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Preface

This book builds on Hello, here is some text without a meaning. This text should show
what a printed text will look like at this place. If you read this text, you will get no
information. Really? Is there no information? Is there a difference between this text and
some nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives
you information about the selected font, how the letters are written and an impression
of the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of words
should match the language.

(xx then three-four paragraphs here, on the carrying ideas behind and structure
of the book: exercises and stories. a partly flipped classroom, with direct participa-

the Hjort- tion from the first pages of each chapter. there will be solutions to all exercises, not

EZZIﬁGQEEZie physically placed inside the book, but rather on the book’s website-to-be, perhaps url’d
www.mn.uio.no/math/english/research/projects/HjortStoltenberg. That website
will also have all datasets and code is R and python to carry out all analyses, for the
construction of each of the book’s figures, etc.

(xx if we're clever with the 777 exercises, 77 stories, we should mention Stigler’s 7
pillars. x)

(xx briefly on on prerequisties: linear algebra, with matrix theory, etc.; calcululs,
with functions of one or more variables, partial derivatives, etc.; programming, in R
or Python or other appropriate language, both for running common algorithms inside
relevant pacakages, and for programming one’s own functions, for simulation, etc.)

(xx crisp clear prose here, regarding segments of readers and how they can manouevre
through the material. overall: from beginning master’s level, in statistics, probability
theory, data science, machine learning, and upwards, to PhD level and more. xx) (i)
The Linear Readers, who will benefit from having the stamina to work through chapter
by chapter (ideally also exercise for exercise), and appropriate subsets of our stories.
These readers will be at a high master or PhD level. (ii) The Statistical Stories Readers,
for those who already know the basics on statistical models, parameter estimation and
testing, some Bayes, etc. (iii) Our book is also for the specialists inside certain themes,
who wish to learn even more.

(xx crisp clear prose here, regarding courses and teaching. below we help readers
and instructors by also providing short lists of relevant stories, for the different types of
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courses using our book. xx) Several types of courses can be taught from this book. several courses
(i) Hard-core statistical inference, with parametric models, etc.: Chs. 1, half of 2, hich can be
taught from our
then most of 3, 4, half of 5, 6, 7; a selection of Stories. book

(ii) Large-sample theory, the careful probablity theory leading to CLT and more,
with applications in statistics: Chs. 1, 2, 5; half of 9, a selection of Stories.

(iii) Empirical processes, convergence, approximations, applications in statistics:
Chs. 1, 2, 5, 9; a selection of Stories.

(iv) Survival and event history analysis: Chs. 1, the essence of 2, 3, 4, 5, then the
full 9; a selection of Stories.

(v) Model selection and model averaging: Chs. 1, the essence of 2, 3, 4, 5, then the
full 11; a selection of Stories.

(vi) Bayesian statistics and confidence distributions: Chs. 1, the essence of 3, 5, then
the full 7, 8, parts of 15; a selection of Stories.

(vii) Statistics with applications: a special course can be taught with little emphasis
on the theoretical details, but illustrating concepts, models, methods, inference views
through a selection of perhaps fifty of our Stories.

The authors owe special thanks to Céline Cunen, Gudmund Hermansen, Tore Schwe-
der, for having contributed significantly to several of our Statistical Stories, and also for
always pleasant and inspiring long-term collaborations. Deep thanks are also due to a
long list of colleagues and friends, who have taken part in discussions and rounds of
clarification of relevance to various exercises and stories in our book: Marthe Aastveit,
Patrick Ball, Bear Braumoeller, Gerda Claeskens, Aaron Clauset, Dennis Cristensen,
Ingrid Dachlen, Arnoldo Frigessi, Ingrid Glad, Havard Hegre, Aliaksandr Hubin, Ingrid
Hobzk Haff, Kristoffer Hellton, Bjgrn Jamtveit, Martin Jullum, Vinnie Ko, Alexander
Koning, Ian McKeague, Per Mykland, Per August Moen, Jonas Moss, Havard Mokleiv
Nygard, Lars Olsen, Steven Pinker, Sam Power, Oskar Hggberg Simensen, Catharina
Stoltenberg, Gunnar Taraldsen, Ingunn Fride Tvete, Ingrid Van Keilegom, Lars Wallge,
Jonathan Williams, Lan Zhang.

We have also benefitted, directly and indirectly, through the collective efforts of
several grander wide-horizoned funded projects: the FocuStat: Focus Driven Statistical
Inference with Complex Data 2014-2019 project (led by Hjort) at the Department of
Mathematics, University of Oslo, funded by the Norwegian Research Council; the Sta-
bility and Change 2022-2023 project (led by Hjort and Hegre), funded by and hosted
at the Centre for Advanced Study (CAS), Academy of Science and Letters, Oslo; and
Integreat: The Norwegian Centre for Knowledge-Driven Machine Learning 2023-2033
Centre of Excellence (led by Frigessi and Glad), Oslo, funded by the Norwegian Research
Council. We finally acknowledge with gratitude a partial support stipend from the Nor-
wegian Non-Fiction Writers and Translators Association (Norsk faglitteraer forfatter- og
oversetterforening).

