, limit distributions under and outside

model conditions, the Wilks theorem for profiled log-likelihoods, broadly valid for all

smooth parametric models, etc. – but after all under simple i.i.d. conditions. Crucially,

most of these concepts, methods, and results extend to classes of general regression

models. Here we go through the various steps to see how the scene broadens and to learn

the appropriate extensions for concepts, techniques, and results.

Consider in general terms regression data of the form (xi, Yi), with xi a covariate

vector, of length say p, thought to influence the main outcome Yi. We assume here that

the Yi are independent given the covariates. Let f(yi |xi, θ) be a suitable density for yi
given xi, with score function u(yi |xi, θ) = ∂ log f(yi |xi, θ)/∂θ and information function

i(yi |xi, θ) = ∂2 log f(yi |xi, θ)/∂θ ∂θt. The θ could comprise both regression coefficients

and parameters describing the shape of the distributions. In this exercise we assume that

the model holds, with θ0 denoting the true parameter, an inner point in the parameter

spoace. We also postulate the ergodic condition, that averages over covariates stabilise, ergodic

conditionswith increasing sample size; formally, for each bounded h(x), there is a well-defined limit

h0 =
∫
h(x) dR(x) for n−1

∑n
i=1 h(xi), for an appropriate distribution R on the covariate

space. For theory and applications, we do not need to model this R, or take it explicitly

into account, beyond postulating its existence.

(a) First of all, there is a log-likelihood function, also in these regression setups, ℓn(θ) =∑n
i=1 log f(yi |xi, θ). The ML estimator θ̂ is its maximiser, satisfying also Un(θ̂) = 0,

with Un(θ) =
∑n

i=1 u(yi |xi, θ). Secondly, to extend theory and results for the i.i.d. case,

see Ex. 5.17, we need to understand Un = n−1/2Un(θ0) = n−1/2
∑n

i=1 u(Yi |xi, θ0).
Show that it has mean zero and variance matrix Jn = n−1

∑n
i=1 J(xi), where J(xi) =

Varθ0u(Yi |xi, θ0). Under ergodic assumptions, there is convergence Jn → J , say. Give

Lindeberg type conditions under which Un →d U ∼ Np(0, J).

(b) Extend techniques from Ex. 5.17 to deduce the natural parallel to (5.6), in this

general regression setting, that

An(s) = ℓn(θ0 + s/
√
n)− ℓn(θ0) = U t

ns− 1
2Jns+ rn(s) →d A(s) = U ts− 1

2s
tJs,

Set up clear but mild regularity conditions, as in Ex. 5.13, to secure the required

rn(s) →pr 0 for each s. Explain as in Ex. 5.17 that this leads to the two fundamen-

tal results
√
n(θ̂ − θ0) →d Np(0, J

−1) and 2{ℓn,max − ℓn(θ0)} →d χ
2
p,

under these Lindeberg type conditions. Show also that the observed Fisher information

matrix observed Fisher

information

matrixĴn,full = −∂2ℓn(θ̂)/∂θ ∂θt, (5.12)

i.e. the Hessian mastrix associated with the maximisation of the log-likelihood, satisfies

Ĵn = n−1Ĵfull →pr J . Deduce from this that θ̂ ≈d Np(θ0, Ĵ
−1
full). (xx need to point to Ch2

thing with weak LLN for averages of non-i.i.d. xx)
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(c) (xx rounding this off. also log-likelihood profiling and deviance and χ2
1 limit and

CDs. the point is that i.i.d. results all extend to the broad regression cases. point also

to exercise below with outside the model. xx)

Ex. 5.42 Linear regression revisited. (xx edit and clean. xx) Consider the linear

regression model of Ex. 3.31, with Yi |xi ∼ N(xtiβ, σ
2), for which exact finite-sample

theory has been well developed. We now take another look at this classical model, with

the general likelihood tools.

(a) For the log-likelihood, show that ℓn(β, σ) = −n log σ− 1
2Q(β)/σ2 − 1

2n log(2π), with

Q(β) =
∑n

i=1(yi−xtiβ)2 Show that the ML estimator for β is the least squares estimator

β̂ = Σ−1
n n−1

∑n
i=1 xiYi, with Σn = n−1

∑n
i=1 xix

t
i, see the exercise mentioned, and that

σ̂ = (Q0/n)
1/2, with Q0 = Q(β̂) the minimum of Q(β).

(b) Show that the score function becomes

u(yi |xi, β, σ) =
(

(1/σ2)(yi − xtiβ)xi
−1/σ + (1/σ3)(yi − xtiβ)

2

)
=

(
(1/σ)εixi

(1/σ)(ε2i − 1)

)
in terms of εi = (yi−xtiβ)/σ, which are independent standard normals under the model.

With (β0, σ0) the true parameters, deduce that the (p+ 1)× (p+ 1) Fisher information

matrix becomes

Jn = n−1
n∑

i=1

Varβ0,σ0
u(Yi |xi, β0, σ0) = (1/σ2

0) diag(Σn, 2),

with Σn = n−1
∑n

i=1 xix
t
i = n−1XtX. Show also that the observed Fisher information

matrix becomes Ĵn,full = (n/σ̂2) diag(Σn, 2).

(c) (xx then on to what likelihood theory implies for β̂ and σ̂. the Jn and Ĵn. a tn−p

vs. approximate normality. we reproduce the β̂ distribution, and come close for σ̂2. xx)

Ex. 5.43 Logistic regression. Consider binary outcome data, where the values 0-1 for

Yi are influenced by a covariate vector xi, of dimension say p. The logistic regression

model takes the probabilities to belogistic

regression

pi = Pr(Yi = 1 |xi) = H(xtiβ) =
exp(xtiβ)

1 + exp(xtiβ)
for i = 1, . . . , n, (5.13)

with H(u) = exp(u)/{1 + exp(u)} the logistic transform, studied in Ex. 1.57. One

may interpret the model via underlying or latent i.i.d. variables Zi, having the logistic

distribution, with the individuals having different thresholds; pi = Pr(Zi ≤ xtiβ) says

that outcomes are ‘1’ for those individuals whose Zi fall to the left of the threshold.

(a) Show that H(u) = p means u = H−1(p) = log{p/(1− p)}, so that the model can be

represented as log{pi/(1− pi)} = xtiβ.

(b) Show that Pr(Yi = y |xi) = pyi (1 − pi)
1−y, for the two outcomes, and deduce that

the log-likelihood function can be written

ℓn(β) =

n∑
i=1

{yi log pi + (1− yi) log(1− pi)} =

n∑
i=1

[
yix

t
iβ − log{1 + exp(xtiβ)}

]
.
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Show from this that the estimation equation, giving rise to the ML estimator β̂, is∑n
i=1(yi − pi)xi = 0, and that

Jn,full(β) = −∂
2ℓn(β)

∂β∂βt
=

n∑
i=1

pi(1− pi)xix
t
i =

n∑
i=1

H(xtiβ){1−H(xtiβ)}xixti.

This matrix is assumed here to be positive definite, which in particular requires n ≥ p.

Explain that the log-likelihood function is concave, with β̂ the unique maximiser.

(c) Show that, under model conditions, β̂ ≈d Np(β, Ĵ
−1
n,full), where Ĵn,full = Jn,full(β̂)

is the observed Fisher information matrix (the Hessian matrix of minus the normalised

log-likelihood function, at the ML position).

(d) Consider an individual, perhaps outside the dataset, with covariate vector x0. Show

that xt0β̂ is approximately a normal (xt0β, x
t
0Ĵ

−1
n,fullx0), and use this to construct a confi-

dence interval for p(x0) = Pr(Y0 = 1 |x0).

(e) (xx repair a bit here. xx) Consider the important special case of a single xi recorded

for Yi, where we write the model equation as pi = H(a + bxi), corresponding to 2-size

vectors (1, xi)
t in the more general notation used above. Show that (â, b̂) are the solutions

to
∑n

i=1(yi − pi) = 0 and
∑n

i=1(yi − pi)xi = 0, and that

Jn(a, b) =

n∑
i=1

exp(a+ bxi)

{1 + exp(a+ bxi)}2

(
1, xi
xi, x

2
i

)
.

(f) The logistic regression model uses the H transform, which is symmetric around

zero. A more flexible model takes pi = H(xtiβ)
κ, allowing skewness in the underlying

distribution for the latent variables. Write down the log-likelihood function, explain that

standard theory applies for the ML estimator (β̂, κ̂). (xx point perhaps to illustration,

Polish girls story, where κ is significantly larger than 1. xx)

Ex. 5.44 Probit regression. Consider again data (xi, Yi), with covariates xi and 0-1

outcomes Yi. For the logistic regression of Ex. 5.43 we modelled the 1-probabilities as

pi = Pr(Zi ≤ xtiβ) = H(xtiβ), with H the logistic c.d.f. Clearly there are alternatives,

and the more famous one among these is probit regression, which takes the Zi to be

standard normal, i.e. pi = Φ(xtiβ). probit

regression, from

probability of

unit
(a) Explain that the log-likelihood becomes ℓn(β) =

∑n
i=1[yi log pi(β) + (1− yi) log{1−

pi(β)}]. The ML estimator β̂ is its maximiser.

(b) Explain also that standard regression likelihood theory applies, with β̂ ≈d Np(β, Ĵ
−1
n ),

and give a recipe for computing the variance matrix.

(c) To compare analyses from logistic and probit regressions, we may scale the normal

above to have the same variance τ2 = π2/3 as the logistic. Explain that this leads

to an equivalent model, though with scaled parameters, namely pi = Pr(Z ′
i ≤ xtiβ) =

Φ(xtiβ/τ).
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(d) Simulate a simple dataset of size n = 1000 pairs, with xi taken N(0, κ2) with κ = 2

and true probabilities pi = H(a0 + b0xi) with a0 = −0.33 and b0 = 0.77. The litt point

with κ = 2 is to secure a fair range for the xi, in view of the probabilities. (i) Estimate

(a, b) in the logistic regression model pi = H(a + bxi); and then (ii) estimate (a, b) in

the probit model pi = Φ((a + bxi)/τ). Draw the two estimated regression curves, say

H(â+ b̂x) and Φ((ã+ b̃x)/τ). Comment on what you find.

Ex. 5.45 Poisson regression. Consider independent count data y1, . . . , yn, influenced by

covariate vectors x1, . . . , xn. The Poisson regression model, in its standard form, takes

Yi ∼ Pois(µi), with µi = exp(xtiβ).

(a) Show that the log-likelihood function becomes

ℓn(β) =

n∑
i=1

{−µi + yi log(µi)} =

n∑
i=1

{yixtiβ − exp(xtiβ)},

and that the equations
∑n

i=1{yi − µi(β)}xi = 0 define the ML estimators.

(b) Show that −∂2ℓn(β)/∂β ∂βt =
∑n

i=1 µixix
t
i, leading to the observed Fisher informa-

tion matrix Ĵn,full =
∑n

i=1 µ̂ixix
t
i, where µ̂i = exp(xtiβ̂).

(c) For a case with covariate vector x0, estimate the associated expected count µ0 =

exp(xt0β), and construct a confidence interval.

(d) Sometimes there is overdispersion, compared to how the counts yi should behave

under Poisson conditions. Such overdispersion could e.g. reflect ‘hidden covariates’ not

taken on board in the model. A method handling overdispersion is to take Yi |µ ∼
Pois(µi), but modelling potential extra randomness via µi ∼ Gam(exp(xtiβ)/τ, 1/τ).

This is an application of Poisson-gamma mixtures from Ex. 1.26. Show that µi has

mean exp(xtiβ) and variance τ exp(xtiβ); τ small means getting back to ordinary Poisson

regression. Show altso that Yi has mean exp(xtiβ) variance (1+τ) exp(x
t
iβ). Furthermore,

work out that an expression for the log-likelihood function ℓn(β, τ) is

n∑
i=1

{(ai/τ) log(1/τ)− log Γ(ai/τ) + log Γ(ai/τ + yi)− (ai/τ + yi) log(1/τ + 1)},

in which ai = exp(xtiβ). In applications it is often fruitful to profile out the β, and

studying ℓn,prof(τ) = maxall β ℓn(β, τ). (xx pointer to Story iv.6. xx)

Ex. 5.46 GLM regression. (xx to be polished. xx) basic expofamily model f(y, θ, κ) =

exp{θT (y) + κU(y) − k(θ, κ)}h(y), here with one-dimensional θ, κ. now regression with

θi = xtiβ.

ℓn(β, κ) =

n∑
i=1

{xtiβT (yi) + κU(yi)− k(xtiβ, κ)}.

then ML β̂, κ̂, and more.

(a)
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(b) (xx example. xx)

Ex. 5.47 Wald tests. (xx something here, re Wald tests, used e.g. in regression models.

p-value. more on power for the two variations with two nevnere. point back to Ex. 4.5,

and to a couple of stories where we use this tool. xx)

Ex. 5.48 A heteroscedastic linear regression model. (xx edit and clean. xx) In various

linear regression type applications for (xi, yi) data the linear mean assumption can be

reasonable, whereas the variance might not be taken constant across covariates. Consider

therefore the model with independent Yi | (xi, wi) ∼ N(xtiβ, σ
2
i ), for i = 1, . . . , n, with

covariate vectors xi of length p and variance related covariates wi of length q, influencing

σi = σ exp(γtwi). These wi could be a subset of the xi or functions thereof. It is

convenient to normalise these such that w̄ = n−1
∑n

i=1 wi = 0, which also means that σ

is the standard deviation for an average individual, with wi equal to w̄.

(a) (xx log-likelihood. score function. Jn and Ĵn. approximations. pointers. xx) Show

that the log-likelihood function can be written

ℓn(β, γ) = −n log σ − 1
2 (1/σ

2)Q(β, γ), with Q(β, γ) =
n∑

i=1

(yi − xtiβ)
2

exp(2wt
iγ)

.

Show that minimising Q(β, γ) over β, for fixed γ, takes place for

β̂(γ) =
{ n∑

i=1

xix
t
i

exp(2γtwi)

}−1 n∑
i=1

xiyi
exp(2γtwi)

.

Demonstrate that this leads to the profiled log-likelihood ℓn,prof(γ) = −n log σ̂(γ)− 1
2n,

where σ̂(γ)2 = Q0(γ)/n, with Q0(γ) = Q(β̂(γ), γ) the minimum sum of squares. Deduce

from this that a recipe for finding the ML estimators consists in (i) minimising Q0(γ)

over γ, yielding γ̂; (ii) reading off β̂ = β̂(γ̂) and σ̂ = σ̂(γ̂).

(b) (xx calibrate this with Wilks things. xx) Is it worthwhile, turning from classic linear

regression, to include the extra layer of variance heterogeneity sophistication? Show that

the log-likelihood-ratio test becomes that of comparing Dn = 2n log{σ̂(0)/σ̂(γ̂)} to the

χ2
q, in which σ̂(0)2 = Q0(0)/n is the standard estimator for σ2 under variance constancy.

(c) For the p + q + 1-parameter model, with parameters β, γ, σ, show that the score

function becomes

u(yi |xi) =

 (1/σ2)(yi − xtiβ)xi/ exp(2γ
twi)

−wi + (1/σ2)(yi − xtiβ)
2wi/ exp(2γ

twi)

−1/σ + (1/σ3)(yi − xtiβ)
2/ exp(2γtwi)

 =

(1/σ)εixi/ exp(γ
twi)

(1/σ)(ε2i − 1)wi

(1/σ)(ε2i − 1)

 ,

in terms of εi = (yi − xtiβ)/{σ exp(γtwi)}. Show from this that the normalised Fisher

information matrix becomes Jn = (1/σ2
0)diag(Σn(γ0),Mn, 2), at the true parameters

(β0, γ0, σ0), in terms of Σn(γ) = n−1
∑n

i=1 xix
t
i/ exp(2γ

twi) and Mn = n−1
∑n

i=1 wiw
t
i .

(d) (xx check if Ĵn,full has these off-diagonal zeroes, or if it only holds for the information

calculus. spell out nice behaviour for ML estimators. γ̂ ≈d Nq(γ, (σ
2/n)M−1

n ). xx)
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(e) (xx round off. confidence for µ(x0, w0), x
t
0β̂±1.96 σ̂ exp(γ̂tw0). pointer to Story iv.3.

xx)

Ex. 5.49 Nonlinear regression. (xx calibrate this with both classic linear regression

and what we’ve said with genereal regression models. xx) Consider in general terms

the model with independent yi ∼ N(mi(β), σ
2) for i = 1, . . . , n, wherethe means mi(β)

are perhaps nonlinear functions of an appropriate vector prarameter β, involving also

covariates.

(a) Show that the log-likelihood function becomes −n log σ− 1
2Qn(β)/σ

2, with Qn(β) =∑n
i=1{yi −mi(β)}2. Show that the ML estimator for β is the minimiser of Qn, and that

σ̂2 = Qn(β̂)/n.

(b) Show that the normalised Fisher information matrix becomes

Jn(β, σ) =
1

σ2

(
Σn 0

0 2

)
, with Σn = n−1

n∑
i=1

m∗
i (β)m

∗
i (β)

t,

in which m∗
i (β) = ∂mi(β)/∂β.

(c) Deduce that
√
n(β̂ − β) →d N(0, σ2Σ−1), under Lindeberg type conditions, where Σ

is the limit of Σn. (xx more here. also the case with different normalisation, for the time

series cyclic thing. xx)

Ex. 5.50 We can do things. The spirit of this exercise is to see that the log-likelihood

machinery is useful, versatile, flexible, and not too hard to use in new situations, outside

ordinary textbook terrain.

(a) One records the number of a certain event, say per week, over a time period. Suppose

most of these counts are Poisson-like, with some parameter θ, but that a fraction come

from another Poisson with a higher parameter. A model for such data is that Yi stems

from the mixture distribution (1 − p) Pois(θ) + pPois(cθ), with c > 1. (i) Find the

mean and variance for this distribution. (ii) Generate such a dataset, say y1, . . . , yn with

n = 250, θ = 10, cθ = 20. Taking first c = 2 known, estimate the parameters (p, θ), along

with confidence intervals. (iii) Using the same data, now with c unknown, estimate all

three parameters, with confidence intervals. Briefly investigate how much is earned in

precision for estimating (p, θ) when c is known compared to it being unknown.

(b) Suppose data Y 0
i are generated according to some normal (ξ, σ2), but that we are

only able to see those falling inside some observation window [a, b]. Write down the log-

likelihood function, for the observed data Yi. To see how it works, generate say n0 = 1000

points from the standard normal, keep the n amongst these that fall inside [1.0, 3.0], and

estimate the two parameters from these. Find also approximate confidence intervals for

the two parameters.

(c) For two distributions with densities f1, f2 and c.d.f.s F1, F2, consider the bivariate

density

f(x, y, a) = f1(x)f2(y)[1 + a{F1(x)− 1
2}{F2(y)− 1

2}].
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What is the range of the dependence parameter a? Show that the marginal distributions

are f1, f2. Generate first binormal data with N(0, 1) marginals, and estimate a, with

confidence interval for a. Then generate another binormal dataset, and estimate the five

parameters (ξ1, ξ2, σ1, σ2, a), along with confidence intervals.

(d) Tired of normality? Then generalise it. With Bea,b(x) the c.d.f. for the Beta(a, b)

distribution, consider the four-parameter model with c.d.f. F (y) = Bea,b(Φ((y − ξ)/σ)).

Write up an expression for the log-likelihood function. Generate first n = 500 datapoints

from the standard normal, and check if the ML metod succceeds in coming close to the

true parameters (0, 1, 1, 1). Argue that you here have a test for normality, and spell out

the ingredients. Then simulate another dataset, from (a, b) = (1.23, 2.34), compute ML

estimates and their estimated standard deviations.

Ex. 5.51 Extending theory and methods to regression setups, II. (xx smooth and polish.

regression outside model conditions. careful with notion, point to previous for u, i. then

θ0,n, Jn, Kn, sandwich. xx) For i.i.d. setups we have seen how the behaviour of ML

estimators can be accurately described also when the data-generating density g is not

inside the parametric model fθ, via a clearly defined least false parameter θ0 and the

two matrices J and K, see Ex. 5.17. Under model conditions, the two are equal. Here

we extend these notions and results to regression models. The setting is partly as in

Ex. 5.41, with a parametric model f(yi |xi, θ) for Yi |xi, but notions and results need to

be lifted to the agnostic state of affairs when the real density g(yi |xi) is not necessarily
inside the model.

(a) For given x, there is a KL distance

KLx(g(· |x), f(· |x, θ)) =
∫
g(y |x) log g(y |x)

f(y |x, θ)
dy.

Consider the overall KL distance, weighted over the covariate vectors in the sample,

KL = n−1
n∑

i=1

KLxi
=

∫ ∫
g(y |x) log g(y |x)

f(y |x, θ)
dy dRn(x),

with Rn the empirical distribution over these covariate vectors. Show that this is a

divergence, i.e. nonnegative and equal to zero only if g(y |x) = f(y |x, θ) for all y and

all x1, . . . , xn. Let θ0,n be the least false parameter, minimising this KL, for the given

covariate vectors, and show that this is the same as the maximiser of

Mn(θ) = n−1
n∑

i=1

∫
g(y |xi) log f(y |xi, θ) dy.

Explain also that Mn(θ) → M(θ), under ergodic conditions, with this limit involving

the distribution R over covariate space, using
∫
hdRn →

∫
hdR. Letting θ0 be the

maximiser of this limit M(θ), show also that θ0,n → θ0, under weak conditions.

(b) The following arguments support the notion that the ML estimator θ̂ aims at this

least false θ0,n. With ℓn(θ) =
∑n

i=1 log f(yi |xi, θ) the log-likelihood function, explain

that n−1ℓn(θ) has mean Mn(θ). the mean of n−1ℓn(θ) is Mn(θ), and that its variance

goes to zero. Now show that θ̂ − θ0,n →pr 0.
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(c) As in the earlier and simpler case of (5.6), it is fruitful to work with the log-likelihood

function process. Show that

An(s) = ℓn(θ0,n + s/
√
n)− ℓn(θ0,n) = U t

ns− 1
2s

tJns+ rn(s),

now with Un = n−1/2
∑n

i=1 u(Yi |xi, θ0,n) and Jn = −n−1
∑n

i=1 i(Yi |xi, θ0,n). Let

K(xi) = Varu(Yi |xi, θ0,n). Under Lindeberg type conditions, show that Un →d U ∼
Np(0,K), with K the limit of n−1

∑n
i=1K(xi). Explain that An(s) →d A(s) = U ts −

1
2s

tJs.

(d) (xx then read off limits. proof of pudding lies in eating, i.e. applications, below.

estimates Ĵ and K̂. xx) Ĵ = −n−1∂2ℓn(θ̂)/∂θ ∂θ
t, for estimating K, use the estimated

scores ûi = u(Yi |xi, θ̂), noting that these sum to zero. then use K̂ = n−1
∑n

i=1 ûiû
t
i.

sandwich Σ̂ = Ĵ−1K̂Ĵ−1.

Ex. 5.52 Linear regression: agnostic analysis. (xx to be repaired and cleaned and

calibrated with next. xx) When a regression model is used, without being fully correct,

the general theory of Ex. 5.51 explains (i) how the ML estimators implicitly aim for the

best parametric approximation, defined via Kullback–Leibler divergences weighted over

the available covariate vectors, and (ii) how the approximate distributions are affected.

Here we consider such consequences for the classic linear normal regression model. For a

dataset of pairs (xi, Yi), assume merely that EYi = m(xi), for some smooth m(x) func-

tion, with i.i.d. errors εi with mean zero and variance σ2
0 . The linear model approximates

this via the standard Yi |xi ∼ N(xtiβ, σ
2), for which we have found the ML estimators β̂

and σ̂ in Ex. 5.42.

(a) Explain that minimising the KL distance, as per Ex. 5.51, is the same as maximising

n−1
n∑

i=1

{− log σ − 1
2

1

σ2
E (Yi − xtiβ)

2} = − log σ − 1
2

1

σ2
n−1

n∑
i=1

[{m(xi)− xtiβ}2 + σ2
0 ].

Argue from this that the least false parameter β0,n is the one minimising Qn(β) =

n−1
∑n

i=1{m(xi)−xtiβ}2, and show that this means β0,n = Σ−1
n n−1

∑n
i=1m(xi)xi, where

Σn = n−1
∑n

i=1 xix
t
i. If the model is perfect, there is a true βtrue for which E (Yi |xi) =

xtiβtrue, in which case β0,n = βtrue. Show next that the least false σ0,n is determined by

σ2
0,n = Q0,n + σ2

0 , where Q0,n is the minimum of Qn(β). If the linear mean is a good

model, the Q0,n is small and the σ0,n aimed at by the ML estimator σ̂ is not much bigger

than σ0. If the linear mean is not a good approximation to the real m(x), then the σ̂

implicitly picks up both data variability and the difference between xtiβ and the real

m(xi).

(b) For the two matrices J and K determining the behaviour of the ML estimators

we have found in Ex. 5.42 that Ĵ = (1/σ̂2) diag(Σn, 2), and that the score vectors,

computed at the least false values, can be written u(yi |xi, θ0) = (1/σ0,n)(xizi, z
2
i − 1)t,

in which zi = (yi − xtiβ0,n)/σ0,n. Note that we for the estimated standardised residuals

ẑi = (yi −xtiβ̂)/σ̂ have
∑n

i=1 ẑixi = 0 and n−1
∑n

i=1 ẑ
2
i = 1. For the K matrix, and with
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notation from Ex. 5.51, show that

n−1
n∑

i=1

K(xi) = n−1
n∑

i=1

1

σ2
0,n

Var

(
zixi
z2i − 1

)
.

(xx round this off. two substories, depending on what is assumed for zi. with yi =

m(xi) + σ0εi, the zi are not i.i.d., but we may cope with that too, via the right K̂.

simplification if we postulate m(xi) = xtiβ0, then involving only γ̂3 and γ̂4 for the ẑi. xx)

a somewhat messy model-robust approach would use

K̂ =
1

σ̂2
n−1

n∑
i=1

(
ẑ2i xix

t
i, ẑ3i xi

ẑ3i x
t
i, ẑ4i − 1

)
.

(c)

Ex. 5.53 Logistic regression, Poisson regression: agnostic analysis. (xx to be repaired

and cleaned. xx) When the regression model used does not necessarily hold up, ML

estimators aim for the relevant least false parameters, the general theory of Ex. 5.51

shows that θ̂ ≈d N(θ0,n, Σ̂/n), for the relevant least false parameter and with estimated

sandwich matrix Σ̂n = Ĵ−1K̂Ĵ−1. Under model conditions, matters simplify, the under-

lying Jn and Kn matrices are equal, and we have the standard result θ̂ ≈d N(θ0, Ĵ
−1/n),

used extensively in statistical software packages for a range of regression models. Here

we check what the model agnostic setup leads to, for securing model robust inference, for

standard logistic and Poission regression models; see also the agnostic analysis for the

linear regression model in Ex. 5.52.

(a) Consider logistic regression (xx point back xx), with pi = H(xtiβ): show that

u(yi |xi, β) = (yi − pi)xi, and that

Ĵn = n−1
n∑

i=1

p̂i(1− p̂i)xix
t
i, K̂n = n−1

n∑
i=1

(yi − p̂i)
2xix

t
i.

(b) Then look at Poisson regression (xx point back xx), with µi = exp(xtiβ): show that

u(yi |xi, β) = (yi − µi)xi, with

Ĵn = n−1
n∑

i=1

µ̂ixix
t
i, K̂n = n−1

n∑
i=1

(yi − µ̂i)
2xix

t
i.

If there is overdispersion, with (yi − µ̂i)
2 tending to be bigger than µ̂i, this is picked up

here, with sandwich matrix bigger than Ĵ−1. The potential error of applying straight-

forward Poisson regression, perhaps via standard packages, is that variability is underes-

timated, with confidence intervals becoming too narrow. For an illustration of this, see

Story iv.6.

(c) With the Poisson-gamma overdispersion regression model studied in Ex. 5.45, where

Yi |xi has mean exp(xtiβ) and variance (1 + τ) exp(xtiβ), show that K̂n →pr (1 + τ)J ,

in terms of the limit J of Ĵn. Deduce that if β̂ is the ML estimator computed for the

standard Poisson regression model, then
√
n(β̂ − β0,n) →d Np(0, (1 + τ)J−1).
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Influence functions

Ex. 5.54 Influence functions. For a distribution function F , consider some associated

parameter, say θ = T (F ), with T the appropriate functional mapping the distribution

to the parameter value in question. Examples include the mean, the standard deviation,

the skewness, the interquartiale range, a threshold probability. The influence function

for θ = T (F ) is a very useful quantity, as we shall see. It is defined as

IF(F, y) = lim
ε→0

(1/ε){T ((1− ε)F + εδ(y))− T (F )}. (5.14)

Here δ(y) is the measure putting full mass 1 at the point y, and (1 − ε)F + εδ(y) the

consequent mixture distribution. A variable Yε drawn from this mixture is from F with

probability 1− ε and is equal to y with probability ε.

(a) Consider θ(F ) = EG h(Y ) =
∫
h(y) dF (y), the mean of h(Y ). Show that IF(F, y) =

h(y) − θ(F ). In particular, the influence is bounded when h is, but unbounded e.g. in

the case of the plain mean h(y) = y, which signifies a potential lack of robustness of this

mean parameter functional θ = EG Y .

(b) Then consider the class of smooth functions of means. For mean type parame-

ters γ1 = EG h1(Y ), . . . , γk = EG hk(Y ), let θ = T (F ) = A(γ1(F ), . . . , γk(F )), where

A(u1, . . . , uk) is smooth in a neighbourhood of (γ1(F ), . . . , γk(F )). Show that this pa-

rameter has influence function

IF(F, y) = c1(F ) IFγ1(F, y) + · · ·+ ck(F ) IFγk
(F, y)

= c1(F ){h1(y)− γ1(F )}+ · · ·+ ck(F ){hk(y)− γk(F )},

with cj(F ) is the partial derivative ∂A(u1, . . . , uk)/∂uj , evaluated at (γ1(F ), . . . , γk(F )).

(c) Writing µF = EG Y for the mean, show for the variance parameter σ2
F = EG Y

2−µ2
F

that its influence function becomes

IF(F, y) = −2µF (y − µF ) + y2 − EG Y
2 = (y − µF )

2 − σ2
F .

Then for the standard deviation parameter σ(F ) itself, show that its influence function

becomes

IFσ(F, y) =
1
2 (1/σF ){(y − µF )

2 − σ2
F }.

(d) For a given parametric family f(y, θ), consider the ML functional T (F ), mapping

a given F with density f to the least parameter value θ0 = θ0(F ), the minimiser of

the information distance KL(f, f(·, θ)), or the maximiser of
∫
log f(y, θ) dF (y). With

Fn the empirical distribution of the data, placing probability 1/n on each data point,

cf. Ex. 3.9, Show that T (Fn) is the ML estimator, and that its influence function becomes

IF(F, y) = J−1u(y, θ0).

Ex. 5.55 Influence for quantiles. Assume the c.d.f. F has a smooth density f .
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(a) Consider µ = F−1( 12 ), the median. Show that the influence function IF(F, y) becomes

− 1
2/f(µ) for y ≤ µ and 1

2/f(µ) for y > µ. Verify that the influence function has mean

zero and variance 1
4/f(µ)

2.

(b) More generally, let µq = F−1(q), for some quantile level q ∈ (0, 1). Show that

IF(F, y) is −(1− q)/f(µq) for y ≤ µq and q/f(µq) for y > µq. Comment on the fact that

these are bounded.

(c) Then consider a smooth function of quantiles, say γ(F ) = A(Q1(F ), . . . , Qk(F )),

where Qj(F ) = F−1(qj). Show that its influence function is IF(F, y) = c1(F ) IF1(F, y)+

· · ·+ck(F ) IFk(F, y), in terms of IFj(F, y) the influence function of F−1(qj) calculated as

above, and where cj(F ) = ∂A(Q1, . . . , Qk)/∂Qj computed at (F−1(q1), . . . , F
−1(qk)). As

an illustration, find and graph the influence function for γ(F ) = F−1(0.90)−F−1(0.10).

Ex. 5.56 An estimator represented via its influence function. Consider an i.i.d. se-

quence Y1, Y2, . . . from F , with θ = T (F ) a parameter of interest. It may be estimated

nonparametrically using θ̂ = T (Fn), with Fn the empirical distribution. Here we work

towards a representation of θ̂ − θ = T (Fn)− T (F ) in terms of the influence function.

(a) Consider the case of θ = A(γ(F )), where γ(F ) = EG h(Y ) =
∫
hdF . Show that

θ̂ = T (Fn) is equal to A(h̄), with h̄ =
∫
hdFn = n−1

∑n
i=1 h(yi). Assuming A(u)

smooth, with two derivatives, show that

θ̂ = A(γ0) +A′(γ0)(h̄− γ0) +
1
2A

′′(γ0)(h̄− γ0)
2 + opr(1/n),

with γ0 = γ(F ). Deduce that E θ̂ = θ+ 1
2A

′′(γ0)τ
2/n+o(1/n), in terms of τ2 = Varh(Yi),

and that θ̂ − θ = n−1
∑n

i=1 IF(F, yi) + b/n+ opr(1/
√
n), where b = 1

2A
′′(γ0)τ

2.

(b) Generalise to the case of T (F ) = A(γ1(F ), . . . , γp(F )) being a smooth function of sev-

eral means, as studied also in Ex. 5.54, with γj(F ) =
∫
hj dF . Show that E θ̂ = θ+b/n+

o(1/n), with b = 1
2Tr(A

′′(γ0)K), with K the variance matrix of (h1(Yi), . . . , hp(Yi))
t,

and A′′(γ0) the second order derivative matrix of A, computed at γ0. Show that

θ̂ − θ = T (Fn)− T (F ) = n−1
n∑

i=1

IF(F, Yi) + b/n+ εn, (5.15)

with εn = opr(1/
√
n), i.e. small enough to have

√
nεn →pr 0. Show

(c) The powerful representation (5.15) actually holds quite generally, as long as T (F ) is

a moderately smooth functional (xx find refs, Shao (1991), Jullum and Hjort (2017) xx),

though with no easy general formula for the bias component b/n. Deduce that
√
n(θ̂−θ)

has the limit distribution N(0, κ2), with κ2 the variance of IF(Yi, θ), and with the bias

part b/n disappearing in this normal limit.

(d) Use the above to find the limit distribution of
√
n(σ̂ − σ). This gives a new and

partly simpler proof of things proved in Ex. 2.43.

Ex. 5.57 Influence functions for BHHJ and for weighted likelihood estimators. For

some smooth parametric model fθ(y) = f(y, θ), consider the BHHJ estimation method
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of Ex. 5.9 and 5.18. The setup involves the data-generating density g, and for the given

tuning parameter a, the defining parameter is θ0 = θ0,a, the minimiser of
∫
f1+a
θ dy −

(1 + 1/a)
∫
gfaθ dy, also the solution to

∫
(f1+a

θ − gfaθ )uθ dy = 0. Here uθ(y) = u(y, θ) is

the score function, and we will also need the information function iθ(y) = i(y, θ) below.

As in Ex. 5.18 we use f0, u0, i0 for these functions at θ0.
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Figure 5.2: Influence functions for the BHHJ estimator, for the normal (ξ, σ2) model, for

values a = 0, 0.05, 0.10, 0.15, 0.20; the full black curves are for the ML case a = 0. Left

panel: for ξ̂a; right panel: for σ̂a.

(a) Explain that to find the influence function IFa(G, y), we need for a small ε to assess

the solution θε = θ0 + δ to the equation∫
f1+a
θ0+δuθ0+δ dy = (1− ε)

∫
gfaθ0+δuθ0+δ dy + εf(y, θ0 + δ)au(y, θ0 + δ).

The programme is now for the given small ε to carry out first order Taylor expansion for

δ small and then solve for δ. Some details are as follows: show first

faθ0+δ
.
= fa0 (1 + aδtu0), f1+a

θ0+δ
.
= f1+a

0 {1 + (1 + a)δtu0}, uθ0+δ
.
= u0 + i0δ.

Again with ξa =
∫
f1+a
0 u0 du =

∫
gfa0 u0 dy, use this to write the left and right hand

sides of the equation as

L
.
= ξa +

{
(1 + a)

∫
f1+a
0 u0u

t
0 dy +

∫
f1+a
0 i0 dy

}
δ,

R
.
= ξa +

{∫
gfa0 (u0u

t
0 + i0) dy

}
δ + ε{f(y, θ0)au(y, θ0)− ξa}.

Conclude that IFa(G, y) =M−1
a {f0(y)au0(y)− ξa}, with the matrix

Ma = (1 + a)

∫
f1+a
0 u0u

t
0 dy +

∫
f1+a
0 i0 dy −

∫
gfa0 (u0u

t
0 + i0) dy.
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Check with the Ja matrix of Ex. 5.18 that in fact Ma = Ja/(1 + a), so that

IFa(G, y) = (1 + a)J−1
a {f(y, θ0)au(y, θ0)− ξa}.

Explain that as a → 0, the limit is J−1
0 u(y, θ0), the influence function for the ML esti-

mation method. Show also that under conditions, Ma simplifies to
∫
f1+a
0 u0u

t
0 dy.

(b) Consider the case of the normal N(ξ, σ2). Under model conditions, find formulae

for and graph the influence functions IF1,a(y) and IF2,a(y), for the ξ and the σ, at the

standard position (ξ, σ) = (0, 1), for a equal to 0, 0.05, 0.10, 0.15, 0.20. Construct

a version of Figure 5.2. Note that the BHHJ influence functions mimic those for the

ML (i.e. for a = 0) for the main expected data range, but that they sensibly redescend

down to zero for values far away, via density downweighting. Show in particular that

the influence functions are bounded, for each a > 0. For illustration of how the BHHJ

successfully deals with outliers (without needing to identify them), and for seeing that

very little efficiency is lost for small a, see Story vii.5. Formulae needed here include

these, which you should prove, in addition to ξ1,a = 0:

ξ2,a = −σ−a(2π)−a/2a/(1 + a)3/2,

M11,a = (1/σ2)σ−a(2π)−a/2/(1 + a)3/2,

M22,a = (1/σ2)σ−a(2π)−a/2{3/(1 + a)2 − 2/(1 + a) + 1}.

(c) Carry out similar analysis for the Gamma (α, β) model.

(d) Consider then the MWL method of Ex. 5.11 and 5.20. For a given weight function

w(y), the parameter aimed at for the MWL estimator is the maximiser θ0 = θ0,w of∫
w(g log fθ−fθ). We need Jw =

∫
wf0u0u

t
0 dy+

∫
w(f0−g)i0 dy and ξw =

∫
wf0u0 dy =∫

wgu0 dy, computed at θ0. Show that the influence function becomes

IF(G, y) = J−1
w {w(y)u(y, θ0)− ξw}.

Notes and pointers

(xx some pointers to more, including Empirical Likelihood, Hjort et al. (2009, 2018). xx)

(xx make sure we have something on board with BHHJ for regression models, placed

after ML for regression. xx)

[xx CR bound: In its simplest form, the inequality goes back to Cramér (1946) and

Rao (1945). xx]

(xx M-estimators, Z-estimators, Huber, minimum divergence, point to Basu et al.

(2011), more on minimum divergence. two-stage estimators, WalkerHjort24. xx)

[xx least false: a term invented by Hjort, Hjort believes, see Hjort (1986b, 1992),

and now used somewhat frequently in the literature. xx]

Read more about risk functions in DeGroot (1970).

For Ex. 5.11, point to Hjort and Jones (1996), Schweder and Hjort (2016), and

WalkerHjort24.

[xx check and calibrate what’s here and what’s in Ch. 7, regarding CD things. xx]
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(xx we see that ML matches CR bounds, under model conditions. point to Hajek

convolution theorem, and other characterisations. perhaps Hodges superefficient thing

too. xx)

(xx point to Hjort (2008), re ML and least false etc. xx)





I.6

Bayesian inference and computation

In frequentist parametric inference, there is a fixed underlying true parameter value,

say θ0, and methods aim at estimating this value, perhaps along with confidence

regions or testing. Bayesian inference is radically different, conceptually and opera-

tionally. It starts with a prior distribution for the model parameter θ, and proceeds

via Bayes theorems to produce the posterior distribution, of the full θ or of relevant

focus parameters. Thus ‘not knowing θ well’ is expressed in terms of probability

distributions. This chapter goes through these concepts and operations, including

also computational schemes to simulate outcomes from the posterior distributions.

One prominent class of such schemes amounts to setting up a Markov Chain Monte

Carlo algorithm to the given problem, where the stationary distribution for the

chain is precisely the required posterior. This makes Bayesian inference possible

in a host of compicated setups, without needing to rely on mathematically feasible

formulae.

Key words: Bayes solutions, Bernshtĕın–von Mises theorems, conjugate priors, Jef-

freys prior, loss functions, MCMC, prior to posterior distributions

The Bayesian paradigm is to formulate uncertainty about model parameters through

probability distributions. If the pre-data uncertainty is a prior density π(θ), this is

updated to the post-data posterior density π(θ |data), via the Bayes theorems.

Consider for illustration and clarification the classical coin flipping experiment, with

θ the probability of ‘head up’. With n independent flips we have Y ∼ binom(n, θ). The

frequentist postulates that there is an underlying true θ0, uses perhaps the estimator

θ̂ = Y/n, reaches the 95 percent interval In = θ̂ ± 1.96 {θ̂(1 − θ̂)}/
√
n, etc. The key

property here us Prθ0(θ0 ∈ In) = 0.95; so In is a random interval, covering the true θ0
in 95 percent of actual cases. The Bayesian viewpoint is strikingly different, starting

with a prior density π(θ) to reflect what might be considered understanding of θ before

the first flip. Post flipping, the Bayesian has reached π(θ | y) ∝ π(θ)f(y, n, θ), with the

binomial likelihood. This may e.g. be used to construct a 95 percent posterior interval

Jn for θ, with Pr(θ ∈ Jn | y) = 0.95. The Bayesian is then not interested in ‘independent

repeated experiments’, but just in the data at hand. She is also allowed the statistical

luxury of putting prior knowledge into the analysis; if it can be considered known that θ
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must be close to 0.50, with values outside [0.40, 0.60] less likely than 2 percent, that can

effectively be utilised in Bayesian analysis, but not so easily in frequentist analysis.

In this chapter we go through the basics of such constructions and methods, con-

ceptually and operationally. We also uncover conditions under which the frequentist and

Bayesian might actually (approximately) agree, in their final inference statements. The

two 95 percent intervals In and Jn in the previous paragraph will e.g. tend to be very

similar, at least with increasing n.

An attractive feature of Bayesian analysis is that the answer, to a sufficiently well-

posed inference question, is crystal clear, without having to study competing meth-

ods, carrying out performance and comparison analyses, etc. Essentially, if you give a

Bayesian (i) a model, (ii) data, (iii) a list of possible actions, and (iv) a loss function,

there is a Master Recipe for the very best action.

Modern Bayesian statistics has flourished since around 1980, partly through com-

puter power and algorithms, making calculations possible that would have been too hard

for previous generations. The operational goal is often to be able to generate samples

from the posterior distribution, and we give methods for accomplishing this, including

Markov Chain Monte Carlo (MCMC).

The Bayesian Master Recipe, with examples and applications

Ex. 6.1 Poisson data with gamma priors. This exercise illustrates the basic prior

to posterior updating mechanism in a simple Poisson setting. Suppose Y1, Y2, . . . are

i.i.d. Poisson with unknown mean θ.
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Figure 6.1: Seven curves are displayed, corresponding to the Gam(0.1, 0.1) intial prior

for the Poisson parameter θ, along with the six first updates following each of the obser-

vations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3. The distributions become tighter as more data come

in. The smooth black curve is after six data points, the most tight distribution so far.

Left panel: the densities; right panel: the c.d.f.s.
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(a) Recall definition and properties of the Gamma distribution from Ex. 1.9. In the

present Bayesian context, let θ ∼ Gam(a, b). The prior mean and variance are a/b = θ0
and a/b2 = θ0/b. In particular, low and high values of b signify high and low variability,

respectively. Explain how (a, b) may be set from values of prior mean and prior variance.

To exemplify, if these are (5.5, 7.7), find (a, b).

(b) With a single observation Y which is Pois(θ) given θ, show that θ | y ∼ Gam(a +

y, b+ 1).

(c) Then suppose there are repeated observations y1, . . . , yn, being i.i.d. ∼ Pois(θ) for

given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior

before observing y2, etc., to show that θ | y1, . . . , yn ∼ Gam(a + y1 + · · · + yn, b + n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gam(0.1, 0.1) and that the Poisson data are 6,

8, 7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 6.1 in your computer, plotting the

six first posterior densities p(θ |dataj) (left panel), where dataj is y1, . . . , yj , along with

the prior density; in the right panel we have the corresponding posterior cumulatives.

Complement with another figure also including updated densities 7, 8, 9, 10, for the four

last observations, and comment. Also compute the ten Bayes estimates θ̂j = E(θ |dataj)
and the posterior standard deviations, for j = 1, . . . , 10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since

the Gamma continuous density matches the Poisson discrete density so nicely. Suppose

instead that the initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior

distributions, Bayes estimates and posterior standard deviations also in this case, and

compare with what you found above. Note also that we in this exercise cared about and

managed to reach answers for the posterior distributions θ | y1, . . . , yn, without needing to

deal with the also implied marginal distribution for (y1, . . . , ym). These are not Poisson

any longer, with the variability in θ is taken into account; see Ex. 6.20.

Ex. 6.2 The Bayesian Master Recipe. The general setup is as follows. We have data

yobs, seen as the outcome of a random Y over the sample space Y, generated from a model

fθ(y) = f(y, θ), with θ having a prior distribution π(θ) dθ over its parameter space Θ.

There is a decision a to be reached, with a belonging to an appropriate action space A,

along with a loss function L(θ, a), a measure of the consequences of decision a if the truth

is θ. Whereas the frequentist can attempt different methods for deciding â = â(Y ), then

compare risk functions, etc., there is a unique optimal strategy for the Bayesian.

(a) Show that the posterior density of θ, that is, the distribution of the parameter given

the data, takes the form

π(θ | y) = fθ(y)π(θ)/m(y),

where m(y) is the required integration constant
∫
Θ
fθ(y)π(θ) dθ. This is Bayes’ theorem,

and we typically write π(θ | y) ∝ π(θ)fθ(y), which reads ‘posterior is proportional to prior

times likelihood’. Show also that the marginal distribution of the data y is m(y).
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(b) A decision a = â(y) needs to be reached, as a function of the data. The Bayes risk

for such a decision is the associated expected loss, BR(a, π) = EL(θ, â(Y )), involving

randomness on two levels; θ has a prior, and â(Y ) | θ is random. Show that it may be

expressed in two informative ways:

BR(a, π) =

{
E {EL(θ, â(Y )) | θ} =

∫
R(â, θ)π(θ) dθ,

E {EL(θ, â(Y )) |Y } =
∫
Y{
∫
Θ
L(â(y), θ)π(θ | y) dθ}m(y) dy.

The first expression involves the frequentist risk function R(â, θ) = Eθ L(â(Y ), θ), then

averaged with respect to the prior. The ‘inner expectation’ of the second expression is

Eπ {L(θ, â(y)) |Y = y}, that is, the expected loss given data.

(c) Show then that the optimal Bayes strategy, the one minimising the Bayes risk, is

achieved by using

â = argmin g = the value minimising g,

where g = g(a) = Eθ {L(θ, a) | yobs} is the expected posterior loss. The function g is

evaluated and minimised over all a, for the given data y = yobs. This is the Bayes recipe.

Note that using the recipe in practice only concerns the observed data yobs, and that one

does not need to evaluate its risk function.

(d) Above results have been presented and reached in terms of prior and posterior den-

sities, π(θ) and π(θ | y, partly for notational convenience. Show that the arguments go

through also for more general priors; these may in particular be mixtures over continuous

and discrete measures.

Ex. 6.3 Some loss functions and their associated Bayes rules. The Master Recipe of

Ex. 6.2 is completely general, and can be applied in new and complicated situations,

as long as we have data, a model, a prior for the unknowns, and a loss function. In

the Bayesian setup finding or evaluation the posterior distribution of the parameters is

always important, carrying separate weight, but if clear decisions are needed one needs

also the loss function, say L(θ, a). Here we go through a short list of commonly used loss

functions.

(a) For estimating a one-dimensional θ, with squared error loss L(θ, a) = (a− θ)2, show

that the Bayes estimator is θ̂B = E(θ | y), the posterior mean.

(b) If the loss function is L(θ, a) = w(θ)(a− θ)2, show that the Bayes estimator is

θ̂B =
E {w(θ)θ |data}
E {w(θ) |data}

.

In particular, when estimating a positive θ using loss (a − θ)2/θ, show that the Bayes

estimator is 1/E {(1/θ) |data}.

(c) Consider the natural absolute loss function, L(θ, a) = |a − θ|. Show that the Bayes

solution becomes the posterior median, i.e. θ̂B = G−1( 12 |data), where G(θ |data) is the
posterior cumulative distribution function.
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(d) Suppose one needs the joint estimation of several parameters, say all of θ = (θ1, . . . , θp),

via the loss function L(θ, a) = (a− θ)tM(a− θ), for an appropriate full-rank symmetric

matrix M . Show that the Bayes solution again is the posterior mean, but now for the

full vector, i.e. E (θ |data). In particular, the Bayes solution does not depend on the M

matrix, though the actual posterior expected loss, and the Bayes risk, do.

(e) In the previous subquestions the framework has been that of estimating a one-

dimensional θ. Check that you understand how these results and insights, for the Bayes

solutions, change when the situation is changed to that of estimating a focus parameter,

say ϕ = g(θ1, . . . , θp), a function of the full model parameter.

Ex. 6.4 How many streetcars in San Francisco? The streetcars in this city are numbered

1, . . . , N . You observe Y = 203 and wonder what N is.

(a) Supposing Y has the uniform distribution on 1, . . . , N , set up the likelihood, and

identify the ML estimate. With the prior π(N) proportional to 1/N , say for N =

1, 2, . . . , Nmax for a suitably high Nmax, find the posterior distribution, along with its

mean and median.

(b) Suppose you after having seen no. 203 also see nos. 157, 222. Update your posterior,

and again find the mean and median, qua updated estimates.

(c) The Bayesian setup allows any choice for the prior, so think for a minute and construct

your own πyou(N). Do the updating, for the data 203, 157, 222, and compare with the

posterior found above. What is your best estimate of N , if your loss function is of 0-1

type, with L(N, N̂) being 0 if N̂ = N and 1 if N̂ ̸= N?

Ex. 6.5 The linex loss function. When estimating a one-dimensional θ with a θ̃, the

most traditional loss function is that of squared error, (θ̃ − θ)2, which in particular is

symmetric, treating over- and underestimation as equally important. A more flexible

loss function is the so-called linex loss, with

Lc(θ, θ̃) = exp{c(θ̃ − θ)} − 1− c(θ̃ − θ).

The c is fine-tuning loss parameter, for the statistician to set, balancing over- against

underestimation. Note that both positive and negative values of c are allowed here.

(a) Show that the Lc is always nonnegative. Show that c > 0 means penalising overes-

timation more than underestimation, and vice versa for c < 0. For small |c|, show that

Lc(θ, θ̃)
.
= 1

2c
2(θ̃−θ)2, getting back to squared error loss. The constant in front is immate-

rial for evaluating and comparing loss and risk, and one may use L∗
c(θ, θ̃) = Lc(θ, θ̃)/(

1
2c

2)

to have a smoother transition to the c = 0 case of squared error loss.

(b) Show that the expected loss given data can be expressed as

E {Lc(θ, t) |data} = E [exp{c(t− θ)} − 1− c(t− θ) |data]
= exp(ct)M(−c)− 1− c(t− ξ̂),

where ξ̂ is the posterior mean andM(−c) = E {exp(−cθ) |data}, the moment-generating

function of θ given data, computed at −c.
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(c) Show that this is minimised for the t0 where exp(ct0)M(−c) = 1, or ct0+logM(−c) =
0, so that the Bayes estimator becomes θ̂B = −(1/c) logM(−c). This may be computed

numerically, perhaps by simulation, in cases where no clear formula exists for M(−c).
Show also that the expected posterior loss, using the Bayes solution, is

minE {Lc(θ, t) |data} = −c(t0 − ξ̂) = logM(−c) + cξ̂.

(d) Using approximations for m.g.f.s close to zero to show thatM(−c) .= 1−cξ̂+ 1
2c

2(ξ̂2+

σ̂), with ξ̂ and σ̂2 the posterior mean and variance. Deduce that θ̂B
.
= ξ̂ − 1

2cσ̂
2.

(e) In situations where the posterior is based on a sample of size n, the posterior mean

ξ̂n stays stable wheras the posterior variance σ̂2 goes down with speed 1/n, i.e. as σ̂2
0/n,

for the relevant σ̂2
0 . In such cases, ξ̂n − 1

2cσ̂
2
0/n becomes the approximation to the Bayes

linex estimator θ̂B . Find in fact the exact Bayes linex estimator, for the case of Y1, . . . , Yn
being i.i.d. N(θ, 1), with a N(0, τ2) prior for θ; use the updating result from Ex. 6.13(b).

(f) (xx rounding off for now; point to Ex. 6.24, 6.25. xx)

Ex. 6.6 A Bayesian take on hypothesis testing. Assume the model parameter θ is either

in Ω0, which we may call the null hypothesis, or not, i.e. in its complement Ωc
0. Suppose

also that the statistician needs to make a decision, either to reject the null, or to accept

it. This is the basic framework of hypothesis testing, see Ch. 4, but we now consider the

problem from a Bayesian viewpoint.

(a) The decision space is {accept, reject}. For the loss function, take L(θ, accept) equal

to 0 or L0, if θ is inside or outside Ω0, and L(θ, reject) equal to 0 or L1, if θ is outside or

inside Ω0. Show that

E {L(θ, accept) |data} = L0 p(data), E {L(θ, reject) |data} = L1 {1− p(data)},

where p(data) = Pr(θ ∈ Ωc
0 |data), the probability that the null is wrong, as measured

by the Bayesian posterior distribution.

(b) Deduce that one should reject the null when the probability p(data) for its falseness

is sufficiently overwhelming, namely when p(data) ≥ L1/(L0 + L1). – If this threshold

is 0.95, for example, show that this corresponds to L1/L0 = 19. Briefly discuss ways of

assigning losses L0 and L1.

(c) (xx complete this: decision space {accept, reject,doubt}, with a certain fixed cost

Ld for the doubt option, associated with further efforts for getting more data. expected

losses given data are L0p, L1(1− p), Ld. which is smallest? xx)

Ex. 6.7 Which subset does the model parameter belong to? Consider a setup with data

from a model with model parameter θ inside its region Ω. Suppose you need to take

one of five different possible decisions, D1, . . . , D5, and that these are related to where

the underlying parameter θ is positioned; if θ ∈ Ωj the best decision would be Dj , for

j = 1, . . . , 5. Here the Ωj are disjoint and their union is the full parameter region.
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(a) Suppose the loss function L(θ,Dj) is 0 if θ ∈ Ωj and 100 if θ /∈ Ωj . Show that

E {L(θ,Dj) |data} = 100{1 − pj(data)}, where pj(data) = Pr(θ ∈ Ωj |data). Hence

show that the optimal Bayes strategy is to take the decision associated with the highest

posterior probability pj(data).

(b) Assume there in addition is a ‘doubt option’, associated with a doubt cost Ld = 10;

this could e.g. mean planning for getting further data. With decision space {D1, . . . , D5,doubt},
what is now the Bayesian strategy?

(c) Generalise the previous setup, and results, to the case where the costs associated

with reaching the wrong decision are not equally balanced, say L(θ,Dj) = ci,j , if θ ∈ Ωi,

for i = 1, . . . , 5, with ci,i = 0 but the other ci,j positive.

Binomial and beta, multinomial and Dirichlet

Ex. 6.8 The binomial-beta setup. Let Y given θ be a binomial (n, θ), and for θ take a

Beta(a, b) prior, see Ex. 1.21. There we worked with the marginal distribution of Y , and

looked at certain properties, but here our aims are Bayesian.

(a) Show that θ | y ∼ Beta(a + y, b + n − y). – This is the main and always crucial

updating step, getting from the prior to the posterior. In the present case the step is an

easy one, since there is only one unknown parameter, and since the product of the prior

and the likelihood takes an easy form. Give a description of the posterior also for the

not quite so standard case where the prior for θ is uniform on [0.30, 0.70].

(b) Going back to the Beta(a, b) prior again, show that the Bayes estimator, under

squared error loss, is

θ̂B =
a+ y

a+ b+ n
= (1− wn)θ0 + wny/n,

where θ0 = a/(a + b) is the prior mean and wn = n/(a + b + n). For the case of a

uniform prior, show that this leads to (y + 1)/(n + 2). Compute the risk functions

r(θ) = Eθ (θ̂ − θ)2, for the classic frequentist Y/n and for the this (Y + 1)/(n+ 2), and

find the interval where the latter is better than the former.

(c) Show that the posterior variance becomes

Var (θ | y) = θ̂B(1− θ̂B)

n+ a+ b+ 1
.

(d) If Y is from the binomial (n, θtrue) model, show that Y/n and the Bayes estimator

θ̂B are large-sample equivalent, with
√
n(Y/n − θ̂B) →pr 0. Deduce that they have the

same limit distribution.

Ex. 6.9 The multinomial-Dirichlet setup. Here we extend the setup and result of

binomial-Beta, to the case of three or more categories. We start with Y = (Y1, . . . , Yk)

which for given p = (p1, . . . , pk) is a multinomial (n, p1, . . . , pk). For p we take the

Dir(a1, . . . , ak) prior. For details regarding the multinomial and the Dirichlet, see Ex. 1.5

and 1.19.
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(a) Show the important and useful result that (p1, . . . , pk) | (y1, . . . , yk) ∼ Dir(a1 +

y1, . . . , ak + yk).

(b) Show that the Bayes estimator under squared error loss becomes

p̂i,B = E(pi |data) =
ai + yi
a+ n

= (1− wn)p0,i + wn(yi/n)

for i = 1, . . . , k, with prior means p0,i = ai/a, with a = a1 + · · · + ak, and weight

wn = n/(a + n). Find also the posterior variance and posterior correlation between pi
and pj .

(c) (xx just a bit more. xx)

Ex. 6.10 Gott würfelt nicht. For the multinomial-Dirichlet setup of Ex. 6.9, we reached

the posterior characterisation p |data ∼ Dir(a1 + y1, . . . , ak + yk). The importance of

this lies in the easy usefulness of simulations, where the posterior distribution of any

functions of (p1, . . . , pk) may be read off.

(a) Explain how you may simulate e.g. 105 vectors p = (p1, . . . , pk) from the posterior

distribution, using the characterisation from Ex. 1.19. Concretely, show that one may use

p1 = G1/G, . . . , pk = Gk/G, with independent G1 ∼ Gam(a1 + y1), . . . , Gk ∼ Gam(ak +

yk), and sum G = G1 + · · ·+Gk.

(b) Suppose you throw a certain and perhaps not entirely standard die 30 times and

have counts (2, 5, 3, 7, 5, 8) of outcomes 1, 2, 3, 4, 5, 6. Use either of the priors (i) ‘flat’,

Dir(1, 1, 1, 1, 1, 1); (ii) ‘symmetric and more confident’, Dir(3, 3, 3, 3, 3, 3); (iii) ‘unwilling

to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), for the probabilities (p1, . . . , p6), to assess the

posterior distribution of each of the following quantities:

α = p6/p1, β = (1/6)

6∑
j=1

(pj − 1/6)2, γ = (1/6)

6∑
j=1

|pj − 1/6|, δ = (p4p5p6)
1/3

(p1p2p3)1/3
.

For each of α, β, γ, δ, and for each of the priors, give the 0.05, 0.50, 0.95 quantile points,

from 105 simulations from the posterior distributions. You should also plot the posterior

densities, for each of the four quantities noting the extent to which the prior influences

the results.

(c) For the case of α = p6/p1, exact numerical simulation is possible, without simulation.

Do this, and compare with the answers reached via simulation.

(d) The above priors are slightly artificial in this context, since they do not allow the

explicit possibility that the die in question is plain boring utterly simply a correct one,

i.e. that p = p0 = (1/6, . . . , 1/6). The priors used hence do not give us the possibility to

admit that perhaps ρ = 1, α = 0, β = 0, γ = 1, after all. This motivates using a mixture

prior which allows a positive chance for p = p0. Redo therefore the Bayesian analysis

above, with the same (2, 5, 3, 7, 5, 8) data, for the prior 1
2 δ(p0) +

1
2 Dir(1, 1, 1, 1, 1, 1).

Here δ(p0) is the ‘degenerate prior’ that puts unit point mass at position p0. Compute in

particular the posterior probability that p = p0, and display the posterior distributions

of ρ, α, β, γ.
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Sampling from the posterior via Markov Chain Monte Carlo

Ex. 6.11 MCMC, I: simulating from a given distribution. (xx the MCMC basics.

Metropolis algorithm. simulating from a couple of distributions. xx) basics: suppose we

need to simulat realisations from a given and possibly complicated density π(x) on some

domain. The Metropolis algorithm works as follows. The task is to form a long chain

x1, x2, . . . in your computer, where its limiting distribution is precisely the given π. After

having generated xold, decide on xnew by (i) deciding on a proposal, xprop, drawn from

a suitable distribution symmetric in (xold, xprop), and then (ii) accepting this proposal

with probability paccept = min(1, π(xprop)/π(xold)). In algorithmic terms,

xnew = (1− ok)xold + okxnew, where ok = I(accept).

Markov chain theory (xx point to Ch. 12 xx) secures that this scheme works, in the sense

that the chain converges in distribution to that of π; Pr(xn ∈ A) →
∫
A
π(x) dx for all

continuity sets A.

(a) Set up such a scheme to generate outcomes from the standard normal (ignoring the

existence of simpler direct algorithms). Start at any x0, then draw proposals xprop ∼
unif[xold−a, xold+a], with acceptance probabilities set up via the general scheme above.

Run the chain for a suitably long time and check with a fine histogram that the distri-

bution matches the normal. Keep track of the acceptance probabilities and the overall

acceptance rate. The theory works and says that the chain will converge to the standard

normal, for any positive fine-turning parameter a; explain however in which ways too

small or too large values of a will be ineffective.

(b) Consider a somewhat harder challenge, simulating realisations from the density π =

0.05N(−2, 1) + 0.90N(0, 1) + 0.05N(2, 1) via MCMC. Set up a chain that converges to

this f in distribution; check that the output produces a fine histogram matches this π.

(c) The algorithm works also in higher dimension. Set up a chain that produces outcomes

(x, y, z) from the model on the unit cube with density π(x, y, z) = 1+θ(x− 1
2 )(y−

1
2 )(z−

1
2 ),

with θ = 3.45. From the output, read off the correlations, and the probability that

Z ≥ (XY )1/2.

Ex. 6.12 MCMC, II: simulating from the posterior. (xx do this. using the strategy

above for the prototypical Bayesian task, sampling from π(θ |data).

(a) In the Poisson-gamma setup of Ex. 6.1 we could find the posterior distribution di-

rectly. Suppose however that the prior is outside the gammas, say uniform on [4.0, 8.0].

Set up an MCMC to sample from the posterior, given data 6, 8, 7, 6, 7, 4, 11. Compute

also the mean, median, standard deviation.

(b) (xx one more, a bit more complex, and then minimising posterior expected loss in

the end. xx)

Bayesian analysis for normal models

Ex. 6.13 The normal prior and posterior with normal data. Here we go through the

basic steps and results for situations with normal data and normal priors for unknown
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mean parameters. More elaborate constructions and technical issues are needed when

there in addition are unknown parameters in the variance and covariance structure, to

be pursued in Ex. 6.14, 6.21.

(a) There are things to think through and to learn from, by working through this very

simple setup first. (i) For a single observation Y assume it comes from the N(ξ, σ2),

and take σ as known; (ii) for the unknown mean ξ assume it comes from the prior

N(ξ0, τ
2
0 ), with specified prior parameters ξ0, τ0. Show that this leads to a binormal joint

distribution for parameter and observation,(
ξ

Y

)
∼ N2(

(
ξ0
ξ0

)
,

(
τ20 , τ20
τ20 , τ

2
0 + σ2

)
).

(b) Use general conditioning results from Ex. 1.41 to infer that

ξ | y ∼ N(ξ0 + w(y − ξ0), wσ
2), with w = τ2/(τ2 + σ2).

So w and 1 − w are the weights given to the data-based estimate y and the prior guess

ξ0, respectively. Also, w is the reduction factor with which the variance of the prior-free

estimator Y , from σ2 to wσ2.

(c) An easy but important extension is to the case of a full sample Y1, . . . , Yn from the

N(ξ, σ2) distribution, independent given the ξ, again with σ taken known and the normal

prior N(ξ0, τ
2
0 ) for the unknown mean. Show that Ȳ = (1/n)

∑n
i=1 Yi is sufficient (xx

xref here xx), and that (
ξ

Ȳ

)
∼ N2(

(
ξ0
ξ0

)
,

(
τ20 , τ20
τ20 , τ

2
0 + σ2/n

)
).

Show from this that

ξ |data ∼ N(ξ0 + wn(ȳ − ξ0), wnσ
2/n), with wn =

τ2

τ2 + σ2/n
=

nτ2

nτ2 + σ2
.

Again, wn is both the weight given to the data-based estimate and the factor with which

the neutral estimator’s variance is reduced, from σ2/n to wnσ
2/n. Note that wn → 1;

discuss how this may be seen as ‘the data wash out the prior’.

(d) Discuss the case of a ‘flat prior’, where τ is taken large, for ξ ∼ N(ξ0, τ
2).

(e) In addition to having a coherent updating machine, changing the prior to the poste-

rior, for each new data point, the Bayesian structure implies positive dependence among

the observations. From E (Yi | ξ) = ξ, Var (Yi | ξ) = σ2, E (YiYj | ξ) = ξ2, show that

EYi = ξ0, VarYi = σ2 + τ20 , cov(Yi, Yj) = τ20 , corr(Yi, Yj) =
τ20

σ2 + τ20
,

Show also that Var Ȳn = σ2/n+ τ20 , and discuss what this means for large n.
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(f) Prove first the convenient formula

v(ξ − ξ0)
2 + n(ξ − ȳ)2 = (v + n)(ξ − ξ∗)2 + dn(ȳ − ξ0)

2,

where

ξ∗ =
vξ0 + nȳ

v + n
and dn =

vn

v + n
= (v−1 + n−1)−1,

which also may be written and interpreted via 1/dn = 1/v + 1/n.

(g) Show that with any prior p(ξ) for ξ, the marginal density of (Y1, . . . , Yn) can be

written

f̄(y1, . . . , yn) =

∫
(2π)−n/2σ−n exp

{
− 1

2

1

σ2

n∑
i=1

(yi − ξ)2
}
p(ξ) dξ.

For the case of N(ξ0, τ
2
0 ) worked with above, let first Q0 =

∑n
i=1(yi− ȳ)2, and verify thatcheck all of this

with care ∑n
i=1(yi − ξ)2 = Q0 + n(ξ − ȳ)2. Writing for mathematical convenience 1/τ2 = v/σ2,

and 1/dn = 1/n+ 1/v, show that

f̄(y1, . . . , yn) =
1

(2π)n/2
1

σn
exp(− 1

2Q0/σ
2)
( v

v + n

)1/2
exp{− 1

2dn(ȳ − ξ0)
2/σ2}.

(h) With the marginal density seen as a function of the two fine-tuning parameters

(ξ0, τ
2
0 ), find the maximum marginal likelihood estimators ξ̂0 and σ̂.

(i) We record two matrix identities here, as they will come in handy both here and on

later occasions. For a square and invertible A, show that

(A+ xxt)−1 = A−1 − cA−1xxtA−1, with c = 1/(1 + xtA−1x);

also, that |A+ xxt| = |A|(1 + xtA−1x).

(j) Argue directly that Y = (Y1, . . . , Yn)
t must be multinormal, with Y ∼ Nn(ξ01,

σ2In + τ2011
t), with 1 the vector (1, . . . , 1)t; the variance matrix has σ2 + τ20 on the

diagonal and τ20 outside. Show that this agrees with the marginal density formula reached

above.

Ex. 6.14 The gamma-normal prior and posterior. Let data y1, . . . , yn for given param-

eters ξ and σ be i.i.d. N(ξ, σ2). We have seen in Ex. 6.13 that when σ may be taken as

a known quantity, then the canonical class of priors for ξ is the normal one. When both

parameters are unknown, however, as in most practical encounters, a more elaborate

analysis is called for.

(a) Show that the likelihood function may be written as being proportional to

Ln(ξ, σ) = exp
[
−n log σ − 1

2

1

σ2
{Q0 + n(ξ − ȳ)2}

]
,

where ȳ = (1/n)
∑n

i=1 yi and Q0 =
∑n

i=1(yi − ȳ)2.
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(b) With any given prior p(ξ, σ), explain how you may set up a Metropolis type MCMC

to draw samples from the posterior distribution. Try this out in practice, using the prior

that takes ξ and log σ independent and uniform on say [−5, 5] and [−10, 10], with data

that you simulate for the occasion from a N(2.345, 1.2342), with n = 25. Note that this

approach does not need more mathematical algebra as such, apart from the likelihood

function above.

(c) There is however a popular and convenient conjugate class of priors for which poste-

rior distributions become particularly clear, with the appropriate algebraic efforts. These

in particular involve placing a Gamma prior on the inverse variance λ = 1/σ2. Say that

(λ, ξ) has the gamma-normal distribution with parameters (a, b, ξ0, v), and write this as

(λ, ξ) ∼ GN(a, b, ξ0, v), provided λ = 1/σ2 ∼ Gam(a, b) and ξ |σ ∼ N(ξ0, σ
2/v). Show

that the prior can be expressed as

p(λ, ξ) ∝ λa−1λ1/2 exp
[
−λ{b+ 1

2v(ξ − ξ0)
2}
]
.

What is the unconditional prior variance of ξ?

(d) Using the identity from Ex. 6.13(f), show that if the prior is (λ, ξ) ∼ GN(a, b, ξ0, v),

then

(λ, ξ) |data ∼ GN(a+ 1
2n, b+

1
2Q0 +

1
2dn(ȳ − ξ0)

2, ξ∗, v + n).

(e) The special case of a ‘flat prior’ for ξ, corresponding to letting v → 0 above, is

particularly easy to deal with. Show that then

(λ, ξ) |data ∼ GN(a+ 1
2n, b+

1
2Q0, ȳ, n).

Find the posterior mean of σ2 under this prior.

(f) For an illustration, consider the cigarette consumption data x1, . . . , xn, from 2.B,

for n = 44 US states (actually, 43 states plus the District of Columbia), from the early

1960ies, taken here to form a sample from N(ξ, σ2). The xi is the consumption in

state i, in hundreds per year, ranging then from 14.0 to 42.4 (which translates to from

3.84 per day to 11.61 per day, in the adult population). Fix the prior that takes (i)

λ = 1/σ2 ∼ Gam(a, b), with (a, b) taken to correspond to 0.10 and 0.90 prior quantiles

for σ being 1.0 and 10.0; (ii) given σ, ξ is a N(20.0, σ2/v) with v = 0.50. Find the precise

posterior distribution for (λ, ξ). Give posterior means and 90 percent credibility intervals

for ξ, σ, and for the probability p = Pr(X ≥ 40).

(g) For the same data and setup as in the previous point, carry out a second Bayesian

analysis, with the simpler prior that corresponds to v → 0. Comment briefly on the

differences in results.

Ex. 6.15 The gamma-multinormal prior for linear regression models. The aim of the

present exercise is to generalise the Gamma-Normal conjugate prior class above to the

linear-normal regression model. The model is the very classical one of Ex. 3.31, where

yi = xi,1β1 + · · ·+ xi,kβk + εi = xtiβ + εi for i = 1, . . . , n,
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with the εi taken i.i.d. N(0, σ2). Write X for the n× k matrix of covariates (explanatory

variables), with xi = (xi,1, . . . , xi,k) as its ith row, and use y and ε to indicate the vectors

of yi and εi. Then y = Xβ + ε ∼ Nn(Xβ, σ
2In) is a concise way to write the full model.

(a) Show that the likelihood function may be written as being proportional to

Ln(β, σ) = σ−n exp
[
− 1

2

1

σ2
{Q0 + n(β − β̂)tMn(β − β̂)}

]
,

in which

Mn = (1/n)XtX = n−1
n∑

i=1

xix
t
i and β̂ = (XtX)−1Xty =M−1

n n−1
n∑

i=1

xiyi.

Also,

Q(β) = ∥y −Xβ∥2 = Q0 + n(β − β̂)tMn(β − β̂),

with Q0 =
∑n

i=1(yi−xtiβ̂)2 the minimum value of Q over all β. Note that β̂ is the classical

least squares estimator (and the ML estimator), which in the frequentist framework is

unbiased with variance matrix equal to σ2(XtX)−1 = (σ2/n)M−1
n . This is the basis of

all classical methods related to the widely popular linear regression model.

(b) Let p(β, σ) be any prior for the (k+ 1)-dimensional parameter of the model. Set up

formulae for a Metropolis type MCMC algorithm for drawing samples from the posterior

distribution of (β, σ).

(c) In spite of the possibility of solving problems via MCMC (or perhaps acceptance-

rejection sampling), as with the previous exercise it is very much worthwhile setting

up explicit formulae for the case of a certain canonical prior class. Write (λ, β) ∼
GNk(a, b, β0,M0) to indicate the gamma-normal prior where

λ = 1/σ2 ∼ Gam(a, b) and β |σ ∼ Nk(β0, σ
2M−1

0 ).

Show that this prior may be expressed as

p(λ, β) ∝ λa−1λk/2 exp
[
−λ{b+ 1

2 (β − β0)
tM0(β − β0)}

]
.

(d) When multiplying the prior with the likelihood it is convenient to use the following

linear algebra identity about quadratic forms, which you should prove first. For sym-

metric and invertible matrices A and B, and for any vectors a, b, x of the appropriate

dimension,

(x− a)tA(x− a) + (x− b)tB(x− b) = (x− ξ)t(A+B)(x− ξ) + (b− a)tD(b− a),

where ξ = (A + B)−1(Aa + Bb) (a weighted average of a and b) and D is a matrix for

which several equivalent formulae may be used:

D = A(A+B)−1B = B(A+B)−1A

= A−A(A+B)−1A = B −B(A+B)−1B = (A−1 +B−1)−1.
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(e) Prove that if (λ, β) has the GNk(a, b, β0,M0) prior, then

(λ, β) |data ∼ GNk(a+
1
2n, b+

1
2Q0 +

1
2 (β̂ − β0)

tDn(β̂ − β0), β
∗,M0 + nMn),

where

β∗ = (M0 + nMn)
−1(M0β0 + nMnβ̂) and Dn =M0(M0 + nMn)

−1nMn.

This characterisation makes it easy to simulate a large number of (β, σ) from the posterior

distribution and hence to carry out Bayesian inference for any parameter of quantity of

interest.

(f) Note the algebraic simplifications that result when the M0 in the prior is chosen as

being proportional to the covariate sample variance matrix, i.e. M0 = c0Mn. Show that

then

β∗ =
c0β0 + nβ̂

c0 + n
and Dn =

c0n

c0 + n
.

In this connection c0 has a natural interpretation as ‘prior sample size’.

(g) A special case of the above, leading to simpler results, is that where β has a flat,

non-informative prior, corresponding to very large prior variances, i.e. to M0 → 0. Show

that with such a prior,

(λ, β) |data ∼ GNk(a+
1
2n, b+

1
2Q0, β̂, nMn).

The prior is improper (infinite integral), but the posterior is proper as long as β̂ exists,

which requires XtX to have full rank, which again means at least k linearly independent

covariate vectors, and, in particular, n ≥ k.

(h) (xx repair this. do bladder cancer rates, since linear is ok, whereas lung cancer is

more quadratic, done in Story i.15. xx) Go again to the dataset 2.B, for illustration and

for flexing your operational muscles. For y use the bladder cancer column of deaths per

100,000 inhabitants and for x use the number of cigarettes sold per capita. Your task is

to carry out Bayesian analysis within the linear regression model yi = β0+β1(xi− x̄)+εi
for i = 1, . . . , 44, with εi taken i.i.d. N(0, σ2). Specifically, we wish point estimates along

with 95 percent credibility intervals for (i) each of the three parameters β0, β1, σ; (ii) the

probability that y ≥ 25.0, for a country with cigarette consumption x = 35.0; (iii) the

bladder cancer death rates y45 and y46, per 100,000 inhabitants, for states with cigarette

consumption rates x45 = 10.0 (low) and x46 = 50.0 (high). You are to carry out such

inference with two priors (xx nils repairs this xx): (1) First, the informative one which

takes 1/σ2 a gamma with 0.10 and 0.90 quantiles for σ equal to 1.0 and 5.0, and β0 and

β1 as independent normals (5.0, 0.5σ2) and (0.0, (2.0σ)2), given σ. (2) Then, the simpler

and partly non-informative one that takes a flat prior for (β0, β1) and the less informative

one for σ that uses 0.10 and 0.90 prior quantiles 0.5 and 10.0. Finally, compare your

results from those arrived at using classical frequentist methods.

Ex. 6.16 Mixture priors. Suppose data Y come from a model f(y, θ), where different pri-

ors π1(θ), . . . , πk(θ) can be used, each leading to posterior distributions π1(θ | y), . . . , πk(θ | y).
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(a) For each of these possible priors (and hence possible posteriors), show that there is

a representation fj(y, θ) = πj(θ)f(y, θ) = πj(θ | y)f̄j(y), where f̄j(y) =
∫
f(y, θ)πj(θ) dθ

is the marginal density of Y , associated with the πj(θ) prior.

(b) Suppose now that a full mixture prior is assigned to θ, of the type π(θ) = p1π1(θ) +

· · · + pkπk(θ), with probabilities p1, . . . , pk summing to 1. Show that this can be in-

terpreted as θ is drawn from prior j with probability pj . Show also that the marginal

distribution of Y can be expressed as f̄(y) =
∑k

j=1 pj f̄j(y).

(c) Then show that the posterior distribution for θ becomes

π(θ | y) = p∗1π1(θ | y) + · · ·+ p∗kπk(θ | y),

with revised prior probabilities p∗j = pj f̄j(y)/
∑k

j′=1 pj′ f̄j′(y) for the different types of

priors.

(d) Suppose Y ∼ binom(n, θ), and that the prior used for θ is 0.15Beta(2, 10) + 0.70

Beta(15, 15) + 0.15Beta(10, 2). Draw this prior in a plot. With n = 100, compute the

posterior probabilities p∗1, p
∗
2, p

∗
3, and draw the posterior distribution for θ, along with the

prior, for each of the cases y = 12, y = 48, y = 91.

(e) (xx revisit the Gott würfelt nicht, Ex. 6.10. do a mixture prior, perhaps 0.50Dir(1, 1, 1, 1, 1, 1)+

0.50Dir(s, s, s, s, s, s), where s is quite big, reflecting the possibility that the die is per-

fectly fair with probabilities equal to or very close to (1/6, 1/6, 1/6, 1/6, 1/6, 1/6). xx)

(f) Generalise the above to the situation where π(θ) =
∫
πα(θ) dG(α) is a mixture of

πα(θ) priors, with dG(α) a fully general probability measure over the space of hyper-

parameter α. The α coud be a parameter belonging to a finite set, matching the setup

above, or a full continuous mixture. Show that the posterior can be represented as

π(θ | y) =
∫
πα(θ | y) dG(α |data), where dG(α |data) is the posterior for the hyperpa-

rameter, and πα(θ | y) is the posterior for θ in the setup where α is fixed and known.

(g) xx

The Jeffreys prior

Ex. 6.17 The Jeffreys prior: the basics. (xx here we spell out the invariance arguments

leading to π0(θ) ∝ |J(θ)|1/2. often improper, but with proper posteriors. xx)

Ex. 6.18 The Jeffreys prior in certain models. (xx to come, examples, illustrations,

some models. xx)

(a) For binomial (n, p) model, show that the Jeffreys prior is the Beta( 12 ,
1
2 ). Compare

this with the geometric, with f(y, p) = (1− p)y−1p. (xx different priors, even though the

likelihoods are proportional. xx)

(b) Then consider the trinomial (X,Y, Z), with probabilities proportional to pxqy(1 −
p− q)z, with x+ y + z = n. Find the 2× 2 Fisher information matrix, its determinant,

and show that the Jeffreys prior is proportional to p−1/2q−1/2(1−p−q)−1/2, which is the

Dirichlet (12 ,
1
2 ,

1
2 ) for (p, q, r). Generalise to the multinomial (n, p1, . . . , pk) case, with

p1 + · · ·+ pk = 1.
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(c) For the normal ...

(d) For the Poisson with parameter θ, show that the Jeffreys prior is 1/θ1/2.

(e) For the Gamma (a, b), show that the Jeffreys prior takes the form π(a, b) = π1(a)π2(b),

with π1(a) ∝ {aψ′(a)− 1}1/2 and π2(b) ∝ 1/b.

Ex. 6.19 A simple model for deviations from uniformity. This exercise illustrates how

we can carry out Bayesian analysis for almost any given one-parameter model, via simple

numerical techniques; bigger models need bigger tools, as we come back to (xx where

xx). Consider the model f(y, θ) = 1 + θ(y − 1
2 ) for y ∈ [0, 1].

(a) Show that this indeed defines a bona fide model, for θ ∈ [−2, 2], and with c.d.f. F (y, θ) =

y + 1
2θ(y

2 − y). Show that the Fisher information is

J(θ) =

∫ 1/2

−1/2

x2

1 + θx
dx.

(xx perhaps more, a formula. xx) Compute and display the Jeffreys prior.

(b) Take θtrue = 0.333, simulate say n = 100 points from the model, and give a graph

for the log-likelihood function. Compute the ML and an approximate 90 percent interval

for θ via the methods of Chapter 5.

(c) Then, with a uniform prior on [−2, 2], compute and display the posterior distribution

for θ.

(d) Using a fine grid, e.g. with grid length 0.0001, sample say 105 points from the

posterior distribution. From these, provide 0.05, 0.50, 0.95 quantiles. (xx just a bit more;

round off; point away. xx)

Marginal distributions and Bernshtĕın–von Mises theorems

Ex. 6.20 The marginal distribution. Suppose we have data y1, . . . , yn from a model

f(y, θ), with a prior π(θ). Most of the time Bayesians care about the posterior distri-

bution, but on occasion, also in connection with bigger setups, one needs the marginal

distribution, which is f̄(y1, . . . , yn) =
∫
Ln(θ)π(θ) dθ, in terms of the likelihood function

Ln(θ). In various setups there will be a clear formula for this f̄ , se seen below; see

Ex. 6.22 for a very useful approximation method for more complex cases.

(a) Let y1, . . . , yn be independent Bernoulli variables with Pr(yi = 1 | θ) = θ, and let

θ ∼ Beta(a, b). Writing z =
∑n

i=1 yi for the number of 1s, show that

f̄(y1, . . . , yn) =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ z)Γ(b+ n− z)

Γ(a+ b+ n)
.

(b) Let then y1, . . . , yn be independent Pois(θ), with a Gam(a, b) prior, as with Ex. 6.1.

Show that

f̄(y1, . . . , yn) =
ba

Γ(a)

Γ(a+ nȳ)

(b+ n)a+nȳ

1

y1! · · · yn!
.
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(c) Consider i.i.d. data yi ∼ N(ξ, σ2), with known σ and a normal prior ξ ∼ N(ξ0, σ
2
0)

for ξ. Find the marginal distribution (xx give a formula here xx).

(d) (xx do also N(xtiβ, σ
2) with β ∼ N(β0,Σ0). find the marginal. check with other

exercises. xx)

(e) (xx then also for the gamma-normal; give a formula for f̄(y1, . . . , yn). xx)

(f) (xx something to point to empirical Bayes. calibrate carefully with loss-risk Ch. ??.

can already point to Stein things. and to mixtures, where these f̄(y) turn up as ingredi-

ents. xx)

Ex. 6.21 The gamma-normal induced marginal model. (xx edit intro sentences. Y1, . . . , Yn
are i.i.d. from the N(ξ, σ2), given these two parameters. xx) For the direct Bayesian

use one only needs the prior to posterior computation, in this case from the initial

GN(a, b, ξ0, v) to the updated GN given in Ex. 6.14, and one somehow bypasses the

marginal density f̄(y1, . . . , yn) of the data, the likelihood with the parameters (ξ, σ) in-

tegrated out according to the prior. On occasion this marginal distribution is important,

however, and also finds use as a model in its own right, for positively dependent data.

(a) (xx first things with ξ ∼ N(ξ0, τ
2
0 ), known σ. two ways of computing and seeing

f̄(y1, . . . , yn). do marginal moments and correlations. xx)

(b) xx

(c) Then the GN(a, b, ξ0, v) gamma-normal prior for (λ, ξ), as with Ex. 6.14. Show first

that the likelihood times the prior, Ln(λ, ξ)p(λ, ξ), can be expressed as

λn/2

(2π)n/2
exp[− 1

2λ{Q0 + n(ξ − ȳ)2}] b
a

Γ(a)
λa−1(vλ)1/2 exp[−λ{b+ 1

2v(ξ − ξ0)
2}].

Then integrate out the ξ to get

1

(2π)n/2
ba

Γ(a)
λa+n/2−1

( v

v + n

)1/2
exp{−λ(b+ 1

2Q0 +
1
2dn(ȳ − ξ0)

2},

with dn = (1/v + 1/n)−1 as per Ex. 6.14. Show then that this leads to the marginal

density being

f̄(y1, . . . , yn) = (2π)−n/2
( v

v + n

)1/2 ba

Γ(a)

Γ(a+ n/2)

{b+ 1
2Q0 +

1
2dn(ȳ − ξ0)2}a+n/2

.

Ex. 6.22 Approximating the marginal distribution. In the setup of Ex. 6.20, we go

through a useful type of Laplace approximation for the marginal.

(a) Writing as usual ℓn(θ) for the log-likelihood, with maximum value ℓn,max = ℓn(θ̂), in

terms of the ML estimator, show that

f̄(y1, . . . , yn) = exp(ℓn,max)

∫
exp{ℓn(θ)− ℓn(θ̂)}π(θ) dθ.
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With Jn = −(1/n)∂2ℓn(θ̂)/∂θ∂θ
t the normalised observed information matrix, of dimen-

sion say p× p, show that the marginal can be approximated with

f̄
.
= exp(ℓn,max)

∫
exp{− 1

2n(θ − θ̂)tJn(θ − θ̂)}π(θ) dθ

= exp(ℓn,max)

∫
exp(− 1

2s
tJns)π(θ̂ + s/

√
n) ds/np/2

.
= exp(ℓn,max)π(θ̂)(2π)

p/2|Jn|−1/2/np/2.