Nils Lid Hjort and Emil Aas Stoltenberg
Blindern, some day in 2025
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Short & crisp






I.1

Statistical models

In this chapter we study families of distributions and densities that we are to meet
time and again in this book. A partial list includes the uniform, normal and multi-
normal, chi-squared, the t and the F, Gamma, exponential, Weibull, Beta, Dirichlet,
Poisson, compound Poisson, binomial, multinomial, geometric, Pareto, Gumbel, lo-
gistic. These families have parameters, with values to be set for certain studies or
illustrations, or for purposes of confidence setting and tests; more generally these
parameters are estimated from data, as we return to in several later chapters. We
also learn fruitful ways of extending and mixing given families of distributions; in
such fashions the classical models can be building blocks for forming new ones.
Mathematical techniques for deriving crucial properties include those of moment-
generating functions, convolutions, and double expectation.

Key words: distributions, models, moments, moment-generating functions, param-
eters, quantiles, sums, transformations

The aim of this chapter is to go through a generous list of parametric statistical models,
from the well-known distributions connected with the normal model, to the Beta and the
Gamma, to the binomial, Poisson, and negative binomial for discrete data, etc., along
with deriving their basic properties. These models turn up repeatedly in later chapters
and in our Statistical Stories, with variations, as direct models for data, or as building
blocks for more complicated constructions. The normal and multinormal distributions
play important roles, also because these become fruitful simple-to-use approximations to
sometimes much more complicated exact distributions.

These models, for probability theory and statistics, rely on deeper mathematical
constructions and considerations, with random variables being measurable functions on
probability spaces, measure and integration theory, etc. For this book it has been practi-
cal to organise that body of mathematical theory in Appendix A. For the present chapter
on models we take certain notions and basic definitions for granted, with background and
more detail in that appendix. Thus we deal here with classes of distributions, param-
eters, probability densities, cumulative distribution functions, conditional and marginal
distributions, means and variances, quantiles, correlations, and so on. In particular, any
nonnegative function f(y) integrating to 1 over some interval is a probability density over
that interval; it has a cumulative distribution function (c.d.f.) F(y) = [Y__ f(y') dy'; the
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4 Statistical models

mean of a random variable Y drawn from this distribution is EY = [y f(y) dy; its me-
dian is F~!(3); its variance VarY = E (Y — EY)?; the covariance between two random
variables X and Y with means a and b is cov(X,Y) =E(X —a)(Y — b) = EXY — ab;
etc. We also deal with sums of random variables, drawn from the same or different dis-
tributions. In one of its classical forms, the density h(z) of Z = X +Y, where X and Y
are independent with densities f(x) and g(y), is

h(z) = / F(z—y)g(y) dy = / f(@)g(z — x) da, (1.1)

see Ex. A.17 for more. There are also occasions in this chapter where the rules for double
expectation and variance

EX=EE(X|Y) and VarX =EVar(X|Y)+ VarE(X|Y), (1.2)

see Ex. A.23, come in handy.

In addition to defining and presenting a list of useful models, and diving into their
properties and inter-connections, we develop certain tools, useful also in later chapters.
These include transformations (see Ex. 1.12), moment-generating functions (see Ex. 1.30,
with more in Ex. A.31), characteristic functions (see Ex. 1.33), conditional distributions,
mixtures, and simulation. (xx make sure we have a little bit on simulation. xx) Also
included is material on the general exponential family class, which has several of the
classic models as special cases (see Ex. 1.50, with follow-up material in Ch. 4).

Importantly, several of the central models worked with in this introduction chapter
find uses inside wider contexts, e.g. for regression situations, as we shall return to in
later chapters. To indicate that direction of model building, below we learn about a
random variable Y having a gamma distribution with parameters (a,b), which we write
as Y ~ Gam(a,b); see Ex. 1.9. Now suppose there is a dataset consisting of measurements
(i1, %42,y;) for individuals ¢ = 1,...,n, where the main outcome y; is influenced by the
covariates x; 1, ;2. Then a gamma regression model could take the form Y; | (21, %i2) ~
Gam(a;,b), with a; = exp(Bo + S1xi1 + P2z 2). The traditional multiple linear gression
model is of a similar type, with Y; given the covariates having normal distributions,
with mean function linear in the covariates. Tools developed in later chapters may
then be applied to estimate parameters, with confidence intervals, testing, comparisons,
prediction, etc.