(b) (xx a couple of things here. check how successful the approximation is in two setups.

the formula

log f̄
.
= ℓn,max − 1

2p log n+ log π(θ̂)− 1
2 log |Jn|+

1
2p log(2π),

with its two leading terms, lead to the BIC in Ch. 11. xx)

Ex. 6.23 Bernshtĕın–von Mises approximations. Suppose observations Y1, . . . , Yn are

i.i.d. from a density f(y, θ), with π(θ) a prior for the model parameter, of dimension

say p. The posterior density can of course be quite complicated, perhaps necessitating

numerical efforts, or simulation, for its evaluation. Remarkably, there are generic and

simple normal approximations, however.

(a) Show that the posterior density πn(θ) = π(θ |data) is proportional to π(θ) exp{ℓn(θ)},
with ℓn(θ) =

∑n
i=1 log f(yi, θ) the log-likelihood function.

(b) Let θ̂ be the ML estimator, and Jn = −(1/n)∂2ℓn(θ̂)/∂θ∂θ
t the normalised observed

information, as per likelihood theory of Ch. 5. Show that the density of Zn =
√
n(θ− θ̂)

is gn(z) = πn(θ̂ + z/
√
n)(1/np/2), and that it can be approximated as

gn(z) ∝ π(θ̂ + z/
√
n) exp{ℓn(θ̂ + z/

√
n)− ℓn(θ̂)}

.
= π(θ̂ + z/

√
n) exp(− 1

2z
tJnz).

(c) Suppose then that the data really are i.i.d. from the model, with an underlying θtrue.

In particular, then θ̂ →pr θtrue and Jn →pr J = J(θtrue), by (xx point to Ch 4 exercises

xx). If π(θ) is continuous in a neighbourhood around θtrue, show that gn(z) tends to the

density of a Np(0, J
−1), in probability. In concrete terms, show

Dn =

∫
|gn(z)− ϕp(z, 0, J

−1)|dz →pr 0.

This is one of several versions of Bernshtĕın–von Mises theorems. These are Bayesian

mirror versions of the classical maximum likelihood asymptotics results in the frequentist

camp:

√
n(θ̂ − θtrue) →d N(0, J−1),

√
n(θ − θ̂) |data →d N(0, J−1), in probability.

(d) Check two clear situations in detail, comparing the exact posterior density π(θ |data)
with the normal approximation: (i) where Y | θ ∼ binom(n, θ), and θ ∼ Beta(a0, b0); (ii)

where Y1, . . . , Yn | θ are i.i.d. Pois(θ), and θ ∼ Gam(a0, b0). Choose n and (a0, b0), and

also the true θtrue, for your brief investigations.
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(e) (xx just a bit more. lazy Bayesian. prior disappears. different Bayesians agree with

each other, and also with the frequentist. xx)

Ex. 6.24 Bayes and minimax normal estimation with the linex loss. (xx perhaps to

be moved to Ch 8. xx) We worked out some basic properties of the linex loss function

exp{c(t − θ)} − 1 − c(t − θ) in Ex. 6.5. Here we use the Bayesian machinery to find a

minimax estimator for the normal mean.

(a) Consider the simple prototype setup where a single X has the N(θ, 1) distribution.

Show that the estimator X + d has risk function

rc(θ) = Eθ [exp{c(X + d− θ)} − 1− c(X + d− θ)] = exp(cd+ 1
2c

2)− 1− cd,

constant in θ, and that the best estimator of this sort is θ∗ = X − 1
2c. Show also that

the risk achieved, by this estimator, is 1
2c

2.

(b) Now consider Bayes estimation, with the prior θ ∼ N(0, τ2). Show via Ex. 6.13

that (θ |x) ∼ N(wx,w), with w = τ2/(τ2 + 1). Show, perhaps via expressing θ |x as

wx+ w1/2N with N a standard normal, that the posterior expected loss is

E {Lc(θ, t) |x} = exp{c(t− wx) + 1
2wc

2} − 1− c(t− wx).

Deduce that the Bayes estimator is θ̂B = wx− 1
2wc, and that the posterior expected loss

is E {Lc(θ, θ̂B) |x} = 1
2wc

2, independent of x.

(c) Show that θ∗ = X − 1
2c is minimax. Show also, via Blyth’s method, that it is in fact

admissible.

(d) Generalise the above to the case of a full sample X1, . . . , Xn from N(θ, 1). Find the

Bayes estimator and associated minimum Bayes risk, for the N(0, τ2) prior, and prove

that θ∗ = X̄ − 1
2c/n is minimax. What is its minimax risk?

(e) Find the distribution of Zn =
√
n(θ∗ − θ), and comment on its limit, (i) when the

loss-skewness parameter c is fixed, (ii) when c =
√
n.

(f) (xx perhaps another example with linex loss. and something where we see certain

arguments lead to a choice of c. xx)

Ex. 6.25 More on the linex loss. For the linex loss, studied initially in Ex. 6.5 and then

in Ex. 6.24 for the normal case, we now find out more.

(a) Suppose Y1, . . . , Yn are i.i.d. from the Pois(θ), with prior θ ∼ Gam(a, b), as with

Ex. 6.1. Show that the Bayes estimator with the linex loss is θ̂B = (1/c)(a+nȳ) log{1+
c/(b+ n)}. Verify that when c→ 0, we retrieve the posterior means of Ex. 6.1.

(b) (xx one more case with a clear formula. perhaps σ in normal. xx)

(c) As we know from Ex. 6.23, an approximation to the posterior distribution is θ |data ∼
N(θ̂ml, σ̂

2/n), in terms of the maximum likelihood estimate and estimated inverse Fisher

information. Deduce that Mn(−c)
.
= exp(−cθ̂ml +

1
2c

2σ̂2/n), in the notation above, and

that this leads to the approximation θ̂B = θ̂ml − 1
2cσ̂

2/n for the Bayes estimator under

linex loss. Show also that the posterior expected loss is approximately 1
2c

2σ̂2/n.
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(d) (xx an example where we can check the approximation with the exact Bayes estima-

tor, e.g. with Poisson and gamma. xx)

Ex. 6.26 Multiparameter inference. (xx something here. joint estimation of (θ1, . . . , θk),

say for normal or Poisson or binomial, with Bayes and empirical Bayes. calibrate with

Ch8. xx) Consider a setup with Y1, . . . , Yk being independent Poisson counts with pa-

rameters θ1, . . . , θk, and where the object is to estimate all of the parameters, jointly,

with loss function L(θ, a) =
∑k

j=1(aj − θj)
2/θj . If the parameters somehow are related,

as in not too different, this might be built into a Bayesian scheme.

(a) The default estimator would be θ̂j = Yj , for j = 1, . . . , k. Show that its risk function

is constant, equal to k.

(b) Consider then the prior which takes θ1, . . . , θk independent from a Gamma (a, b).

Show that θj |data is a Gam(aj+yj , b+1), find the Bayes estimator, and its risk function.

(xx jotting down details here. xx)

θ̂j = θ̂j(a, b) = 1/(E (1/θj) | yj) =
a+ yj − 1

b+ 1
.

empirical Bayes: E (Yj | θj) = θj , Var (Yj | θj)) = θj , leading to EYj = a/b, VarYj =

a/b + a/b2; can then use moment matching to find ã, b̃. this leads to empirical Bayes

estimators

θ∗j = θ̂j(ã, b̃) =
ã+ yj − 1

b̃+ 1
.

also:

f̄(yj , a, b) =

∫ ∞

0

exp(−θ)θyj/yj !
ba

Γ(a)
θa−1 exp(−bθ) dθ = ba

Γ(a)

Γ(a+ yj)

(b+ 1)a+yj

1

yj !

Full Bayes, a prior for (a, b):

π0(a, b)

k∏
j=1

g(θj , a, b)f(yj , θj) = π0(a, b)

k∏
j=1

g(θj , a+ yj , b+ 1)f̄(yj , a, b)

which leads to π(a, b |data) ∝ π0(a, b)
∏k

j=1 f̄(yj , a, b). then mcmc for sampling from

(a, b, θ1, . . . , θk) given data.

(c) (xx then empirical Bayes. Clevenson–Zidek, Stoltenberg–Hjort. xx)

Notes and pointers

(xx mention Varian (1975); Zellner (1986); Claeskens and Hjort (2008a) for the linex loss;

but this should perhaps be in Ch. 8. mention Stigler (1983), who uses Bayes’s Theorem to

help him spot a candidate for an earlier discoverer of Bayes’ Theorem. mention MCMC

revolution since the 1990ies. point to Story ii.5. xx)



I.7

Confidence distributions, confidence curves,

combining information sources

With ϕ a focus parameter, a function of the full parameter vector θ, the Bayesian

setup gives a posterior distribution. This requires the conceptually and practically

difficult task of defining a prior for the full θ, however. Confidence distributions

(CDs) are a frequentist parallel, yielding post-data distributions for such focus pa-

rameters, without any prior. In this chapter we develop theory for CDs and con-

fidence curves, and also find ways of combining CDs across different information

sources. Computing CDs is not an easy or automatic task, but we develop and

illustrate several recipes. For the exponential family class, we derive optimal CDs,

with their own clear recipes.

Key words: boundary constraints, combining CDs, confidence curves, confidence

distributions, exponential family, meta-analysis, t-bootstrapping

Confidence distributions and confidence curves are fruitful statistical inference sum-

maries. Suppose in general terms that data y stem from a model f(y, θ), with model

parameter θ = (θ1, . . . , θp), and that ϕ = ϕ(θ1, . . . , θp) is a parameter of particular inter-

est. A confidence distribution for ϕ, a CD, for short, is a function C(ϕ, y), such that (i)

it is a c.d.f. in ϕ, for each dataset y, and (ii) the distribution of U = C(ϕ0, Y ) is uniform

at the true value ϕ0 = ϕ(θ0). In other words,

Prθ0{a ≤ C(ϕ0, Y ) ≤ b} = b− a for each a, b ∈ [0, 1].

Assuming this random c.d.f. has a unique inverse, then, we have

Prθ{C−1(0.05, Y ) ≤ ϕ ≤ C−1(0.95, Y )} = 0.90, (7.1)

and of course similarly for other choices of quantiles. This is by definition making

[C−1(0.05, yobs), C
−1(0.95, yobs)] a 90 percent confidence interval for the focus parameter

ϕ. The CD concept is hence related to and an extension of the confidence intervals, see

Ch. 4. The confidence curve is a related summary graph, most often computed from the

CD via cc(ϕ, y) = |1− 2C(ϕ, y)|. It has the practical property that {ϕ : cc(ϕ, y) ≤ 0.90}
give the 90 percent interval directly; similarly, all intervals at any desired confidence

237
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level can be read off from the confidence curve. We sometimes write simply C(ϕ) and

cc(ϕ), omitting the data argument, when clear from the context what the data are, in

C(ϕ) = C(ϕ, data).

Construction a CD is not always an easy or automatic task, but we develop several

practical recipes, some of which are based on approximate normality, or on more general

methods of likelihood theory. Just as tests have detection power, also CDs have power,

and theory is developed below to find optimal CDs in classes of situations. This is partly

parallelling the optimal testing methodology of Ch. 4. All in all we develop and illustrate

the following recipes: (i) Via the c.d.f. of an estimator; (ii) normal approximation; (iii)

based on a pivot; (iv) deviance and Wilks theorem; (v) t-bootstrapping; (vi) the optimal

CD via conditional distributions, if inside the exponential family.

The CDs are post-data graphical summaries of the level of uncertainty for any focus

parameter, and can be seen as frequentist parallels to the Bayesian posterior distributions;

here there is no prior, however. We illustrate this ‘clear data-only based posteriors

without priors’ aspect of the CDs through theory and applications (xx perhaps point to

a few Stories xx).

Combining different information sources is a broad statistical theme, going back to

the first meta-analysis concepts and methods of Karl Pearson just after 1900 (Simpson

and Pearson, 1904). The more familiar meta-analysis methods aim at combining indepen-

dent estimators for the same quantity, or for providing a broader population assessment

of similar but not identical parameters. CDs are useful for such endeavours, and we

provide methods for combining sources more general than the traditional ones.

Recipes for constructing CDs

Ex. 7.1 The probability transform. Some of the following facts are related to various

operations for confidence distributions and confidence curves

(a) Suppose X has a continuous and increasing cumulative distribution function F ,

i.e. F (x) = Pr(X ≤ x). Show that U = F (X) is uniform on the unit interval. Any

continuously distributed random variable can hence be transformed to uniformity, via

this probability transform.

(b) Show that also U2 = 1− F (X) and U3 = |1− 2F (X)| have uniform distributions.

(c) Simulate a million copies of xi ∼ N(0, 1), and check the histogram of Γ1(x
2
i ), where

Γν is the cumulative distribution function of a χ2
ν . Comment on what you find.

Ex. 7.2 Recipe One: via the c.d.f. of an estimator. Suppose θ is a one-dimensional

parameter, for which we need a CD, after having observed data yobs. If there is an

estimator θ̂, with a distribution depending only on this θ, there is a clear recipe.

(a) Assume therefore that θ̂ has a continuous distribution function Kθ(x) = Prθ(θ̂ ≤ x);

its distribution is here required to depend only on θ, not on other aspects of the underlying

model employed. Consider Recipe One, the construction

C(θ, yobs) = Prθ(θ̂ ≥ θ̂obs) = 1−Kθ(θ̂obs),
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a curve that can be computed and plotted post-data, where θ̂obs = θ̂(yobs) is the observed

estimate. Show that it has the property that the random C(θ, Y ) is uniformly distributed,

for each fixed θ.

(b) To illustrate, go through the details for the case of using θ̂ = 1/Ȳ , with i.i.d. ob-

servations Y1, . . . , Yn from the exponential θ exp(−θy). Show first that 2θYi ∼ χ2
2, and

derive Kθ(x) = 1 − Γ2n(2nθ/x), with Γ2n the c.d.f. of the χ2
2n. Simulate data and plot

the CD C(θ, yobs) = Γ2n(2nθ/θ̂obs). From the CD, find a 95 percent interval for θ.

(c) Assume X1, . . . , Xm are i.i.d. Expo(θ1) and that Y1, . . . , Yn are i.i.d. Expo(θ2). Find

the distribution of the estimator ρ̂ = θ̂1/θ̂2 for the ratio ρ = θ1/θ2, and derive the

associated CD.

(d) Generate n = 25 datapoints from the double exponential density f(y, θ) = 1
2 exp(−|y−

θ), using your favourite true θ0. Compute and display the CD for θ based on the median

Mn.

(e) For a simpler and more fundamental illustration, suppose θ̂ has a normal distribution

centred at θ, with a known variance, say θ̂ ∼ N(θ, κ2). Show that Recipe One gives

C(θ) = Φ((θ − θ̂)/κ). Check that the famous 95 percent interval θ̂ ± 1.96κ agrees with

this.

Ex. 7.3 Confidence distribution and confidence curve for the normal standard deviation.

The confidence distribution C and the confidence curve cc are close cousins, and they

do not need to be both displayed for each new statistical application. Here is a simple

illustration. You observe the n = 6 data points 4.09, 6.37, 6.87, 7.86, 8.28, 13.13 from

a normal distribution and wish to assess the underlying spread parameter, the standard

deviation σ.

(a) For the empirical variance, use σ̂2 ∼ σ2χ2
m/m, with m = n− 1, to build the CD

C(σ, yobs) = Prσ(σ̂ ≥ σ̂obs) = 1− Γm(mσ̂2
obs/σ

2).

Here yobs represents the observed data, and σ̂obs the observed point estimate. Show that

C(σ, Y ) ∼ unif, where Y represents a random data set Y1, . . . , Yn, from the σ in question.

In particular, the distribution of C(σ, Y ) does not depend on σ. Make a graph, also of

the associated confidence curvethe confidence

curve

cc(σ, yobs) = |1− 2C(σ, yobs)| = |1− 2Γm(mσ̂2
obs/σ

2)|.

Compute the median confidence estimate σ̂0.50 = C−1(0.50, yobs) and the natural 90

percent confidence interval [C−1(0.05, yobs), C
−1(0.95, yobs)]. Find and display also the

confidence density c(σ, yobs), the derivative of the CD.

(b) Compute also the confidence density c(σ, yobs) associated with the CD. Compute

furthermore its mode, say σ∗, and briefly assess its properties as an estimator of σ.

(c) A Bayesian approach to the same problem, i.e. finding a posterior distribution for σ,

is to start with a prior π(σ) and then compute π(σ | yobs) ∝ π(σ)g(σ̂, σ), where g(σ̂, σ)

is the likelihood, here the density function for σ̂ as a function of σ. When does such a

Bayesian approach agree with the confidence density?
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(d) Suppose there are two independent normal samples, with standard deviations σ1
and σ2. Construct a CD for ρ = σ1/σ2. Invent a second simple small dataset, to

complement the first dataset given above, and then compute and display the confidence

curve cc(ρ, data).

Ex. 7.4 Computing a CD with simulation and isotonic repair. (xx to be polished. we

use this is Story iii.10 and perhaps in other places, where simulations are expensive.

xx) Suppose one observes y1, . . . , yn from the one-parameter Weibull distribution with

c.d.f. F (y, b) = 1 − exp(−yb), with sample size n = 25, and computes the data mean

ȳobs = 1.313.

(a) Though we do not actually need this in the CD computations here, find an estimate

of b based on EYi = Γ(1 + 1/b); see Ex. 1.54. Show that C(b) = Prb(Ȳ ≤ ȳobs) is a CD

for b.

(b) The practical obstacle here is that Ȳ does not have a simple distribution. But we’re

saved by simulation. Show that the simulation recipe Y ∗
i = V

1/b
i produces outcomes from

the weibull F (y, b), where the Vi are unit exponential. For a grid of b values, e.g. from

0.20 to 1.20, compute the simulation based C∗(b), the proportion of B cases where the

simulated Ȳ ∗ is below ȳobs. Compute also the confidence curve cc∗(b) = |1 − 2C∗(b)|.
For this simple example it is easy to accomplish this with a high B, say 105, to make

C∗(b) and cc∗(b) smooth and very close to the real C(b) and cc(b); for this illustration,

however, make the simulation size as relatively small as B = 100, and plot the curves,

as in Figure 7.1.
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Figure 7.1: Simulation based confidence distribution C∗(b) and confidence curve cc∗(b)

for the Weibull parameter b, based on the observed sample mean ȳobs = 1.313 for n = 25

data points, along with isotonic repairs. The simulation size here is the low B = 100.

(c) We learn that with a low or moderate simulation size B, the C∗(b) and cc∗(b) will

be wiggly. We can do better, using the prior knowledge that C(b) is increasing. There
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are several repair mechanisms, which from the potentially wiggly C∗(b) create a mono-

tonically increasing curve. A simple scheme is so-called isotonic regression, the details

of which we do need to get into here. Supposing you have first created bval and Cval inisotonic

regression your R session, you may use Cvaliso=isoreg(bval,Cval)$yf, which repairs your C∗(b)

and cc∗(b) to ensure monotonicity. Produce versions of Figure 7.1, left and right panels.

(d) (xx round off. explain salient points about generalisability. we need reduction to

one-parameter situation. xx)

Ex. 7.5 An extension of Recipe One. In Ex. 7.2 we saw that the simple construction

C(θ, y) = Prθ(θ̂ ≥ θ̂obs) gives a CD, in the case of one-dimensional setups with a well-

defined estimator θ̂.

(a) When working with estimators, finetuning efforts are often exuded to trim away

biases, getting the scaling right, etc. In a sense this is not needed here, when constructing

the CD. Show that if α̂ = g(θ̂), with any smooth increasing g, the recipe C∗(θ) = Prθ(α̂ ≥
α̂obs) gives precisely the same CD as without the g transformation.

(b) So this CD recipe relies merely on having an informative statistic, say Z, with a

distribution stochastically increasing in θ; it does not really have to be an estimator for

that parameter. Show that C(θ, y) = Prθ(Z ≥ zobs) is a bona fide CD.

(c) Show also that the construction works, if there are other parameters at play too, as

long as the distribution of the chosen Z only depends on θ. Go through the details for the

case of the Yi being N(µ, σ2), with Z =
∑n

i=1(Yi− Ȳ )2, and also for Z ′ =
∑n

i=1 |Yi−Mn|,
where Mn is the empirical median. Compute, display, compare both CDs, based on Z

and on Z ′, for the simple dataset of Ex. 7.3 (with n = 6). For the Z case, there is a

formula, but for the Z ′ case you would need simulation, for a grid of σ values; see Ex. 7.4.

(d) (xx one more example, where there is a Z carrying information, but not qua estima-

tor. xx)

Ex. 7.6 Recipe Two: the normal approximation CD. Applying Recipe One of Ex. 7.2

to the case of the estimator having a normal distribution leads as we saw there to a clear

CD, provided the variance is known. But this is at least approximately so, for large

classes of situations, as we’ve seen in Chs. 2 and 5.

(a) Suppose in general terms that θ̂ estimates θ, and that its distribution is approximately

a N(θ, κ2). Explain that C(θ) = Φ((θ − θ̂)/κ) then is an approximate CD for θ. More

formally, if (θ̂− θ0)/κ̂→d N(0, 1), at the true parameter θ0, show that C(θ, Y ) = Φ((θ−
θ̂)/κ̂) has the property that it converges in distribution to the uniform, at θ0. In typical

applications of these arguments, there is a
√
n scaling in terms of an underlying sample

size, with
√
n(θ̂ − θ0) →d N(0, τ2), say, and κ̂ = τ̂ /

√
n, with τ̂ →pr τ . So this is Recipe

Two, the normal approximation CD, most typically of this type Φ(
√
n(θ − θ̂)/τ̂).

(b) Simulate a moderate or small dataset from a normal distribution. Compute and

display two (approximate) CDs for the mean parameter ξ, (i) using the data mean, (ii)

using the data median.
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(c) We have seen in Chs. 2 and 5 that approximate normality is highly common, for

large classes of estimators, typically along with consistent estimators for the variances.

In particular, the delta method implies approximate normality of smooth functions of

background estimators (see Ex. 2.47, ??), making in its turn approximate normality CDs

easily available. For a simple illustration, suppose you throw your nearest die, which has

probability p of giving a ‘6’, until you get your first ‘6’. You carry out this geometric

experiment n = 10 times, giving you the counts Y1, . . . , Yn equal to 1, 2, 17, 18, 20, 4,

3, 1, 15, 3. Use the normal approximation for Ȳ to give an approximate CD for p. You

may also compare this to what one achieves working with the exact distribution of Ȳ .

(d) (xx point to logistic and poisson regression, with delta method. estimate β and also

p = H(xt0β). xx)

Ex. 7.7 Recipe Three: from a pivot to a CD. (xx check that we’re not repetitive

regarding pivot. xx) Suppose in general terms that ϕ is some parameter of interest, in a

model for observations Y , and that a function A = piv(ϕ, Y ) of the parameter and the

data has the property that its distribution does not depend on the model parameters

(in particular, therefore, not on ϕ, which might itself be a function of other model

parameters). We call A a pivot, in more pedantic detail a pivot for the parameter

ϕ.

(a) With Y1, . . . , Yn independent from the normal (µ, σ2), let Rn =
∑n

i=1 |Yi − Ȳ | with
the sample mean Ȳ . Show that (Ȳ −µ)/Rn is a pivot. Invent yet another pivot involving

µ, with a different denominator.

(b) With two normal samples, say X1, . . . , Xm from N(µ1, σ
2
1) and Y1, . . . , Yn from

N(µ2, σ
2
2), suppose ρ = σ1/σ2 is in focus. Show that (V1/V2)/ρ is a pivot for ρ, where V1

and V2 are the interquartile ranges for the two datasets.

(c) Consider Y1, . . . , Yn from the Cauchy model with density (1/π)/{1+(y− θ)2}. Show
that Rn − θ is a pivot, where Rn = 1

2 (Qn,0.10 + Qn,0.90) is the average of the 0.10 and

0.90 quantiles.

(d) Back to the generalities, consider a pivot A = piv(ϕ, Y ) for ϕ in some model, increas-

ing in ϕ. Assume the situation is continuous, not discrete, so that the pivot’s distribution

function K is continuous. Show that C(ϕ, yobs) = 1 − K(piv(ϕ, yobs)) is a proper CD

for ϕ.

(e) In clean cases we may derive the precise distribution for the pivot in question, but

the CD recipe given above may be used also in more complicated setups, as long as

A = piv(ϕ, Y ) may be simulated. Make an illustration of this, with the ratio of standard

deviations above. Suppose two normal datasets, both of size n = 100, lead to interquartile

ranges V1,obs = 4.44 and V2,obs = 3.33. Construct and display C(ρ) and cc(ρ).

(f) (xx make the point that various constructions, involving large-sample approximations

to the normal and to chisquares, lead to approximate pivots, and then again to approx-

imate CDs and ccs. in particular, Method One, with Φ((ϕ − ϕ̂)/κ̂) and Method Two,

with Γ1(D(ϕ)), can be seen via approximate pivots. also Method Three, construction of

a t type ratio and then bootstrapping. xx)
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Ex. 7.8 CDs from the t pivot. In Ex. 7.2 we saw that the simple construction C(θ, y) =

Prθ(θ̂ ≥ θ̂obs) gives a CD, in the case of one-dimensional setups with a well-defined

estimator θ̂.

(a) For a normal sample from N(µ, σ2), we see that several Prµ,σ(Z ≥ zobs) schemes

work, in that the Z in question has a distribution depending on σ, but not µ. Attempt

to work with C∗(µ, y) = Prµ,σ(Ȳ ≥ ȳobs) – and explain that it will not really work (unless

σ is known).

(b) But of course there are natural CD constructions for µ here. What is needed is a

pivot, say A = piv(µ, y), a function binding the focus parameter and data together in a

way which makes its distribution not depend on the parameters. Study indeed

tn = tn(µ, Y ) = (Ȳ − µ)/(σ̂/
√
n),

with σ̂2 = (n − 1)−1
∑n

i=1(Yi − Ȳ )2 the classical empirical variance. Pretend that you

in all your cleverness have not seen this tn before, and are unaware of its relation to a t

distribution – but show that the distribution of tn, call it Kn, does not depend on (µ, σ).

(c) Then show that C(µ, yobs) = Kn(tn(µ, yobs)) is a CD for µ. Even if you do not see the

connection to the classic t of Student (1908), see Ex. 1.46, you may still carry through

this, by simulating B = 105 realisations of tn, and use

C(µ, yobs) = K∗
n(tn(µ, yobs)) =

1

B

B∑
j=1

I{tn,j ≤ tn(µ, yobs)}.

Show however that by all means Kn is a tm, with m = n− 1, so the canonical CD for µ

is and remains C(µ, yobs) = Gm(
√
n(µ− ȳobs)/σ̂obs), with Gm the c.d.f. for the tm.

Ex. 7.9 Recipe Four: confidence curves via Wilks theorems. Consider data from a

parametric model, leading to the log-likelihood function ℓn(θ), and that there is a focus

parameter ϕ = g(θ). We have seen likelihood profiling and Wilks theorems in Ch. 5, and

know that the deviance Dn(ϕ) = 2{ℓmax− ℓprof(ϕ)} has the property that Dn(ϕ0) →d χ
2
1

at the true value ϕ0 = g(θ0); see Ex. 5.28.

(a) Recipe Four, utilising the Wilks theorems, is to form cc(ϕ, y) = Γ1(Dn(ϕ)), with Γ1

the c.d.f. for the χ2
1. Show that Prθ0(cc(ϕ0, Y ) ≤ α) → α for each α, and explain that

this makes cc(ϕ, y) and approximate confidence curve.

(b) For an illustration, consider the model F (y, θ) = yθ for observations on [0, 1], where

θ is an unknown positive parameter. Write down the log-likelihood function and find a

formula for the maximum likelihood (ML) estimator θ̂. Use also theory of Ch. 5 to write

down a normal approximation to the distribution of θ̂.

(c) Consider the data set

0.013 0.054 0.234 0.286 0.332 0.507 0.703 0.763 0.772 0.920
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Figure 7.2: For the simple data example of Ex. 7.9: Left panel: confidence distribution

C(θ), via simulations (black and wiggly curve) and via exact calculations (red and smooth

curve); right panel: the two versions of the associated confidence curve cc(θ). From these

we read off the median confidence estimate θ̂0.50 = 0.76, and the 90 percent confidence

interval [0.43, 1.24].

Estimate θ and compute the CD C(θ) = Prθ(θ̂ ≥ θ̂obs), along with the confidence curve

cc(θ) = |1−2C(θ)|, (i) using simulations, (ii) using exact probability calculus. Reproduce

a version of Figure 7.2.

(d) Supplement these two curves with approximations based (i) on the normal approxi-

mation for θ̂ and (ii) on the chi-squared approximation for the deviance.

(e) (xx somewhere, if not here, then separately: from CD to cc, and from cc to CD, with

C(ϕ) = 1
2 − 1

2cc(ϕ) for ϕ ≤ ϕ̂0.50 and 1
2 + 1

2cc(ϕ) for ϕ ≥ ϕ̂0.50. particularly useful with

these deviance based ccs. xx)

Ex. 7.10 Median age for men and women in Roman Era Egypt. In Story ii.11 we

work with a rare dataset of lifetimes for 82 men and 59 women in Roman Era Egypt,

a century B.C. For the present illustration of constructing confidence curves via log-

likelihood profiling, take these lifetimes Ti to have arisen from Weibull distributions,

with c.d.f.s Fm(t) = 1 − exp{−(t/am)bm} for men and Fw(t) = 1 − exp{−(t/aw)
bw} for

women.

(a) For a Weibull, with parameters (a, b), show that the q level quantile becomes µ(q) =

F−1(q) = ac(q)1/b, with c(q) = − log(1− q). In particular, the median is a(log 2)1/b.

(b) For the men and women separately, write down the log-likelihood functions ℓm(am, bm)

and ℓw(aw, bw), and then carry out profiling to compute the deviance functions, for the

medians µm and µw. Use Recipe Four, from Ex. 7.9, to construct the confidence curves,

and make a version of Figure 7.3, left panel; also, read off 90 percent confidence intervals.
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Figure 7.3: Lifetimes in Roman Era Egypt, a century B.C.: Left panel: confidence curves

for the median age µw and µm, for women and men, via log-likelihood-profiling from

fitting separate Weibull distributions, with 90 percent confidence intervals [19.95, 26.56]

and [23.95, 32.84]. Right panel: confidence curve for the median age difference d =

µm − µw, via log-likelihood profiling, and 90 percent confidence interval [−0.21, 11.34].

(c) It appears indeed that men had longer lives than women, in Egypt 2100 years ago;

see Story ii.11 for more discussion and details. For this exercise, carry out log-likelihood

profiling, for the median difference d = µm − µw, from the four-parameter model with

the two Weibulls. Compute the deviance function and then the confidence curve cc().,

leading to Figure 7.3, right panel. Read off a 90 percent interval for d.

(d) Constructing the confidence curves above involved the somewhat laborious computa-

tion of log-likelihood profiles. Compare these curves with the easier ones, computationally

speaking, based on normal approximations.

Ex. 7.11 Recipe Five: CDs via approximate pivots and t-bootstrapping. Consider a

parametric model f(y, θ) for data, with a model parameter of length say p. Suppose

there is a focus parameter ϕ = g(θ), estimated as ϕ̂ = g(θ̂), for which we need a CD.

(a) Suppose first that ϕ̂− ϕ has some distribution, say G0, not depending on θ. Under

this simple pivotal assumption for ‘estimator minus estimand’, show that

C(ϕ) = Prθ(ϕ̂ ≥ ϕ̂obs) = 1−G0(ϕ̂obs − ϕ).

As indicated in e.g. Ex. 7.4, this can be computed even without knowing the form of

G0, through simulation of many realisations of ϕ̂∗ − ϕ̂, where the ϕ̂∗ is computed from

a dataset drawn from the estimated distribution at θ̂. Explain that this recipe works,

even if G0 is nonsymmetric and not centred well at zero. Simulating the distribution of

ϕ̂ − ϕ at different points in the θ parameter space may also be helpful for checking the

assumption needed for the C(ϕ) constructed here to be a clear CD.
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(b) For a special and simpler case, if ϕ̂ ∼ N(ϕ, κ2), to a good approximation, with known

or well estimated κ, show that the general recipe above leads to

C(ϕ) = Prθ(ϕ+ κN ≥ ϕ̂obs) = Pr(N ≥ (ϕ̂− ϕ)/κ) = Φ((ϕ− ϕ̂)/κ),

and argue that this is really a CD. Note that this requires Z = (ϕ̂− ϕ)/κ having distri-

bution equal to or close to a standard normal, regardless of where θ is in its parameter

space.

(c) Often the standard deviation in the normal approximation is not that sharply es-

timated from the available data. Consider a Student type ratio t = (ϕ̂ − ϕ)/κ̂, with

some appropriate scale estimator κ̂. Assume first that t really is a pivot, i.e. that its

distribution G is independent or nearly independent of where θ is in its parameter space.

Show that

C(ϕ) = Prθ((ϕ̂− ϕ)/κ̂ ≥ (ϕ̂obs − ϕ)/κ̂obs) = 1−G((ϕ̂obs − ϕ)/κ̂obs)

is a CD. If G is not known, or too difficult to derive, use simulations, of t∗ = (ϕ̂∗ −
ϕ̂obs)/κ̂

∗, via datasets simulated at position θ̂obs. We call this a CD computed from

t-bootstrapping.

(d) The previous recipe works well if t = (ϕ̂ − ϕ)/κ̂ is close to pivotal, i.e. its distri-

bution is nearly constant over the parameter region. In other cases we may take the

t-bootstrapping argument one step further. Write for emphasis θ = (ϕ, γ), perhaps in a

reparametrisation, where ϕ is in focus and γ is of length p−1. The t has some distribution,

depending on θ, and we write Prθ(t ≤ u) = G(u, ϕ, γ). Show that

H(ϕ, γ) = Prϕ,γ((ϕ̂− ϕ)/κ̂ ≥ (ϕ̂obs − ϕ)/κ̂obs) = 1−G((ϕ̂obs − ϕ)/κ̂obs, ϕ, γ).

This is not necessarily a CD, in the strict sense, as this probability may depend not only

on ϕ but also on aspects of γ. Often the distribution of t is approximately the same,

though, in a neighbourhood around the true value. Argue that this leads to

C∗(ϕ) = 1− Ĝ((ϕ̂obs − ϕ)/κ̂obs, ϕ) where Ĝ(u, ϕ) = G(u, ϕ, γ̂).

Such an estimated distribution can be computed via bootstrapping, i.e. simulated datasets

at position θ̂ in the parameter space. With B such simulated datasets, leading to simu-

lated values θ̂∗, ϕ̂∗, κ̂∗, and hence t∗ = (ϕ̂∗ − ϕ̂obs)/κ̂
∗.

Ex. 7.12 Recipe Six: CDs in exponential families. We have worked with the general

exponential family in previous chapters, see Ex. 1.50. In particular we learned in Ex. 4.32

that there are uniformly optimal tests, for individual parameters in such models. The

same holds in the present framework of CDs. Suppose data stem from a model of the

form f(y, a, b) = exp{aU(y) + btV (y)}h(y), with U one-dimensional and V of dimension

say p. The optimal recipe for a is

C∗(a) = Pra{U(Y ) ≥ uobs |V (Y ) = vobs}.

This construction is actually optimal, in a power risk function sense we come back to in

Ex. 7.29, but we can already start working with this definition and see how it applies in

various situations.
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(a) Verify from arguments in Ex. 4.32 that C∗(a) indeed depends only on a, not on b.

(b) For an illustration, consider the pair of exponentials of Ex. 4.27. To avoid confusion

with the parametrisation, use now X ∼ Expo(θ), Y ∼ Expo(θ+δ), with sum Z = X+Y .

Show that the joint density is indeed of exponential form, and that the recipe leads to

C∗(δ) = Prδ (Y ≤ yobs |Z = zobs) =
1− exp(−δyobs)
1− exp(−δzobs)

.

Find the positive confidence pointmass at δ = 0.

(c) Suppose there are m independent pairs of such exponentials, with Xi ∼ Expo(θi),

Yi ∼ Expo(θi + δ), and sums Zi = Xi + Yi. We need a CD for the difference parameter

δ. Show that the joint density of the 2m variables is on the exponential form, and that

the resulting CD must be of the form

C∗(δ) = Prδ(U ≤ uobs |Z1 = z1,obs, . . . , zm,obs),

with U =
∑m

i=1 Yi. There is no clear formula for this conditional distribution, but show

that Yi | zi has density δ exp(−δyi)/{1− exp(−δzi)} for yi ∈ [0, zi]. To show how the CD

can be computed, via simulations, suppose as in Ex. 4.27 that the data are the three pairs

(0.927, 0.819), (1.479, 0.408), (3.780, 1.311). In that exercise we worked with the optimal

test for δ = 0 vs. δ > 0, and needed only the null distribution of U given the three sums

z1, z2, z3, i.e. where δ = 0. Now we need to tabulate this conditional distribution also for

each δ > 0, however.

(d)

Ex. 7.13 Optimal CD for a bivariate model. (xx spell out. we do get the natural answer

C(a) = Pra(â ≥ âobs | b̂). then multivariate. xx)

Ex. 7.14 Bayesian posteriors as approximate CDs. (xx to come here: Consider a setup

with data y from a model with parameter θ = (θ1, . . . , θp), and with ϕ = ϕ(θ1, . . . , θp) a

focus parameter. A CD for ϕ has the property Prθ{C−1(0.05, Y ) ≤ ϕ ≤ C−1(0.95, Y )} =

0.90, etc., as with (7.1), thus delivering confidence intervals with the right coverage. This

is also akin to how Bayesian posterior distributions are used. If a Bayesian prior for θ

leads to a posterior for θ, and hence for a cumulative B(ϕ | yobs), then the Bayesian can

read off [B−1(0.05, yobs) ≤ ϕ ≤ B−1(0.95, yobs)]. A question of interest and relevance

also in Bayesian contexts is whether such intervals make sense also in the frequentist

sense. point to Bernshtĕın–von Mises things in Ex. 6.23. the answer is ‘ok’ under such

conditions, but not outside. xx)

(a) For a simple start example, consider Y1, . . . , Yn which given θ are i.i.d. from the

Pois(θ), and with a prior θ ∼ Gam(a, b); see Ex. (xx suitable exercise Ch 6 xx). Show

that the posterior cumulative for θ becomes Bn(θ |data) = G(θ, a+nȳobs, b+n), in terms

for the cumulative Gamma, and with ȳobs the observed data average. Let θ̂B and τ̂B be

the posterior mean and standard deviation. Assume now that data Y1, Y2, . . . come from

the Pois(θ0), for a certain θ0. Show that

Bn(θ0 |Y1, . . . , Yn) = Pr(θ ≤ θ0 |Y1, . . . , Yn) = G(θ0, a+ nȳ, b+ n)
.
= Φ((θ0 − θ̂B)/τ̂B) →d Φ(N(0, 1)) ∼ unif,
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with probability 1.

(b) For a similar adventure, start with the Beta(a, b) prior for a binomial probability θ.

Show that the posterior cumulative for θ becomes Bn(θ |data) = Be(θ, a+ y, b+ n− y),

in terms of the Beta cumulative. Assuming that Yn is really from a binomial with some

true θ0, show that

Bn(θ0 |Yn) = Pr(θ ≤ θ0 |Yn) = Be(θ0, a+ Yb, b+ n− Yn)
.
= Φ((θ0 − θ̂B)/τ̂B) →d Φ(N(0, 1)) ∼ unif,

with probability 1.

(c) Consider then the general parametric situation, supposing Y1, . . . , Yn being i.i.d. from

the density f(y, θ), with ϕ = ϕ(θ) a one-dimensional focus parameter. Let θ0 and ϕ0 =

ϕ(θ0) denote the true parameters. As with Recipe Two, see Ex. 7.6, there is convergence

to the standard normal of the standardised
√
n(ϕ̂ml −ϕ0)/κ̂, say, with the ML estimator

for ϕ and κ̂2 consistently estimating κ2 = ctJ−1c (point back to delta method things

in Ch2 xx). Now use the Bernshtĕın–von Mises theorem setup of Ex. 6.23 to explain

that
√
n(ϕ − ϕ̂ml) |data tends in distribution to N(0, κ2). The Bayesian posterior has a

c.d.f. Bn(ϕ |data). Show that at the true value,

Bn(ϕ0 |data) = Pr
(√
n(ϕ− ϕ̂ml)/κ̂ ≤

√
n(ϕ0 − ϕ̂ml)/κ̂ |data

)
= Φ(

√
n(ϕ0 − ϕ̂ml)/κ̂) + εn,

with εn →pr 0. Deduce that Bn(ϕ) is a CD in the large-sample sense. In this sense we

may think of any sensible Bayesian posterior distribution, in regular parametric models,

as Recipe Seven for creating a CD. (xx a little more here. xx)

Ex. 7.15 Confidence distribution for the ratio of explained variation. (xx to be pol-

ished. used in Story i.6. xx) For the classic linear regression model Yi = xtiβ + εi, with

i.i.d. N(0, σ2) noise terms, theory was developed in Ex. 4.37 to estimate the fraction of

the variance explained via the covariates. The statistic R2 given there can be seen as an

estimator of the explained variation ratio ρ = βtΣnβ/(β
tΣnβ + σ2), with notation from

that exercise. Here we construct full CDs for such parameters.

(a) (xx one covariate at a time. note that σ changes value and interpretaion, depending

on whichi covariates are used in the linear regression equation. xx) ρ =Mnβ
2/(Mnβ

2 +

σ2), with Mn = (1/n)
∑n

i=1(xi − x̄)2. then F = nMnβ̂
2/σ̂2 ∼ F (1,m, nρ/(1− ρ)).

(b) (xx then general. xx) Explain that

C(ρ) = Prρ(λ̂ ≥ λ̂obs) = Prρ(F ≥ nλ̂obs/p) = 1− F (nλ̂obs/p, p,m, nρ/(1− ρ))

becomes a CD for ρ.

(c) (xx one more thing. xx)
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CDs for quantiles

Ex. 7.16 CDs for quantiles. Let Y1, . . . , Yn be independent observations from a smooth

density f , with c.d.f. F . How can we construct CDs for its quantiles, the µq = F−1(q)?

We wish such a CD to be nonparametric, without further assumptions on the f . We

go through the main ideas for the case of the median µ = F−1( 12 ), before extending

methods and results to a general quantile q ∈ (0, 1). (xx a bit more prose here; several

methods; some better than others in terms of precision and coverage; we draw but briefly

on density estimators from Ch. 13. nils needs to check Price and Bonett (2001, 2002).

xx)
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Figure 7.4: Left panel: For Ex. 7.16, confidence curves cc(µ0.90), for the 0.90 quantiles

of the birthweight distributions for girls (to the left) and boys (to the right). The black

curves use the Beta method cc∗n(µ,data), with linear interpolation, whereas the slanted

curves use the large-sample approximation. The former yields more accurate coverage

than the latter. 95 percent intervals for the two 0.90 quaniles are indicated via the blue

horizontal line. Right panel: For Ex. 7.17, for the case of f being standard normal,

n = 100, q = 0.50: histograms of Vn and V ∗
n based on sim = 105 simulations. Also in

other cases the V ∗
n is much closer to uniformity than is Vn.

(a) It is not difficult to construct a first-order correct CD via large-sample results reached

in Chapter 3, see in particular Ex. 3.18. WithMn the sample median, we have
√
n(Mn−

µ) →d N(0, 14/f(µ)
2). Show that as long as τ̂ is a consistent estimator for f(µ), then√

n(Mn − µ)/( 12/τ̂) →d N(0, 1), and that this leads to the approximate CDapproximate

CD for

quantiles Cn(µ, y) = Φ
(√
n(µ−Mn)/(

1
2/τ̂)

)
.

One of several choices is to take τ̂ = f̂(Mn), with f̂(y) = n−1
∑n

i=1 h
−1K(h−1(yi − y)) a

kernel density estimator, with some kernel function K and bandwidth h. The best size

for this fine-tuning parameter is of the type h = c/n1/5, as seen in Chapter 13, and a

classic rule of thumb which we typically might resort to here is to take h = 1.059 σ̂/n1/2,
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with σ̂ the empirical standard deviation. Show that the confidence intervals from this

CD take the form Mn ± z0(
1
2/τ̂)/

√
n, with z0 the relevant normal quantile, like 1.96 for

intended 95 percent intervals.

(b) A different idea starts out as follows. For the ordered observations Y(1) < · · · < Y(n),

show that

Prf (µ ≤ Y(i)) = Pr( 12 ≤ U(i)) = 1− Be( 12 , i, n− i+ 1) for i = 1, . . . , n.

Here U(i) = F (Y(i)); these form an ordered sample from the standard uniform, and

we saw in Ex. 3.18 that they have Beta distributions. The Be(x, a, b) is the c.d.f. of

a Beta(a, b). Define a full CD for µ, say C∗
n(µ,data), via linear interpolation between

the C∗
n(y(i),data) = 1 − Be( 12 , i, n − i + 1) points. This also yields a confidence curve

cc∗n(µ,data) = |1− 2C∗
n(µ,data)|.

(c) Extend the two methods above, constructed there to deal with the median, to a

general quantile µq = F−1(q). For the first CD, use
√
n(Qn,q − µq) →d N(0, q(1 −

q)/f(µq)
2), with Qn,q = F−1

n (q) the empirical q quantile, and estimate τq = f(µq) via

f̂(F−1
n (q)). For the second CD, show first that Prf (µq ≤ Y(i)) = 1 − Be(q, i, n − i + 1),

and use linear interpolation:

C∗
n(µq,data) = interpolation with 1− Be(q, i, n− i+ 1) at y(i), (7.2)

for i = 1, . . . , n. For µq inside (y(i), y(i+1)), therefore, the CD value is interpolation the Beta

method CD for

quantiles
between 1−Be(q, i, n− i+ 1) and 1−Be(µ1, i+ 1, n− i). We call this the Beta method

CD for quantiles.

(d) (xx a bit more. for birthweights oslo boys and girls, compute, display, and interpret

the confidence curves for the 0.90 quantile, using both of the CD methods. Reproduce a

version of Figure 7.4. point to Story i.5. xx)

Ex. 7.17 CDs for quantiles: how well do they work? In Ex. 7.16 we found two non-

parametric CD recipes, for any quantile µq = F−1(q). Here we investigate how well they

work, in terms of actual coverage probabilities for confidence intervals. For the methods

Cn(µq,data) and C
∗
n(µq,data), define

Vn = Cn(µq,true, Y1, . . . , Yn) and V ∗
n = C∗

n(µq,true, Y1, . . . , Yn),

with Y1, . . . , Yn drawn from the density in question. Accurate coverage, at all levels,

means that the distribution of these two random CDs, at the true value, should be close

to the uniform.

(a) To check the precision of these two CDs, carry out a simple simulation experiment.

Take f equal to the standard normal, with µq = Φ−1(q) to be estimated with uncertainty;

use τ̂ = f̂(Qn,q) as above, with K the standard normal kernel and bandwidth h =

1.059 σ̂/n1/5 (which is optimal for the normal case), using the ordinary standard deviation

from the data; and then simulate say sim = 105 values of Vn = Cn(µq,true, Y1, . . . , Yn)

and V ∗
n = C∗

n(µq,true, Y1, . . . , Yn). Check, perhaps for n = 50, 100, 500, 1000, how close
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the distributions of Vn and V ∗
n are to the uniform. – For computing the C∗

n, and hence for

executing that part of the simulation experiment, the approx algorithm of R is handy,

carrying out linear approximation between the two values 1 − Be( 12 , i, n − i + 1) and

1− Be( 12 , i+ 1, n− i), for any µ inside the [Y(i), Y(i+1)] interval.

(b) Conduct a few similar simulation experiments, to see how close Vn and Vmn
∗ are to

uniformity, with different density f , quantile µq, sample size n.

(c) To assess ‘closeness to uniformity’ more accurately, use the monitoring processes of

Ex. 3.9. For each of your simulation experiments, in addition to displaying histograms

of Vn and V ∗
n , compute and display the functions Zsim(t) = (sim)1/2{Gsim(t) − t} and

Z∗
sim(t) = (sim)1/2{G∗

sim(t)−t}, where Gsim and G∗
sim are the empirical distribution func-

tions of the Vn and V ∗
n . Compute also Dsim = maxt |Zsim(t)| and D∗

sim = maxt |Z∗
sim(t)|.

It will transpire (i) that Vn often is not particularly close to uniformity, unless n is rather

large; (ii) that V ∗
n is often so close to uniformity, even for moderate n and q near 0 or 1,

that we cannot see that the distribution is not uniform, even with 105 simulated values.

(d) xx

Ex. 7.18 Large-sample equivalence for two CDs for quantiles. (xx to come. details for

why the two CDs are large-sample equivalent. harder to show clearly that the 2nd is

better than the 1st. nils thinks that it is, though, as of 12-August-2024. xx)

CDs in some nonregular setups (change title in a while)

Ex. 7.19 Aboriginals and invaders in Watership Down. Suppose a population of

rabbits has been living for a long time on an island, in Hardy–Weinberg equilibrium

(p20, 2p0q0, q
2
0), which means that pairs of alleles aa, Aa, AA occur with these frequencies,

with q0 = 1− p0. Suppose next that there’s an invading population of new rabbits, with

their separate Hardy–Weinberg equilibrium (p, 2pq, q2), with q = 1− p. We assume that

the two populations do not mix, but live on, on the same island, and that rabbitologists

don’t see the difference. One is interested in learning the fraction λ of newcomers (so the

fraction of aboriginals is 1− λ).

(a) Explain that when one samples n rabbits independently, and find their allele pairs

aa, Aa, AA, then these numbers (X,Y, Z) have a trinomial distribution with parameters

pr1 = (1− λ)p20 + λp2, pr2 = (1− λ)2p0q0 + λ2pq, pr3 = (1− λ)q20 + λq2.

Note that pr1 + pr2 + pr3 = 1.

(b) For the case of (X,Y, Z) = (118, 438, 444), and assuming not only (p0, q0) = (0.25, 0.75)

known, but also (p, q) = (0.40, 0.60) known, find an estimate and construct a confidence

curve cc1(λ), as with the black smooth Figure 7.5, left panel. Assume next, with the

same counts (X,Y, Z), that the home population parameters (p0, q0) = (0.25, 0.75) are

known, but that the HW parameters (p, q) = (p, 1 − q) for the new population are un-

known. Again, estimate λ and find a confidence curves cc2(λ), as for the red slanted

curve of Figure 7.5, left panel. Comment on your findings. For your computer script,



252 CDs, confidence curves, combining information

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

invader fraction lambda

co
nf

id
en

ce

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

true rho

co
ve

ra
ge

 p
ro

ba
bi

lit
y

Figure 7.5: Left panel: For Ex. 7.19, confidence curves for the unknown fraction λ of

newcomers, after having counted (X,Y, Z) = (118, 438, 444) of allele pairs aa, Aa, AA.

The start population has HW parameters (p0, q0) = (0.25, 0.75). (i) The black smooth

cc1(λ) is computed using the knowledge that the new population has HW parameters

(p, q) = (0.40, 0.60). (ii) The red slanted cc2(λ) is computed using only knowledge about

(p0, q0), i.e. both p, q = 1−p, and λ are unknown. Right panel: For Ex. 7.20, as a function

of the true ρ, for dimension p = 3, the figure shows the actual coverage probability of

the Bayesian 90 percent credibility interval, based on the posterior stemming from a flat

prior for the θ.

play a bit with different sample sizes, and with different degrees of difference between

(p0, q0) and (p, q).

(c) Explain why it is not possible to estimate all (p0, p, λ) from (X,Y, Z).

Ex. 7.20 The length problem. (xx might make a Satellite Collision Story, based on

Cunen et al. (2020b). contrasting CD with Bayes. xx) There are several situations, of

varying degrees of complexity, where the heart of the matter is, or can be transformed to,

the following: with Y having the Np(θ,Σ) distribution, with unknown mean vector and

known or partly known variance matrix, reach inference for the length ρ = ∥θ∥ = (θ21 +

· · ·+ θ2p)
1/2. See e.g. Cunen et al. (2020b) for an application involving the computation

and real-time monitoring of the probability that two satellites will collide.

(a) Take first Σ = Ip, so y ∼ Np(θ, Ip), which means independent Yi ∼ N(θi, 1) for

i = 1, . . . , p. Show that the ML estimator of ρ is ρ̂ = ∥Y ∥. Show also that ρ̂2 ∼ χ2
p(ρ

2),

the noncentral chi-squared.

(b) Deduce that ρ̂2 is overshooting its target ρ2, with mean and variance p + ρ2 and

2p+ 4ρ2. Find also an expression for E ρ̂, and show that it overshoots ρ.

(c) Show that the natural CD becomes C(ρ, y) = 1− Γp(ρ̂
2, ρ2).
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(d) A typical Bayesian analysis would start with a flat prior for θ1, . . . , θp (xx calibrate

and xref Ch 5 for this detail xx). Show that θ | y ∼ Np(y, I), and that this entails

ρ2 | y ∼ χ2
p(ρ̂

2).

(e) For p = 5 and ρ̂ = 7.77, compute and draw both the CD and the Bayesian posterior

distribution,

C(ρ, y) = 1− Γp(ρ̂
2, ρ2) and B(ρ, y) = Γp(ρ

2, ρ̂2).

Comment on what you find.

(f) (xx simulate to illustrate that the CD by construction works, producing confidence

intervals with the correct coverage; UC = C(ρ0, Y ) ∼ unif when data stem from the

model, at position ρ0. show however that the Bayesian posterior distribution here risks

being very far from producing intervals with the right coverage; UB = B(ρ0, Y ) is very

far from being uniform. point to Figure 7.5, right panel, for the too low coverage proba-

bility of the Bayesian 90 percent credibility interval. the CD based intervals have exact

coverage. link to Bernshtĕın–von Mises things in Ch. 6; here we’re outside BvM terrain.

more on why and how. xx)

(g) Generalise the above to the case where Y ∼ Np(θ, σ
2Ip).

(h) More generally, with Y1, . . . , Yn being i.i.d. from the Np(θ, σ
2Ip), with σ known,

show first that Ȳ ∼ Np(θ, (σ
2/n)Ip). Then show that ρ̂ = ∥ȳ∥ is the ML estimator,

with distribution given by nρ̂2/σ2 ∼ χ2
p(nρ

2/σ2). On the Bayesian side, show that a flat

prior for θ leads to θ |data ∼ Np(y, (σ
2/n)Ip). Show that these statements lead to these

generalisations of the above

Cn(ρ, y) = 1− Γp(nρ̂
2/σ2, nρ2/σ2),

Bn(ρ | y) = Γp(nρ
2/σ2, (n/σ2)ρ̂2).

(i) (xx a bit more, regarding BvM, which holds for fixed p and ρ, with growing n. but

misleading picture for finite n. do something to see interplay with n and p. xx)

(j) (xx also, briefly, to the case of Y ∼ Np(θ, σ
2Ip), with σ estimated via an independent

σ̂2 ∼ σ2χ2
m/m. xx)

Ex. 7.21 Ratio of normal means. (xx edit and clean. about two exercises here on

this. mention Fieller name. start with x0 = −a/b, the point at which a regression type

equation a+ bx = 0. then application to bioassay or similar. xx)

(a) Consider the prototype setup for such questions, where â ∼ N(a, 1) and b̂ ∼ N(b, 1)

are independent. Show first that the log-likelihood is a simple ℓ(a, b) = − 1
2Q(a, b), with

Q(a, b) = (a − â)2 + (b − b̂)2, and find a formula for ℓprof(x0) = − 1
2Qprof(x0), where

Qprof(x0) = min{Q(a, b) : x0 = −a/b}.

(b) Show that (â+ b̂x0)/(1 + x20) ∼ χ2
1, at the true x0, and hence that

cc(x0) = Γ1((â+ b̂x0)/(1 + x20))

is a clear confidence curve for x0. (xx illustrate, with the mildly peculiar confidence

regions. find max confidence level. more. xx)
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(c) (xx with σ̂ on top. with dependence. things fine as long as (â, b̂) is binormal. xx)

(d) (xx bioassay. xx)

Ex. 7.22 CDs and posterior distributions with boundary constraints. Here we learn

about construction of CDs when there is a boundary condition on the focus parameter.

This is sometimes an easy task, involving a natural positive post-data probability on the

boundary point. We also compare with Bayesian procedures. Matters may of course be

extended and generalised in several directions here, but for simplicity and conciseness we

study a very simple prototype situation: y is N(θ, 1), and θ ≥ 0 a priori.
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Figure 7.6: Left panel: For Ex. 7.22, with yobs = 0.66 for the N(θ, 1) model, the black

curve is the natural CD, with positive point mass 0.255 at zero. The red and the blue

curves are Bayesian posterior distributions, for the flat prior on the halfline, and for the

mixture prior with 1
2 at zero and 1

2 flat on the halfline, respectively. Right panel: For

Ex. 7.23, (xx to come xx).

(a) Before we come to the parameter constraint, we deal with the more normal situation

where there is no a priori constraint. The classical CD is then C(θ, y) = Φ(θ − y).

Show that the Bayesian starting with a flat prior for θ finds the posterior distribution

θ | y ∼ N(y, 1), with cumulative B(θ | y) = Φ(θ − y), i.e. identical to the canonical CD. –

The point below will partly be that this is not the same for the constrained problem.

(b) For the remaining points here, assume indeed that θ ≥ 0 a priori. Argue that the

canonical CD should be C(θ, y) = Φ(θ − y) for θ ≥ 0. Its point mass at zero is Φ(−y).
Graph the CD, for the three cases yobs equal to −0.22, 0.66, 1.99.

(c) One Bayesian approach in this situation, where θ ≥ 0 a priori, is to let θ be flat on

[0,∞). Show that then

θ | y ∼ ϕ(θ − y)∫∞
0
ϕ(θ − y) dθ

=
ϕ(θ − y)

Φ(y)
for θ ≥ 0,
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and that the cumulative posterior distribution becomes

B(θ | y) = Φ(θ − y)− Φ(−y)
1− Φ(−y)

=
Φ(θ − y)− Φ(−y)

Φ(y)
for θ ≥ 0.

For the three cases of yobs given above, graph the CD along with the Bayesian B(θ | yobs),
and comment on what you find.

(d) In general terms, for the case of y | θ ∼ N(θ, 1), let θ have the mixture prior dis-

tribution p0π0 + p1π1, with the sub-priors π0 and π1 having their individual posteriors

π0(θ | y) and π1(θ | y). Show that the posterior has a natural mixture form,

θ | y ∼ p∗0(y)π0(θ | y) + p∗1(y)π1(θ | y),

where

p0(y) =
p0f0(y)

p0f0(y) + p1f1(y)
and p1(y) =

p1f1(y)

p0f0(y) + p1f1(y)
,

and with f0(y) =
∫
ϕ(y−θ)π0(θ) dθ and f1(y) =

∫
ϕ(y−θ)π1(θ) dθ the marginal densities

following from the two priors. (This structure generalises to general mixture priors in

general models, though that does not concern us just now.)

(e) For the prior p0π0+p1π1, with π0 a unit pointmass at zero and π1 a flat prior on the

halfline, show that f0(y) = ϕ(y) and f1(y) = Φ(y). With a 50-50 mixture, show hence

that

p0(y) =
ϕ(y)

ϕ(y) + Φ(y)
and p1(y) =

Φ(y)

ϕ(y) + Φ(y)
.

Draw curves of these two posterior probabilities, one for the zero-point and the other for

the halfline-based part, as y goes from say −5 to 5. Show that the posterior cumulative

distribution becomes B∗(θ | y) = p0(y) + p1(y)B(θ | y) for θ ≥ 0. In particular, there is a

pointmass p0(y) at zero. Construct a version of Figure 7.6.

(f) Show that there is no choice of (p0, p1) which makes the Bayesian cumulative posterior

B∗(θ | y) agree with the CD C(θ, y). Devise a method for selection (p0, p1) such that the

distance between B∗(θ | y) and C(θ, y) is small, for a relevant range of θ and possible

observed yobs.

(g) Generalise the formulae above to the case of y1, . . . , yn i.i.d. N(θ, σ2), with known σ.

Ex. 7.23 CDs for regression parameters with boundary constraints. (xx to come here:

more on boundary parameters, now in simple regression models. pointer to Story iii.10.

xx) (xx the point we wish to convey is that the Tore-Sims phenomenon is a general one,

easier to understand and analyse in simpler models, separately. so we can have separate

points for a model like yi = β0 + β1xi,1 + β2xi,2 + εi, where one has prior knowledge

β2 ≥ 0. There is a clear and exact CD for β2, of the type C(β2) = Gdf((β2 − β̂2)/κ̂2)

for β2 ≥ 0, with a pointmass Gdf(−β̂2/κ̂2) at zero. the Bayesian with flat priors on

β0, β1, log σ and a flat prior on (0,∞) for β2, a la Sims, will not be able to detect that

β2 = 0; there’s a clear discrepancy between the CD and the Bayesian posterior for that

parameter. xx)
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Ex. 7.24 CDs in the truncated exponential model. Here we consider a model sometimes

called the truncated exponential model. We start with its simplest form, with data

Y1, . . . , Yn i.i.d. from the density exp{−(y − a)} for y ≥ a. The a is the unknown start

point for the distribution.

(a) Show that the ML estimator is equal to Un = mini≤n Yi, the smallest data point.

Show that n(Un − a) has a unit exponential distribution. Build from this a natural CD

for a.

(b) Construct a predictive CD for the next sample point Yn+1. Illustrate by computing

and displaying the confidence curve for the text sample point, after having observed the

six data points 3.735, 3.338, 10.634, 3.839, 5.667, 5.808.

(c) Then consider the more realistic two-parameter version of the model, with density

f(yi, a, b) = (1/b) exp{−(yi − a)/b} for yi ≥ a,

with a being the unknown start-point and b a scale parameter. Show that the ML

estimators become â = Un and b̂ = (1/n)
∑n

i=1(Yi − Un), again with Un being the

smallest observation.

(d) Construct accurate CDs and confidence curves for a, for b, and for the next datapoint

Yn+1. If some of your formulae cannot be given very explicit mathematical forms, this is

ok, as long as numerical solutions can be found via numerical integration or simulation.

Give approximations for these CDs for large sample sizes n.

(e) Ignoring these large-sample approximations, compute and display confidence curves

for a, b, Yn+1 with the simple n = 6 dataset above.

Ex. 7.25 CD inference for the exponential rate, with censored data. The lifelength

distribution for a certain type of technical components is considered exponential, i.e. with

density θ exp(−θt) for t > 0, on a priori grounds. To arrive at a point estimate and a

confidence curve for θ, the firm producing these components sets in motion the simple

experiment where n such items are set to work, under controlled natural conditions. One

cannot wait until all components have died out, however, and the firm needs to report

what can be said about the lifelength distribution, via θ, a certain time t0 after project

start.

(a) With data of the form observed ti for the N of the items which have died within t0,

and the information ti > t0 for the n − N which are still alive and well, show that the

combined likelihood function may be expressed as

θN exp
[
−θ
{∑
ti≤t0

ti + (n−N)t0

}]
.

(b) Show that the ML estimator is

θ̂ = N/R = N/
{∑
ti≤t0

ti + (n−N)t0

}
.

With increasing sample size, and fixed t0, find expressions for the probability limits of

N/n and R/n, and show that θ̂ is consistent.
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(c) Show in fact that there is a limiting normal distribution here, with
√
n(θ̂ − θ) →d

N(0, τ(t0, θ)
2), and attempt to find an explicit (though not necessarily quick and simple)

formula for the limit variance.

(d) Explain why the construction Cn(θ) = Prθ(θ̂ ≥ θ̂obs) yields a CD, and also how it

can be computed in practice.

(e) Suppose the experiment described involves n = 20 such items, and that the lifelengths

for the N = 11 of these that conk out before the deadline of t0 = 2.00 years are

0.528 0.743 0.869 1.180 0.602 0.133 0.327 1.115 0.117 0.208 1.808

Compute and display perhaps as many as three (exact or approximate) confidence curves

for θ, for this little experiment: the one described in (c); one based on the normal

approximation to the distribution of the ML estimator; and a t-bootstrap based version.

Comment on your findings.

Ex. 7.26 Estimating n based on observing the first r. Suppose Y1, . . . , Yn are i.i.d., from

some known distribution with density f and cumulative F , but that one only observes the

first r order statistics, Y(1) < · · · < Y(r). Can we estimate n? Such nonstandard problems

turn up in various context, from estimating the size of a vocabulary to the number of

unseen species. In this exercise we consider the special case of the unit exponential

distribution, where the Yi can be seen as waiting times, so the question may be phrased

as how long time do we need to wait, until we’ve seen all items, when we have used a

certain time to observe the first r.

(a) Let then Y1, . . . , Yn be i.i.d. from the unit exponential, and assume Y(1) < · · · < Y(r)
are observed, with unknown n. Observing these r first data points is equivalent to

observing the spacings D1 = Y(1), D2 = Y(2) − Y(1), up to Dr = Y(r) − Y(r−1). Use

Ex. 1.13 to show that the joint distribution of these f first spacings may be written

gr(d1, . . . , dr) = n(n− 1) · · · (n− r + 1)

exp
[
−{n(d1 + · · ·+ dr)− d2 − 2d3 − · · · (r − 1)dr}

]
,

and deduce from this that Y(r) is sufficient for n.

(b) With F (x) = 1−exp(−x), show that F (Y(r)) has a Beta distribution with parameters

(r, n− r + 1).

(c) Show that the optimal CD for n, based on having observed the smallest r datapoints,

is

Cr(n) = Prn(Y(r) ≤ Y(r),obs) = Be(F (Y(r),obs), r, n− r + 1).

(d) (xx an example or two. suppose Y(r),obs = 0.348 with r = 33. estimate n. see nils

com87a or thereabouts. give normal approximation. but these are not good for r/n close

to zero or one. can we characterise ML estimator. xx)

Ex. 7.27 (xx another discrete model thing. xx) (xx to come. xx)
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Risk functions for CDs

Ex. 7.28 Risk functions for CDs. This exercise looks into risk functions for and hence

comparisons between CDs, in simple prototype situations where calculations are easier

than for general cases. We start out with Y1, . . . , Yn being i.i.d. from the N(θ, 1) model.

For a CD Cn(θ, y), where y denotes the full dataset, the risk function used is

riskn(Cn, θ) = Eθ

∫
(θ′ − θ)2 dCn(θ

′, Y ) = Eθ(θcd − θ)2,

where θcd is the result of a two-stage random process: data Y lead to the CD Cn(θ, Y ),

and then θcd is drawn from this distribution.
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Figure 7.7: Left panel: For Ex. 7.28, risk function for the CD, in the setup with Y1, . . . , Yn
being i.i.d. from N(θ, 1), with n = 10, but with the restriction θ ≥ 0. It starts out at

1/n and then grows to the 2/n risk of the unrestricted case as θ grows. Right panel: For

Ex. 7.30, for the variance component model, with p = 4 and σ = 1, risk functions r(C, τ)

for three CDs for τ . The one based on Z =
∑p

i=1 Y
2
i is best, closely followed by the one

using A =
∑p

i=1 |Yi|, whereas the one using the range R = maxYi −minYi does worse.

(a) Show that the natural CD based on the observed sample mean ȳobs = n−1
∑n

i=1 yi
is Cn(θ, yobs) = Φ(

√
n(θ − ȳobs)). Prove that its risk function is riskn(Cn, θ) = 2/n.

(b) More generally, assume θ∗ is some unbiased estimator of θ, with finite variance τ2n,

with the property that θ̂∗ − θ has a distribution Hn symmetric around zero. Show that

the associated CD becomes C∗
n(θ, yobs) = Hn(θ − θ∗obs), and show that its risk function

becomes 2τ2n. The case of Ȳ corresponds to 2/n. Find the risk function for the case of

the median based CD, with say n = 10, as for Figure 7.7, left panel.

(c) (xx fix this: Relate the above results to the optimality theorem for CDs, in certain

situations, from CLP’s Chapter 5. xx)
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(d) Now we change gears a bit, by putting the a priori assumption θ ≥ 0 on the table.

Show that the ML estimator becomes θ̂ = max(0, ȳ), i.e. the sample mean truncated, if

necessary, to zero. Argue that this leads to the natural CD

C̃n(θ, y) = Φ(
√
n(θ − ȳobs)), for θ ≥ 0,

in particular having a positive point-mass at zero.

(e) With θcd drawn from this CD, for given data, show that it may be expressed as

max(0, ȳ +N/
√
n), with N a standard normal. Show next that in the two-stage setup,

with random data followed by θcd drawn from the C̃n CD, we have θcd − θ = max(0, θ+

(N +N ′)/
√
n)− θ, with N ′ another and independent standard normal. Use this to show

that the riskn(C̃n, θ) can be expressed as

rn =

∫ [
{max(0, θ + (2/n)1/2x)} − θ

]2
ϕ(x) dx

= θ2Φ(−( 12n)
1/2θ) + (2/n){−( 12n)

1/2θϕ(( 12n)
1/2θ) + 1− Φ(−( 12n)

1/2θ)}.

Compute and display the risk functions for C̃n and Cn, for say n = 10, constructing a

version of Figure 7.7, left panel. Comment on what we learn from this.

(f) (xx not fully sure about this one. xx) There are various other estimators and CDs

worth considering in this θ ≥ 0 setting. To simplify matters, take n = 1, and consider

the Bayes estimator θ̂B , the conditional mean of θ | y, with a flat prior on (0,∞). Show

in fact that θ̂B = y+ ϕ(y)/Φ(y), and verify that this is positive even when y is negative.

Work out an expression for the naturally associated CD CB(θ) = Prθ(θ̂B ≥ θ̂B,obs), and

comment.

Ex. 7.29 Optimal CDs in exponential family models. (xx relate to Ex. 7.12. spell out

NP things to demonstrate optimality. xx)

Ex. 7.30 Risk functions for three CDs in a variance components model. Consider the

simple variance component model with independent observations yi ∼ N(0, σ2 + τ2) for

i = 1, . . . , p, with σ known and τ the unknown parameter of interest; see Schweder and

Hjort (2016, Example 4.1 and Exercise 5.8). The aim here is first to construct CDs based

on (i) Z =
∑p

i=1 y
2
i , (ii) A =

∑p
i=1 |yi|, and (iii) the range R = max yi−min yi; and then

to compute and compare their risk functions. These are defined as

risk(C, τ) = Eτ |τcd − τ | = Eτ

∫
|τcd − τ |dC(τcd, Y ),

with τcd a random draw from the C(τ, Y ) distribution, and with Y itself denoting a

dataset drawn from the distribution indexed by τ .

(a) Show that the natural CDs, based on Z, A, R respectively, are

CZ(τ,data) = 1− Γp(Zobs/(σ
2 + τ2)),

CA(τ,data) = 1−Gp(Aobs/(σ
2 + τ2)1/2),

CR(τ,data) = 1−Hp(Robs/(σ
2 + τ2)1/2).
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Here Γp is the cumulative distribution function of Z0 =
∑p

i=1N
2
i , with the Ni being

i.i.d. and standard normal, which means Z0 ∼ χ2
p. Similarly, Gp and Hp are the cumula-

tive distribution functions of A0 =
∑p

i=1 |Ni| and of R0 = maxNi−minNi, respectively.

(b) Show that a random draw τcd from the first of these, i.e. CZ , for a given dataset, can

be represented as τcd = (Zobs/K−σ2)
1/2
+ , where x+ is notation for the truncated-to-zero

quantity max(x, 0), and where K ∼ χ2
p. In the situation where data are random, from

the model at position τ , deduce that

τcd − τ = {(σ2 + τ2)K0/K − σ2}1/2+ − τ = σ
[
{(1 + ρ2)K0/K − 1}1/2+ − ρ

]
,

where ρ = τ/σ, and K0,K are two independent draws from the χ2
p. In other words,

F = K0/K ∼ Fp,p, a F distribution with degrees of freedom (p, p). Use this to compute

the risk function risk(CZ , τ), for p = 4 and σ = 1; this is the lowest of the three risk

functions of Figure 7.7, right panel.

(c) Then consider the CA option. Show that a random draw from an observed CA(τ,data)

can be written τcd = {(Aobs/A)
2−σ2}1/2+ . Deduce that for random data behind the CD,

we have the representation

τcd − τ = {(σ2 + τ2)(A0/A)
2 − σ2}1/2+ − τ = σ

[
{(1 + ρ2)(A0/A)

2 − 1}1/2+ − ρ
]
,

with A and A0 two independent draws from the Gp distribution. Use this to compute

risk(CA, τ). There is no simple expression for the density of A0/A, so use simulation.

(d) Carry out similar analysis for the third CD, based on the range R. Construct a

version of Figure 7.7, right panel.

(e) Use your programme to explore the three risk functions for other values of p.

Meta-analysis, combining confidence distributions

(xx need more sorting and polish. xx)

Ex. 7.31 CD and cc for binomial probabilities. Suppose y is observed from a binomial

(n, θ). The task is to construct a CD and a cc for θ.

(a) Show that the standard normal approximations for y (xx give pointer here to large-

sample chapter) lead to

Ca(θ, y) = Φ
( nθ − y

{nθ(1− θ)}1/2
)

and Cb(θ, y) = Φ
( √

n(θ − θ̂)

{θ̂(1− θ̂)}1/2
)
,

with θ̂ = y/n the standard estimator for θ.

(b) The recipe of Ex. 7.5 does not quite work here since y has a discrete distribution.

This invites the half-correction method

C(θ, y) = Prθ(y > yobs) +
1
2Prθ(y = yobs).
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For say n = 20 and y = 12, compute and display this CD, along with (i) the same CD but

without the half-correction, (ii) the two simple normal approximations above. Try other

combinations of (n, y), and demonstrate that they are approximately equal for moderate

to large n.

(c) To investigate the basic CD property, take n = 20 and θtrue = 0.33. Simulate a

large number of C(θ0, y), Ca(θ0, y), Cb(θ0, y), to check for their approximate uniform

distribution. Try other values of (n, θ0), and summarise your findings.

Ex. 7.32 CD and cc for comparing binomials. In Ex. 7.31 we learn how to construct

CDs for separate binomial parameters. Consider now the 2 × 2 table setup with two

binomials, as with Ex. 4.30, say y0 ∼ binom(m0, p0) and y1 ∼ binom(m1, p1). How do

we reach precise inference for the extent to which p0 and p1 differ?

(a) We first use the logistic transform p0 = H(θ0) and p1 = H(θ0 + γ), with H(u) =

exp(u)/{1 + exp(u)}. Show that

γ = log
p1/(1− p1)

p0/(1− p0)
= log

p1
1− p1

− log
p0

1− p0
,

the log-odds difference. Write up the likelihood function for the observed (Y0, Y1) to

deduce (xx via the optimal CD exercise xx) that the optimal CD for γ takes the form

C(γ) = Prγ(Y1 > y1,obs |Z = zobs) +
1
2Prγ(Y1 = y1,obs |Z = zobs),

with Z = Y0 + Y1. The conditional distribution in question is the eccentric hypergeo-

metric, found in Ex. 4.30. (xx do simple example here. this CD is used in both Stories

i.1 and i.10. we use Ex. 4.30. xx)

Ex. 7.33 Meta-analysis for Lidocain data. The following data table is from Normand

(1999), and pertains to prophylactic use of lidocaine after a heart attack. The aim is

to evaluate mortality from prophylactic use of lidocaine in acute myocardial infarction.

We view the data here as pairs of binomials, with y1,i ∼ binom(mi,1, p1,i) and y1,0 ∼
binom(mi,0, p1,0).

m1 m0 y1 y0

39 43 2 1

44 44 4 4

107 110 6 4

103 100 7 5

110 106 7 3

154 146 11 4

(a) Write the probabilities in logistic fashion, i.e. pi,0 = H(θi,0) and pi,1 = H(θi,0 + γi),

with H(u) = exp(u)/{1 + exp(u)}. Show that

γi = H−1(pi,1)−H−1(p0,i) = log
pi,1

1− pi,1

/ p0,i
1− pi,0

,

the log-odds difference. Construct and display the optimal CD for the γi, and also for

the odds ratio ρi = exp(γi), for each of the six studies.
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(b) Assume then that the log-odds parameter γ is the same, across studies, so that the

six binomial data pairs relate to seven parameters. Find the optimal CD for this γ, and

for the common odds ratio ρ = exp(γ). Translate the CDs to confidence curves, and

display the six + one curves in a diagram. How would you conclude?

Ex. 7.34 Comparing Poisson parameters. (xx ranting on a bit, to be edited. point

to Story i.11, application to sucide attempts rates. xx) Suppose Y0 ∼ Pois(m0θ0) and

Y1 ∼ Pois(m1θ1). In what precise way is θ1 different from θ0? Writing γ = θ1/θ0,

show that the likelihood is proportional to exp{−θ0(m0+m1γ)}θy0+y1

0 γy1 . Explain that

the optimality recipe tells us inference should be made based on the distribution of

Y1 | (Z = z), where Z = Y0 + Y1. Show that Y1 | (Z = z) has the binomial distribution

(z,m1γ/(m0 +m1γ)). Show how this leads to the optimal CD

C(γ) = Prγ(Y1 > y1,obs | z) + 1
2Prγ(Y1 = y1,obs | z)

= 1−Bz(y1,obs,m1γ/(m0 +m1γ)) +
1
2bz(y1,obs,m1γ/(m0 +m1γ)).

(xx point to Story i.11, for y0 = 1, y1 = 7, for the patient years m0, m1, in Aursnes et al.

(2005). compare with their Bayes gamma priors, both informative and less informative.

xx)

Ex. 7.35 Basic meta-analysis. (xx to come, and calibrated with later stuff. xx) There

is a very wide literature on combining information, with different names and labels,

including meta-analysis, data fusion, etc. This exercise looks into some of the more basic

versions, and where CDs will be helpful in later extensions below.

(a) Suppose yj ∼ N(ϕ, σ2
j ), for j = 1, . . . , k independent sources, with the same focus

parameter ϕ, and with variances taken to be known or well estimated. Consider the linear

combination estimator ϕ̂ =
∑k

j=1 ajyj . Show that it is unbiased, provided
∑k

j=1 aj = 1,

and find its variance. Show that the best choice, yielding minimal variance among the

unbiased ones, is aj ∝ 1/σ2
j , leading to

ϕ̂ =

∑k
j=1 yj/σ

2
j∑k

j=1 1/σ
2
j

.

Show indeed that ϕ̂ ∼ N(ϕ, κ2), with this minimal variance being κ2 = (
∑k

j=1 1/σ
2
j )

−1.

Comment on what this leads to for the case where the σj are equal.

(b) In various settings there is a need to generalise the setting above to one where

yj |ϕj ∼ N(ϕj , σ
2
j ), with these individual mean parameters not being equal, but having

their own distribution, say ϕj ∼ N(ϕ0, τ
2). The task is then to reach inference for both

the overall mean ϕ0 and the spread τ among the ϕj . Show that yj ∼ N(ϕ0, σ
2
j + τ

2), and

that the log-likelihood function becomes

ℓ(ϕ0, τ) = − 1
2

k∑
j=1

{
log(σ2

j + τ2) +
(yj − ϕ0)

2

σ2
j + τ2

}
.
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(c) Considering the spread parameter τ first, show that the profiled log-likelihood can

be written

ℓprof(τ) = − 1
2

k∑
j=1

[
log(σ2

j + τ2) +
{yj − ϕ̂0(τ)}2

σ2
j + τ2

]
, for τ ≥ 0,

in which

ϕ̂0(τ) =

∑k
j=1 yj/(σ

2
j + τ2)∑k

j=1 1/(σ
2
j + τ2)

is the best linear combination estimator for ϕ0, for the fixed τ under inspection.

(d) (xx fix this, needs to be clearer. xx) Consider this profiled log-likelihood as a function

of γ = τ2, rather than of τ , and show that its derivative at zero is

D = 1
2

k∑
j=1

1

σ2
j

{ (yj − ϕ̃0)
2

σ2
j

− 1
}
.

Here ϕ̃0 = ϕ̂(0). A small D means that the yj data have a low spread, and vice versa.

Show that if D ≤ 0, then τ̂ml = 0, and if that D > 0, then τ̂ml is positive.

(e) (xx fix this, needs to be clearer. xx) Show next that

Q(τ) =

k∑
j=1

{yj − ϕ̂(τ)}2

σ2
j + τ2

∼ χ2
k−1.

(f) (xx work with ℓprof(τ). partly from CLP. derivative at zero. xx) By maximising over

ϕ0, for each given τ , show that

ℓprof(τ) = − 1
2

k∑
j=1

[
log(σ2

j + τ2) +
{yj − ϕ̂(τ)}2

σ2
j + τ2

]
.

Ex. 7.36 Combining CDs for the same parameter. (xx a few exercises here. first for the

same parameter, basic. then to CLP Ch 13 settings, then CDs to likelihood; then II-CC-

FF. xx) Suppose that C1(ϕ), . . . , Ck(ϕ) are independent CDs for the same parameter ϕ,

perhaps based on different sets of data. How can these be properly combined?

(a) Show that Nj = ϕ−1(Cj(ϕtrue)) is standard normal, at the true position in the

parameter space underlying the Cj . With w1, . . . , wk numbers such that
∑k

j=1 w
2
j = 1,

show that

C̄(ϕ) = Φ
( k∑
j=1

wjΦ
−1(Cj(ϕ))

)
is a proper combination CD for ϕ.

(b) (xx point back to Ex. 7.35. xx)
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(c)

Ex. 7.37 The problem of the Nile. (xx starting a rant and will see how it goes. xx)

Let X1, . . . , Xn and Y1, . . . , Yn be independent and exponential, the Xi with parameter

θ, the Yi with parameter 1/θ.

(a) Show that the log-likelihoods, for the Xi and for the Yi parts, become

ℓ1(θ) = n(log θ − θX̄), ℓ2(θ) = n(− log θ − Ȳ /θ),

with separate ML estimators θ̂1 = 1/X̄ and θ̂2 = Ȳ . Show further that we may represent

these as θ̂1 ∼ θA, θ̂2 ∼ θB, where A = 2n/K and B = L/(2n), with K and L being χ2
2n.

(b) Show that the canonical CDs for θ, based on the two parts, are

C1(θ) = Γ2n(2nθ/θ̂1), C2(θ) = 1− Γ2n(2nθ̂2/θ).

The combination recipe hence leads to

C̄(θ) = Φ
(
(1/

√
2){Φ−1(C1(θ)) + Φ−1(C2(θ))}

)
.

(c) The full log-likelihood becomes ℓ(θ) = −n(θX̄ + Ȳ /θ). Show that this is maximised

for

θ̂ml = (Ȳ /X̄)1/2 = (θ̂1θ̂2)
1/2 ∼ θF 1/2,

where F = A/B = L/K ∼ F2n,2n. Show that the associated with this ML estimator is

Cml(θ) = 1− F2n,2n(θ̂
2
ml/θ

2).

(d) Run some simple experiments, where you for a few values of n simulate data and then

plot the four CDs, and the four confidence curves (the two separate ones, the combination

one, and the ML based one).

(e) (xx a bit more. ML etc. work, even though the situation is slightly irregular. (X̄, Ȳ )

is sufficient, but not complete. we need two informants for the single parameter. xx)

Ex. 7.38 From CD to likelihood. (xx to come. with illustrations. normal conversion.

ℓ(ϕ) = − 1
2Γ

−1
1 (ccj(ϕ)). xx)

Ex. 7.39 II-CC-FF: Independent Inspection, Confidence Conversion, Focused Fusion.

(xx to come. using Cunen and Hjort (2022). point to Bayesian updating being part of

this, but allows user keeping only prior for the focus parameter. aim to demonstrate

iiccff in Story i.11. xx)

Ex. 7.40 Private attributes. (xx to be checked with care. xx) The probability ψ of

cheating at exams might be hard to estimate, but a bit of randomisation might grant

anonymity and yield valid estimates. Suppose there are three cards, two with the state-

ment ‘I did cheat’, and ‘I did not cheat’ on the third. Students are asked to draw one

of the three cards randomly and answer either true or false to the drawn statement,

without revealing it.
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(a) Show that the probability of true is (1 + ψ)/3. Assume a binomial model for the

number of students answering true, and devise a CD for ψ.

(b) Assume 1000 students go through the simple post-exam exercise above (anony-

mously). Find and display CDs for ψ for the cases of respectively 300, 350, 400 out

of the 1000 answered true.

Notes and pointers

[xx A few remarks. xx]

we point to Schweder and Hjort (2016, Example 3.11), Fisher (1930), Xie and Singh

(2013), Hjort and Schweder (2018), Cunen and Hjort (2022), Singh et al. (2005), ...

(xx repair. we point to Story iii.10. xx) There’s a notable discrepancy between the

frequentist Schweder-Hjort CD and the Bayesian posterior distribution associated with

a flat prior on the [0,∞) interval, in cases where the yobs is close to, or perhaps even to

the left of, the boundary point.





I.8

Loss, risk, performance, optimality

Statistics is a mathematical formalisation of how to make good decisions under

uncertainty. One source of uncertainty is that the future or the true state of nature,

say θ, is not known when we are to make our decisions, and since the utility or loss

of a decision depends on θ, we need to be clear about how bad it is when our decision

is off. This is the role of loss functions, of which the square error is the most well

known example. Decisions are based on data, and it is not anodyne how we use

the data: Some procedures for going from data to a decision are better than others.

Therefore, it makes sense to see how a certain procedure performs on average. This

is the role played by risk functions, of which the mean square error is the most

well known example. Risk functions average out the data, but they still depend

on θ, so the risk function of various decision procedures are often difficult to order.

Some might be preferable for certain values of θ, while others might be better for

other values of θ. This chapter introduces criteria that let us, nevertheless, say

something about how good a decision procedure is. A decision procedure is said

to be admissible if there is no other that does better, in terms of the risk function,

whatever the truth or future may be. One says that a decision procedure is minimax

if it is the the best one in the most unfortunate situation. In proving that certain

decision procedures are admissible or minimax, Bayesian thinking is an essential

tool. This includes the concepte of Bayes risk, where not only the data is average

out, but also the various possible states of nature are averaged out.