(xx also include: negative binomial, logarithmic, Poisson compound, hypergeomet-
ric, excentric hypergeometric. briefly generating functions G(s) = Es* too. Agree on ¢
and @ as fixed notation for the standard normal density and c.d.f. And check that we
most of the time write c.d.f. check in a while the title we choose for the short & crisp
sections, here and in all later chapters. xx)

(xx just a few pointers to later chapters. CLT. normal approximations. estimation,
testing. calibrate with what’s in the abstract. we may point to more complex models,
making clear that these classic families of distributions are often used as stepping stones.
could point to Markov chains etc., but not really touching these in this chapter. also:
take care with mentions of limit distributions and CLT, which we may choose to touch
here and there, but details come in Ch. 2. xx)
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(xx as of 12-August-2024, we have a little fortellerproblem: we do mgf and charac-
teristic functions in Appendix A, good, but then need just a bit of basic models there,
complete with M (¢) formulae for the normal, the binomial, just a few more. but those
models are more formally introduced here in Chl. so how to deal with this. xx)

Normal, bi- and multinomial, exponential, gamma, mixing

Ex. 1.1 The normal distribution. The perhaps most famous and broadly useful dis-
tribution in probability theory and statistics is the normal distribution, also called the
Gauflian distribution. It is also a building block for various inferred and related models
and distributions, as we learn later in the chapter. In its standard form, before we add
on two more parameters, the normal density is

1
V2T

We call this the standard normal distribution, and write X ~ N(0, 1) to indicate this. It
is standard in statistics and probability theory to use ¢(x) for its density and ®(x) for
its cumulative distribution function (c.d.f.).

p(x) =

exp(—12?) on the real line.

(a) There are myriad ways of demonstrating that 1/(27)"/? is the correct constant here,

i.e. that I = [exp(—32%)dz = (2m)Y/2. You are allowed to take this for granted, but
attempt to show it via expressing I2 as a double integral, featuring exp{f%(ac2 + )},
and then substituting x = r cos# and y = r sin 6, followed by the use of double integration
tools from calculus.

(b) Show that for X a standard normal, its mean is zero and its variance is one.

(¢) With X a standard normal, consider Y = p + ¢X, with g any number and o
positive. Show that its mean and standard deviation are p and o, and that its density

s =6("22) 7 = e {4 (1)}

We write Y ~ N(u,0?) to indicate this distribution. Show that Pr(z — 1.960 < Y <
@+ 1.960) = 0.95. Find the ¢ such that Pr(|Y — p| < ¢o) = 0.50.

can be written

(d) With X a standard normal, consider Z = X?2. Find its distribution, and show
that its density becomes g(z) = (2m)~!/2 exp(—212z)/\/z. We learn about the chi-squared
distribution in Ex. 1.43; this X2 has such a chi-squared distribution, with degrees of
freedom equal to 1, which we write as X2 ~ x7.

(e) Consider X7, X5, X3 being independent and standard normal. Work out the means
and variances of X7, X? + X2, X2 + X2 + X2. Simulate say 10* realisations of these
distributions, check their histograms, and describe their different behaviour close to zero.

(f) Consider the enigmatic density f(z) = e~ on the real line, featuring and combining
the eternal mathematical constants e and 7, integrating to 1. What is its standard
deviation, and what is the probability that an X with this distribution is inside [—1,1]?
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(g) For X a standard normal, and for = becoming large, show that Pr(X > z) =
¢(x)/x, in the sense that the ratio {1 — ®(z)}/{¢(x)/x} tends to 1. This is the Mills
ratio. Make a plot of this ratio, to see how it converges to 1, and to assess the implied
approximation. (xx footnote, to be returned to, with hazards. xx) Show from this that
Pr(X € [z,z 4+ ¢]| X > z) = z¢ for growing z, and give this an interpretation.

(h) (xx some pointers, placed here or elsewhere. point to mgf already, for the linear
combination property. then a simple question to illustrate this. xx)

Ex. 1.2 Normal sums. Sums of independent normals have themselves normal distribu-
tions. This is clearly easiest to demonstrate via moment-generating functions (m.g.f.s),
see Ex. 1.31 below, but it is worth doing this via convolution formulae too.

(a) Let X and Y be independent standard normals. Show that X +Y ~ N(0,2), via the
convolution formula (1.1). With a bit more algebraic work, show that if X; ~ N(u1,0%)
and X5 ~ N(pug,0%) are independent, then X; + Xo ~ N(u1 + 2,02 + 03).

(b) Generalise this: show that if X; ~ N(u;,02) fori =1,...,m, and these are indepen-
dent, then Z = Y"1 | a;X; is also normal, with mean > ;" a;u; and variance Y, a?0?.

(¢) Sometimes 2 + 2 might be 5, for extremely high values of 2. If independent X and Y’
are 2 and 2, but observed with with some Gaussian noise on top, of standard deviation
level o, find a formula p(o) for the probability that X + Y is outside [3.5,4.5], i.e. 3 or 5
or even farther away from 4 when rounded off to the nearest integer. Plot this function.

Ex. 1.3 Binomial distribution. One of the more old, classic, and deservedly famous
distributions in probability and statistics is the binomial. If there is a fixed probability
p = P(A) of a certain event A taking place, in a certain type of experiment, then the
number Y of times A is seen, in n independent experiments, is the binomial, which we
write as Y ~ binom(n, p).

(a) Show that

Pr(Y =y) = (Z)py(l —p)"7Y fory=0,1,...,n.