Key words: admissibility, Rao–Blackwell, loss functions, minimaxity, multiparame-

ter estimation, UMVU estimators, risk functions

A statistical decision, as most decisions in life when you think about it, is a function of

what we observe to the space of all possible decisions we can make in a given setting:

I look out the window and see grey clouds, and choose to take my umbrella with me

when I go out. I see that you are smiling and I think that you are happy. Formally, an

action is a function a : X → A, where X is the space in which the data take its values,

the sample space; while A is the action space, that is the collection of all possible actions

we might take. How wise our choice of a ∈ A is or turns out to be, depends on the true

state of nature θ. This θ lives in a parameter space Θ, and is an unknown parameter

governing the probability distribution Pθ from which the data X ∈ X are generated. ALoss function

267
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loss function L(θ, a) measures ‘how much’ we lose by choosing action a when the true

state of nature is θ. We assume that

L : Θ×A → [0,∞),

so that the best possible loss is zero (in general, loss functions do not need to be

nonnegative, see e.g. Schervish (1995, Chapter 3.1) for a more general introduction).

To be concrete, consider the point estimation problem with data X1, . . . , Xn indepen-

dent N(θ, 1), where θ is an unknown parameter to be estimated under the loss function

L(θ, a) = (a− θ)2. Here, the amount lost is the squared distance between a and θ. If we

wish to test H0 : θ ≤ 0 versus HA : θ > 0, the action space is A = {keep H0, reject H0},
and a natural loss function can be described by

L(θ, a) =

θ ≤ 0 θ > 0

keep H0 0 1

reject H0 1 0

.

[xx see comment about 0-1 loss in Schervish (1995, p. 215) xx] With this loss function,

we lose the same amount when rejecting a true null hypothesis as when failing to reject a

null hypothesis that is false. In statistical jargon that you probably already know, failing

to reject a null hypothesis is called a Type I error, while when we fail to reject a null

hypothesis that is false, we commit a Type II error.

In the classical or frequentist setup, different decision procedures are compared by

the loss they incur for each value of θ, that is, by their risk function

R(θ, a) = Eθ L(θ, a(X)) =

∫
X
L(θ, a(x)) dPθ(x).

Notice that for each decision procedure a, the risk function R(θ, a) is a function of θ,

so that for two estimators a1 and a2 their respective risk functions may cross, that is

R(θ, a1) < R(θ, a2) for some θ, while R(θ, a1) > R(θ, a2) for other values of θ. Thus,

comparison of risk functions only provides a partial ordering of decision procedures, and

as such does not point clearly at a best decision procedure. What is clear, however, is

that if R(θ, a1) ≤ R(θ, a2) for all θ, with strict inequality for at least one value of θ,

then a2 should be discarded from the competition: We say that a1 dominates a2, and

a2 is said to be inadmissible. A decision procedure that is not dominated by any other Admissibility

decision procedure is admissible. In and of itself admissibility does not tell us much

about an estimator. Consider for example the estimator a′(X) = θ′ that returns the

value θ′ whatever the data. Clearly, no estimator can perform better than a′ in θ′, but

that does not, for obvious reasons, make it an estimator we would like to use. One (not

very principled) fix to the problem of comparing estimators is to limit the search of a

best estimator to the class of estimators that are unbiased: An estimator θ̂ is unbiased unbiased

estimatorfor the parameter θ if Eθ θ̂ = θ for all θ. Another principle by which to compare decision

procedures is the the minimax principle. According to this principle, the estimator with Minimax

the best performance in the worst possible scenario ought to be chosen. We say that a

decision rule a⋆ is minimax if it minimises the maximum risk, that is if

inf
a∈A

sup
θ∈Θ

R(a, θ) = sup
θ∈Θ

R(a⋆, θ).
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If you are a Bayesian and venture into the business of constructing prior distributions

π(θ) over the parameter space Θ, then the problem of risk functions only being partially

ordered can be circumvented. What you are interested in then is the Bayes risk of theBayes risk

decision procedures you are comparing, that is

BR(a, π) = Eπ R(θ, a) =

∫
Θ

R(θ, a)π(θ) dθ.

For a given a and prior π, the Bayes risk is a number, and under certain conditions that

we will explore in the exercises to come, there will be a unique decision procedure a that,

for a given prior π, minimises BR(a, π). This decision procedure is the Bayes solution.Bayes solution

As we will see, Bayes solutions are, despite the name, extremely important for Bayesians

and frequentists alike.

UMVU estimator, Rao–Blackwell, and Lehmann–Scheffé

Ex. 8.1 Coin tossing. To get a feeling for some of the basic challenges and concepts

concerning the comparison of various estimator, we start out with the emblematic prob-

lem of estimating the probability of heads in n = 10 independent tosses of a coin. Let

Y1, . . . , Yn be independent Bernoulli random variables with expectation θ.

(a) Sketch the risk function of the maximum likelihood estimator Ȳn = n−1
∑n

i=1 Yi
under squared error loss L(δ, θ) = (δ − θ)2. Recall that n = 10.

(b) Suppose we have some intuition about where on the unit interval the expectation θ

might be located, close to a value 0 < θ0 < 1, say. One way in which such a prior hunch

might be employed is by taking as our estimate a convex combination of the maximum

likelihood estimator and θ0, that is

δa(Y1, . . . , Yn) = aX̄n + (1− a)θ0,

for some 0 ≤ a ≤ 1. For a = 1/2 and θ0 = 1/2, sketch the risk function of this estimator.

Suppose that your task, as was Pierre-Simon Laplace’s in 1781 or so, is to estimate the

probability of giving birth to a boy. Which of the two above estimators do you prefer,

the maximum likelihood estimator or δa with a = 1/2 and θ0 = 1/2?

(c) Based on the risk functions you sketched in (a) and (b), we see that the two estimators

are difficult to compare. The maximum likelihood estimator has lower risk than δa for

certain values of θ, while δa performs better for other values of θ. The risk functions

cross and none of the two is uniformly better than the other. An easy fix to this problem

of comparison, is to limit our search for an estimator to the class of estimators that are

unbiased for what we are estimating. Look back at Ex. 5.15 and explain why, when the

search is restricted to the class of unbiased estimators, the maximum likelihood estimator

is the clear winner.

(d) The risk of the estimators from (a) and (b) vary widely with what the true θ is.

Choosing a best estimator, when the yardsstick is the squared error loss function, seems

therefore to require some prior hunch about where θ really is. A criterion for risk function
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comparison that does not require such a prior hunch, is minimaxity: An estimator is

minimax if it minimises the maximum risk. Estimators whose risk functions are constant

are, as we will soon see, good candidates for being minimax. Consider the estimator from

Ex. (b) with θ0 = 1/2. Find a function a = a(n) such that the risk function R(θ, δa(n))

is constant. For n = 10, sketch the risk function of your estimator (that is, draw a line).

Suppose you have absolutely no idea whatsoever about where in the unit interval θ may

be located. Which of your three estimators of θ do you prefer? In Ex. 8.9 we learn that

δa(n) is indeed minimax.

Ex. 8.2 Uniformly minimum variance unbiased estimators. As the sketch in Ex. 8.1

(hopefully) illustrates, comparing risk functions is not always straightforward, and a

somewhat ad hoc way of making the problem of finding a best estimator tractable is

by limiting the search for a best estimator to the class of unbiased estimators. What

is variably called a best unbiased estimator, the uniformly minimum variance unbiased

estimator, the UMVU estimator, is defined as follows: An estimator δ⋆(Y ) is the uni- UMVU

estimatorformly minimum variance unbiased estimator for g(θ) if it is unbiased for g(θ), and for

any other estimator δ(Y ) that is unbiased for g(θ), it holds that Varθ δ
⋆(Y ) ≤ Varθ δ(Y )

for all θ. When feasible (see Ex. 5.14 and 5.15–5.16), the easiest way of establishing that

an unbiased estimator is an uniformly minimum variance unbiased estimator, is to verify

that it achieves the Cramér–Rao lower bound.

(a) Let us look at a few examples of the Cramér–Rao approach: (i) Suppose X ∼ N(θ, 1),

and show that X is uniformly minimum variance unbiased for θ. (ii) Suppose Y has an

exponential distribution with mean θ. Show that Y is uniformly minimum variance

unbiased for θ. (iii) Let Yi = β0 + β1xi + σεi for i = 1, . . . , n, where the covariates

x1, . . . , xn are fixed numbers, and the ε1, . . . , εn are independent standard normal random

variables. Show that the least squares estimator for (β0, β1) is the uniformly minimum

variance unbiased estimator.

(b) Let Y1, . . . , Yn be i.i.d. N(µ, σ2). It is immediate from (a) that Ȳn = n−1
∑n

i=1 Yi is

uniformly minimum variance unbiased for µ. Show that the estimator σ̂2
n =

∑n
i=1(Yi −

Ȳn)
2/(n− 1) is not uniformly minimum variance unbiased for σ2. In Exercise 8.3 we will

see that there is no unbiased estimator of σ2 attaining the Cramér-Rao lower bound.

Ex. 8.3 Cramér–Rao and Cauchy–Schwarz. The proof of the Cramér–Rao inequality

that we met in Ex. 5.15–5.16, is a clever application of the Cauchy–Schwarz inequality.

(a) Let X and Y be two square integrable random variables with expectation zero.

Show that |EXY |= {Var (X)Var (Y )}1/2 if and only if X and Y are linearly related,

Y = a+ bX, for example.

(b) Explain why the Cramér–Rao inequality is an equality if and only if the estimator

δ(y) and the score function are linearly related, that is

∂

∂θ
log f(Y ; θ) = a(θ) + b(θ)δ(Y ), for all θ,

for some function a(θ) and b(θ). Solve the differential equation above for f(y; θ), and state

what this entails for estimators and distributions when it comes to possible attainment

of the Cramér–Rao lower bound. You may have a look back at Ex. 4.19 and 4.20.
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(c) In Ex. 8.2(b) we saw that with Y1, . . . , Yn i.i.d. N(µ, σ2), the unbiased estimator

σ̂2
n =

∑n
i=1(Yi − Ȳ )2/(n − 1) for σ2 does not attain the Cramér–Rao lower bound. Use

the result from (b) to argue that the Cramér–Rao lower bound may only be attained

when µ is known.

Ex. 8.4 Sufficiency and Rao–Blackwell. Suppose that Y has a distribution from a

family {Pθ : θ ∈ Θ} of distributions. Recall from Ex. 4.16 that T = T (Y ) is a sufficient

statistic for this family distributions if the conditional distribution of Y given T does

not depend on θ. The Rao–Blackwell theorem says that any estimator can be improved

upon by conditioning on a sufficient statistic. This is an important result, as it tells us

that in our search for a best estimator, we need only consider those estimators that are

functions of a sufficient statistic.

(a) Let δ′(Y ) be an unbiased estimator for g(θ), and suppose that T (Y ) is sufficient for θ.

Consider the estimator given by δ(Y ) = Eθ {δ′(Y ) | T}. Then δ(Y ) is better than δ′(Y ).

The proof proceeds in three steps. First, explain why δ(Y ) is an estimator; second, showRao–Blackwell

theorem that δ(Y ) is unbiased, and third, show that Varθ δ(Y ) ≤ Varθ δ
′(Y ) for all θ. You have

now proven the Rao–Blackwell theorem for unbiased estimators. In Ex. 8.8 we look at

this theorem in a more general decision theoretic framework.

(b) Suppose that Y1, . . . , Yn are i.i.d. uniforms on [0, θ], with θ > 0 an unknown param-

eter. Show that the estimators

δ1 =
2

n

n∑
i=1

Yi, and δ2 =
n+ 1

n
max
i≤n

Yi,

are both unbiased for θ. There are (at least) two ways of showing that δ2 is a better

estimator than δ1. Try them both. First, compute the variances of both estimators.

Second, appeal to the Rao–Blackwell theorem, that is, more concretely, use the results

from Ex. 3.17 to establish that E {δ1 | maxi≤n Yi} = δ2 almost surely.

(c) Let Y1, . . . , Yn be i.i.d. Pois(λ). We seek to estimate θ = Pr(Y1 = 0) = exp(−λ). Find
the maximum likelihood estimator for θ, say θ̂, and show that E (θ̂) = γ{1 + O(1/n)},
meaning the the maximum likelihood estimator for θ is biased. Next, find the Cramér–

Rao lower bound for unbiased estimators of θ. Look back at Ex. 8.3 and consider whether

this lower bound can be attained.

Another estimation strategy is to estimate θ = Pr(Y1 = 0) by the share of zero

counts, that is θ̃ = n−1
∑n

i=1 I{Yi = 0}. This estimator is clearly unbiased for θ, why

is it not best unbiased? Finally, with the aid of the sufficient statistic T (Y ) =
∑n

i=1 Yi
we Rao–Blackwellise the estimator θ̃. Derive an expression for this Rao–Blackwellised

estimator, θ̃rb, say. Does θ̃rb attain the Cramér–Rao lower bound?

Ex. 8.5 Best unbiased, completeness, and Lehmann–Scheffé. From the Rao–Blackwell

theorem we know that any candidate for being an uniformly minimum variance unbiased

estimator must be a function of a sufficient statistic. This limits our search. In this

exercise we establish that in our search for the UMVU estimator, we are only looking for

one estimator. Thereafter, it is shown that an estimator is best unbiased if and only if it
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is uncorrelated with all unbiased estimators of zero. This yields a characterisation of the

best unbiased estimators, albeit one of limited utility as it is, without further conditions,

hard to describe all unbiased estimators of zero. Finally, completeness – a condition on

the distribution of the data – is introduced, ensuring that the only unbiased estimator

of zero is zero itself.

(a) Suppose that δ is uniformly minimum variance unbiased for g(θ), and that so is δ′. Let

δ′′ = δ/2 + δ′/2, and use the Cauchy–Schwarz inequality to show that Varθ δ
′′ ≤ Varθ δ. UMVU

estimator is

unique
But since δ is an UMVU estimator and δ′′ is unbiased (check it), it must be the case that

Varθ δ
′′ = Varθ δ. Look back at the results in Ex. 8.3, and use this to establish that if δ

and δ′ are both uniformly minimum variance unbiased, then δ = δ′ almost surely, for all

θ.

(b) [xx rewrite xx]Suppose that δ is an unbiased estimator for g(θ) and a function of a

sufficient statistic. How may we improve on δ? Well, the family of estimators δa = δ+aε

as a ranges of the real numbers, and ε is some mean zero random variable, constitute

a class of unbiased estimators. Show that if covθ(δ, ε) ̸= 0 for some θ, then a may be characterisation

of the UMVU

estimator
chosen so that Varθ(δa) < Varθ(δ) for some value(s) of θ, which entails that δ is not best

unbiased. Prove the converse, namely that if δ is unbiased and covθ(δ, ε) for all θ and all

mean zero random variables ε, then δ is uniformly minimum variance unbiased.

(c) It is in general no easy task to show that an unbiased estimator, or more generally,

a statistic T = T (Y ) say, is uncorrelated with all unbiased estimators of zero. Since the

correlation between any random variable and zero is zero, the task would be much easier

if we knew of the distribution of T that the only unbiased estimator of zero, is zero itself.

That is, if for any measurable function h, Eθ h(T ) = 0 implies Prθ{h(T ) = 0} = 1, for

all θ. We recall from Ex. 4.23 that a family of distributions with this property is called

complete. Alternatively, we just say that the statistic T (Y ) is complete.

Suppose that T is sufficient and complete for θ. Let δ = δ(T ) be unbiased for g(θ). Lehmann–

Scheffé theoremProve the Lehmann–Scheffé theorem, that is, show that the estimator δ is the unique

uniformly minimum variance unbiased estimator for g(θ).

(d) Look back at Ex. 8.4(b). Show that the estimator δ2 is the uniformly minimum

variance unbiased estimator.

(e) The completeness requirement in the Lehmann–Scheffé theorem was motivated by the

characterisation in (b), saying that an estimator is uniformly minimum variance unbiased

if and only if it is uncorrelated with all unbiased estimators of zero. A perhaps more

illuminating motivation comes from the fact, proven in Ex. 8.4(a), that a best estimator

must be based on a sufficient statistic. Intuitively, by getting rid of information irrelevant

to the estimation problem at hand, we reduce the variance of our estimation procedure.

Taking this intuition to its logical conclusion, we deduce that a best estimator must

be based on a statistic achieving the maximum amount of data compression, while still

retaining all the information in the data about the parameter we seek to estimate. In

other words, a best estimator must be based on a minimal sufficient statistic. Recall

from Ex. 4.21 that a statistic S is minimal sufficient if for any sufficient statistic T there
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exists a measurable function g so that S = g(T ). Show that if δ is an unbiased estimator,

we form the estimators δ′ = E(δ | T ) and δ′′ = E(δ | S), where T is sufficient and

S is minimal sufficient, then Var(δ′′) ≤ Var(δ′). Now, suppose that T is sufficient and

complete. Use the Lehmann–Scheffé theorem and (a) to conclude that δ′ and δ′′ must

be almost surely equal. In view of this equality, it may not come as a surprise that if T

is sufficient and complete, then T is minimal sufficient. A fact we will prove in (g).

(f) Here is a toy example illustrating some of the points made in (e). Let X1 and X2 be

independent Bernoulli(θ) random variables and consider the estimator θ̂ = (X1 +X2)/2

and the estimator δ = δ(X1, X2) given by

δ(x1, x2) =


1, (x1, x2) = (1, 1),

2/3, (x1, x2) = (1, 0),

1/3, (x1, x2) = (0, 1),

0, (x1, x2) = (0, 0).

Explain why both θ̂ and δ are sufficient for θ. Show that δ is unbiased for θ, and show

that the variance of δ exceeds the variance of θ̂ for all values of θ ∈ (0, 1).

(g) The results quoted at the end of (e) is Bahadur’s theorem: If T is sufficient andBahadur’s

theorem complete, then T is minimal sufficient.

To prove this, let W be another sufficient statistic, and assume, with out loss of

generality, that T and W are real valued. We must show that there is a function g

such that T = g(W ). If T = Eθ (T | W ), then we have found a function g, it is

g(w) = Eθ(T | W = w), and g does not depend on θ since W is sufficient. Let us

therefore prove that T equals Eθ (T | W ) almost surely for all θ. To this end, assume

that T has finite variance, and define g(W ) = Eθ (T |W ) and h(T ) = Eθ {g(W ) |T}.
Now, use the tower property of conditional expectation a couple of times and that T is

complete to show that T = h(T ) almost surely, for all θ. Next, combine the above with

the variance decomposition formula to obtain

Varθg(W ) = EθVarθ(g(W ) |T ) + EθVarθ(T |W ) + Varθg(W ),

from which we conclude that T = Eθ(T |W ) almost surely for all θ. To get rid of the

finite variance assumption on T , replace T by f(T ) = 1/{1 + exp(−T )} (which clearly

has finite variance) throughout the proof, to conclude that T = f−1(g(W )).

Ex. 8.6 A uniform mean. Let Y1, . . . , Yn be i.i.d. unif(a, b). We are to estimate the

mean µ = (a+ b)/2.

(a) Show that (mini≤n Yi,maxi≤n Yi) is sufficient and complete.

(b) Propose an unbiased estimator for µ, and find its variance.

Ex. 8.7 A weird unbiased estimator. Limiting our search for a best estimator to the

class of unbiased estimators lacks the decision theoretic foundation that the principle

of minimising expected loss enjoys. More on this in the Notes and Pointers section.
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Sometimes, the search for unbiasedness might lead us astray. Let Y be a random variable

with density

f(y, θ) =
θy exp(−θ)

y!{1− exp(−θ)}
, for y = 1, 2, . . .,

with θ > 0. This is a Poisson distribution truncated at zero, and the probability of being

truncated is exp(−θ).

(a) Show that δu(Y ) = (−1)Y+1 is the unique unbiased estimator for exp(−θ).

(b) Find an expression for the risk function of δ1(Y ).

(c) Propose an estimator with uniformly smaller risk than δ1(Y ).

Ex. 8.8 More Rao–Blackwellisation. Recall that a function is convex if g is a convex if

for all x, y in its domain, and all λ ∈ [0, 1],

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y).

Jensen’s inequality states that if g is convex, then

g(EX) ≤ E g(X),

with equality only if g(x) = a + bx. Jensen’s inequality also holds conditional expec-

tations, see Ex. A.24(g). In this exercise we will look at loss functions L(δ, θ) that are

convex in δ for all θ. Think of your favourite loss function, and you will realise that this

is a quite natural requirement.

(a) Let δ = δ(X) be an estimator of θ. Suppose that T = T (X) is sufficient for θ and

define δ⋆(T ) = E {δ(X) | T}. Explain why δ⋆(T ) is an estimator.

(b) Suppose L(δ, θ) is convex in δ for all θ. Show that R(δ⋆, θ) ≤ R(δ, θ) for all θ.

(c) When will the inequality in (b) be strict for all θ?

(d) Suppose that Eθ δ
⋆(T ) = h(θ), and that T is complete. Show that, in the class of

estimators {δ : Eθ δ = h(θ)}, the estimator δ⋆ is the unique estimator minimising the

risk. [xx check this for the general case here presented xx].

(e) [xx Let L(δ, θ) = (δ − θ)2 and specialise to UMVU estimator xx]

(f) Suppose L(δ, θ) is convex in δ for all θ, and that δπ is the unique Bayes solution

under the prior π. Show that δπ must be a function of a sufficient statistic.

Minimaxity

Ex. 8.9 Tools for minimaxity. In Exercise. 8.1 we compared three different estimators,

which is fine, but what we ultimately want to say something about is the performance of

an estimator compared to all other estimators. To do so, we need some more tools. We

start out with convenient tools for establishing minimaxity, from which we will see that

the estimator in Exercise 8.1(d) is minimax.
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(a) Let δπ be a Bayes solution with respect to the prior distribution π, and suppose that

BR(δπ, π) = sup
θ
R(θ, δπ). (8.1)

Show that δπ is minimax.

(b) Show that if δπ satisfies (8.1) and is the unique Bayes solution with respect to π,

then δπ is the unique minimax procedure.

(c) Show that if a Bayes solution has constant risk, then it is minimax.

(d) Show that if an estimator has constant risk and is admissible, it is minimax.

(e) Show that if an estimator is unique minimax, it is admissible.

Ex. 8.10 The minimax estimator in Bernoulli problem. Let Y1, . . . , Yn be independent

Bernoulli with success probability θ.

(a) Give θ a Beta(aθ0, a(1−θ0)) prior distribution, and find an expression for the posterior

expectation.

(b) Find an expression for the risk function under squared error loss when a = n3/2 and

θ0 = 1/2, and conclude. See Ex. 8.1(d).

Ex. 8.11 Minimaxity and sequences of priors. In Exercise 8.9(b) we assumed that

the equality in (8.1) is attained. A prior distribution that succeeds in attaining this

equality is, for natural reasons, called a least favourable prior distribution. If no such

prior distribution exists, we cannot use the conclusion of the exercise to prove minimaxity.

Consider independent X1, . . . , Xn | θ from N(θ, 1). It seems reasonable that a least

favourable prior for θ should spread its mass evenly out on the real line, that is∫ a+c

a

π(θ) dθ =

∫ b+c

b

π(θ) dθ, for all a, b ∈ R and c > 0.

This distribution is Lebesgue measure on R, and is not a proper probability distribution.

This hints at the result above not being applicable. To fix this, the idea is to approximate

an improper distributions with proper ones. In the case of the normals, one may try

θ ∼ πk(θ), where πk(θ) is the density of a uniform distribution over [−k, k], then let k

grow.

(a) Suppose that δ is an estimator and (πk)k≥1 a sequence of prior distributions such

that

sup
θ
R(δ, θ) = lim

k→∞
BR(δπk

, πk),

with δπk
being the Bayes solution for πk. Show that δ is minimax.

(b) Let X1, . . . , Xn be independent N(µ, σ2). We are to estimate µ under the squared

error loss L(µ̂, µ) = (µ̂ − µ)2. You may consider the sequence of priors µ ∼ N(0, τk) for

k = 1, 2, . . . to show that the estimator µ̂ = X̄n is minimax.

(c) LetX1, . . . , Xn be independent Poisson(θ). We want to estimate θ under the weighted

loss function L(θ̂, θ) = θ−1(θ̂− θ)2. Use Gamma priors to show that θ̂ = X̄n is minimax.
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Admissibility and Bayes

Ex. 8.12 Some Bayes and some admissibility. If we have at hand an estimator δ, the

most convenient way of showing that δ is admissible is to show that it is Bayes. In fact,

it is almost true that an estimator is admissible if and only if it is Bayes. We’ll get to

the cases where this implication fails, but as a rule of thumb it is pretty safe.

(a) Suppose that X ∼ fθ, where θ ∈ Θ = {θ1, . . . , θk} for some finite k ≥ 2. Consider

the estimator δπ that is Bayes for the prior π = {π1, . . . , πk}, where πj is the prior mass

given to θj . Show that if πj > 0 for j = 1, . . . , k, then δπ is admissible.

(b) Why does the conclusion of Ex. 8.12(a) fail if πj = 0 for one or more j?

(c) Show that if a Bayes solution is unique, then it is admissible. Or, equivalently, if

every Bayes rule with respect to a prior π has the same risk function, then they are all

admissible.

(d) To clarify what the uniqueness of the Bayes solution refers to, let’s look at an example

where there are several Bayes solutions. Let X ∼ unif(0, θ) and suppose that we want

to estimate θ under the squared error loss function L(δ, θ) = (δ − θ)2. Suppose θ is

given the prior distribution that is uniform on (0, c). Find the posterior distribution

θ | (X = x) and derive at least two different Bayes solutions (there are uncountably

many). [xx comment on this exercise, more relevant in BNP, point to Nils’ 1976-proof and

the mistake made by Lehmann. Could also mention Lindley and his so-called Cromwell’s

rule xx].

(e) Recall that a parameter value θ is in the support of π (a probability density in our

notation) if it is contained in the set {θ ∈ Θ: π(θ) > 0}. Let {fθ : θ ∈ Θ} be a model, and

suppose that (i) the support of the prior π is Θ; and that (ii) the risk function R(θ, δ) is

continuous in θ for all estimators δ. Show that if δπ is Bayes with respect to π and have

finite Bayes risk, then δπ is admissible.

Ex. 8.13 Generalised Bayes. Suppose that in some experiment involving data from a

normal distribution with expectation θ, you have no idea whatsoever about where on

the real line θ might be located. A natural ‘prior’ is therefore π(θ) ∝ 1 (or just take

it equal to one) that spreads the ‘probability’ mass uniformly over the real line. Now,

π(θ) ∝ 1 corresponds to Lebesgue measure on the real line, and is not a probability

measure because ∫
R
π(θ) dθ = ∞.

The fact that π(θ) does not integrate to one does not, however, stop us from using it

to derive estimators using ‘Bayes’ theorem. Priors that are not probability distributions

are called improper priors. improper priors

(a) Suppose X1, . . . , Xn are independent N(θ, σ2). Suppose θ is given the improper

prior π(θ) = 1. Show that π(θ | x1, . . . , xn) = N(X̄n, σ
2/n). A generalised Bayes

estimator is the estimator δ minimising the posterior expected loss E {L(δ, θ) | data}.
Let L(δ, θ) = (δ − θ)2, and find the generalised Bayes estimator for θ.
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(b) The estimator you found in (a) is generalised Bayes, why is this not enough to

conclude that it is admissible?

(c) (xx xx)

Ex. 8.14 Blyth’s method. We call δ a limiting Bayes estimator if there is a sequence

{πk}k of possibly improper priors such that the corresponding Bayes estimators δπk

converge almost surely to δ. Blyth’s methods can be paraphrased as saying that limits

of Bayes’s estimators are admissible. We start, in (a) by proving Blyth’s method, as is

clear by now, when it comes to admissibility proofs by contradiction is the way to go.

(a) Let δ⋆ be an estimator. Suppose Θ ⊂ Rp is open, and that R(δ, θ) is continuous in θ

for all estimators δ. Let (πk)k≥1 be a sequence of (possibly improper) prior distributions

such that BR(δ⋆, πk) <∞ for all k, and for any open set Θ0 ⊂ Θ,

BR(δ⋆, πk)− BR(δπk
, πk)∫

Θ0
πk(θ) dθ

→ 0, as k → ∞;

Then δ⋆ is admissible.

(b) Let X1, . . . , Xn be i.i.d. from a N(θ, 1), where θ is an unknown parameter to be

estimated under under the squared error loss function L(δ, θ) = (δ − θ)2. Consider theNormal mean is

admissible sequence of prior distributions πk(θ) = N(0, τ2k ), and show that the Bayes solution is

δπk
(X) =

nX̄n

n+ 1/τ2k
,

Take it from here and show that X̄n = n−1
∑n

i=1Xi is admissible.

Ex. 8.15 Bernoulli mean with weighted risk. Let X1, . . . , Xn be i.i.d. Bernoulli(θ). We

wish to estimate θ, and we are particularly interested in precise estimates of very small

and very large values of θ. Therefore, we’ll work with the loss function

L(δ, θ) =
(δ − θ)2

θ(1− θ)
.

(a) Compute the risk function of the maximum likelihood estimator. What’s noticeable

about this risk function?

(b) We now take a Bayesian point of view and give θ a Beta(aθ′, a(1− θ′)) prior distri-

bution. Compute the expectation and variance of this prior.

(c) With the prior introduced in (b), find the posterior distribution π(θ | x1, . . . , xn).
Find also the Bayes solution δπ, i.e., the minimiser of the Bayes risk BR(δ, θ) =

∫
R(δ, θ)π(θ) dθ.

[xx introduce Bayes risk earlier xx].

(d) Tweak the parameters of the Beta prior distribution, so that the Bayes solution

you found above equals the maximum likelihood estimator from (a). What desirable

properties does the maximum likelihood estimator possess?
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Ex. 8.16 Estimating the standard deviation. SupposeX1, . . . , Xn are i.i.d. from N(0, σ2).

We are to estimate σ under the loss function

L(δ, σ) =
(δ − σ)2

σ
. (8.2)

(a) Find the maximum likelihood estimator, say σ̂ml, and show that its risk function is

R(σ, σ̂) = σ{(n− 1)/n+ b2n + (bn − 1)2}, where bn =

√
2

n

Γ(n/2)

Γ((n− 1)/2)
.

You may now use Stirling’s formula Γ(z) = (2π/z)1/2(z/e)z to show that bn → 1, and

R(σ, σ̂) → 2σ as n→ ∞, as we already knew from ML-theory (see Ex. xx in Chapter 5).

(b) Consider the prior distribution σ ∼ π(σ), whose density is

π(σ) ∝ (1/σ)a+1 exp(−b/σ2).

with a > 1 and b > 0. Find the prior expectation of σ. Find also the prior expectation

of 1/σ.

(c) Find the posterior distribution σ | x1, . . . , xn, and derive the Bayes solution under

the loss function given in (8.2).

(d) Show that the maximum likelihood estimator is inadmissible by exhibiting an esti-

mator, say δ⋆, with uniformly smaller risk. Hint: Consider δα = ασ̂ml.

(e) Is δ⋆ admissible? Hint: Use Blyth’s method.

Stein’s phenomenon

Ex. 8.17 The James–Stein estimator. When estimating the price of apples in Oslo, the

height of women in Bergen, and the unemployment rate in Trondheim, it is sometimes

advantageous to use information about apples is Oslo and women in Bergen to say some-

thing about the unemployment rate in Trondheim. The point is that when estimating an

ensemble of unrelated things, we can sometimes do better in the estimation by borrowing

information across unrelated things. This phenomenon is known as Stein’s paradox or

the Stein effect. See Stein (1956); James and Stein (1961) for the original articles, and,

for example Efron and Morris (1977) and Stigler (1990) for lucid presentations. In the

present exercise we’ll look at Stein’s 1956–1961 result, a result that initiated a whole field

of statistical research known as shrinkage estimation.

Let Yi ∼ N(θi, 1) be independent for i = 1, . . . , p with p ≥ 3. We are to estimate

θ1, . . . , θp under the combined loss function

L(δ, θ) =

p∑
i=1

(δi − θi)
2.

The standard approach is to use Yi as an estimator of θi. The estimator Yi is the maxi-

mum likelihood estimator, it is admissible under (δi − θi)
2, it is the uniformly minimum

variance unbiased estimator, etc.
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(a) For obvious reasons, we call Y = (Y1, . . . , Yp) the standard or the natural estimator.

Compute its risk function.

(b) For a single Y ∼ N(θ, 1), show that under very mild conditions on the function b(y),

one has

Eθ (Y − θ)b(Y ) = Eθ b
′(Y ),

where b′ is the derivative of b. Hint: Use integration by parts.

(c) Let now b(y) = (b1(y), . . . , bp(y)). Generalise what you found in (b) to

Eθ (Yi − θi)bi(Y ) = Eθ bi,i(Y ),

where bi,i(y) = ∂bi(y)/∂yi.

(d) What you found in (b) and (c) is known as Stein’s lemma. We are now going to use

Stein’s lemma to construct an estimator that uniformly dominates Y . Consider a general

competitor to Y of the form δ(Y ) = (δ1(Y ), . . . , δp(Y )), with

δi(Y ) = Yi − bi(Y ). (8.3)

Show that the difference in risk between Y and estimators of the form (8.3) can be

expressed as

R(δ, θ)−R(Y, θ) = EθD(Y ),

where

D(y) =

p∑
i=1

{bi(y)2 − 2bi,i(y)}.

Then R(δ, θ) = p+ EθD(Y ). The fabulous thing about such a simple lemma as Stein’s,

is that D(y) does not depend on the unknown θ1, . . . , θp. We can therefore try to find a

data dependent function b(y) such that D(y) < 0 for all y, and consequently an estimator

that uniformly dominates the standard estimator. It turns out to be impossible to find

such functions b(y) when p ≤ 2, but it is possible for p ≥ 3.

(e) Try bi(y) = ayi/∥y∥2, with ∥y∥2 being the squared Euclidian norm
∑p

i=1 y
2
i , corre-

sponding to

δ(y) = y − b(y) =
(
1− a

∥y∥2
)
y.

With this choice of b(y), show that

D(y) =
1

∥y∥2
{a2 − 2a(p− 2)}.

Show that this is negative for a range of a values provided p ≥ 3. Demonstrate that the

optimal a is a = p− 2, corresponding to the estimator

δJS(Y ) =
(
1− p− 2

∥Y ∥2
)
Y. (8.4)
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This estimator is known as the James–Stein estimator. Show that the risk function of

this estimator can be expressed as

R(δJS, θ) = p− (p− 2)2Eθ
1

∥Y ∥2
.

Show that the greatest reduction in risk from using δJS instead of Y takes place when

θ1 = · · · = θp = 0, and compute the risk R(δJS, 0) in this point.

(f) We’ll now make a connection to empirical Bayes procedures. Start with a prior

that takes θ1, . . . , θp independent from N(0, τ2). Show that the Bayes solution is δB =

(δB1 , . . . , δ
B
p ), with

δBi (Y ) = αYi, i = 1, . . . , p, where α =
τ2

τ2 + 1
. (8.5)

(g) The empirical Bayes approach consists of estimating hyperparameters from data.

Hyperparameters are those parameters set by the statistician in a pure Bayesian ap-

proach. Show that the marginal distribution of y1, . . . , yp is a product of N(0, 1 + τ2)

distributions. Find the maximum likelihood estimator of α. Use the maximum likelihood

estimator to find an unbiased estimator, say α̃, of α. The empirical Bayes estimator is

then δEB(Y ) = α̃Y . What’s noticeable about this estimator?

Ex. 8.18 Resolving the paradox. [xx make an exercise based on insights from Stigler

(1990), perhaps?]

Ex. 8.19 Poisson means and inadmissibility of ML-estimator. To show that an estima-

tor is inadmissible it suffices to showcase one estimator that dominates it. Let Y1, . . . , Yp
be independent Poisson with means θ1, . . . , θp. We are to estimate the θ = (θ1, . . . , θp)

under the loss function

L(θ, δ) =

p∑
i=1

(δi − θi)
2

θi
,

where δ = (δ1, . . . , δp). The maximum likelihood estimator δml takes δml,i(Y ) = Yi for

i = 1, . . . , p. Clevenson and Zidek (1975) showed that δml is inadmissible by constructing

an estimator, say δCZ, such that R(θ, δCZ) < R(θ, δml) for all θ. In this exercise we derive

this estimator [xx and try to show that it is admissible. xx]

(a) Let Z =
∑p

i=1 Yi be the sum of the p independent Poisson observations, write γ =∑p
i=1 θi for the sum of the p Poisson means, and define πi = θi/γ for i = 1, . . . , p. Show

that

(Y1, . . . , Yn) | (Z = z) ∼ z

y1! · · · yp!
πy1

1 · · ·πyp
p .

This establishes that E (Yi | Z) = Zπi and Var(Yi | Z) = Zπi(1− π) for i = 1, . . . , p.

(b) Prove the following little lemma. If X ∼ Poisson(θ) and g is a function such that

g(0) = 0, then

E g(X)/θ = E g(X + 1)/(X + 1).
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(c) Consider the estimator δ⋆ whose components are given by

δ⋆(Y ) = (1− ϕ(Z))Yi, for i = 1, . . . , p.

The game to be played now (as with the James–Stein estimator of Exercise xx), is to

find an expression for the risk difference R(θ, δ⋆) − R(θ, δml) that is independent of the

unknown parameters. Using the results from (a) and (b) it is indeed the case that the

risk difference D(Z) = R(θ, δ⋆)−R(θ, δml) can be expressed as

D(Z) = Eγ {[ϕ(Z + 1)2 − 2ϕ(Z + 1)][(Z + 1) + (p− 1)] + 2ϕ(Z)Z}.

Derive this expression for D(Z).

(d) Suppose that the function ϕ is such that ϕ(z)z is increasing. Under this assumption,

find a function ϕ that ensures that D(z) < 0 for all z ∈ {0, 1, 2, . . .}. The estimator

δ(Y ) = (1 − ϕ(Z))Y with this function ϕ inserted is the estimator δCZ of Clevenson

and Zidek (1975) [xx fix, this is a class of estimators xx]. Conclude that the maximum

likelihood estimator is inadmissible.

(e) We have shown that δCZ uniformly [xx nytt begrep xx] dominates the maximum like-

lihood estimator, however, we do not yet now whether or not there exists and estimator

that dominates δCZ. Show that δCZ is admissible.

Hypothesis testing

Ex. 8.20 Testing a simple hypothesis. LetX ∼ fθ(x) and consider the simple hypothesis

H0 : θ = θ0 versus the simple alternative θ = θ1. The statistical tests ϕ, with ϕ(x) = 1

meaning ‘reject H0, and ϕ(x) = 0 ‘keep H0’, are to be evaluated under the loss function

L(ϕ, θ0) =

{
0, if ϕ(x) = 0,

K1, if ϕ(x) = 1,
L(ϕ, θ1) =

{
K2, if ϕ(x) = 0,

0, if ϕ(x) = 1.

(a) Let 0 < π0 < 1 be your prior probability of H0 being true. Derive an expression for

the posterior expected loss, and show that the Bayes solution ϕπ is of the likelihood ratio

type

ϕπ(x) =

{
1, if f(x | θ1) > kπf(x | θ0),
0, if f(x | θ1) < kπf(x | θ0).

Find kπ and relate this quantity to the level of a test.

(b) Let now X | θ be N(θ, 1). We want to test H0 : θ = 0 versus θ1 = 1/2 using the

Bayes solution when the prior is π0 = 1/2. Find K1 and K2 such that Eθ0 ϕπ(X) = 0.05.

(c) Show that any Bayesian test with a prior giving weight to both the null- and the

alternative hypothesis, is the most powerful test of its size. Hint: Use what you know

about Bayes solutions and admissibility.
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Density estimation

Ex. 8.21 Unbiased estimation of a parametric density. (xx earlier nils exercise from

Ch3, not pushed to this Ch8. needs to be connected to sufficiency and completeness,

perhaps to exponential family. xx) Suppose Y1, . . . , Yn are i.i.d. from a parametric density

f(y, θ), like the normal or the Gamma or the Beta. How can we construct an unbiased

estimator of the density function itself? Assume there is a sufficient statistic here, say

T = T (Y1, . . . , Yn).

(a) A very simple estimator for the window probability

p(θ) = Pr(Y ∈ [a, b]) =

∫ b

a

f(y, θ) dy

is p̂ = I(Y1 ∈ [a, b]), using very simply a single data point. Show that it is unbiased.

(b) This also invites the somewhat more intelligent estimator p̄ = n−1
∑n

i=1 I(Yi ∈ [a, b]),

the binomial proportion of data points inside the [a, b] window. Show that it is unbiased

and find a formula for its variance.

(c) Typically this estimator can be beaten, however. Consider indeed

p∗ = E(p̂ |T ) = Pr(Y1 ∈ [a, b] |T ).

Explain why this is actually an estimator, i.e. that it does not depend on the parameter

θ, and that it is unbiased. Show also that the construction E (p̄ |T ) leads to the very

same p∗.

(d) Let fn(y |T ) be the density of a Yi given T . Explain why it does not depend on the

parameter, and that

p∗ =

∫ b

a

fn(y |T ) dy, for all windows [a, b].

(e) Show that fn(y |T ) is unbiased, and also the minimum variance estimator among all

siuch unbiased estimators.

(f) For each of the following parametric densities, find a formula for this minimum

variance unbiased estimator for the density. (i) The N(µ, 1). (ii) The N(0, σ2). (iii) The

two-parameter normal N(µ, σ2). (iv) The exponential θ exp(−θy).

(g) (xx give them 25 data points from a normal, perhaps even a tiny real dataset. plot the

different estimates of both f(y) and of log f(y). convey the point that smallish differences

and nuances are better picked up and seen on the log scale. xx)

Notes and pointers

[xx some notes and pointers here xx]
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III.A

Mini-primer on measure and integration theory

[xx Mini-primer on measures, probabilities on spaces, integration theory. Back-

ground for rest of the book. xx]

Chapter introduction

(xx mini intro to measure theory and integration, background for probability measures,

distributions, densities, models, etc. we also explain in one paragraph that yes, these

things matter, and without them we cannot work properly; on the other hand, for most

of the work we do, also in later chapters, we do not need to think too much about it.

it’s also a matter of becoming basically literate in the probability language underlying

theoretical and also applied statistics. xx)

Various aspects of probability theory, and hence statistics methodology, rest on the

general theory of measure and integration. If all random variables we meet have nice

distributions and densities, on regular domains, like an interval, the real line, or open

subsets of Euclidean spaces, we can get pretty far without this underlying measure and

integration theory. To formulate concepts in natural generality, and to develop tools

and demonstrate basic properties for these, however, one needs this more general theory.

In particular, the business of defining probabilities, for perhaps complicated events in

not-so-standard spaces, demands theory beyond ‘ordinary’ integration.

Essentials of measure, integration, and probability

Ex. A.1 Some set theory. Let Ω be a set, and A,B,A1, A2, . . . subsets thereof. The

union A ∪ B consists of the points ω ∈ Ω that are in A or in B (or in both A and B).

So ∪∞
n=1An = {ω ∈ Ω: ω ∈ An for at least one n }. The intersection A ∩ B consits of

the points ω ∈ Ω that are in A and in B, so ∩∞
n=1An = {ω ∈ Ω: ω ∈ An for all n }. The

complement Ac consists of all the points ω ∈ Ω that are not in A, Ac = {ω ∈ Ω: ω /∈ A}.
The set difference A \B = A ∩Bc, and the symmetric difference of A and B is A∆B =

(A\B)∪ (B \A). We say that A is a subset of B if all the elements of A are also elements

of B, and denote this A ⊂ B. If A ⊂ B and B ⊂ A, then A = B. The collection of all

subsets of Ω, is called the power set and is denoted 2Ω.

639
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(a) Prove the distributive laws distributive

laws

B ∩ (∪∞
n=1An) = ∪∞

n=1(B ∩An), and B ∪ (∩∞
n=1An) = ∩∞

n=1(B ∪An),

and de Morgan’s laws, de Morgan’s

laws

(∪∞
n=1An)

c = ∩∞
n=1A

c
n, and (∩∞

n=1An)
c = ∪∞

n=1A
c
n.

(b) The empty set, denoted ∅, is the set with no element, think of it as ∅ = {}. Write

down a truth table with the columns P : ω ∈ ∅, Q : ω ∈ A, and ‘if P then Q’, to prove

the vacuous truth that the empty set is a subset of any set.

(c) To any function f : Ω → X , there is an associated inverse image. The inverse image,

denoted f−1, is a set mapping f−1 : 2X → 2Ω, defined by

f−1(B) = {ω ∈ Ω: f(ω) ∈ B}, for B ∈ X .

Show that that for subsets B,B1, B2, . . . of X , the inverse image f−1 preserves the set

operations complement, union, and intersection in the sense that f−1(Bc) = (f−1(B))c,

f−1(∪∞
n=1Bn) = ∪∞

n=1f
−1(Bn), and f

−1(∩∞
n=1Bn) = ∩∞

n=1f
−1(Bn).

(d) The sets Ω or X will often be the real line or a subset thereof. For a < b, the open

interval is (a, b) = {x ∈ R : a < x < b}, the closed interval is [a, b] = {x ∈ R : a ≤ x ≤ b},
and so on. If a = b, then (a, b) = ∅ and [a, b] = a. Show that (a, b) = ∪∞

n=1(a, b − 1/n],

[a, b] = ∩∞
n=1(a− 1/n, b], and that {a} = ∩∞

n=1(a− 1/n, a] = ∩∞
n=1(a− 1/n, a+ 1/n).

(e) A subset B of R is open if for any x ∈ B you can fit a little ε-interval (x− ε, x+ ε)

around x. Show that any open set in R is a countable union of open intervals. To do

so, you may consider open intervals with rational endpoints, and recall that a countable

union of countable sets, is countable.

(f) The Cartesian product of two sets A and B is the set A×B = {(a, b) : a ∈ A, b ∈ B}, Cartesian

productof three sets A, B and C it is A × B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}, and so on.

If A = {1, 2, 3} and B = {4, 5} what is A × B? Make small sketches of the Cartesian

products R2 = R× R, and also of R× N, and Z2 = Z× Z.

Ex. A.2 Measurable spaces. Underlying all of statistics and probability is a mathemati-

cal model for randomness. This model consists of three things: a set Ω, called the sample

space, containing all possible outcomes of the random phenomenon we are interested in;

a family A of subsets of Ω, whose members are called events; and a function Pr having

A as its domain and the unit interval as its range, called a probability measure.

(a) We start with a measurable space, say (Ω,A), consisting of a non-empty set Ω and

a collection A of subsets of Ω. The subsets in A are later to be given values, perhaps

probabilities, in terms of a measure. For A, we demand that a σ-algebra of

sets

(i) if A ∈ A, then Ac = Ω \A ∈ A;

(ii) if A1, A2, . . . are in A, then ∪∞
j=1Aj ∈ A.
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A family of subsets A with these properties is called a σ-algebra. Thus, a σ-algebra is

family of subsets that is closed under complements and countable unions. Show that if

A is a σ-algebra, then Ω and the emptyset ∅ are in A. Show that the power set 2Ω is a σ-

algebra. At the other extreme, show that the trivial σ-algebra {∅,Ω} is a σ-algebra. And

somewhat intermediately, show that if A ⊂ A is some nonempty set, then {∅, A,Ac,Ω}
is an σ-algebra. For a different type of example, consider A, all subsets of R which are

either empty, finite, or countably infinite, or whose complements are either empty, finite,

or countably infinite. Show that A is a σ-algebra.

(b) Show that if A is a σ-algebra, with B,A1, A2, . . . ∈ A, then also A1∩A2, A1∩A2∩A3,

and even ∩∞
i=1Ai, is in A. Show that sets like A1 ∩ (A2 ∪A3 ∪A4)

c ∩A5, B ∩ (∪∞
n=1An),

and A \B are in A.

(c) Show that an intersection of σ-algebras must be a σ-algebra. Hence we may start by

identifying a list of basis events, finite or infinite, say B0, and then define B = σ(B0), as

the smallest σ-algebra containing all sets in B0. The σ-algebra B is said to be generated

by B0, and B0 is called a generating family. Working with basis events that generate a

σ-algebra is much more convenient than trying to somehow list all types of subsets of

the σ-algebra.

(d) A famous and important example of a generated σ-algebra is the Borel-σ-algebra

on the real line, denoted B(R), defined as the σ-algebra generated by all open intervalsthe

Borel-σ-algebra (a, b). Show that sets {a}, [a, b], [a, b), (a, b], (−∞, b), (−∞, b], (a,∞), [a,∞), as well

as all countable unions and intersections of these, are then also in B(R). Show also

that any of the families {(a,∞) : a ∈ R}, {[a,∞) : a ∈ R}, {(−∞, a) : a ∈ R}, and

{(−∞, a] : a ∈ R} also generates B(R).

(e) Similarly to the real case, we define B(Rk), the Borel-σ-algebra on of Rk, as the

σ-algebra generated by all rectangles (a1, b1) × · · · × (ak, bk). Show that Bk then also

must contain all closed rectangles [a1, b1]× · · · × [ak, bk], all rectangles of half-open sets

(a1, b1]× · · · × (ak, bk], etc., and also all open sets of Rk.

(f) Let B0 be the collection of all intervals of the form (−∞, q], with q ∈ Q. Show

that σ(B0) = B(R). A σ-algebra generated by a countable collection of sets is said to

be separable. Let (Ω, d) be a separable metric space, i.e., Ω contains a countable and

dense subset. Show that the smallest σ-algebra on Ω that contains all the open sets is a

separable σ-algebra.

(g) If (Ω1,F) and (Ω2,G) are two measurable spaces, then we can construct the product

space (Ω1 × Ω2,F ⊗ G), where the product σ-algebra F ⊗ G is the smallest σ-algebra on

the Cartesian product Ω1 × Ω2 that contains all sets of the form F × G, where F ∈ F
and G ∈ G. Show that if Ω1 = Ω2 = R and F = G = B(R), then B(R)⊗ B(R) = B(R2).

Generalise to dimension k > 2.

(h) Plus and minus infinity will occur naturally as limits of sequences of real functions.

Consider, for example, fn(x) = (
√
n/2π) exp(− 1

2nx
2) for n = 1, 2, . . ., i.e., the density

of the mean of n independent standard normals. Define the extended real numbers R̄ =extended real

numbers
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R∪{−∞,∞}. Similarly, R̄+ = R∪∞. If we allow for functions taking values in R̄, then
fn(x) converges pointwise to f(x), where f(x) = 0 if x ̸= 0, and f(x) = ∞ if x = 0.

Show that the Borel-σ-algebra on R̄ is B(R̄) = σ(B(R),−∞,∞); or, equivalently, the

σ-algebra generated by B0 = {(a, b), [−∞, b), (a,∞] : a, b ∈ R}. Show similarly, that the

Borel-σ-algebra on R̄+ is σ(B(R+),∞).

(i) In general, the Borel-σ-algebra on a set X is defined as the σ-algebra generated by

all the open sets in X , where open is defined in terms of a metric or a topology on

X . Consider the space C[0, 1] = {all continuous functions f : [0, 1] → R}, equipped with

d(f, g) = supx∈[0,1] |f(x)−g(x)|. The space (C[0, 1], d) is a separable metric space (as we

will see in Ex. 9.5). The open ε-ball around g ∈ C[0, 1] is Bε(g) = {f ∈ C[0, 1] : d(f, g) <

ε}, and the Borel-σ-algebra on C[0, 1] is the smallest σ-algebra containing all the open

balls. Show that this σ-algebra is generated by ∪ε∈Q∩(0,∞){Bε(g1), Bε(g2), . . .}, where
{g1, g2, . . .} is dense in C[0, 1]; and also by the collection of sets of the form {f ∈
C[0, 1] : (f(x1), . . . , f(xn)) ∈ B1 × · · ·Bn} where B1, . . . , Bn ∈ B(R) and 0 ≤ x1 <

x2 < · · · < xn ≤ 1.

Ex. A.3 Measurable functions. Let (Ω,A) and (X ,B) be two measurable spaces. A

function f : Ω → X is A/B-measurable if f−1(B) ∈ A for all B ∈ B. When it is clear

what σ-algebras are involved, we simply say that f is measurable. When X is R, R̄, or
C, B will always be the Borel-σ-algebra.

(a) In view of the efforts in Ex. A.2, the following lemma, tells much of the story of

this exercise. Let (Ω,A) and (X ,B) be two measurable spaces, and suppose that B0

is a collection of subsets of X that generates B. Then f is measurable if and only if

f−1(B0) ∈ A for all B0 ∈ B0. Look back at Ex. A.1(c), and prove this lemma.

(b) On a measurable space (Ω,A), let f : Ω → R be a measurable function. Show that

f−1(a, b) ∈ A for all open intervals (a, b), and that this might as well be taken as our

definition of measurability for real valued functions. In particular, show that the sets

f−1{a}, f−1[a, b), f−1(a, b], f−1(−∞, b) f−1(−∞, b], f−1(a,∞), and f−1[a,∞) are all

in A. Generalise to extended real valued measurable functions f : Ω → R̄.

(c) Suppose that (Ω, d) is a a metric space equipped with its Borel-σ-algebra, and let

f : Ω → R̄ be a continuous function. Show that f is measurable.

(d) We will frequently use the characteristic function, a function taking values in the

complex plane. An open subset of C can be identified with the open subsets of R2. For

example, and open box in C is {x+ iy : a < x < b, c < y < d}. Therefore, any collection

of subsets of R2 that generates B(R2) can, by making the appropriate identifications, be

used to generate B(C). Let f = g + ih be a complex valued function on the measurable

space (Ω,A), for measurable functions g, h : Ω → R. Show that f is measurable if and

only if g and h are measurable. In particular, use (c) to show that function exp(ix) =

cos(x) + i sin(x) is measurable.

(e) Let f : Ω → X be a measurable function between (Ω,A) and (X ,B). The σ-algebra

generated by f is the smallest σ-algebra on Ω such that f is measurable, i.e., the inter-

section of all σ-algebras with respect to which f is measurable. We denote it σ(f), and
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clearly, σ(f) ⊂ A. Show that σ(f) = {f−1(B) : B ∈ B}, and that if X = R̄ and B = B(R̄),
then σ(f) may be generated by the collection of sets π(f) = {{ω ∈ Ω: f(ω) ≤ x} : x ∈ R}.

(f) First, let f1, . . . , fn be finitely many measurable functions. Show that max(f1, . . . , fn)

and min(f1, . . . , fn) are measurable. Next, let f1, f2, . . . be a sequence of extended real

valued measurable functions. Show that supn≥1 fn and infn≥1 fn are also measurable

functions. Show that if 0 ≤ g1 ≤ g2 ≤ · · · is a sequence of functions where gn(ω) is

nondecreasing (in n) for each ω, then the limit function g, with g(ω) = limn→∞ gn(ω),

is also measurable. Next, show that lim supn→∞ fn and lim infn→∞ fn are measurable.

Finally, show that, if it exists, the limit function f(ω) = limn→∞ fn(ω) is a measurable

function.

(g) A simple function is a function taking on only finitely many values, meaning thatSimple

functions if g is a simple function it can be written g =
∑k

j=1 cjIAj for sets A1, . . . , Ak ∈ A such

that ∪k
j=1Aj = Ω and real constants c1, . . . , ck. If the A1, . . . , Ak are disjoint we say that

g is a simple function on standard form. With f any nonnegative measurable function

on (Ω,A), show that the sequence of simple functionsApproximation

by simple

functions

fn(ω) =

n2n∑
k=1

k − 1

2n
IAn,k

(ω) + nIAn
(ω),

with An,k = {ω ∈ Ω: (k − 1)/2n ≤ f(ω) < m/2n} and An = {ω ∈ Ω: f(ω) ≥ n}, is
measurable, and is such that 0 ≤ f1 ≤ f2 ≤ · · · and f(ω) = limn fn(ω) for each ω.

(h) On (Ω,A), let f, g : Ω → R be measurable functions, and let a, b be constants. Show

that af + bg, fg, and f/g if g ̸= 0 are measurable.

(i) Let f : Ω → X and g : X → R̄ be measurable functions, on the measurable spaces

(Ω,A) and (X , C), respectively. Show that the composition g(f(·)) : Ω → R̄ is measurable.

(j) In (i), it is important that g is C-measurable. Let C′ be a σ-algebra on X , containing

at least one set, for example C ′, that is not in C. Define g = IC′ , and let h = g(f(·)),
with f the A/C-measurable function from (i). Show that h is not measurable. [xx can

make this more concrete, see, e.g. Romano and Siegel (1986, p. 36) xx]

Ex. A.4 Measure and measure spaces.. A measure µ on a measurable space (Ω,A) is a

function µ : A → [0,∞], giving values to all sets A in A, with the following properties:

(i) µ(∅) = 0, for the empty set;

(ii) µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai), for A1, A2, . . . disjoint sets in A, .

The resulting triple (Ω,A, µ) is called a measure space. We say that µ is a finite measure

if µ(Ω) is finite. Prime examples of finite measures are those with µ(Ω) = 1, such

measures are probability measures, to be returned to in the rest of this book. If Ω can be

represented as a countable union ∪∞
i=1Ai of measurable sets, with each µ(Ai) finite, we

say that µ is a σ-finite measure.σ-finite measure
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(a) Show that countable additivity implies finite additivity, namely µ(A1 ∪ · · · ∪ An) =

µ(A1) + · · ·µ(An) for any finite sequence of disjoint measurable sets. Show also that if

A,B ∈ A and A ⊂ B, then µ(A) ≤ µ(B). Deduce that µ(∪∞
i=1Ai) ≤

∑∞
i=1 µ(Ai), for any

sequence of sets A1, A2, . . . in A.

(b) Suppose that A1 ⊂ A2 ⊂ · · · is a nondecreasing sequence of sets in A. Show that Continuity of

measureν(∪∞
n=1An) = limn→∞ ν(An). Suppose now that A1 ⊃ A2 ⊃ · · · is a decreasing sequence

in A. Show that ν(∩∞
n=1An) = limn→∞ ν(An), provided ν(An) is finite for some n.

(c) Let ν be a finitely additive measure. That is, a function ν : A → [0,∞], such that (i)

ν(∅) = 0, and (ii) ν(A ∪ B) = ν(A) + ν(B) for all disjoint sets A,B ∈ A. Suppose that

for any nondecreasing sequence A1 ⊂ A2 ⊂ · · · in A it is the case that ν(∪∞
n=1An) =

limn→∞ ν(An). Show that ν is a measure. Suppose that for any nonincreasing sequence

B1 ⊃ B2 ⊃ · · · in A such that ∩∞
n An = ∅, we have limn→∞ ν(Bn) = 0. Show that ν is a

measure, provided ν(Ω) is finite [xx check xx]. In other words, countably additivity is a

continuity property in disguise.

(d) Let (Ω,A, µ) be a measure space with no atoms, that is, µ({ω}) = 0 for all ω ∈ Ω.

Show that µ(A) = 0 for any countable set A ∈ A.

(e) Let µ be a measure on (R,B(R)) such that µ((a, b)) = b− a. Show that (R,B(R), µ)
has no atoms, and that µ([a, b]) = µ((a, b]) = µ([a, b)) = b − a. This measure, called

Lebesgue measure, is constructed in Ex. A.7.

(f) Consider the σ-algebraA of those subsets of R which are empty, or finite, or countably

infinite, or complements of such sets. Let ν(A) be the simple measure which counts the

number of elements in A. Show that it defines a measure, called the counting measure, counting

measureand that it is not finite nor σ-finite.

(g) Consider the σ-algebra 2N of all subsets of N = {1, 2, . . .}. Let ν be the counting

measure. Show that ν is σ-finite.

(h) Let (Ω,A, ν) be a measure space, (X ,B) a measurable space, and f : Ω → X a

measurable function. Define the set function νf−1(B) = µ(f−1(B)) for B ∈ B. Show

that νf−1 is a measure on B.

Ex. A.5 π-systems, d-systems, monotone classes. We often need to prove that a certain

property of a measure, an integral, or the like, holds for all sets in a σ-algebra. Without

further tools this is a tall order, simply because it can be exceedingly hard to give

‘closed form’ characterisations of all the elements of a σ-algebra. Think, for example,

of the Borel-σ-algebra on the real line, how are you to describe all its elements without

recourse to the family of sets that generates it? This is the motivation for the definitions

and results we introduce in this exercise. We start with the definitions we need: Let C
be a collection of subsets of a set Ω, then C is

- an algebra if it is closed under complements and finite unions;

- a π-system if A ∩B ∈ C for every A,B ∈ C;
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- a d-system if (i) Ω ∈ C; (ii) A ⊂ B then B \ A ∈ C for A,B ∈ C; and (iii) if

A1 ⊂ A2 ⊂ · · · are in C then ∪∞
n=1An ∈ C.

- a monotone class if (i) A1 ⊂ A2 ⊂ · · · are in C then ∪∞
n=1An ∈ C, and (ii) if

A1 ⊃ A2 ⊃ · · · are in C then ∩∞
n=1An ∈ C;

(a) Show that the collection of sets π(f) defined in A.3(e) is a π-system.

(b) Show that (i) an algebra is a π-system; (ii) a d-system is a monotone class; (iii) a

σ-algebra is a π-system, a d-system, and a monotone class; (iv) a collection of sets that

is both an algebra and a monotone class is a σ-algebra; (v) a collection of sets that is

both a π-system and a d-system is a σ-algebra.

(c) If Π is a π-system, and D a d-system that contains Π, then σ(Π) ⊂ D. In particularDynkin’s lemma

σ(Π) = d(Π), where d(Π) is the smallest d-system containing Π. In (d) we will get a

glimpse of the power of this lemma. Here, we prove it, step by step. Step 1: Explain why

it is enough to prove that d(Π) is a π-system. Step 2: To prove that d(Π) is a π-system,

form the set d(Π)A = {B ∈ d(Π): A∩B ∈ d(Π)}, and show that if A ∈ d(Π), then d(Π)A
is a d-system. Step 3: Show that if A ∈ Π, then d(Π) ⊂ d(Π)A. Step 4: Show that if

A ∈ d(Π), then we still have that d(Π) ⊂ d(Π)A. Step 4: Conclude from the above that

d(Π) is a π-system.

(d) Let ν and µ be measures on (Ω,A) such that ν(Ω) = µ(Ω) is finite, and suppose ν

and µ agree on a π-system that generates A, i.e., A = σ(Π). Consider the collection of

sets given by

D = {A ∈ A : ν(A) = µ(A)}.

Since Π ⊂ σ(Π) = A and ν(A) = µ(A) for all A ∈ Π, it is clearly the case that Π ⊂ D.

Show that D is a d-system and conclude from (c) that ν = µ.

(e) We now turn to a theorem that is quite similar to that proved in (c), the differenceMonotone class

theorem being that our basis events form an algebra, and an algebra is a π-system, but the reverse

need not hold. Here is the theorem: Let Ω be a set, and A0 an algebra of subsets of

Ω. Suppose that M is a monotone class of subsets of Ω and that A0 ⊂ M. Then

σ(A0) ⊂ M. To prove this, we proceed in steps. Step 1: Let m(A0) be the smallest

montone class containing A0, and argue that it suffices to prove that m(A0) is a σ-

algebra. Step 2: Show that m(A0) is closed under countable unions. Step 3: Form the

set Mc = {B ∈ m(A0) : B
c ∈ m(A0)}, argue why it is now sufficient to prove that Mc

is a monotone class, and prove that Mc is indeed a monotone class.

(f) If A0 is an algebra, a natural question is how much bigger than A0 the σ-algebra

it generates is. A partial answer to this question can be given by an application of the

monotone class theorem from which we conclude that if A0 is an algebra, then every

set in the σ-algebra generated by A0 can be approximated arbitrarily well by sets from

A0. To make this precise, let (Ω,A, ν) be a finite measure space. Let A0 be an algebra

contained in A, and form the family of subsets

M = {A ∈ A : for any ε > 0 there is an A0 ∈ A0 such that ν(A∆A0) < ε}.
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Here, A∆B = (A \ B) ∪ (B \ A) is the symmetric difference of the sets A and B. Show

that ν(∪∞
j=1Aj∆ ∪∞

j=1 Bj) = ν(∩∞
j=1A

c
j∆ ∩∞

j=1 B
c
j ) ≤

∑∞
j=1 ν(Aj∆Bj), which you may

use to show that M is a monotone class, and appeal the monotone class theorem to

conclude that given A ∈ σ(A0) and ε > 0, we can find A0 ∈ A0 so that ν(A∆A0) < ε.

(g) Let ν and µ be two finite measures on (Ω,A) such that ν = µ on an algebra A0

contained in A, and consider the collection of sets M = {A ∈ A : µ(A) = ν(A)}. Use a

monotone class argument to show that ν = µ on the σ-algebra generated by A0.

(h) The measures in (g) need not be finite. Suppose that Ω = ∪∞
n=1An for sets A1, A2, . . .

in the algebra A0 on which µ and ν agree, and that µ(An) and ν(An) are finite for

n = 1, 2, . . ., then µ = ν on σ(A0). To prove this, fix Cn, show that collection of sets

Mn = {A ∈ A : µ(A∩Cn) = ν(A∩Cn)} forms a monotone class, and take it from there.

Ex. A.6 Lifting good candidates to bona fide measures. An important and useful general

result from measure theory is Carathéodory’s Extension Theorem. The point of this

theorem is to lift a set function defined on simpler subsets of a set than those contained

in a σ-algebra, to bona fide measures defined on the full σ-algebra. We start out with a

set function ν0 : A0 → [0,∞] working on subsets A0 of an algebra A0 of subsets of a set

Ω. Suppose that ν0 has the properties (i) ν0(∅) = 0; and (ii) if A1, A2, . . . is a disjoint Carathéodory’s

Extension

Theorem
sequence in A0 whose union happens to be in A0, then µ0(∪∞

n=1An) =
∑∞

n=1 µ0(An).

Under these conditions, Carathéodory’s Extension Theorem says that ν0 on A0 can

be lifted to a full measure ν on σ(A0), with ν(A) = ν0(A) for all A ∈ A0. Also, if

Ω = ∪n
n=1An for sets A1, A2, . . . in A0 and µ0(An) < ∞ for all n, then this extension is

unique.

Notice that if A0 had been a σ-algebra, and not merely an algebra, then ν0 would

have been a measure. This is what distinguishes the present theorem from the results

of Ex. A.5(d) and Ex. A.5(g), where ν and µ were assumed to be defined on σ-algebras,

that is, they were assumed to be measures. In the extension theorem, by contrast, ν0
has measure-like properties, but is only defined on an algebra.

Let us also mention the variations of Carathéodory’s Extension Theorem where the

function µ0, instead of being defined on an algebra, as here, is defined on a semialgebra

or on a semi-ring. A semialgebra, say S, is a collection of subsets of a set Ω such

that (i) if A,B ∈ S, then A ∩ B ∈ S; and (ii) if A ∈ S, then Ac = ∪n
j=1Bj for

B1, . . . , Bn ∈ S. A semi-ring, say R, is a collection of subsets of a set Ω such that (i)

∅ ∈ R; (ii) if A,B ∈ R, then A ∩B ∈ R; and (iii) if A,B ∈ R, then A \B = ∪n
j=1Cj for

C1, . . . , Cn ∈ R. The advantage with these two variations of Carathéodory’s Extension

Theorem is that natural basis events often constitute a semialgebra or a semi-ring, but

not an algebra. For example, S = {all intervals on R} is a semialgebra, but not an

algebra; and R = {(a, b] : a, b ∈ R} is a semi-ring, but not an algebra. An algebra, on the

other hand, is both a semialgebra and a semi-ring. The reader might verify these claims.

Assuming that the basis events constitute a semialgebra or a semi-ring, rather than an

algebra, therefore amounts to imposing weaker conditions than we do here, and, as a

consequence, the proof is more involved than with the algebra version of the extension

theorem. We now prove the extension theorem, as stated above, through a string of

exercises.
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(a) Let A0 be an algebra of subsets of a set Ω, and let λ : A0 → [0,∞] be such that

λ(∅) = 0. Consider the collection of elements of A0 that splits every element of A0 ‘as it

should’, namely

Aλ
0 = {B ∈ A0 : λ(B ∩A) + λ(Bc ∩A) = λ(A) for all A ∈ A0}.

Show that Aλ
0 is an algebra, and that λ is finitely additive on Aλ

0 .

(b) If A is a σ-algebra of subsets of Ω, the set function λ : A → [0,∞] is called an outer

measure if

(i) λ(∅) = 0;

(ii) A,B ∈ A with A ⊂ B, then λ(A) ⊂ λ(B);outer-measure

(iii) if A1 ⊂ A2 ⊂ · · · are sets in A, then λ(∪∞
j=1Aj) ≤

∑∞
j=1 λ(Aj).

Carathéodory’s lemma (not the theorem yet) says that if λ is an outer measure on theCarathéodory’s

lemma measurable space (Ω,A), then the collection of elements of the σ-algebra A that splits

every element of A ‘as it should’, that is

Aλ = {B ∈ A : λ(B ∩A) + λ(Bc ∩A) = λ(A) for all A ∈ A},

form a σ-algebra, and λ is countably additive on Aλ, meaning that (Ω,Aλ, λ) is a measure

space. Let B1, B2, . . . be a sequence of sets in Aλ, and set B = ∪∞
j=1Bj . To show that

λ(A) = λ(A ∩ B) + λ(A ∩ Bc) for any A ∈ A, show that λ(A) ≤ λ(A ∩ B) + λ(A ∩ Bc)

and λ(A) ≥ λ(A∩B)+λ(A∩Bc). For the latter inequality, consider sets Cn =
∑n

j=1Bj ,

and use that from (a), λ is finitely additive.

(c) We are now ready for the extension theorem, as stated in the introduction to this

exercise, and prove this theorem in three steps. Step 1: For G ∈ 2Ω, define

λ(G) = inf{
∑
j≥1

µ0(Fj) : F1, F2, . . . ∈ A0 such that G ⊂ ∪j≥1Fj},

and prove that λ is an outer measure. By (b), λ is a measure on (Ω,Aλ), with Aλ defined

as in (b) (so A = 2Ω). This observation leads to the two final steps. Step 2: Show that

A0 ⊂ Aλ. Step 3: Show that λ = µ0 on Aλ. We can then define µ to be the restriction

of λ to A = σ(A0) ⊂ Aλ, with the inclusion coming from the already proven fact that

Aλ is a σ-algebra.

(d) Point to Ex. A.5(h) to argue that if Ω = ∪∞
n=1An for sets A1, A2, . . . ∈ A0 with

µ(An) <∞ for n = 1, 2, . . ., then the extension is unique.

Ex. A.7 Lebesgue measure. In this exercise we apply Carathéodory’s extension theorem

to the construction of Lebesgue measure on R. The basic property of Lebesgue measure,

say λ, is that for any interval

λ((a, b)) = λ([a, b]) = λ((a, b]) = λ([a, b)) = b− a,

the length of the interval in question. We want to have λ as a measure on the Borel-

σ-algebra B(R), but it is not at all obvious that such a measure exists. Recall from
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Ex. A.2 that the only way we mange to describe the elements of B(R) are via the various

generating classes (e.g. all open intervals), so how are we then to describe λ(B) for some

arbitray set B in B(R)? The solution is to define λ for a simpler class of subsets of R,
and then use Carathéodory’s theorem to extend the domain of λ to all of B(R).

(a) Let S be the collection of all half-open intervals (a, b] on R (if a ≥ b, then (a, b] = ∅),
as well as all infinite intervals of the form (−∞, b] and (a,∞). Let A0 be a collection of

sets consisting of all finite disjoint unions of elements of S. Show that A0 is an algebra,

and that B(R) = σ(A0).

(b) We define λ : A0 → [0,∞] to be such that λ((a, b]) = b− a when a, b are finite, and

to be ∞ when at least one of them are not. Thus, λ gives what we think of as the length

of an interval. For disjoint intervals I1, . . . , Ik ∈ S, define

λ(∪n
j=1Ij) = λ(I1) + · · ·+ λ(In),

so, in particular, if Ij = (aj , bj ] with aj , bj ∈ R for j = 1, . . . , n, then λ(∪n
j=1(aj , bj ]) =∑n

j=1(bj − aj). Show that this is unambiguous, meaning that if ∪n
j=1Ij = ∪m

i=1I
′
i, then

λ(∪n
j=1Ij) = λ(∪m

i=1I
′
i).

(c) Show that λ(∅) = 0, and that λ is finitely additive on A0. In order to lift λ from

the algebra A0 on which it is currently defined to the σ-algebra B(R) that A0 generates,

we need to show that λ is countably additive on A0. This is the hard part. We start

by showing that if ∪∞
j=1(aj , bj ] = (a, b] for disjoint intervals (a1, b1], (a2, b2], . . ., then

λ(a, b] =
∑n

j=1 λ(a, b]. To prove this equality, prove the inequality both ways. First, show

that if ∪n
j=1(aj , bj ] ⊂ (a, b], for disjoint (a1, b1], . . . , (an, bn], then

∑n
j=1 λ(aj , bj ] ≤ λ(a, b].

Second, if (a1, b1], (a2, b2], . . . are disjoint, and ∪∞
j=1(aj , bj ] ⊂ (a, b], then

∑∞
j=1 λ(aj , bj ] ≤

λ(a, b]. Now we get to the reverse inequality. Third, show that if (a, b] ⊂ ∪n
j=1(aj , bj ],

then λ(a, b] ≤
∑n

j=1(aj , bj ]. Fourth, if (a, b] ⊂ ∪∞
j=1(aj , bj ], then λ(a, b] ≤

∑∞
j=1(aj , bj ].

To prove this fourth claim, note that for any ε > 0 smaller than b− a,

[a+ ε, b] ⊂ (a, b] ⊂ ∪∞
j=1(aj , bj ] ⊂ ∪∞

j=1(aj , bj + ε/2j).

Thus, the closed and bounded set [a+ε, b] is covered by the open sets (a1, b1+ε/2), (a2, b2+

ε/4), (a3, b3+ε/8), . . ., so by the Heine–Borel theorem it must then have a finite subcover,

i.e., [a+ ε, b] is compact. Take it from here.

(d) Show that λ extends to a measure on Borel σ-algebra B(R), and that this extension,

which is Lebesgue measure on the real line, is unique (see Ex. A.6(d)).

(e) Now that we have Lebesgue measure on the real line, we can construct Lebesgue

measure on any subinterval of the real line, for example ([0, 1],B[0, 1]) or ([0,∞),B[0,∞).

Construct Lebesgue measure on these two measurable spaces.

(f) Establish similarly Lebesgue measure on (R2,B2), i.e. on the plane, with its Borel

sets, starting from the area of rectangles λ((a1, b1) × (a2, b2)) = (b1 − a1)(b2 − a2). Via

the Carathéodory lifting, this gives rise to a well-defined way of measuring the area of

any Borel subset A on the plane.
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(g) Once the fundamental Lebesgue measure has been properly put on the map, it will

be easy to define classes of others, via cumulative distribution functions and densities;

see Ex. A.14 and A.20 below. It is nevertheless useful to go through direct arguments,

resembling those for the Lebesgue measure itself, for a few concrete instances. Do this for

the measures µ and ν on the positive halfline, starting with respectively µ(a, b) = log(b/a)

and ν(a, b) = b2 − a2, for intervals (a, b).

Ex. A.8 Almost surely and infinitely often. Let (Ω,A, µ) be a measure space. A

property is said to hold µ almost surely, or µ-a.s., or simply a.s. if there is no confusion

about the underlying measure, if it holds for for all ω outside of a set of µ-measure zero.

(a) Let (R,B(R), λ) be a measure space with λ Lebesgue measure. Look back at

Ex. A.4(e) to show that the indicator function IR\Q = 1 almost surely.

(b) From Ex. A.2(h), recall the sequence fn(x) = (
√
2π/n)−1 exp(− 1

2nx
2) for n =

1, 2, . . ., defined on the measure space (R,B(R), λ). Show that fn → 0 almost surely.

(c) Suppose that the sequence of measurable functions f1, f2, . . . converges to f almost

surely. Show that f is measurable. Compare this to what you showed in Ex. A.3(f).

(d) Let (Ω,A, µ) be a measure space and A1, A2, . . . a sequence of sets in A. Show that

lim supn→∞An = ∅ if and only if limn→∞ µ(∪∞
m=nAm) = 0.

(e) Let A1, A2, . . . be a sequence of sets, and IA1
, IA2

, . . . the corresponding sequence of

indicators functions. Show that lim infn→∞ IAn
(ω) = 1 if and only if ω ∈ ∪n≥1∩m≥nAm.

Show also that lim supn→∞ IAn
(ω) = 1 if and only if ω ∈ ∩n≥1 ∪m≥n Am. These two

equivalences motivate the definitions

lim inf
n→∞

An = ∪n≥1 ∩m≥n Am, and lim sup
n→∞

An = ∩n≥1 ∪m≥n Am.

Show that these sets are measurable provided the sets A1, A2, . . . are. In probability and

statistics one encounters the notion of something occurring infinitely often, or i.o. This

notion is defined by

Ai.o. = lim sup
n→∞

An = ∩n≥1 ∪m≥n Am

= {ω ∈ Ω: for every n there is an m = m(ω) ≥ n such that ω ∈ Am}
= {ω ∈ Ω: ω ∈ An for infinitely many n}.

(f) Let (Ω,A, µ) be a measure space and assume that A1, A2, . . . ∈ A are such thatBorel–Cantelli

lemma ∑∞
n=1 µ(An) <∞. Show that µ(Ai.o.) = 0. In Ex. A.19 we will study several illustration

of the use of this lemma, and also see that it has a partial converse.

(g) Let (Ω,A, µ) be a measure space, and let A1, A2, . . . ∈ A. Show thatFatou’s lemma

for sets

µ(lim inf
n→∞

An) ≤ lim inf
n→∞

µ(An).

This inequality, known as Fatou’s lemma, holds not only for sequences of indicator func-

tions, but, as we will see in Ex. A.11(b), for any sequence of nonnegative measurable

functions.
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Ex. A.9 Convergence in measure/probability. Let f, f1, f2, . . . be measurable functions

on a measurable space (Ω,A, µ). The sequence f1, f2, . . . converges to f in measure, if

for any ε > 0,

lim
n→∞

µ({ω ∈ Ω: |fn(ω)− f(ω)| ≥ ε}) = 0.

If µ(Ω) = 1, so that µ is a probability measure, then convergence in measure is called

convergence in probability. convergence in

probability

(a) If fn → f almost surely, then fn → f in measure. To show this, consider the sets

An = {ω ∈ Ω: |fn(ω)− f(ω)| ≥ ε} for some ε > 0, show that ∩n≥1 ∪m≥n An ⊂ A, where

A is the set where fn(ω) does not converge to f(ω), and take it from there.

(b) Show that if fn → f in measure, then there is a subsequence fnj
such that fnj

→ f

almost surely. To construct such a subsequence, you may use the Borel–Cantelli lemma

from Ex. A.8(f).

(c) Let ([0, 1],B, λ) be the unit interval with the Borel-σ-algebra and the Lebesgue mea-

sure. Divide the unit interval in 2, 3, . . . pieces: A1 = [0, 1/2], A2 = (1/2, 1], A3 = [0, 1/3],

A4 = (1/3, 2/3], A5 = (2/3, 1], and so on. Define the function fn(x) = I(x ∈ An). Show

that fn → 0 in measure, but not almost surely.

Ex. A.10 The Lebesgue integral. After having defined measures and measurable func-

tions, the next goal is to form a well-defined integral, say
∫
f dν =

∫
f(ω) dµ(ω), with

(Ω,A, µ) a measure space, and with f : Ω → R̄ a measurable function.

(a) We start with f a nonnegative and simple function on standard form, that is, f is

on the form f = a1IA1
+ · · · + akIAk

for some n ≥ 1, with disjoint sets A1, . . . , Ak ∈ A
such that ∪k

j=1Ak = Ω, and nonnegative real constants a1, . . . , an. We then define the

integral of f as ∫
f dµ = a1µ(A1) + · · ·+ akµ(Ak). (A.1)

If any of these sets have infinite measure and coefficient zero, we follow the measure

theoretical convention that 0 · ∞ = 0. Show that (A.1) is unambiguous, giving the

same value for different representations of the same simple function, i.e., show that if

g = b1IB1
+ · · · + bnIBn

is another nonnegative simple function on standard form such

that g(ω) = f(ω) for all ω ∈ Ω, then
∫
g dµ =

∫
f dµ.

(b) Show that
∫
f dµ, as defined in (A.1), is linear and nondecreasing. That is, for non-

negative and simple functions on standard form f and g, and nonnegative real constants

a, b, we have
∫
(af + bg) dµ = a

∫
f dµ+ b

∫
g dµ; and if f ≤ g, then

∫
f dµ ≤

∫
g dµ.

(c) Next, we extend the integral to any nonnegative measurable function f : Ω → R̄+.

To do so, pick a sequence of nonnegative simple functions 0 ≤ f1 < f2 < · · · such that

fn → f , the existence of which is guaranteed by Ex. A.3(g), and define∫
f dµ = lim

n→∞

∫
fn dµ.

We need to prove that
∫
f dµ is independent of the approximating sequence fn. To do

this, let 0 ≤ g1 < g2 < · · · be some other sequence of nonnegative simple functions on
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standard form converging to f , and show, first, that limn→∞
∫
gn dµ ≤

∫
f dµ. Second,

consider the sets An = {ω ∈ Ω: gn(ω) ≥ fk(ω)}, argue that lim infn→∞ IAn
fk = fk, and

use Fatou’s lemma (Ex. A.8(g)) to show the reverse inequality, limn→∞
∫
gn dµ ≥

∫
f dµ.

(d) Let’s look at some of the properties of the integral defined in (d). Let f, g : Ω → R̄+

be measurable, and show that the integral is (i) linear
∫
(af+bg) dµ = a

∫
f dµ+b

∫
g dµ;

and (ii) nondecreasing, if f ≤ g almost surely, then
∫
f dµ ≤

∫
g dµ. Show also that (iii)∫

f dµ = 0 if and only if f = 0 almost surely; (iv) if f > 0 almost surely, then
∫
f dµ > 0;

(v) if f = g almost surely, then
∫
f dµ =

∫
g dµ; (vi) if

∫
A
f dµ =

∫
A
g dµ for all A ∈ A

and µ is σ-finite, then f = g almost surely; and (vii) if
∫
f dµ <∞, then f <∞ almost

surely.

(e) Now, we extend the integral to measurable functions f : Ω → R̄ taking on positive

and negative values. This requires some more care, for if a nonnegative function f equals

∞ on a set of positive measure, then we can set
∫
f dµ = ∞, but this does not work

for functions taking on really large positive and really small negative values, as we may

end up in ∞−∞ type trouble. Therefore, the integral of functions taking values in R̄
is only defined for those functions that are integrable. For a fully general measurable f ,

we may represent it as f = f+ − f−, where f+ = max(f, 0) and f− = max(−f, 0) are

two nonnegative measurable functions (see Ex. A.3(f)). We say that f is integrable if∫
|f |dµ is finite. For integrable functions f , we then define∫

f dµ =

∫
f+ dµ−

∫
f− dµ.

Show that f is integrable if and only if
∫
f+ dµ and

∫
f− dµ are finite. Show also that if

µ is a finite measure, and f is bounded, then f is integrable.

(f) If A is measurable and f is a measurable function, show that fIA is measurable too.

We can hence define
∫
A
f dµ =

∫
IAf dµ, where, in the case that f takes both positive

and negative values, we require that IAf is integrable.

(g) Assume that f, g : Ω → R̄ are two integrable, measurable functions, and let a, b ∈ R
be constants. Show that af + bf is measurable and integrable, and that

(i)
∫
(af + bg) dµ = a

∫
f dµ+ b

∫
g dµ;

(ii) if f ≤ g, then
∫
f dµ ≤

∫
g dµ;

(iii) |
∫
f dµ| ≤

∫
|f |dµ;

(h) Some more properties of the integral defined in (e). Let f, g : Ω → R̄ be measurable

functions, and A,B ∈ A. Show that (i) if A ⊂ B are measurable sets, then
∫
A
f dµ ≤∫

B
f dµ; (ii) if µ(A) = 0, then

∫
A
f dµ = 0; (iii) if f is integrable and f = 0 almost surely,

then
∫
f dµ = 0; (iv) if f = g almost surely, then

∫
f dµ =

∫
g dµ; and (v) if f and g are

integrable and
∫
A
f dµ =

∫
A
g dµ for all A ∈ A, then f = g almost surely.

(i) Let f = g + ih be a measurable complex valued function defined on the measurable

space (Ω,A, µ), where g, h : Ω → R are measurable functions (see Ex. A.3(d)). Since

|f | ≤ |g| + |h|, we see that f is integrable, i.e.,
∫
|f |dµ < ∞, if g and h are. For an
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integrable f : Ω → C we define
∫
f dµ =

∫
g dµ + i

∫
hdµ. Show that linearity of the

integral, (g)(i), extends to the integral of complex valued functions, where now a, b ∈ C;
and that the inequality |

∫
f dµ| ≤

∫
|f |dµ also holds for complex valued functions.

Ex. A.11 Convergence theorems. One of the main objectives of the integration theory

developed in the preceding exercises is to find general criteria for when limn→∞
∫
fn dµ =∫

limn→∞ fn dµ. The theorems that give various sets of conditions for when we can

pass the limit under the integral sign, are the convergence theorems of measure theory.

Remember that the measure µ can be any measure on any measurable space, so the

theorems that follow are very general, they will, for example, apply to sums
∑∞

j=1 fn(j),

as well as to Riemann integrals
∫
fn(x) dx. All the functions below are defined on a

measure space (Ω,A, µ), and take values in R̄, R̄+, or C. Note that these theorems are

often stated under the assumption that a sequence converges almost surely to some limit

function. Here, however, we state these theorems with the weaker and statistically and

probabilistically more applicable assumption, we think, that the convergence occurs in

measure (or in probability of µ(Ω) = 1). The reader is free, perhaps even advised, to

first prove the theorems under the an convergence a.s. assumption, and then extend the

results to its in measure version.

(a) Suppose that f1, f2, . . . , is a sequence of measurable functions such that |fn(ω)| ≤M Bounded

convergencefor all ω and n, that µ is a finite measure, and that fn → f in measure. Show that

limn→∞
∫
fn dµ =

∫
f dµ.

(b) Suppose f1, f2, . . . is a sequence of nonnegative measurable functions. Show that Fatou’s lemma∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

Assume in addition that fn → f in measure. Show that
∫
f dµ ≤ lim infn→∞

∫
fn dµ.