This involves the essential combinatorial fact that the number of ways one may place
precisely y 1s in a total of n possible position is (Z) =n!/{y! (n — y)!}. Explain that YV’
can be expressed as X1 +- - -+ X,,, where X is a simple 0-1 variable, with Pr(X; = 1) = p,
and where these are independent. Such X, are called Bernoulli variables. Use this to
prove the classic formulae np and np(1 — p) for mean and variance. Also, deduce the
Pr(Y = y) formula from the Y = )" | X, description.

(b) If the first question to ask concerning a distribution is about its centre (its mean, or
perhaps its median), and the second is about its spread (its standard deviation, or perhaps
a different measure, like its interquartile range), then the third question would be about
its skewness, the degree of asymmetry. The classical skewness definition of a distribution,
or equivalently of a random variable Y having that distribution, is skew = E W3, where
W = (Y —EY)/(VarY)"/? is the normalised version of Y, i.e. linearly transformed to

the binomial
distribution

Bernoulli
variables



Normal, bi- and multinomial, exponential, gamma, mixing 7

have mean zero and standard deviation one. Show for the binomial (n,p) case that its the skewness
skewness is

Y —np }3 B 1-2p
{np(1 —p)}1/2 {np(1—p)}/*’
which for fixed p goes to zero with rate 1/y/n (i.e. \/nskew tends to a positive constant).

Briefly discuss what this entails regarding the degree of asymmetry for the binomial
distribution.

skew = E [

the kurtosis (c) After the skewness comes the so-called kurtosis, defined as kurt = EW?* — 3, with W
as in the previous point. The minus 3 is there in order for the kurtosis to be zero for the
normal distribution; show that this is the case. Then show that

kurt = (1/n)[1/{p(1 —p)} — 6],
for the binomial, and comment.

Ex. 1.4 Trinomial probabilities. (xx emil looks it over and checks if this is suitable here
in Chl, perhaps before Ex. 1.5. if not in App A. xx) Consider the so-called trinomial
distribution for a random pair (X,Y’), with probability mass function

n!

[z, y) = ,pmqy(l—p—Q)nﬂc*y forz >0,y >0,z +y<n.

zlyl(n—xz —vy)
Here n is the total count number, p, ¢ the probabilities of events of type One and Two in
repeated experiments, with p+¢q < 1. With Z =n — X — Y representing the number of
events of type Three (not One, not Two), this is a model for the numbes of events One,
Two, Three in n independent experiments; hence the trinomial name. See also Ex. 1.5.

(a) Verify that what is here called the probability mass function is the same as the
density of the distribution with respect to counting measure on the set of (z,y) with
x>0,y >0, x+y <n— or, for that matter, with respect to counting measure on the
set of all pairs (z,y) with z > 0, y > 0.

(b) Show by summing over the y that the distribution of X becomes a binom(n, p) from
Ex. 1.3.

(c¢) Show that Y| (X = ) ~ binom(n — z,¢/(1 — p)). Give a formula for E(Y | X = z),
and deduce the formula for E X from this. Find also the covariance between X and Y,
using this scheme of conditioning with respect to X = x first. Deduce that the correlation

between them is —{p/(1 — p)}'/?{q/(1 — q)}'/2.

(d) Find a formula for Pr(X < zo,Y < yo), expressed as a sum over z € {0,1...,z0}
(as opposed to a double sum over lots of (x,y) pairs). For a setup with n = 50, (p,q) =
(0.22,0.33), compute the probability Pr(X < 15,Y < 15).

Ex. 1.5 The multinomial model. The binomial model, with basic properties treated
in Ex. 1.3, is about sorting and counting events in two categories; if Y ~ binom(n, p),
then also n — Y ~ binom(n,1 — p). The multinomial model is the natural extension to
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more than two categories. Suppose there are n independent experiments, where each
time one (and only one) of the events A, ..., Ay takes place, with the same probabilities
p1,-..,pk for each experiment. Let then Y = (Y3, ...,Y}), with Y; counting the number
of times A; occurred, for j =1,...,k. Of course Y1 +---+ Yy =n,and p1 +---+pi = 1,
so there are k — 1 free parameters in the model.

(a) Show that Y; ~ binom(n,p;), and deduce that we already know EY; = np; and
VarY; = np;(1—p;), even before we start working on the joint distribution of (Y1,...,Y%).

(b) Show that the joint probability distribution becomes

n!
f(yla"'7yk) = Pr(YVl :ylv"'aYk :il/k) = mqul ka
for nonnegative (y1, . . ., yx) with sum n. The first factor n!/(y1!- - - yx!) is a combinatorial
one, the number of different ways one may place ‘1’ in y; positions, ‘2’ in yo positions,
etc., up to ‘k’ in y positions. Note that this generalises the classic n!/(yi!ya!) = (;)
for the binomial case, the number of ways one may place ‘1’ in y; ways (and hence ‘2’ in

n—y; ways) in a list 1,...,n.
(¢) Show that each pair has a trinomial distribution, e.g.

n!

yily2! (n —y1 — 2

Pr(Yi=y1,Ya =12) = )!nylpgz’(l —p1—p2)" Y2

for y1 > 0,42 > 0,91 + y2 < n. Note that formulae from Ex. 1.4 therefore apply to
pairs (Y;,Y;) here. For i # j, show that cov(Y;,Y;) = —np;p;, and find the correlation
between Y; and Y;.