(c) Suppose that f1, f2, . . . is an nondecreasing sequence of nonnegative measurable func- Monotone

convergencetions such that that fn → f in measure. Show that fn → f almost surely, and that

limn→∞
∫
fn dµ =

∫
f dµ.

(d) Let f1, f2, . . . be a sequence of measurable functions such that fn → f in measure. Dominated

convergenceSuppose there is a nonnegative integrable function g so that |fn(ω)| ≤ g(ω) almost surely

for each n. Show that the limit function f is integrable, and limn→∞
∫
|fn − f |dµ = 0

and that limn→∞
∫
fn dµ =

∫
f dµ.

(e) As a corollary to the Dominated convergence theorem, suppose that the dominating

function g, instead of being merely integrable, is so that gp is integrable for some p ≥ 1.

Show that then fp is integrable, and limn→∞
∫
|fn − f |p dµ = 0.

(f) We extend the Dominated convergence theorem to complex valued functions. That

is, suppose that the f1, f2, . . . in (d) is a sequence of measurable complex valued functions

(see Ex. A.10(i)), satisfying the conditions in (d). Show that the same conclusion holds.

(g) Suppose that f1, f2, . . . , is a sequence of measurable complex valued functions such

that |fn(ω)| ≤M for all ω and n, that µ is a finite measure, and that fn → f in measure.

Show that limn→∞
∫
fn dµ =

∫
f dµ.
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Ex. A.12 More properties of the integral/Applications of the convergence theorems. In

this exercise we apply the convergence theorems of Ex. A.11 to work out a few more

properties of the Lebesgue integral and touch on a proof strategy that appears again and

again when working with the Lebesgue integral, so often that the strategy sometimes

goes by the name of a bootstrapping argument (not to be confused with bootstrapping in

statistics). All the functions in this exercise are defined on a measurable space (Ω,A, µ).

(a) First, let A1 ⊂ A2 ⊂ · · · be sets in A, and let f : Ω → R̄ be integrable over ∪∞
j=1Aj .

Show that limn→∞
∫
An

f dµ =
∫
A
f dµ where A = ∪∞

j=1Aj . Second, let B1 ⊃ B2 ⊃ · · · be
sets inA, and assume that f : Ω → R̄ is integrable overB1. Show that limn→∞

∫
Bn

f dµ =∫
B
f dµ, where B = ∩∞

n=1Bn.

(b) Let f1, f2, . . . be a sequence of extended real valued measurable functions. They

are nonnegative only if explicitly mentioned. (i) If fn ≥ 0 for each n, show that∫ ∑∞
j=1 fj dµ =

∑∞
j=1

∫
fj dµ. Here, both sides are either finite or infinite. (ii) If∑∞

j=1 fj < ∞ almost surely, and each partial sum is bounded by the same integrable

function g, then fn and each partial sum is integrable, and
∫ ∑∞

j=1 fj dµ =
∫ ∑∞

j=1 fj dµ.

(iii) If
∑∞

j=1

∫
|fj |dµ < ∞, then

∑∞
j=1 |fj | < ∞ almost surely, this sum is integrable,

and
∫ ∑∞

j=1 fj dµ =
∫ ∑∞

j=1 fj dµ. See Ex. A.31(c) for important applications of these

results.

(c) Let f1, f2, . . . be a sequence of measurable complex valued functions. Show that if∑∞
n=1

∫
|fn|dµ <∞, then

∫ ∑∞
n=1 fn dµ =

∑∞
n=1

∫
fn dµ.

(d) Deduce from (b) that if f is a nonnegative measurable function, then ν(A) =
∫
A
f dµ

for A ∈ A defines a measure on (Ω,A). One says that f is the density of ν with respect

to µ, and write f = dν/dµ. Show that if µ(A) = 0 then ν(A) = 0; one says that ν is

absolutely continuous with respect to µ, a property denoted ν ≪ µ. Notice also that

since ν is a measure, the properties of measures studied in Ex. A.4 and Ex. A.5 carry

over to integrals of nonnegative functions. We treat densities in more details in Ex. A.20.

(e) Let ν(A) =
∫
A
f dµ be the measure introduced in (d). We want to show that that∫

g dν =

∫
gf dµ, (A.2)

for any measurable function g. To do so, we emply a bootstrapping argument. It goesbootstrapping

argument like this: First, prove (A.2) for indicator functions g = IA. Second, extend (A.2) to

simple functions g =
∑k

j=1 ajIAj
. Third, use Ex. A.2(g) and the monotone convergence

theorem, and deduce that (A.2) holds for measurable functions g : Ω → R̄+. Finally,

using linearity again, show that (A.2) holds for all measurable functions g : Ω → R̄,
provided g is integrable with respect to ν.

(f) Let (Ω,A, µ) be a measure space, (X ,B) a measurable space, and f : Ω → X a

measurable function. From Ex. A.4(h) we know that µf−1 : B → [0,∞] is a measure.

Let g : X → R be integrable with respect to µf−1. Show thatchange of

variable ∫
f−1(B)

g(f(ω))dµ(ω) =

∫
B

g(x) d(µf−1)(x).
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You may once again use a bootstrapping argument to show this. For the measurability

of g(f(·)), see Ex. A.3(i).

(g) Here is a lemma whose importance in Chapter 5 cannot be exaggerated, and whose

proof employs the dominated convergence theorem. Let (Y,A) and (R,B(R)) be mea- Derivative

under the

integral sign
surable spaces. Suppose that g : Y × R → R̄ is such that y → g(y, θ) is measurable and

integrable for each θ ∈ (a, b) ⊂ R, and that ∂g(y, θ)/∂θ exists for all θ ∈ (a, b). Show that

∂g(y, θ)/∂θ is measurable. Suppose further that there is an integrable function h(y) such

that |∂g(y, θ)/∂θ| ≤ h(y) for all θ ∈ (a, b) and all y, combine the fundamental theorem

of calculus and the dominated converge theorem to show that

d

dθ

∫
g(y, θ) dµ(y) =

∫
∂

∂θ
g(y, θ) dµ(y), for θ ∈ (a, b),

that is, we can pass the derivative under the integral sign.

(h) Suppose f : [a, b] → R is a Riemann integrable function. Show that f is Lebesgue

measurable, and that its classical Riemann-definition integral
∫ b

a
f(x) dx coincides with Riemann and

Lebesgue
the more general integral we’ve worked with in this exercise,

∫ b

a
f(x) dλ(x) =

∫ b

a
f dλ,

with λ the Lebesgue measure defined on the Lebesgue subsets of [a, b].

Ex. A.13 Probability spaces. Mathematically speaking, we are free to define the basics

of probabilities, along with axioms these should satisfy, without yet tying these to the

so-called real world. So let us define a probability space as a triple (Ω,A, P ), where Ω is a probability

spacea set; A a σ-algebra of subsets of Ω; and P : A → [0, 1] a probability measure, defined
a probability

measuresimply to be a measure, in the sense of Ex. A.4, with full measure P (Ω) = 1.

We may envisage P as a probability machine, assessing to each A a probability

P (A). Such a probability measure on (Ω,A) has axiomatic properties following those of

more general measures, given in Ex. A.2, and for convenience stated again here, for the

present case of P (Ω) = 1. We demand axioms for a

probability

space(i) that P (∅) = 0;

(ii) that Pr(∪∞
i=1Ai) =

∑∞
i=1 Pr(Ai) for are disjoint sets A1, A2, . . . in A;

(iii) and that P (Ω) = 1.

The subsets A can be given several names, including events; the conceptual idea is that

we do not yet know whether a certain A occurs or not, but we can give it a probability.

(a) For all events A and B show that Pr(A \ B) = Pr(A) − Pr(A ∩ B); that Pr(A) =

1 − Pr(Ac); and that Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). Generalise this latter

formula to the union of three events, and then try to generalise it to the union of four or

more events.

(b) If A and B have probabilities 0.95, or more, show that Pr(A ∩ B) ≥ 0.90. Gener-

alise. This simple lower-bounding of certain types of probabilities is sometimes called

the Bonferroni method, or Bonferroni correction.

(c) From Ex. A.4(b) we know that ifA1 ⊂ A2 ⊂ · · · , then Pr(∪∞
n=1An) = limn→∞ Pr(An);

and, secondly, if A1 ⊃ A2 ⊃ · · · , then Pr(∩∞
n=1An) = limn→∞ Pr(An). Show that either

of these two statements could replace (ii) in the axiom list above.
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(d) Above we have been careful to define probability measures P for large collections

of events, namely σ-algebras, but also avoiding defining P (A) for every subset A. At-

tempting to do that, in various natural spaces, will lead to difficulties and incoherencies,

related to the existence of non-measurable sets. These issues are not present when the

full space Ω is finite, however, as one can simply allow every subset to be included, in the

set of subsets for which a probability is attached. Show indeed that if Ω = {ω1, . . . , ωm},
with perhaps a large m, and these singletons are attached probabilities p1, . . . , pm (non-

negative, with sum 1), then

Pr(A) =
∑

j : ωj∈A

pj , for any subset A,

defines a probability measure on (Ω,A), where, in this case, A = 2Ω the set of all 2m

subsets (which, from Ex. A.2(a), we know is a σ-algebra). Generalise to the case of

countably big spaces, say Ω = {ω1, ω2, . . .}, with pointmasses p1, p2, . . . summing to 1.

In these cases the collection A of all subsets is the natural set of events.

Ex. A.14 Distribution functions. Consider the case where the probability space is

(R,B, P ), with B = B(R) the Borel σ-algebra on the real line, and P is some probability

measure on this measurable space. For such a P , define the cumulative distributionthe c.d.f., the

cumulative

distribution

function

function (c.d.f. for short) as

F (t) = Pr(At), with At = (−∞, t],

where we also allow the simpler notation P (∞, t] for P ((−∞, t]).

(a) Show that F is nondecreasing, right continuous, with F (t) → 1 and F (t) → 0 as

t→ ∞ and t→ −∞, respectively. Show also that F (t− 1/n) → Pr(−∞, t), and that

Pr(a+ 1/n, b− 1/n] = F (b− 1/n)− F (a+ 1/n) → F (b−)− F (a) = Pr[a, b),

for all intervals (a, b). Here F (b−) is notation for the limit of F (b − ε) as ε → 0+,

converging to zero from above, and is also the same as P (−∞, b).

(b) Show that Pr({t}), the probability assigned to the fixed point t, is F (t) − F (t−).

This probability is often zero, as is the case for all t if F is continuous. Show that the

set DF of discontinuities for F is at most countably infinite.

(c) Suppose P1 and P2 are two probability measures on (R,B), with the same c.d.f.,

i.e. F1 = F2. An important fact (to say the least) is that if F1 = F2, then indeed

P1(A) = P2(A) for all A ∈ B(R). Show this, from Carathéodory’s Extension Theorem of

Ex. A.6, or, alternatively from one of the theorems of Ex. A.5. Very conveniently, this

allows one to define a full probability measure P by giving only its c.d.f., or its values

for all intervals. For example, saying that P (a, b) =
∫ b

a
(2π)−1/2 exp(− 1

2x
2) dx, for all

intervals (a, b), is a sufficient description of the standard normal distribution; we don’t

need to give a more laborious recipe for how to compute P (A) for more complicated

events A.
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(d) Suppose P is a probability measure on (R2,B), where B = B(R2) is the Borel-

σ-algebra in the plane (see Ex. A.2(e)). Define the cumulative distribution function

corresponding to P by

F (t1, t2) = P (At1,t2) = P ((−∞, t1]× (−∞, t2]).

Show that for any rectangle,

P ((a1, b1]× (a2, b2]) = F (a1, a2)− F (a1, b2)− F (a2, b1) + F (a2, b2).

Use again Ex. A.5, or indeed Carathéodory Extension Theorem of Ex. A.6, to prove that

if two probability measures are equal for all rectangles, then they are identical, i.e., giving

the same probability to any Borel set. Thus a probability measure P on (R2,B2) is fully

determined by giving its F (t1, t2) function.

(e) Attempt to generalise (d) to dimension k, i.e., to (Rk,B(Rk)); in particular, the

probability attached to a rectangle (a1, b1]× (ak, bk] can be expressed as a sum of values

of F computed at the 2k vertices of the rectangle, with ±1 signs, as seen above for k = 2.

(f) Let P be a probability measure such that the distribution function F (x) = P (−∞, x]

(see Ex. A.14(c)) is montonically increasing. Suppose that g is a real valued function

such that the Riemann–Stieltjes integral
∫ b

a
g dF exists. Show that

∫
[a,b]

g dP =
∫ b

a
g dF .

Ex. A.15 Random variables. Speaking mathematically, a random variable is a mea-

surable function on a probability space. Measurable functions were defined in Ex. A.3,

but let us repeat some of the details. With (Ω,A,Pr) a ‘background’ probability space,

we construct random variables as measurable functions X : Ω → X , where (X ,B) is

the measurable space where X(ω) lands. Measurability means that the inverse images

X−1(B) = {ω ∈ Ω: X(ω) ∈ B} are in A for any B ∈ B. As is common, we often write

{X ∈ B} instead of the more cumbersome {ω ∈ Ω: X(ω) ∈ B}, and Pr(X ∈ B) instead

of Pr({ω ∈ Ω: X(ω) ∈ B}).

(a) The probability distribution, distribution, or law, of a random variable X, say P , is

defined by probability

distribution

P (B) = Pr(X ∈ B) = Pr(X−1(B)), for B ∈ B.

With pedantic care, we define P via (PrX−1)(B) = Pr(X−1(B)). Even though this

is just repeating Ex. A.4(h) with the extra requirement that P (X ) = 1, show that

P = PrX−1 indeed is a probability measure on (X ,B).

(b) Often what matters is the distribution of X, rather than particularities of the back-

ground space. Indeed there may be different spaces (Ωj ,Aj ,Prj) and random variables

Xj : Ωj → X inducing precisely the same distribution, i.e., the different Pj = Prj X
−1
j

might be identical. For a given P on (X ,B), show that the identity map x 7→ x is

one such construction, leading to a random variable X with distribution P . In the case

of Xj : Ωj → R, we have seen in Ex. A.14 that what matters is the c.d.f. Prj(Xj ≤
t) = Pj(−∞, t] = Fj(t); as long as these are equal, the distributions Pj = Prj X

−1
j are

identical. Give three separate such constructions of the standard normal distribution.
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(c) If X : Ω → R̄ is a random variable, defined on a background probability space

(Ω,A,Pr), its mean, or expected value, is defined as the expectation

EX =

∫
X dPr =

∫
X(ω) dPr(ω),

as long as this integral is finite, i.e., X is integrable. Since the expectation is a Lebesgue

integral (as defined in Ex. A.10), the convergence theorems of Ex. A.11, as well as the

properties of the Lebesgue integral derived in Ex. A.10(g)–(h) and Ex. A.12 apply. In

particular, with g : R → R̄ any measurable function, deduce from Ex. A.12(f) that

E g(X) =

∫
g(X(ω)) dPr(ω) =

∫
g(x) dP (x), with P = PrX−1,

provided g is P -integrable. In particular, only the distribution P of X matters, not the

details associated with the background probability space.

(d) With the mean of a real random variable well defined, we may of course go on to

other and higher moments. For a random variable X : Ω → R̄, as above, with ξ = EX,

show thatthe variance

E (X − ξ)2 =

∫
(X − ξ)2 dPr =

∫ ∞

−∞
(x− ξ)2 dP (x) =

∫ ∞

0

y dQ(y),

with Q the distribution of Y = (X − ξ)2; so there’s no ambiguity. This quantity is of

course the variance of X, denoted VarX = E(X − ξ)2. The square root of VarX is

called the standard deviation of X.

(e) Consider integrable random variables X,Y : Ω → R̄ defined on the same background

probability space (Ω,A,Pr). Show that E (aX + bY ) = aEX + bEY (see Ex. A.10(g)),

and generalise . In particular, for integrable random variables X1, . . . , Xn, we have

E (X1 + · · · + Xn) = EX1 + · · · + EXn, regardless of any dependencies between these

variables.

(f) For variables with finite second moments, show that VarX = EX2−(EX)2. Since the

variance must be nonnegative, we get that EX2 ≥ (EX)2. This is a nice reminder of what

way the inequality goes in Jensen’s inequality: E g(X) ≥ g(EX) whenever g : R → R isJensen’s

inequality a convex function, i.e., a function such that g(ax + (1 − a)y) ≤ ag(x) + (1 − a)g(y) for

all 0 ≤ a ≤ 1 and all x, y ∈ R. Prove it. Show also that (E |X|r)1/r is increasing in r.

Ex. A.16 Product measure and iterated integrals. Let (X ,A, µ) and (Y,B, ν) be two

σ-finite measure spaces. The measurable space (X ×Y,A⊗B) consists of the Cartesian

product X × Y (see Ex. A.1(f)) and the σ-algebra A ⊗ B generated by the measurable

rectangles A × B, for A ∈ A and B ∈ B. In this exercise we first construct a measure

µ × ν on A ⊗ B, such that (µ × ν)(A × B) = µ(A)ν(B) for all measurable rectangles

A × B. This measure is called the product measure. Second, we establish conditionsproduct

measure under which we can compute double integrals by iterated integration,∫
f d(µ× ν) =

∫ ∫
f(x, y) dν(y) dµ(x) =

∫ ∫
f(x, y) dµ(x) dν(y). (A.3)

for measurable functions f : X × Y → R̄.
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(a) Show that Π = {A×B : A ∈ A, B ∈ B} is a π-system generating A⊗ B.

(b) For (A.3) to make sense, we need a technical lemma. Assume that f : X×Y → [0,∞)

is measurable, and that µ is σ-finite. Then (i) x 7→ f(x, y) isA-measurable for each y ∈ Y;

and (ii)
∫
X f(x, y) dµ(x) is B-measurable. To prove (i) and (ii), assume that µ is finite,

check (i) and (ii) for f = IC for C ∈ Π, then use Dynkin’s lemma (Ex. A.5(c)) to show

that (i) and (ii) holds for for f = IC for C ∈ A⊗B. Third, use a bootstrapping argument,

and, finally, extend what you have to µ being σ-finite.

(c) Due to our efforts in (b), it makes sense to define

λ(C) =

∫ ∫
IC(x, y) dν(y) dµ(x), for C ∈ A⊗ B.

Show that λ is a measure, and argue that it is the unique measure such that λ(A×B) =

µ(A)ν(B) on the π-system from (a). Conclude from this that (A.3) holds for indicator

functions (so we could have defined λ with the order of integration reversed), and, indeed

λ is the product measure µ× ν.

(d) Combine what you found in (c) with the monotone convergence theorem (a boostrap- Tonelli’s

theoremping argument) to show that (A.3) holds for all measurable functions f : X ×Y → [0,∞].

(e) Suppose that f : X × Y → R̄ is integrable with respect to µ × ν. Show that (A.3) Fubini’s

theoremholds also in this case. Notice that the sets {x ∈ X :
∫
Y |f(x, y)|dν(y) = ∞} and {y ∈

Y :
∫
Y |f(x, y)|dµ(x) = ∞} have µ- and ν-measure zero, respectively (see Ex. A.10(d)),

so you can modify f on these sets to avoid ∞−∞ type trouble.

Ex. A.17 Convolutions. Let X and Y be independent real random variables with

distributions PX and PY , and cumulative distribution functions FX(x) = PX(−∞, x]

and FY (y) = PY (−∞, y].

(a) For B ∈ B(R) write B − x = {b − x : b ∈ B} = {y ∈ R : x + y ∈ B}, and use

Ex. A.16(d) to show that

Pr(X + Y ∈ B) =

∫
R
PY (B − x) dPX(x) =

∫
R
PX(B − y) dPY (y).

This defines the measure PY ∗ PX on (R,B(R)), called the convolution of PX and PY ,

i.e., (PX ∗PY )(B) =
∫
R PY (B−x) dPX(x), for B ∈ B(R). Note also that the convolution

is commutative, i.e., PY ∗ PX = PX ∗ PY .

(b) Show that Z = X + Y has cumulative distribution function

H(z) =

∫
FY (z − x) dFX(x) =

∫
FX(z − y) dFY (y).

Show also that if PX and PY have densities, say fX and fY , with respect to Lebesgue

meaures on the real line, then the distribution of Z, namely PY ∗ PX , has density

h(z) =

∫
R
fY (z − x)fX(x) dx =

∫
R
fX(z − y)fY (y) dy,

also, as we see, with respect to Lebesgue measure. The density h is often denoted

(fX ∗ fY )(z), which is called the convolution of fX and fY .
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(c) (xx just a bit more, with X discrete and Y having a density. an illustration. also

pointers to mgf things and CLT etc. xx)

(d) If f, g : R → R are two functions such that
∫
g(z−x)f(x) dx is finite for all z, we may

also define the convolution (g ∗ f)(z) =
∫
g(z − x)f(x) dx =

∫
f(z − y)g(y) dy for z ∈ R.

Show that if g is bounded and continuously differentiable with a bounded derivative g′,

and
∫
f(x) dx is finite, then (f ∗ g)(z) is also bounded and continuously differentiable,

with derivative

(g ∗ f)′(z) = (g′ ∗ f)(z) =
∫
g′(z − x)f(x) dx.

You may look at Ex. A.12(g) to find weaker conditions under which the equality above

holds. Notice also that f(x) dx may be replaced by any finite measure, i.e., the existence

of a density is not used.

(e) As a corollary to (d), suppose that g is k times continuously differentiable function

that vanishes outside of a compact set (i.e., g is nonzero only on a closed and bounded

set), and that f is as before. Show that (g ∗f) is also k times continuously differentiable,

with derivatives (g ∗ f)(j) = (g(j) ∗ f) for j ≤ k. Moreover, show that if f also vanishes

outside of a compact set (which need not be the same as for g), then g∗f vanishes outside

of a compact set.

(f) Let g be as in (e), and suppose that f is the density of the uniform distribution on

[a, b], i.e., f(x) = 1/(b− a) for x ∈ [a, b], and f(x) = 0 elsewhere. Show that (g ∗ f) has
one more continuous derivative than g, and that these derivatives take the form

(g ∗ f)(j+1)(z) =
g(j)(z − a)− g(j)(z − b)

b− a
, for j = 1, . . . , k.

(g) We’ll use our findings above to prove the existence of a infinitely smooth density

function with support [−1, 1]. Let U1, U2, . . . be i.i.d. uniforms on [−1, 1]. Show that

Y3 =
U1

2
+
U2

4
+
U3

8
,

has a density, say f3, that is one time continuously differentiable. Proceed by induction

to show that the density of Ym =
∑m

n=1 Un/2
n is m−2 times continuously differentiable.

Finally, argue that the density of

Y =

∞∑
n=1

Un/2
n =

m∑
n=1

Un/2
n +

∑
n≥n+1

Un/2
n,

is infinitely smooth, i.e., has infinitely many continuous derivatives.

Ex. A.18 Independence. Here we define and work through basic properties of indepen-

dence, for events and for random variables.

(a) For a probability space (Ω,A,Pr), we start out saying that two events A and B are

independent if Pr(A∩B) = Pr(A)Pr(B). Show that then also A and Bc are independent,

Ac and B are independent, and Ac and Bc are independent. Show that all events are

independent of the emptyset and of the full set Ω.
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(b) Try to exhibit an example, with a finite Ω, of events A,B,C such that A and

B are independent, A and C are independent, B and C are independent, but where

Pr(A ∩ B ∩ C) ̸= Pr(A)Pr(B)Pr(C). Hence care is needed when defining independence

for more than two events. We say that A1, . . . , An are independent if

Pr(Ai1 ∩ · · ·Aik) = Pr(Ai1) · · ·Pr(Aik), for any {i1, . . . , ik} ⊂ {1, . . . , n}.

Show that this is equivalent to requiring that Pr(B1 ∩ · · · ∩Bn) = Pr(B1) · · ·Pr(Bn) for

the 2n such equations obtained by setting Bj = Aj or Bj = Ac
j .

(c) The definition in (b) extends to countably infinite many events. The events A1, A2, . . .

are independent if for any finite number of distinct indices i1, . . . , in ∈ {1, 2, . . .}, the
events Ai1 , . . . , Ain are independent, in the sense defined in (b). We say that the sub-

σ-algebras G1,G2, . . . of A are independent if for arbitrary representatives A1 ∈ G1,

A2 ∈ G2, and so on, the events A1, A2, . . . are independent. Suppose that Π1 and Π2 are

two π-systems such that Pr(A1 ∩ A2) = Pr(A1)Pr(A2) whenever A1 ∈ Π1 and A2 ∈ Π2.

Use Dynkin’s lemma (see Ex. A.5(c)) to show that σ(Π1) and σ(Π2) are independent.

Generalise to π-systems Π1,Π2, . . . and σ-algebras σ(Π1), σ(Π2), . . ..

(d) Consider random variablesX1, X2, . . . defined on the probability space (Ω,A,Pr). We independent

random

variables
say that X1, X2, . . . are independent if the σ-algebras they generate, σ(X1), σ(X1), . . .,

are independent in the sense defined in (c). Suppose that X and Y are two random

variables defined (Ω,A,Pr), and that

Pr(X ≤ x, Y ≤ y) = Pr(X ≤ x)Pr(Y ≤ y), for all x, y ∈ R,

i.e., their joint c.d.f. equals the product of the marginal c.d.f.’s. Use the result from (c)

to show that X and Y are independent.

(e) Consider the probability space ({1, 2, 3, 4, 5, 6}, 2Ω,Pr), where Pr is the uniform

probability measure on this space. Define the random variables X = I{1,3,5} and

Y = I{5,6}. Write down the full σ-algebras σ(X) and σ(Y ), and show that, indeed,

Pr(A ∩B) = Pr(A)Pr(B) for all A ∈ σ(X) and B ∈ σ(Y ).

(f) Let (X ,A) and (Y,B) be measurable spaces, and let X : Ω → X and Y : Ω → Y be

random variables on the same underlying probability space, with distributions P1 and

P2, respectively. From Ex. A.16 we know that the measure P1 × P2 on, defined by

(P1 × P2)(C) =

∫
X

∫
Y
IC(x, y) dP2(y) dP1(x) =

∫
Y

∫
X
IC(x, y) dP1(x) dP2(y),

for C ∈ A ⊗ B, is the unique probability measure on (X × Y,A ⊗ B) such that (P1 ×
P2)(A×B) = P1(A)P2(B) for all measurable rectangles A×B. Show that X and Y are

independent if and only if (X,Y ) has distribution P1 × P2.

(g) So (P1×P2)(C) = Pr((X,Y ) ∈ C) is now properly defined for much more complicated

sets than the direct product sets A×B. Let X and Y be independent, both with uniform

distributions on [−1, 1], with subintervals of equal length having the same probability.

Find the probability that (X,Y ) lands inside the unit circle.
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(h) Show that if X and Y are independent random variables, and g and h are measurable

functions, then g(X) and h(Y ) are also independent. Use a bootstrapping argument (see

Ex. A.12(e)) to show that

E g(X)h(Y ) = E g(X) Eh(Y ),

provided g(X) and h(Y ) are integrable. The covariance of two random variables W andcovariance

Z with means ξW = EW and ξZ = EZ, respectively, is defined by

cov(W,Z) = E (W − ξW )(Z − ξZ).

Show that cov(W,Z) = E (WZ)− ξW ξZ , and conclude that if W and Z are independent,

then cov(W,Z) = 0.

(i) We must of course extend (f) and (h) to the case of more than two independent

random variables. With X1, . . . , Xn defined on the same underlying probability space

(Ω,A,Pr), their distributions are P1 = PrX−1
1 , . . . , Pn = PrX−1

n . Suppose that these

random variables are independent, i.e., σ(X1), . . . , σ(Xn) are independent σ-algebras (see

definition in (d)), and show that this is equivalent to

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = P1(−∞, x1] · · ·Pn(−∞, xn], for all x1, . . . , xn ∈ R,

that is, again, the joint c.d.f. equals the product of the marginal c.d.f.’s. Generalise

the construction in (f): For j = 1, . . . , n, suppose that Xj : Ω → Xj where (Xj ,Bj) are

measurable spaces, and show that this gives rise to a well-defined product probability

measure Q = P1 × · · · × Pn on the σ-algebra B1 ⊗ · · · ⊗ Bn, generated by all rectangles

B1 × · · · × Bn, where Bj ∈ Bj for j = 1, . . . , n. Generalise also the if and only if claim

from (f) to this higher dimensional setting.

(j) Show that if X1, . . . , Xn are independent, and g1, . . . , gk are measurable functions,

then also g1(X1), . . . , gk(Xk) are independent. Show also that

E g1(X1) · · · gk(Xk) = E g1(X1) · · ·E gk(Xk),

when these means exist. The variance of a random variable was defined in Ex. A.15(d).

Let X1, . . . , Xn be random variables with finite second moments, show that

Var(

n∑
i=1

Xi) =

n∑
i=1

Var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

cov(Xi, Xj),

and, consequently, by (h), that Var(
∑n

i=1Xi) =
∑n

i=1 Var(Xi) if the X1, . . . , Xn are

independent. We note that double sums such as that on the right above are often written∑
1≤i<j≤n aiaj =

∑n−1
i=1

∑n
j=i+1 aiaj . (xx point briefly to stigler and seven pillars. xx)

(k) Why product spaces? Because they are an efficient way of constructing probability

spaces on which an arbitrary number of independent random variables with arbitrary

distributions live. To see what is meant by this, consider the probability space from (e).

Is it possible to construct two independent Bernoulli random variables with the same

success probability on this space? Is it possible to construct more than two independent

Bernoulli random variable on this space?
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(l) Suppose that A1, A2, . . . , B1, B2, . . . are independent events. Show that the σ-algebras

σ(A1, A2, . . .) and σ(B1, B2, . . .) are independent. Let A1, A2, . . . be independent events,

and consider the tail-σ-algebra A = ∩∞
n=1σ(An, An+1, . . .). Prove Kolmogorov’s zero-one

law, namely that if A ∈ A, then Pr(A) = 0 or Pr(A) = 1.

Ex. A.19 The Borel–Cantelli lemma. Let A1, A2, . . . be events, in a relevant probability

space, with probabilities pi = Pr(Ai). Consider Ai.o. = ∩n≥1∪m≥nAm = lim supn→∞An,

the full-sequence event corresponding to the An occurring infinitely often (see Ex. A.8).

In Ex. A.8(f) we proved that of
∑∞

i=1 pi is convergent then Pr(Ai.o.) = 0, so sooner or

later, there will be a finite (but random) n, such that none of the Am will ever occur, for

m > n. In (b) we prove a partial converse of this result.

(a) Let A1, A2, . . . be a sequence of events, and let N be the total number of occurrences

of the Ai. Show that EN =
∑∞

i=1 pi.

(b) Assume in addition that the A1, A2, . . . are independent. Show that if
∑∞

i=1 pi is

divergent, then Pr(Ai.o.) = 1. In particular, for the case of independent events, there

can’t be say a 50 percent chance that there will be infinitely many occurrences.

(c) Consider independent Bernoulli 0-1 variables Xi with Pr(Xi = 1) = pi. What is

the probability for having infinitely many Xi = 1, for pi = 1/i0.99, for pi = 1/i, for

pi = 1/i1.01?

(d) LetX1, X2, . . . be i.i.d. from the unit exponential distribution. Will there be infinitely

many cases with Xi ≥ 0.99 log i, with Xi ≥ log i, with Xi ≥ 1.01 log i?

(e) Let X1, X2, . . . be i.i.d. standard normal. Show first that

Pr(Xi ≥ a) = 1− Φ(a)
.
= ϕ(a)/a,

in the sense that the ratio between the exact and the approximate quantities tends to

1. (xx this is the Mills ratio. xx) Show that there will be infinitely many cases with

|Xi| ≥ (2 log i)1/2.

(f) (xx one or two more. new records, Pr(Rn = 1) = 1/n. xx)

Ex. A.20 Probability densities. We have seen in Ex. A.14 that probability measures on

the real line are fully characterised by the cumulative distribution functions. Very often

there is an even more practical and satisfying way of defining a probability distribution,

however, via its probability density function. These may be defined not only in famil- probability

density functioniar situations with continuous distributions, but with discrete data, and with measures

having both continuous and discrete components.

(a) In various classical situations, the density is simply the derivative of the cumulative

distribution function, say f(x) = F ′(x), when the random variable X in question has a

differentiable c.d.f. F . From the fundamental theorem of calculus,

Pr(X ∈ [a, b]) = F (b)− F (a) =

∫ b

a

f(x) dx, for all [a, b].
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The general theory of measure and integration allows the clear definition of
∫
A
f(x) dx

for any Borel set A. Show that Pr(X ∈ A) =
∫
A
f(x) dx, for all such A, i.e. not merely

for intervals. Giving f(x), instead of the cumulative F (x), or perhaps more complicated

ways of defining a distribution P (A) for all A, is the most convenient (and traditional)

way in which to define a probability distribution.

(b) Suppose in general terms that ν and µ are σ-finite measures on a measurable space

(X ,A) (see Ex. A.4). Suppose next that the measure ν is dominated by µ, meaning that

µ(A) = 0 implies ν(A) = 0; one also says that ν is absolutely continuous with respectabsolute

continuity to µ. Under these conditions, the Radon–Nikodym theorem gives a converse to what we

found in Ex. A.12(d): it says that there is a nonnegative A-measurable function f , such

thatthe Radon–

Nikodym

theorem
ν(A) =

∫
A

f(x) dµ(x) for all A ∈ A. (A.4)

The function f , called the density of ν with respect to µ, is often denoted dν/dµ, to

remind us that this is a density of ν with respect to µ. If ν = P is a probability measure,

then f = dP/dν is a probability density function. [xx fix xx] We defer the proof of the

Radon–Nikodym theorem until Ex. 10.10, when we have developed the appropriate tools

for proving it in a nice probabilistic manner.

Look back at Ex. A.10(d) and explain why the density f = dν/dµ in (A.4) is only

unique µ-almost surely. Explain why (a), where F has a derivative and is the integral

of this derivative, matches this more general setup, where µ is the Lebesgue measure,

with µ(a, b) = b − a for all intervals. Many classes of probability distributions, like the

normal, the gamma, the Beta, the Weibull, the exponential, the t, the chi-squared, etc.,

are of this type, where a clear probability density function can be given as here, that is,

with respect to standard Lebesgue measure.

(c) The strength of the general f = dP/dµ machinery above is that it can be fruit-

fully used for large classes of other probability measures too, not only for those which

are dominated by the Lebesgue measure. The dominating measure is often chosen by

mathematical convenience, to match the situation at hand. For the Poisson and other

distributions, with random variables landing in X = {0, 1, 2, . . .}, consider, for any subset

of X , µ(A) equal to the number of numbers j ∈ A, that is, µ is the counting measure on

the integers, which, from Ex. A.2(g), we know is a σ-finite measure. Show that with P

having a Poisson distribution P , with mean θ, that there is a density f = dP/dµ, given

by f(x) = exp(−θ)θx/x! for x = 0, 1, 2, . . ., in the sense given above.

(d) Consider a probability measure P on [0, 1] with probabilities 0.1 and 0.1 at positions

0 and 1, and which has P (a, b) = 0.8 (b − a) for (a, b) inside (0, 1). Thus P is not

continuous, and not discrete, but a mixture. Show that P is dominated by the measure

µ, which has pointmasses 1 and 1 at the points 0 and 1, and is uniform inside (0, 1).

Find the probability density f(x) = dP (x)/dµ.

(e) Suppose P is dominated by a σ-finite µ, with f(x) = dP (x)/dµ the probability

density, as per (A.4). With X having distribution P , and g(x) being a function for which
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the mean is finite (with respect to P ), we can now take the change of variable formula

from Ex. A.15?? one step further, so to speak. With the help of Ex. A.12(e), show that

E g(X) =

∫
g(x) dP (x) =

∫
g(x)

dP (x)

dµ
dµ(x) =

∫
g(x)f(x) dµ(x).

In particular, if µ is Lebesgue measure on the real line, we get from Ex. A.12(h) that

E g(X) =
∫
g(x)f(x) dx, and we are back to the expectation formula from introductory

statistics courses.

(f) (xx round this off. drive home that this makes it possible and convenient to derive

results in a general manner, point to Cramér–Rao, which we need to redo, as of 12-

August-2024, and also that we can handle any type of mixed distributions, not merely

the classic ones, the continuous and the discrete. ask for the mean and variance of the

0.1, 0.1, 0.8 distribution above. xx)

Ex. A.21 Radon–Nikodym derivatives Let P , Q, and µ be σ-finite measures on the

measure space (Ω,A).

(a) Show that if Q≪ P and P ≪ λ, then Q≪ λ, and that we have the following relation

of Radon–Nikodym derivatives,

dQ

dµ
=

dQ

dP

dP

dµ
, µ-almost surely.

The second part here is, to a certain extent, Ex. A.12(e) in new dressing, and you might

use that exercise to prove it.

(b) Show that if Q ≪ P , then the density dQ/dP is positive Q-almost surely. Next,

show that if Q≪ P and P ≪ Q, then

dP

dQ
= I(dQ/dP > 0)(

dQ

dP
)−1, almost surely,

with respect to both Q and P . You may again use Ex. A.12(e).

(c) Suppose that Q ≪ µ and P ≪ µ. Let N = {dP/dµ = 0}. Show that there is a

measurable function f ≥ 0 such that

Q(A) =

∫
A

f dP +Q(A ∩N).

The pair (f,N) is called the Lebesgue decomposition of Q with respect to P . If P and

Q are two σ-finite measures, in particular probability measures, then Q + P is σ-finite

and Q≪ Q+P and P ≪ Q+P , and a Lebesgue decomposition of Q with respect to P

exists. Such constructions will1§ play an important role in parts of Chapter 2.

(d) Suppose that Q≪ µ and P ≪ µ. Show that Q≪ P if and only if the set {dQ/dµ >
0} ∩ {dP/dµ = 0} has measure zero under µ. Show also that if this is the case, i.e., if

µ({dQ/dµ > 0} ∩ {dP/dµ = 0}) = 0, then

dQ

dP
=

dQ/dµ

dP/dµ
I{dP/dµ = 0}, P -almost surely.
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(e)

(f) Let Pξ be the N(ξ, 1) distributions, and Pξ+n−1/2h be the N(ξ+n−1/2h, 1) distribution,

e.g., Pξ has density f(x; ξ) = (1/
√
2π) exp(− 1

2 (x−ξ)
2) with respect to Lebesgue measure

on the real line. Show that Pξ+n−1/2h ≪ Pξ; that

dPξ+n−1/2h

dPξ
(x) = exp(

h√
n
(x− ξ)− 1

2

h2

n
),

and that Eξ (dPξ+n−1/2h/dPξ)(X) = 1, i.e., when the expectation is taken under Pξ.

(g) Let (X ,B1, µ) and (Y,B2, ν) be two σ-finite measurable spaces. Suppose thatX : Ω →
X and Y : Ω → Y are independent random variables with distributions P1 and P2, and

that P1 ≪ µ and P2 ≪ ν. Denote the densities f1 and f2. Show that the distribution of

(X,Y ) has density f1f2 with respect to the product measure µ× ν on (X ×Y,B1 ⊗B2)

(see Ex. A.18(f)). Generalise to higher dimensions. This result is fundamental to the

likelihood theory we cover in Chapter 5.

Ex. A.22 Basic conditional probability. Let (Ω,A,Pr) be a probability space. The Venn-

diagram below provides the intuition behind the definition of the conditional probability

of an event A, given that the event B has occurred. If all we know is that B occurred,

then the probability that A also occured is the the size of the area of B that intersects

A, relative to the total size of B. Here, size is measured by, well, a probability measure.

Thus, the conditional probability of A given B is defined by

Pr(A |B) =
Pr(A ∩B)

Pr(B)
, provided Pr(B) > 0. (A.5)

The notation Pr(A |B) might be unfortunate, because it may seem that the events A

and B are on an equal footing. They are not. The event we condition on, namely B,

is fixed, while the event we are computing the conditional probability of, that is A, can

change. In fact, A 7→ P (A |B) is a probability measure, while B 7→ P (A |B) is not.

Ω

A B

A ∩B

(a) Show that Pr(A |B) is a probability measure (Ω,A).

(b) The function L(B) = Pr(A |B) where the event A is fixed and the event we condition

on might change, is called the likelihood function, and L(B) is referred to as the likelihood

of B. Show that L(B) is not a probability measure.
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(c) Suppose that B has positive probability. Show that A and B are independent if and

only if Pr(A |B) = Pr(A).

(d) Let A1, . . . , An be disjoint events such that ∪n
j=1Aj = Ω. From the definition of

conditional probability, deduce the law of total probability, that for any event B, Pr(B) = law of total

probabilityPr(B |A1)Pr(A1) + · · ·+ Pr(B |An)Pr(An). Deduce also Bayes’ theorem,
Bayes theorem

Pr(Aj | B) =
Pr(B |Aj)Pr(Aj)

Pr(B |A1)Pr(A1) + · · ·+ Pr(B |An)Pr(An)
,

provided Pr(B) > 0.

Ex. A.23 Conditional expectation. Let X be an integrable real random variable on a

probability space (Ω,A,Pr). The probability of X landing in B ∈ B(R) given the event

A ∈ A, is, using the definition in (A.5), Pr(X ∈ B |A) = Pr({X ∈ B} ∩ A)/Pr(A),

provided Pr(A) > 0. We can then define the conditional expectation of X given A by

E (X |A) = EXIA
Pr(A)

=

∫
A

X
dPr(ω)

Pr(A)
=

∫
XdPr(ω |A).

The point being that conditioning on an event A with positive probability is just a matter

of using the definition in (A.5) in the obvious manner.

(a) Let’s look at an example. Suppose that X ∼ N(0, 1), and set A = {X ≥ c} for some

constant c. Show that E (X |A) =
∫
xϕ(x)/{1− Φ(c)}I(x ∈ [c,∞)) dx.

(b) In (a), we conditioned on the event A = {X ≥ c}. But what if we want a function

Z : Ω → R such that Z(ω) = E (X |A) if ω ∈ A, and Z(ω) = E (X |Ac) if ω ∈ Ac? That

is, Z is the function

Z = E(X |Ac)IAc + E(X |A)IA.

While E (X |Ac) and E (X |A) are constants, the indicator functions IAc and IA are

random variables, and so Z is also a random variable. We define this function Z to

be the conditional expectation of X given IA, denoted E (X | IA). Thus, conditional

expectations given a random variables, are themselves random variables. Notice that

E (X | IA) is measurable with respect to σ(IA) = {A,Ac, ∅,Ω} ⊂ A, and also that if we

modify E (X | IA) on a set of measure zero, e.g., set Z ′ = E(X | IA)+ aI{X∈Q} for a ∈ R,
then Pr(Z ̸= Z ′) = 0. Show that EE (X | IA) = EX, and that, indeed EZ ′ = EX.

(c) Let X be some integrable random variable, and let Y be a discrete random variable

with values in {y1, y2, . . .}. Define Aj = {Y = yj} = {ω ∈ Ω: Y (ω) = yj} for j = 1, 2, . . ..

As a mild extension of (b), we can define the conditional expectation of X given Y as

the random variable

E (X |Y ) =

∞∑
j=1

E (X |Aj)IAj
(A.6)

Show that EE (X |Y ) = EX, and also E IAj
E (X |Y ) = E IAj

X for any Aj = {Y = yj}.
In fact, try to show that

E IGE (X |Y ) = E IGX, (A.7)

for any event G in the σ-algebra generated by Y .
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(d) So far we have only considered conditioning on events or on discrete random variables.