(d) Among the most used acronyms of statistical parlance is i.i.d., for idependent and
identically distributed. Explain in the present setup that ¥ = Z; + --- + Z,,, where
Z1, ..., Zy are i.1.d., with Z; taking values (1,0,...,0),...,(0,...,0,1) with probabilities
P1,---,Pk- Derive again the formulae for means, variances, covariances, starting with this
representation.

Ex. 1.6 Histograms. Suppose data Y7,...,Y, are i.i.d. from some continuous density
f over some interval [a,b]. Create disjoint cells C1,...,Cy, with C; = (aj-1,qa,], for
a=ap < - <ap=0> Let then N; count the number of data points in cell j. The
histogram, associated with the chosen cells, is then

‘]?(J}) = Z/)\j/hj for x € Cj, with lengths hj =a; — a1,

where p; = N;/n estimates p; = Pr(Y; € C;). In most automatic histogram algorithms,
the width is taken constant across cells. The notation f(z) indicates that beyond being
an effective way of showing the essential spread and shape of the data, it is an estimate

of the underlying f(z).

(a) Carry out some simulations, samling n datapoints from the standard normal, creating
histograms with & cells. For small and big n, play with k£ small, big, and about right. In
R, you may use hist (y,breaks=20,prob=T), etc.

the multinomial
model

histogram
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(b) Show that (Ny, ..., Nj) is multinomial. Taking a constant cell width h, for simplicity,
explain that we may write p; = fc, fdy = f({;)h, for a suitable ¢; inside cell C;.

~ ~

From this derive that for x € C;, we have E f(z) = f(¢;) and Var f(z) = f(¢){1 —
f(¢)h}/(nh). Argue that for the histogram to achieve E f(z) — f(z) and Var f(z) — 0,
as n increases, we need h — 0 and nh — oco.

Ex. 1.7 Hazard rates and survival functions. Here and below we shall partly follow
the implied tradition of using say T' and f(¢) and F(t), for random variables with their
densities and c.d.f.s, rather than say Y and f(y) and F(y), when these relate to time. —
Consider a random variable T" on the halfline [0, c0), with density f and c.d.f. F. Classes
of such distributions are sometimes most conveniently or fruitfully defined and discussed
in terms of their hazard or cumulative hazard functions, as opposed to their densities
and c.d.f.s, as we outline here; see also Ch. 10.

(a) Show that
Pr(T € [t,t +¢]|T >t) = h(t)e + O(?), (1.3)

in terms of the so-called hazard rate function h(t) = f(t)/{1— F(t)}. With T interpreted
as the time to a certain event, the function h(¢) describes the chance of this event taking
place in the next instance, among those having survived up to t¢.

(b) So we may deduce hazard rate from the density. Starting instead with h(t), define
first the cumulative hazard H(t) = fot h(s)ds, and show that F(t) = 1 — exp{—H(t)}.
The function S(t) = Pr(T > t) = exp{—H ()} is important in its own right, and is called
the survival function.

(c) Suppose an individual has survived up to time to. Show that

S(t)

PI‘(TZt‘TZtQ) = S(to)

=exp[—{H(t) — H(to)}] fort > to.

Show that the median lifetime, for such an invidual having lived up to tg, is t* =
H=1(H(to) + log2).

Ex. 1.8 The exponential distribution. The exponential distribution is a simple but
important one, in probability theory and statistics, which with positive parameter 6 has
the density f(t,6) = @ exp(—0t) for t > 0. We write T' ~ Expo(f) to indicate this.

(a) Show that the cumulative becomes F(¢,0) = 1 — exp(—0t), and find the median.
Show also that we may write T' = Ty /6, where T has the unit exponential distribution
with density exp(—tg). Show that T has mean and variance 1/ and 1/62.

(b) Using Ex. 1.7, show that the hazard rate is constant, h(t) = 6, and that the cumu-
lative hazard rate is H(t) = 6t. Show also that the exponential distribution is the only
one where the hazard rate is constant.

(¢) Show that the median survival time is (log2)/6. If an individual has survived up to
time tg, what is the median survival time?
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(d) Assume certain light bulbs have a longevity distribution with the property that
Pr(T > to+¢|T > tg) does not depend on ty. Argue that such light bulbs may be sold
as if they were brand new, as long as they are still alive. Show that their distribution
must be exponential.

Ex. 1.9 The Gamma distribution. The gamma function is important in various branches
in mathematics, probability theory, and statistics, and is defined as I'(a) = fooo z¢ !
exp(—x)dz for a positive. We may hence define a family of probability densities via
go(t,a) = T(a)~1t*Lexp(—t) for t > 0. This is called the Gamma distribution with
shape parameter a.

(a) With Tp having this density, and b a positive scale parameter, show that T'= Ty /b
has density

g(t,a,b) = {b*/T'(a)}t* * exp(—bt) for t > 0.