But what if the random variable we want to condition on, say Y , is continuous, so that

Pr(Y = y) = 0 for all y. Then the definition of E (X |Y ) given in (A.6) does not make

sense, as it would involve division by zero. The solution to this problem is to take (A.7)

as the definition of conditional expectation. Here is how. On the probability space

(Ω,A,Pr) let X be an integrable random variable, and let G be a sub-σ-algebra of A.

Then any G-measurable random variable Z such thatconditional

expectation

E IGZ = E IGX, for all G ∈ G, (A.8)

is called the conditional expectation of X given G, denoted E(X | G). This definition

entails that the conditional expectation is only defined up to sets of measure zero, and

we call any Z satisfying (A.8) a version of the conditional expectation. Suppose that

Z and Z ′ are two G-measurable random variables, so that both E IGZ = E IGX and

E IGZ
′ = E IGX for all G ∈ G. Show that Z = Z ′ almost surely.

(e) Prove that conditional expectation exists. More to the point, appeal to the Radon–

Nikodym theorem, and show that if X is an integrable random variable on (Ω,A,Pr),
and G ⊂ A, then there exists a G-measurable random variable Z satisfying (A.8).

(f) There are some very useful results that follow directly from the definition in (A.8).

You should convince yourself that they do. First, if X is G-measurable, then E (X | G) =
X, almost surely. Second, for any integrable X, we have that,

EX = EE (X | G). (A.9)

When G = σ(Y ) for a random variable Y , we typically write E(X |Y ) instead of the

more cumbersome E (X | G) or E {X |σ(Y )}, and get the formula EX = EE (X |Y ).

Show that EX equals the conditional expectation of X given the trivial σ-algebra, that

is, EX = E(X | {∅,Ω}), almost surely, and deduce that (A.9) is a special case of the tower

property of conditional expectation, which says that when G ⊂ B are sub-σ-algebras oftower property

of conditional

expectation
A,

E (X | B) = E(E (X | B) | G), a.s..

(g) Comparing the definition in (A.8) with the result in (A.7), we see that G corresponds

to the σ-algebra generated by Y . Let’s go ‘backwards’, and see that (A.8) leads back to

the definition we started out with. Suppose that G1, G2, . . . are disjoint sets whose union

equals Ω, and let G be the σ-algebra generated by G1, G2, . . .. Define

Z(ω) =

{
E (X |Gj), ω ∈ Gj and Pr(Gj) > 0,

zj ω ∈ Gj and Pr(Gj) = 0,

for arbitrary constant z1, z2, . . .. Show that Z is a version of E (X | G).

(h) Deduce from (g) that if X = a on a set G ∈ G, then aIG +E(X | G)IGc is a version

of E (X | G). In (g) you might have already used the fact that if G ⊂ G has no nonempty

proper subsets, then E (X | G) must be constant over G. Prove it.
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(i) Let X,Y1, . . . , Yn be real random variables in (Ω,A), and set Y = (Y1, . . . , Yn). From

Ex. A.3(i) we know that if g : Rn → R is a measurable function, then X = g(Y ) is

measurable with respect to σ(Y ). Combine Ex. A.3(f)&(g) to show that the converse

also holds: If X is measurable with respect to σ(Y ), then there exists a measurable

function g : Rn → R such that X = g(Y ).

(j) The upshot of (i) is that for the conditional expectation E (X |Y ), there exists a

measurable function g so that g(Y ) = E (X |Y ), almost surely. So when we write

E (X |Y = y), we mean g(y). Show that, with PY the distribution of Y ,

E (XIB) =

∫
C

E (X |Y = y) dPY (y), for every B = Y −1(C) ∈ σ(Y ).

In particular, Show that if (X,Y ) has joint density fX,Y with respect to Lebesgue measure

on (R2,B(R2)), then the function

g(y) =

∫
xfX,Y (x, y) dx∫
fX,Y (x, y) dx

.

is such that g(Y ) = E (X |Y ) almost surely.

Ex. A.24 Properties of conditional expectation. Even though a conditional expectation

is a random variable and an expectation is a constant, many of the same properties and

theorems apply. Let (Ω,A,Pr) be a probability space, G a sub-σ-algebra of A, and let

X and Y be integrable random variables.

(a) Use bootstrapping to show that if XY is integrable, and Y is G-measurable, we can

‘take out what is known’ from the conditional expectation, that is take out what is

known

E (XY | G) = Y E (X | G), a.s..

(b) If X = a a.s., show that E (X | G) = a. For constants a and b, show that

E (aX + bY | G) = aE (X | G) + bE (Y | G), a.s..

Show that if X ≤ Y almost surely, then E (X | G) ≤ E (Y | G) almost surely.

(c) Show that Fatou’s lemma holds for conditional expectation, that is

E(lim inf
n→∞

Xn | G) ≤ lim inf
n→∞

E (Xn | G), a.s..

(d) Show that if Xn is a monotone increasing (or decreasing) sequence of integrable monotone

convergencerandom variables such that Xn → X a.s., then E (Xn | G) → E (X | G) a.s..

(e) Show that if Xn is a sequence of integrable random variables such that Xn → X dominated

convergencea.s. and |Xn| ≤ Y a.s. for an integrable random variable Y , then E (Xn | G) → E (X | G)
a.s..

(f) Show that in ?? and (e), if the sequence Xn only converges in probability to X

(instead of almost surely), then we have E (Xn | G) →p E (X | G).
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(g) Let g be a convex function such that g(X) is integrable.. Show that

E {g(X) | G} ≥ g(E {X | G}), a.s..

Applying this to the convex function g(x) = |x|p for some 1 ≤ p < ∞, we have that

|E (X | G) ≤ E (|X| | G), a.s.. Show also that (E |E (X | G)|p)1/p ≤ (E |X|p)1/p

(h) Suppose that X is square integrable. The conditional variance of X given G, denoted
Var(X | G), is any version of the random variable E {(X − E (X | G))2 | G}. Show that if

Y and Z are G-measurable random variables, such that XY is square integrable, then

Var(Y X + Z | G) = Y 2Var(X | G), a.s..

(i) Suppose that X is square integrable. Show the following very useful variance decom-

position formulavariance

decomposition

Var(X) = EVar(X | G) + Var(E (X | G)), a.s..

We’ll meet this formula in the proof of the Rao–Blackwell theorem, see Ex. 8.4.

Ex. A.25 Conditional probability, distributions, and densities. Let (Ω,F ,Pr) be a

probability space. The conditional probability of the event A ∈ F given a sub-σ-algebra

G of F is defined as Pr(A | G) = E (IA | G). If X : Ω → X is a random variable with values

in the measurable space (X ,B), the conditional distribution of X given G is PX(B | G) =
Pr(X ∈ B | G) as B ranges over B. Since the conditional expectation is only defined

almost surely, so are conditional probabilities and distributions. This means that any

function p(ω,B) such that for each B ∈ B, p(ω,B) = PX(B | G)(ω) for Pr-almost all ω, is

a called the conditional distribution of X given G. In this book, we deal exclusively with

random variables taking values in complete and separable metric spaces, so we can, and

will, assume that all the conditonal distributions we encounter are regular, i.e., they are

such that B 7→ PX(B | G)(ω) is a probability measure on (X ,B) for Pr-almost all ω ∈ Ω.

(a) Let X and Y be real valued random variables. When, for some B ∈ B(R), we write

PX(B |Y = y) or Pr(X ∈ B |Y = y), we mean the function E (IB(X) |Y = y) introduced

in Ex. A.23(i). A version of the conditional distribution of X given Y . . .

(b) Let PX(B | G) be the conditional distribution of a real-valued random variable X

given G, and suppose that g : R → R is a measurable function such that g(X) is integrable.

Show that

E (g(X) | G)(ω) =
∫
g(x)PX(dx | G)(ω),

for Pr-almost all ω ∈ Ω. This is the conditional expectation analogue of the second

expression for E g(X) in Ex. A.15??.

(c) Suppose that (X ,A, µ) and (Y,B, ν) are σ-finite measure spaces, and let X : Ω → X
and Y : Ω → Y be random variables. Let PY be the distribution of Y on (Y,B), and let

PX,Y be their joint distribution on (X × Y,A ⊗ B). Suppose that PX,Y ≪ µ × ν with

density fX,Y . Show that PY ≪ ν with density

fY (y) =

∫
X
fX,Y (x, y) dµ(x),
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and that the conditional distribution of X given Y = y has densities

fX |Y (x | y) =
fX,Y (x, y)

fY (y)
,

with respect to µ. Convince yourself that the two expressions above also holds with X

and Y switching roles. In particular, show that the densities above can be expressed as

fX |Y (x | y) =
fY |X(y |x)fX(x)

fY (y)
.

This is Bayes’ theorem for densities. In the case that X is a (random) parameter, and Y

are the data, fX |Y (x | y) is called the posterior density of the parameter given the data.

(d) Show that if g : R → R is a measurable function such that g(X) is integrable, then

E (g(X) |σ(Y )) =

∫
g(x)fX |Y (x |Y ) dµ(x),

almost surely. Note that this is the conditional expectation analogue of the expression

for E g(X) in Ex. A.20(e).

(e) The results in (c) are in the background of many of the conditional probability calcu-

lations to be carried out in this book, but they cannot always be used. In Ex. A.23(a), we

had X ∼ N(0, 1) and the event A = {X ≥ c}. Consider the random variable Y = I(X ≥
c). The distributions of X and Y have, of course, densities with respect to Lebesgue

and counting measure, say λ and µ, respectively. Show, however, that the distribution

of (X,Y ) is not dominated by the product measure λ× ν on (R× {0, 1},B(R)⊗ 2{0,1}).

Define the set function ρ(C) = λ({x ∈ R : (x, I{x ≥ c}) ∈ C}) on B(R) ⊗ 2{0,1}. Show

that ρ is a measure, and that PX,Y ≪ ρ. Find an expression for the density. Introduce

the set function λX |Y (B | y) = λ(By), where By = {x ∈ R : I(x ≥ c) = y} for B ∈ B(R).
Show that λX |Y (B | y) is a measure on (R,B(R)) for y = 0, 1; that the conditional dis-

tribution of X given Y = y is dominated λX |Y (B | y); and find an expression for the

density.

(f)

(g) Let X and Y be independent random variables on the probabilty space (Ω,A,Pr).
Let g be a real-valued function such that g(X,Y ) is integrable with respect to Pr. Show

that

E (g(X,Y ) | σ(Y )) =

∫
g(x, Y ) dPX(x),

where PX = PrX−1 is the distribution of X.

(h)

(i) Suppose that (X ,A, µ) be a σ-finite measure space, and (Θ,B) a measurable space.

Let X : Ω → X and θ : Ω → Θ be random variables on the same underlying probability

space (Ω,F ,Pr). Suppose that the conditional distribution of X given θ is Pθ, and that

Pθ ≪ µ for all θ ∈ Θ, with densities fθ(x). Let Π be the distribution of θ. We think of
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θ as a random parameter, and, as is the convention, we do not distinguish between the

random variable θ and the values it attains. Show that (X, θ) has joint distribution

Pr((X, θ) ∈ C) =

∫
IC(x, θ)fθ(x) d(µ×Π)(x, θ),

for C ∈ A ⊗ B, where µ× Π is the product measure on (X ×Θ,A⊗ B). Show that the

posterior distribution of θ given X is

Pr(θ ∈ B |σ(X)) =

∫
B

fθ(X) dΠ(θ)∫
X fθ(X) dΠ(θ)

,

almost surely. Show also that if ν is a σ-finite measure on (Θ,B) such that Π ≪ ν with

density π, then the posterior density of θ given X is

π(θ |x) = fθ(x)π(θ)∫
fθ(x)π(θ) dν(θ)

,

with respect to ν. This version of Bayes’ theorem, with this notation, is the workhorse

formula of Chapter 6.

(j) (xx the more general cases, and examples; Bayes’ theorem for densities; include also

classical transformation formula, with Jacobian etc.)

(k)

(l)

Ex. A.26 Conditional independence. [xx some intro text xx]

(a)

(b) Let F , G, and H be σ-algebras. Show that F ⊥⊥ H |G if and only if

Pr(H | F ∨ G) = Pr(H | G), a.s., for all H ∈ H,

where F ∨ G is the smallest σ-algebra that contains F and G.

Ex. A.27 Extension of probability spaces. An extension of a probability space (Ω,F ,Pr)
is a product space (Ω × X ,F ⊗ B) equipped with a probability measure Pr′ such that

Pr′(A×X ) = Pr(A) for all A ∈ F .

(a) Let Y be a random variable (or vector, or process) on (Ω,F ,Pr). We can extend Y

to be defined on the extension (Ω × X ,F ⊗ B,Pr′) by setting Y ′(ω, x) = Y (ω). Show

that Y ′ has the same distribution as Y , and, in particular, that E′ g(Y ′) = E g(Y ) for all

measurable g : X → R.

(b) Let Q be a probability kernel (or Markov kernel) between the probability space

(Ω,G,Pr) and the measurable space (X ,B). That is Q : Ω×X → [0,∞) is so that

ω 7→ Q(ω,B) is G-measurable for each fixed B ∈ B; and
B 7→ Q(ω,B) is a probability measure on (X ,B) for each ω ∈ Ω.
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The regular conditional distributions introduced in Ex. A.25 are probability kernels.

Other examples of probability kernels are the mixed normal densities we meet in Ex. 2.56,

where σ : Ω → (0,∞) a random variable, and

Q(ω,B) =

∫
B

1√
2πσ(ω)

exp(− x2

2σ(ω)2
dx).

If we were to simulate a random variable X from Q(ω, ·) we would perhaps run something

ressembling the following little script

sigma <- rgamma(1,2,2) # for example

X <- rnorm(1,0,sigma)

and almost without thinking about it, X would have been taken as conditionally inde-

pendent of all other random variables, given σ. Since our probability space may not be

rich enough to support such as conditionally independent random variable (see example

below), we might need enlarge the probability space. Here is how: Suppose we have a

probability space (Ω,F ,Pr) and G ⊂ F . Let Q be a probability kernel between (Ω,G,Pr)
and (X ,B). Consider (Ω×X ,G ⊗ B,Pr′) with

Pr′(A) =

∫
Ω×R

IA(ω, x)Q(ω,dx) dPr(ω), for all A ∈ G ⊗ B.

Show that (i) Pr′(G × X ) = Pr(G) for all G ∈ G, meaning that the product space

just defined is indeed an extension; (ii) that the random variable X(ω, x) = x is so

that Pr′(X ∈ B |σ(V )) = Q(·, B), Pr′-almost surely; and (iii) that X is conditionally

independent of all F-measurable random variables, given G.

(c) Consider the probability space ({H,T}, 2{H,T},Pr) with Pr a probability measure

such that Pr(H) = p. Let θ : {H,T} → {0, 1} be such that Pr(θ = 1) = p, and consider

the probability kernel Q(ω,B) = θ(ω)
∫
B
ϕ(x) dx+ (1− θ(ω))

∫
B
ϕ(x/

√
2)/

√
2 dx, where

ϕ is the standard normal density. Construct an extension on which the random variable

X has conditional distribution Q, given θ.

Ex. A.28 Regularity and approximations. Let (X , d) be a metric space and consider the

measurable space (X ,B, µ), where B is the Borel σ-algebra, and µ is a finite measure.

The distance from a point x to a set A is d(x,A) = inf{d(x, y) : y ∈ A}. Using this

distance, we can express any closed set F as a countable intersection of open sets, as

follows F = ∩∞
n=1{x ∈ X : d(x, F ) < 1/n}. So by De Morgan’s laws, any open set G

can be expressed as a countable union of closed sets G = ∪∞
n=1{x ∈ X : d(x,Gc) ≥ 1/n}.

These facts are useful in what follows.

(a) Show that µ(B) = supF⊂B µ(F ) for any open set B, where the supremum is taken

over closed sets F . Similarly, show that µ(C) = infG⊃C µ(G) for any closed set C,

with the infinum taken over open sets G. Recall that {B ⊂ X : B is open} and {C ⊂
X : C is closed} are π-systems, and that they both generate the Borel σ-algebra, facts

we use below.
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(b) Show that Dc = {B ∈ B : µ(B) = supF⊂B µ(F ), F closed} and Do = {B ∈
B : µ(B) = infB⊂G µ(G), G open} are d-systems, and conclude from Dynkin’s lemma

(see Ex. A.5) that for any B ∈ B,

µ(B) = sup
F⊂B

µ(F ) = inf
G⊃B

µ(G),

where the supremum and the infimum are taken over closed sets F and open sets G,

respectively.

(c) Show that for any measurable function f : X → R such that
∫
fp dµ < ∞, i.e.,

f ∈ Lp(X ,B, µ), there is a sequence f1, f2, . . . : X → R of bounded and continuous

functions such that
∫
|fn − f |p dµ→ 0.

Ex. A.29 The mean via the cumulative distribution function. Consider a random

variable X on [0,∞), with cumulative function F .

(a) Show that the mean EX =
∫∞
0
x dF (x) also can be expressed as

∫∞
0

(1 − F ) dx.

You may use x =
∫∞
0
I(x > y) dy and then Fubini. Show furthermore that EXp =∫∞

0
{1− F (x1/p)}dx.

(b) As a simple illustration, consider X with density function f(x) = θ exp(−θx), where
θ is a positive parameter. Find the cumulative F , and compute EX in two ways.

(c) (xx something with a discrete distribution too. find the AmStat paper we talked

briefly about, for a bit more. xx)

Ex. A.30 Moment-generating functions: examples. [xx we have not introduces these

distributions yet. xx] (xx nils lifts these to Ch1; then need post-polish here in App. xx)

For a random variable Y , with distribution P , its moment generating function is

M(t) = E exp(tY ) =

∫
exp(ty) dP (y),

defined for each t at which the expectation exists. The moment generating function is

useful for finding and characterising distributions, for finding their moments, for han-

dling the distributions of sums of variables, and in connection with distributional lim-

its. When Y has a density f(y) (with respect to Lebesgue measure), we have M(t) =∫
exp(ty)f(y) dy, and if it is discrete with pointmasses f(y) for sample space S, say,

thenM(t) =
∑

y∈S exp(ty)f(y). The expectation operator is more general, however, and

M(t) is perfectly defined also for intermediate cases where Y can have both discrete and

continuous parts; see Ex. A.15.

(a) For a standard normal Y ∼ N(0, 1), show thatM(t) = exp(12 t
2). When Y ∼ N(µ, σ2),

derive M(t) = exp(µt+ 1
2σ

2t2).

(b) For Y ∼ Expo(θ), show that M(t) = 1/(1− t/θ), for t < θ.

(c) For Y ∼ Gam(a, b), with density {ba/Γ(a)}ya−1 exp(−by), show thatM(t) = {b/(b−
t)}a, for t < b. In particular, M(t) = 1/(1− t)a for Gam(a, 1).
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(d) Suppose Y is equal to zero with probability 0.90, but a standard normal with prob-

ability 0.10. Find the M(t), and generalise.

(e) For the binomial (n, p), show that M(t) = {1− p+ p exp(t)}n.

(f) For Y ∼ Pois(θ), find M(t) = exp{θ(et − 1)}. Use this, with Ex. 1.26, to find M(t)

also for the negative binomial (a, p). (xx hm, should give the formula here. xx)

(g) Let Y = ±1 with probabilities 1
2 ,

1
2 . Show that

M(t) = cosh(t) = 1
2 (e

t + e−t) = 1 + (1/2)t2 + (1/4!)t4 + (1/6!)t6 + · · · .

(h) For the uniform distribution on the unit interval, show that M(t) = {exp(t)− 1}/t,
for t ̸= 0, and with M(0) = 1.

(i) Let Y have the uniform distribution on the [−1, 1] interval. Show that

M(t) =
exp(t)− exp(−t)

2t
=

sinh t

t
,

and that this function may be written as the infinite sum 1 + (1/3!)t2 + (1/5!)t4 + · · · .

Ex. A.31 Moment-generating functions: properties. Among the basic properties of

moment-generating functions is that it generates moments. As we will see in this exercise,

the rth derivative of M(t) = E exp(tY ) at the point zero equals EY r.

(a) Suppose that the moment generating function M(t) of a random variable Y is finite

for all t ∈ (−t0, t0), for some t0 > 0. For some t in this interval, the sumM(−t)+M(t) is

then also clearly finite. Appeal to Ex. A.12(b) to show that the finiteness ofM(−t)+M(t)

implies that E |Y |2k is finite for all k ≥ 1. Now, use that |x|2k−1 ≤ 1 + |x|2k to fill in

the odd gaps. This highlights the restrictiveness of the moment-generating function: by

assuming its existence in a neighbourhood of zero, we are effectively assuming that all

moments exist.

(b) To see that the converse of (a) does not hold, that is, a distribution with finite

moments of all orders may not have a moment-generating function that is finite in some

interval around zero, consider the log-normal distribution; see Ex. 1.53.

(c) Provided M(t) is finite in an interval around zero, say (−t0, t0), t0 > 0, you may

again use Ex. A.12(b) to show that

M(t) =

∞∑
k=0

tk

k!
EY k, for |t| < t0.

We now see that if we can slip the derivative inside this sum, then we have the property

mentioned in the introduction. To see that we can, choose points a and b so that |t| <
a < b < t0, and show that ∣∣ (t+ h)k − tk

h

∣∣ ≤ 3kak−1,
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provided |h| < a − |t|. Next, show that there is an M > 0 so that 3kak−1 ≤ 3Mbk,

and use this to conclude that
∑∞

k=0 3ka
k−1EY k < ∞. Using these results, explain why

M ′(t) =
∑∞

k=1(t
k−1/(k − 1)!)EY k. Finally, by induction, show that

M (r)(t) =

∞∑
k=r

tk−r

(k − r)!
EY k.

This expression shows that moment-generating functions generate moments in the sense

that M (r)(0) = E (Y r).

(d) For X ∼ N(0, 1), show that M(t) for |X| becomes 2 exp( 12 t
2)Φ(t), and use this to

find its mean and variance.

(e) It Y has mean ξ and standard deviation σ, and moment-generating function M(t),

give a formula for that of Y ′ = (Y −ξ)/σ. Illustrate this in the case of Y ∼ Pois(θ), com-

puting and drawing the moment-generating function of (Y −θ)/θ1/2, alongside exp( 12 t
2).

Comment on what you find.

(f) If Y has a distribution symmetric around zero, such that Y and −Y have the same

distribution, then M(t) =M(−t), so it depends on t only via |t|.

Ex. A.32 Uniqueness of the Laplace transform. For random variables taking values on

the positive halfline [0,∞), it is sometimes more convenient to work with the Laplace

transform instead of the moment-generating function. Let X be a random variable with

support [0,∞), and denote its distribution and c.d.f. by P and F , respectively. Define

the Laplace transform L(t) = E exp(−tX), for t ≥ 0. We here follow Billingsley (1995,

pp. 284–286) in proving that L(t) determines the distribution of X.

(a) Show that L(t) is finite for all t ≥ 0, and deduce from Ex. A.31(c) that the rth

derivative of L(t) is L(r)(t) = (−1)rEXr exp(−tX).

(b) To prove that the Laplace transform uniquely determines the distribution of X, we

make a detour via the Poisson distribution. Let Yθ be a Poisson random variable with

mean θ, i.e., Yθ has density f(r; θ) = (1/r!)θr exp(−θ) with respect to counting measure

on {0, 1, 2, . . .}. Use the Chebyshov inequality (see Ex. 2.11) to show that Yθ/θ →p 1

as θ → ∞. Let G(t; θ) = Pr(Yθ/θ ≤ t) =
∑⌊θt⌋

r=0 f(r; θ) be the c.d.f. of Yθ/θ, where

⌊u⌋ = max{m ∈ Z : m ≤ u}. Deduce from the convergence in probability result that as

θ tends to infinity, G(t; θ) → 1 if t > 1 and G(t; θ) → 0 if t < 1.

(c) Show that we can write,

⌊ty⌋∑
r=0

(−1)r

r!
trL(r)(t) = EG(y/X; tX).

and show that G(y/x; tx) → I{0 ≤ x ≤ y} as t → ∞, almost everywhere. Appeal to

the right convergence theorem to conclude that EG(y/X; tX) → F (y), for all continuity

points of F (y) = P (−∞, y].
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(d) [xx include continuity theorem for Laplace transform, i.e., that for nonnegative ran-

dom variables Xn the Laplace transforms converge to a the Laplace transform of a rv X,

then Xn →d X xx]

Ex. A.33 Moment-generating functions for sums. (xx point here to Ex. ??, and more.

xx) If Y1 and Y2 are independent, with given distributions, say with densities f1 and f2,

then their sum Z = Y1 + Y2 have of course a well-defined distribution, and its density

can be expressed as

g2(z) =

∫
f1(z − y2)f2(y2) dy2 =

∫
f1(y1)f2(z − y1) dy1.

With algebraic patience this may e.g. be used to show that if Y1 ∼ N(µ1, σ
2
1) and

Y2 ∼ N(µ2, σ
2
2), then indeed Y1+Y2 is normal too, with parameters µ1+µ2 and σ2

1 +σ
2
2 ;

see Ex. 1.2. Such convolutions quickly become convoluted in more general setups, how-

ever, and finding the density of say Y1 + Y2 + Y3 + Y4 from given densities f1, f2, f3, f4
may become too complicated. Pushing the matter to the domain of moment-generating

functions instead makes matters simpler.

(a) When X and Y are independent, then MX+Y (t) = MX(t)MY (t), in the obvious

notation. This generalises of course to the case of more than two independent variables.

(b) Let Yi ∼ N(µi, σ
2
i ), for i = 1, . . . , n, with these variables being independent. Find the

moment-generating function for the sum Z = Y1 + · · ·+Yn, and use the characterisation

property to establish that indeed Z ∼ N(
∑n

i=1 µi,
∑n

i=1 σ
2
i ).

(c) Let Y1, . . . , Yk be independent Gamma distributed variables, with parameters (a1, b),

. . . , (ak, b); see Ex. 1.9. Show that their sum is a Gamma with parameters (
∑k

i=1 ai, b).

(d) Suppose Z = Y1+Y2, with these two being independent, and suppose you know that

Y1 ∼ N(0, 2) and Z ∼ N(0, 7). Prove that Y2 must be a N(0, 5).

(e) Similarly, suppose Z = Y1 + Y2, with these two being independent, and assume it is

known that Y1 ∼ χ2
10 and that Z ∼ χ2

24. Prove that Y2 ∼ χ2
14.

Ex. A.34 Characteristic functions. The characteristic function of a random variable X

is defined as

φ(t) = E exp(itX) = E cos(tX) + iE sin(tX),

with i =
√
−1 the complex unit, and t ∈ R. As the name suggests, the characteristic

function is useful for finding and characterising distributions, for finding their moments,

for handling the distributions of sums of variables, and for finding with distributional

limits. What distingusihes it from the moment-generating function is that it always

exists, i.e., we do not need to make the assumption of all moments being finite (see

Ex. A.31(a)).

(a) Show that the characteristic function always exists, in fact |φ(t)| ≤ 1. Establish that

|φ(t+h)−φ(t)| ≤ E | exp(ihX)−1|, and use this inequlity to show that φ(t) is uniformly

continuous.
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(b) Show that if Z ∼ N(0, 1), then its characteristic function is φZ(t) = exp(− 1
2 t

2), and

that if X ∼ N(µ, σ2) its characteristic function is φX(t) = exp(itµ− 1
2 t

2σ2).

(c) Show that the Cauchy distribution with density f(x) = (1/π)(1 + x2)−1 has char-

acteristic function exp(−|t|). Note that this function does not have a derivative at zero,

corresponding to the fact that the Cauchy distribution does not have a finite mean.

(d) Suppose that X has c.d.f. F . Show that the characteristic function is real-valued if

and only if the distribution is symmetric, that is. F (x) = 1− F (−x) for all x.

(e) For m = 0, 1, 2, . . . define rm(x) = exp(ix)−
∑m

k=0(ix)
k/k!, and let r−1(x) = exp(ix).

Convince yourself that rm(x) = rm−1(x)− (ix)m/m!, and that rm(x) = i
∫ x

0
rm−1(y) dy

for x > 0 and rm(x) = −i
∫ 0

x
rm−1(y) dy for x < 0. Show that |r0(x)| ≤ min(2, |x|), and

proceed by induction to show that

| exp(ix)−
m∑

k=0

(ix)k

k!
| ≤ min

(2|x|m
m!

,
|x|m+1

(m+ 1)!

)
, for m = 0, 1, 2, . . ..

In particular, for m = 0, 1, 2,

| exp(ix)− 1| ≤ min(|x|, 2),
| exp(ix)− (1 + ix)| ≤ min( 12 |x|

2, 2|x|),
| exp(ix)− (1 + ix− 1

2x
2)| ≤ min( 16 |x|

3, x2).

(f) Use the inequality in (e) and the dominated convergence theorem to show that if

EX2 is finite, then φ(t) = 1+ itEX− 1
2 t

2EX2+o(t2) as t→ 0. In particular, if EX = 0

and EX2 = σ2, we have

φ(t) = 1− 1
2 t

2σ2 + o(t2), as t→ 0.

Generalise to show that if E |X|m <∞ for some m ≥ 1, then

φ(t) =

m∑
k=0

((it)k/k!)EXk + o(tm), as t→ 0.

(g) Assume that E |X| is finite. For h > 0 write,

φ(t+ h)− φ(t)

h
= E exp(itX)

(exp(ihX)− 1

h

)
,

and, taking limits as h→ 0, combine the inequality from (e) and the dominated conver-

gence theorem to show that φ′(t) = E {iX exp(itX)}. Proceed inductively to show that,

provided E |X|r is finite, the rth derivative of the characteristic function is

φ(r)(t) = E {(iX)r exp(itX)}.

This shows that the moments can be read off from the characteristic function. Use the

same proof technique as in (a) to show that φ(r)(t) is uniformly continuous.
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Ex. A.35 Uniqueness of characteristic functions. If two random variables have identical

characteristic functions, then their distributions are identical too. This fact is proved via

so-called ‘inversions theorems’, providing a mechanism for finding the distribution of a

random variable from its characteristic function.

(a) One such inversion formula is as follows: If the random variable X has characteristic

function φ(t) that is integrable, i.e.,
∫
|φ(t)|dt < ∞, then X has density f , for which a

formula is

f(x) =
1

2π

∫
exp(−itx)φ(t) dt.

Write down what this means, in the cases of a normal and a Cauchy, and verify the

implied formulae. Show that f in each such case of an integrable φ(t) necessarily becomes

continuous.

(b) As a small digression, show that the characteristic function of the uniform distribu-

tion on [−1, 1] is φ(t) = sin(t)/t. Deduce that∫
| sin t
t

|dt = ∞ even though

∫
sin t

t
dt = π.

(c) Point (a) above gives a formula for the density f of a random variable, in the case of

it having an integrable characteristic function φ. One also needs a more general formula,

for the case of random variables that do not have densities, etc. Let X be any random

variable, with cumulative distribution function F and characteristic function φ (but with

nothing assumed about it having a density), and add a little Gaußian noise to X,

Uσ = X + σZ, with Z ∼ N(0, 1),

with σ > 0 and Z is independent of X. Then Uσ has a density, even if X does not have

one. Our intention is to let σ → 0, to come back to X. Show that Uσ has cumulative

distribution function and density of the form

Fσ(u) =

∫
Φ
(u− x

σ

)
dF (x), and fσ(u) =

∫
1√
2πσ

exp(− (u− x)2

2σ2
) dF (x),

where Φ(z) =
∫ z

−∞(1/
√
2π) exp(− 1

2x
2) dx is the standard normal distribution function.

(d) Verify that the characteristic function of Uσ is φ(t) exp(− 1
2 t

2σ2), and that it is

integrable. Thus, according to (a) we must have that the density of Uσ is

fσ(u) =
1

2π

∫
exp(−itu)φ(t) exp(− 1

2 t
2σ2) dt.

To see that this equality is true, start by showing that E
∫
exp{it(X − u)− 1

2 t
2σ2} dt =

2πfσ(u), and apply Fubini’s theorem.

(e) Deduce from (d) that for a < b,

Pr(Uσ ∈ (a, b]) =
1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2 t
2σ2) dt,
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and from this, derive the general inversion formula, valid for all continuity points a and inversion

formulab (a < b) of F ,

F (b)− F (a) = lim
σ→0

1

2π

∫
exp(−itb)− exp(−ita)

−it
φ(t) exp(− 1

2 t
2σ2) dt.

(f) Assume that X and Y are random variables with identical characteristic functions.

Show that X and Y must be equal in distribution.

(g) Let X1, . . . , Xn be independent N(µj , σ
2
j ) random variables. Show that

∑n
j=1Xi has

a normal distribution.

(h) By the inequality in Ex. A.34(e), and using that the absolute value of the complex

exponential is 1, show that for all real x and y,

| exp(iy)− exp(ix)| ≤ |x− y|.

Now, let X be a random variable with characteristic function φ, and suppose thatcharacteristic

functions with

finite integral

∫
|φ(t)|dt is finite. Show that X has density f(x) = (2π)−1

∫
exp(−itx)φ(t) dt, meaning

that the claim in (a) is true.

Ex. A.36 Characteristic functions for vector variables. With X = (X1, . . . , Xk)
t a

random vector, in dimension k, we define its characteristic functions as

φ(t1, . . . , tk) = E exp(ittX) = E exp{i(t1X1 + · · ·+ tkXk)}

for t = (t1, . . . , tk)
t.

(a) Show that the properties from Ex. A.34, with the appropriate amendments, gener-

alises to the k-dimensional case. In particular, show that |φ(t1, . . . , tk)| ≤ 1, and [xx list

relevant props here xx].

(b) Show that if the components are independent, then φ(t1, . . . , tk) = φ1(t1) · · ·φk(tk),

in terms of the individual characteristic functions φ1, . . . , φk. Thus, the characteristic

function of any subset of (X1, . . . , Xk) can be retrieved by setting the appropriate subset

of (t1, . . . , tk) to zero.

(c) Show for the multinormal case, where X ∼ Nk(ξ,Σ), that φ(t) = exp(ittξ − 1
2 t

tΣt).

(d) The inversion formula derived in Ex. A.35 also generalises to the k-dimensional

case. In analogy to that exercise, let Z1, . . . , Zk independent standard normal random

variables, and define Uσ,j = Xj + σZj for j = 1, . . . , k. Amend the proof from said

exercise to show that

Pr{Uσ,1 ∈ (a1, b1], . . . , Uσ,k ∈ (ak, bk]}

=
1

(2π)k

∫
· · ·
∫ k∏

j=1

exp(−itjbj)− exp(−itjaj)
−itj

exp(− 1
2 t

2
jσ

2)φX(t1, . . . , tk) dt1 · · · dtk.

Next, take the limit as σ → 0 to obtain the general inversion formula for k-dimensional

random vectors. Conclude that if X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) are random

vectors with identical characteristic functions, then they are also identical in distribution.
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(e) Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be two random vectors. Show that if

ctX = c1X1 + · · · ckXk = c1Y1 + · · · ckYk = ctY for all vectors c = (c1, . . . , ck)
t, then X

and Y are identical in distribution.

(f) Let X = (X1, . . . , Xk)
t be a random vector, and suppose that its characteristic

functions φ(t1, . . . , tk) is such that
∫
· · ·
∫
|φ(t1, . . . , tk)|dt1, . . .dtk < ∞. Show that X

has density

f(x1, . . . , xk) =
1

(2π)k

∫
· · ·
∫ ( k∏

j=1

exp(−itjxj)
)
φ(t1, . . . , tk) dt1 · · · dtk.

Ex. A.37 Smoothness of characteristics functions. In Ex. A.34(g) we have seen that the

more moments a random variable X has, the smoother its characteristic function φ(t) is.

In (a) , which is the Riemann–Lebesgue lemma, the smoothness of φ(t) is connected to

the behaviour of φ(t) as |t| tends to infinity.

(a) Suppose that X has density f with respect to Lebesgue measure. Show that φ(t) → 0

as |t| → ∞. Show that if f has k ≥ 1 integrable derivatives, then φ(t) = o(1/tk) as

|t| → ∞.

(b) Suppose that the characteristic function φ of the random variable X is such that

|φ(t)| = 1 for all t. Show that X must be equal to a constant, i.e., it has a degenerate

distribution.

(c) Show that sup|t|>ε |φ(t)| < 1 for any ε > 0.

(d) Generalise the above to higher dimensions, i.e., the characteristic functions of random

vectors of dimension k ≥ 2.

Ex. A.38 Uniqueness of moment-generating functions. Moment-generating functions

characterise distributions: If X and Y are random variables such that E exp(tX) =

E exp(tY ) <∞ for all t ∈ (−t0, t0), then X and Y have the same distribution.

(a) Suppose that E f(X) = E f(Y ) for all bounded and continuous functions f . Ap-

proximate the indicator function I{y ≤ x} by a sequence of bounded and continuous

functions to show that F (x) = G(x) for all x. From Ex. A.14(c), this entails that X and

Y have the same distribution.

(b) Let X and Y be random variables with distributions F and G on the unit interval,

with identical moment-generating functions,
∫ 1

0
exp(tx) dF (x) =

∫ 1

0
exp(tx) dG(x) for

all t ∈ (−t0, t0), say. Show that then
∫ 1

0
p(x) dF (x) =

∫ 1

0
p(x) dG(x) for all polynomials

p(x). Use the Weierstraß approximation theorem, see Ex. 2.18, to show that this equality

must hold for all continuous functions f . Point to (a) and conclude.

(c) Suppose that X and Y have identical moment-generating functions that are finite on

(−t0, t0). Let φX and φY be their characteristic functions. We follow Billingsley (1995)

in showing that φX = φY . Appeal to Ex. A.31(c) to argue that

lim
k→∞

t2k E |X|2k

(2k)!
= 0, for t ∈ (−t0, t0).
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Let 0 < s < min(t0, 1), and fix an 0 < r < s. Argue that there is an k0 so that

2kr2k−1 < s2k for all k ≥ k0. Use this and the inequality |x|2k−1 ≤ 1+ |x|2k to show that

limk→∞ t2k−1 E |X|2k−1/(2k − 1)! = 0 for t ∈ (−t0, t0), as well. Next, use the inequality

in Ex. A.34(e) to show that

∣∣φX(t+ h)−
m−1∑
k=0

tk

k!
φ
(k)
X (t)

∣∣ ≤ |h|m

m!
E |X|m, for h ∈ (−r, r),

with a similar inequality holding for φY for the same h, where φ
(k)
X (t), k = 0, 1, . . . are

the derivatives from Ex. A.34(g). Since X and Y have identitical moment sequences

(why?), φ
(k)
X (0) = φ

(k)
Y (0) for k = 0, 1, 2, . . ., and so φX(t) = φY (t) for t ∈ (−r, r). For

an arbitrary 0 < ε < r, consider the inequality above with t = r− ε and t = −r+ ε, and

argue that φX(t) = φY (t) for t ∈ (−2r, 2r). Use the same argument with t = 2r− ε and

t = −2r + ε, to argue that φX(t) = φY (t) for t ∈ (−3r, 3r), and so on, forevermore.

(d) (xx perhaps other conditions ensuring that identical moment sequences ensure iden-

tical distribiutions. Then a few counterexamples! xx)

Ex. A.39 Posterior distributions without Bayes. In Chapter 15 we will need to find

posterior distributions without densities, i.e., in situations where neither of the formulae

of Ex. A.25(i) are applicable.

(a)

(b)

Ex. A.40 Something More. (xx not yet an exercise, but a place to jot down a few

comments, also as of 12-August-2024. we need the ‘double variance’ formula too. and

show we round off ChZero with a few things to make the readers feel ‘aha, so after all of

this, we can do familiar things again’, with ordinary integrals and sums and means and

variances. perhaps a few simple but nonstandard things too. xx)

Notes and pointers

(xx we point to some of the many books on measure theory for probability and statistics,

and also to where key ideas originated. Kolmogorov (1933a,b). Billingsley (1968); Royden

and Fitzpatrick (2010) also Shiryaev (1996) and Williams (1991) and Kallenberg (2002).

also, briefly, to ‘what is a statistical model’, McCullagh (2002). Cantor set and Cantor

function, F is continuous on [0, 1] but not at all absolutely continuous. In connection

with Ex. 2.5, mention that Xn →d X and Xn uniformly integrable, implies EXn → EX,

and that the proof of this employs a theorem of Skorokhod, see Billingsley (1995, p. 338)

xx)

Notes to Ex. A.25. A conditional distribution is said to be regular if PX(B | G)(ω)
is a distribution on (X ,B) for Pr-almost all ω ∈ Ω. Not all conditional distributions are

regular (see, e.g. Dudley (2002, Problem 6, p. 351)), but, fortunately, if the measurable

space (X ,B) is composed of a complete and separable metric space (X , d), and the Borel-

σ-algebra B on X (see Ex. A.2(i)), then there exists a regular conditional distribution
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of X given G (see, e.g., Dudley (2002, Theorem 10.2.2, p. 345) or Schervish (1995,

Lemma B.40, p. 621)). In this book, we deal exclusively with complete and separable

metric spaces, and all conditional distributions will be assumed regular without further

mention.

For Ex. A.17, Emil is indebted to the lecture notes for the course Statistics 381:

Measure-Theoretic Probability 1, by Steven Lalley, at the University of Chicago. Provide

a citation
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Lehmann–Scheffé theorem, 272

Levy’s continuity theorem, 74

loss function, 267

Markov’s inequality, 49

measurable space, 640, 643

measure, 643

minimal sufficient statistic, 147

Minimax, 268

Monotone class, 645

Monotone class theorem, 645

multivariate CLT, 75

natural parameter region, 36

outer-measure, 647

posterior density, 670

power set, 639, 641

probability density function, 662

probability distribution, 656

probability kernel, 671

probability measure, 643

probability transform, 61

product measure, 657

product σ-algebra, 641

Prokhorov’s theorem, 63

Prokohorov’s theorem, 74

Radon–Nikodym theorem, 663

Rao–Blackwell theorem, 271

regular conditional distributions, 681

Riemann–Lebesgue lemma, 680

risk, 214

score function, 177

semi-ring, 646

semialgebra, 646

separable σ-algebra, 641

sigma-algebra, σ-algebra, 640

simple function on standard form, 643

Simple functions, 643

stable convergence, 85, 86

standard deviation, 657

statistic, 142

strong consistency of an estimator, 48

subsequence lemma, 64

subset, 639

Sufficient statistic, 142

tail-σ-algebra, 662

the diagonal method, 64

Tightness, 62

tightness in dimension k, 74

Tonelli’s theorem, 658

tower property of conditional expectation,

667

triangular array, 71

trivial σ-algebra, 641

Type I and Type II errors, 268

unbiased estimator, 268

uniformly minimum variance unbiased esti-

mator, 270

union, 639

variance, 657

version, 667

weak convergence, 58


	Preface
	Contents
	I Short & crisp
	Statistical models
	Large-sample theory
	Parameters, estimators, precision, confidence
	Testing, sufficiency, power
	Minimum divergence and maximum likelihood
	Bayesian inference and computation
	CDs, confidence curves, combining information
	Loss, risk, performance, optimality
	Bootstrapping

	II Stories
	III Appendix
	Mini-primer on measure and integration theory
	References
	Name index
	Subject index