This is the two-parameter Gam(a, b) distribution. Verify that T'(1) = 1, that T'(a + 1) =
al'(a) for all @ > 0, and that I'(m) = (m — 1)! for m =1,2,....

(b) When T has the Gam(a,b) distribution, show that the mean and variance are a/b
and a/b?. Find also that ET? = {T'(a + p)/T'(a)}/b*, valid for any p, as long as p > —a.
Use this to show that the skewness and kurtosis become equal to skew = 2/a'/?
kurt = 6/a. Finally, regarding moments, find that the inverse gamma distributed variable
1/T has mean b/(a — 1) and finite variance b2/{(a — 1)?(a — 2)}, as long as a > 2.

and

(¢) Verify that for a = 1 we have the exponential distribution, with density bexp(—>bt)
and cumulative 1 —exp(—bt). Show that a = 2 gives density b*t exp(—bt) and cumulative
1 —exp(—ty)(1 + bt). More generally, show that the cumulative is

TR PR O

/Otg(s,a, b)ds=1-— exp(—bt){l + bt + (bt)” (bt)*—* }

for the case of a being an integer.

(d) For a an integer, give an explicit expression for the hazard function h(t,a,b), as per
(1.3), and show that it converges to b as time increases. Show that this is the case also
for any a, i.e. not only for integers; it increases from zero to b, if a > 1, and decreases
from infinity to b, if a < 1.

(e) Let Ty,T be independent and exponential with the same 6. Show that T} + T ~
Gam(2,0). With T, ..., Ty seen as the independent waiting times between events, show
that the time to event k is a Gam(k, 6).

(f) With T3 ~ Gam(aq,b) and To ~ Gam(asg,b) independent, show that T3 + To ~
Gam(a; + ag,b). Generalise. This may indeed be accomplished via the convolution for-
mulae from Ex. A.17, but as for other instances it becomes easier to show such statements
via m.g.f.s; see Ex. 1.30-1.31.

the gamma
function

the Gamma
distribution
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Ex. 1.10 Mixing the exponential. Sometimes waiting time type data do not follow an
exact exponential distribution, but rather one characterised as a mixture of such; T given
0 has the Expo(f) distribution, but the values of  vary from occasion to occasion, or
from individual to individual.

(a) Suppose indeed that T'| 0 ~ Expo(f) but that 6 has some density g(f). Show that
the density of 7' then becomes f(t) = [, 6 exp(—6t)g(0) d6.

(b) Suppose the distribution of @ is such that 1/0 has mean value 1/6; and a positive
standard deviation 7. Show, starting with E (T |0) = 1/6 and Var (T |0) = 1/6?, that
ET = 1/6y and VarT = 1/6% + 272%; see (1.2). The case of a very tight distribution for
the 0 corresponds to 7 small, which again means the case of a constant rate 6, for all.

(c) A convenient class of distributions for 6 is the Gamma, with parameters (a, b), from
Ex. 1.9. Tts mean and variance are a/b and a/b%; now find also the mean and variance
of 1/0. Show that the density of T' can be written

o b 4 _ab?
f(t,a,b) = /0 0 exp(—6t) I‘(a)e exp(—bf) df = b
and also that its cumulative distribution function is
b \@ 1
F =1-(—) =1-—~ .
(t,0,) G n ;) TEIDE

(d) (xx a bit more. the hazard rate function h(t) = f(t)/{1 — F(t)} is decreasing.
expressions for quantiles, to(p, a,b) = b{1/(1 — p)*/* — 1}, solution to F(t) = p, to be
used for Story iii.4 for fitting the distribution to the 95 between-war-times. xx)

(e) Find an expression for the hazard rate function h(t, a,b) = f(t,a,b)/{1 — F(t,a,b)},
and comment on its form, compared to the exponential case.

(f) Find the mean and variance of T', for the g(t, a, b) ditribution. This might be used to
estimate (a,b) from data. (xx could point to Story iii.4, perhaps with better calibration.
XX)

Ex. 1.11 Gamma-mizing the gamma. A given parametric distribution may sometimes
be fruitfully extended by placing a separate distribution on one of its parameters. The
following is an illustration.

(a) Consider a distribution which for given individuals is a gamma, but where the scale
parameter varies between individuals. Specifically, suppose Y |b ~ Gam(ag,b) and that
b has a distribution with E1/b = 1/by and Var1/b = 72. Show that Y has mean ag/bg
and variance ag/b3 + (ag + a2)7>.

(b) For the special case of b ~ Gam(c, d), thus leading to a 3-parameter model, find the
density f(y,a,c,d) for Y. (xx work a bit with parametrisation here; big (¢, d) correspond
to old gamma. the following to be cleaned and sent to solutions. xx)

Fly) = /O ) Plzz)y“ exp(~by) F‘i; b exp(—db)db = r(i) F(;L(:)C) (d —y:g;)““'
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Transformations, uniform, Pareto, Cauchy, Beta, Dirichlet

Ex. 1.12 Transformation from X to Y. We often encounter transformations, from one
variable X to another Y, also in the vector case. We need formulae for how the density
g(y) of the Y can be found in terms of the density f(x) for X.

(a) In the one-dimensional case, suppose X = h(Y), equivalently Y = h=1(X), where h
is smooth and increasing. Show that Pr(Y < y) = Pr(X < h(Y)), with density formula

Show also that if z = h(y) is continuous and decreasing, the formula becomes g(y) =
F(h(y)|W ()] Write down density formulae for the variables Y7 = exp(X), Y5 = 3.33 —
2.22 X, Y3 =log X (assuming for that case that X is positive).

(b) Show that if X is normal, then a linearly transformed Y = a + bX is also normal.
Show that if X ~ Gam(a,b), with density proportional to z%~!exp(—bx), then Y =
bX ~ Gam(a,1).

(c) Suppose then that X = (X1,...,X,)" and Y = (Y,...,Y,)" are vectors, with trans-
formations binding them together,

X, hi(Yi,...,Yy) Y; it (X1, .0, Xp)

X, hp(Ya,...,Y,) Y, hy ' (X1, Xp)

We write this as X = h(Y) and Y = h~}(X), for short. It is assumed that these
systems of equations have unique solutions, and that the transformations are smooth,
with continuous partial derivatives. In particular, the so-called Jacobi matrix

_ Oh(y)  Oh(yi,...,up)
T =5 = "oy oy,

)

having Oh,(y)/0y; as its (i,j) component, exists, and is continuous, with a non-zero
determinant det(J(y)) (xx point to real analysis reference xx). — Now, if X has density
f(x), show that

Py en)= | f@de /B F(h(y))det(J (y))] dy.

This shows that Y has density ¢g(y) = f(h(y))|J(y)|. This is essentially the multidimen-
sional ‘integration by substitution’ formula of calculus.

(d) For an application, suppose X and Y are independent and standard normal, and
transform to polar coordinates, X = Rcos A and Y = Rsin A. Find the density g(r,a)
for (R, A), with R positive and A € [0, 27]. Show in particular that length R and angle A
become independent, with A having a uniform distribution on [0, 27| (i.e. the flat density
1/(2m) over that interval). Find also the distribution of Z = Y/X = tan A; see also
Ex. 1.16.
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(e) Let X,Y be independent standard exponentials, and consider (U, V) = (X+Y, X/Y).
Show that these become independent, having densities uexp(—u) and 1/(v + 1)2.

Ex. 1.13 Ordering exponentials. Let Y1,Y5,Y3 be independent unit exponentials, with
density f(y)exp(—y) for y positive, and order them, to Y{;) < Y{2) < Y(3). Then define
the so-called spacings between them, Z1 = Y1), Z2 = Y(9) — Y1), Z3 = Y(3) — Y{2).

(a) Show first that the joint density of (Y(1y, Y(2), Y(3)) is 3! f(y(1))f(y(2))f(y(3)) on the
set (1) < Y(2) < Y3)- Find then the joint density for (Z1, Z2, Z3), and show that they
are independent.

(b) Then generalise, considering i.i.d. unit exponentials Y1, ...,Y,, ordered into Y(;) <
-++ < Y(n). Work with the scaled spacings D1 = nY(y), D2 = (n — 1)(Y{2) — Y(1)), up to
D1 = 2(Yv(n—l) - Yv(n—2))> D, = }/(n) - 1f(n—l)~ Show that

Vi Vi Vo Vi Va Vool | Vi
Yoy = —,Yo =— Yy = — —,
O~ @ n—’_n—l7 ) n+n—1+ Tt T
and then show that in fact V1,...,V,, are i.i.d. unit exponentials.

(¢) The Euler constant v, = 0.5772... is defined as the limit of 14+1/2+4---4+1/n —logn.
Use the above to show that Y(,) = max;<, ¥; has mean close to logn + 7., and variance
converging to 72 /6.

Ex. 1.14 The Pareto distribution. (xx pointer to Story iii.5. xx) Consider a variable
T defined on the range T > ty, for some positive tg, with c.d.f. F(t) = 1 — (to/t)? for
t > tg, for some positive parameter 6. This is the Pareto distribution, and we may write
T ~ pareto(to, #) to indicate this.

(a) Use the EX = [{1 — F(z)}dx formula for means of nonnegative variables, see
Ex. A.29, to show that the mean of a Pareto is to0/(0 — 1), for # > 1. Show furthermore
that the variance is t20/{(0 — 1)%(0 — 2)}, for @ > 2, and that the median is med(7) =
t021/9.

(b) Show that the density is f(t,0) = 0t8/t9F1 for t > to; you may use this to find the
mean formula again. Furthermore, explain that the hazard rate is h(t) = 6/t.

(c) Show that Pr(T > t|T >t;) = (t1/t)%, for t > t;. So T |(T > t,) is Pareto (¢1,6).
Deduce from this that

med(T —t|T >t)=ct = (219 — 1)t for all ¢.

This is linked to the so-called Lindy Effect: the longer the life is observed to be (of a
company, an idea, a party), the longer is the remaining lifetime expected to be (note that
¢ > 1). Show in fact that the Pareto distribution is the only one with the property that
med(T —t|T > t) = ct for all ¢.

(d) Show that Y = log(T'/to) is exponential with parameter 6. So a representation of the
Pareto is T' = tgexp(Y'), with Y ~ Expo(6). You may use this to find the mean formula
once more.
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Ex. 1.15 Maxima of i.i.d. samples. To illustrate one of the many ways in which
suitable start models may be generalised and extended, consider Y7,...,Y, ii.d. from
some distribution with c.d.f. F' and density f, and from these define M,, = max;<, Y;.
(xx brief pointer to order statistics and sample quantiles in Chs 2, 3. xx)

(a) Show that M, has c.d.f. G, (z) = F(2)™ with density g, (z) = nF(2)" "1 f(z). Com-
pute and draw these, for say n =1, ..., 10, for the case of the Y; being standard normal.

(b) Before pursuing some maxima, consider a situation with X; and X5 are independent,
find c.d.f.s H1, Hy and densities hy, ho. Show that

PI'(Xl S Xg) = /Hl(xg)hg(l'g)d.’EQ = /{1 — HQ(iEl)}hl(iEl)d(El.

(c) Long jumpers A and B have jumps being N(7.90,0.10%) and N(7.80,0.152), respec-
tively (on the metres scale). What is the probability the A jumps longer than B, with
one jump each? Consider also p,,, the probability that B after m jumps is better than
A after m = 1,2,3,4,5,6 jumps (in the sense of ‘best jump so far’), assuming that all
jumps are independent. Show that p,, = [ Fi(z)"mFz(z)™ ! f2(z) dz, in terms of the
two distributions. Compute p,,, both via numerical integration and via simulations.

Ex. 1.16 Ratios and the Cauchy. If (X,Y") has a certain distribution, what happens to
the ratio V =Y/X?

(a) Suppose that X and Y are independent with the same density f on (0,00). Show
that V = Y/X has density g(v) = [;° «f(z)f(ve) dz. With X and Y independent from
the same exponential distribution, show that g(v) = 1/(1 + v)2.

(b) With X and Y independent from the same Gamma (a,b), show that V' =Y/X has
density {I'(2a)/T(a)?} v~ /(1 4+ v)22.

(c) Suppose now that X and Y are independent from the same density f, symmetric
around zero. Show that V has density g(v) = 2 [~ «f(z) f(va) dz. For the special case
of a ratio of two independent standard normals, show that

g(v) = (1/7)/(1 +v?) with c.df. G(v) =3+ (1/7)arctanv.

This is the Cauchy distribution (in its standard form). Show that it has no mean. Find
its interquartile range.

(d) There is an infinitely long straight line ahead of you, with distance r from you to the
nearest point. You kick a ball towards the line, with some angle A € (—m/2,7/2). Show
that it crosses the line at position X = rtan(A). Show that with A having density g and
c.df. G, over (—3m, i7), then X has c.d.f. F(z) = G(arctan(z/r)). When A is uniform
over that interval, show that X /r is standard Cauchy. Investigate what happens if A is

uniform over a tighter interval, like (—m /4, 7/4).

(e) What distribution does the random angle A need to have, in order for X to be normal?
For 7 = 1 unit away from the line, show that the curious density g(a) = ¢(tan(a))/ cos?(a)
leads to a standard normal X. Graph g to see that it is symmetric and bimodal, with
modes at + 45 degrees.

the Cauchy
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Ex. 1.17 Transformations to the uniform. We have already touched the uniform distri-
bution in a few points above. Say in general that a variable U is uniform on the interval
[a,b] if its density is constant over that interval, i.e. 1/(b — a), and zero outside. In
particular, we write U ~ unif(0, 1) to indicate a variable with the uniform distribution
on the unit interval.

(a) For such a U ~ unif(0, 1), find its mean and variance. Find the probabilities that U
lands in [0.03,0.04], or in [0.77,0.78].

(b) Let F be a continuous and increasing c.d.f. for a variable X. Show that U = F(X)
is uniform on the unit interval. Conversely, we may start with U ~ unif(0,1) and map
to X’ = F~Y(U). Show that X’ has distribution F.

(c) Consider the c.d.f. F(z) = (x/10)%>33 on [0,10]. Simulate 10* independent X; from
this distribution, by transforming uniforms. Make a fine histogram, with the density
f(z) plotted alongside.

Ex. 1.18 The Beta distribution. An important class of distributions, over the unit
interval (0,1), is the Beta distribution, with two positive parameters. We write p ~
Beta(a, b) if its density is

= (()p“_l(l —p)t=t forpe (0,1).

(a) As an introductory exercise, of separate interest, suppose X and Y are independent
Gamma variables with parameters (a,1) and (b,1). Construct from these the sum Z =
X +Y and ratio P = X/(X +Y). Finding the joint density for (P, Z), demonstrate that
Z and P are independent, with Z ~ Gam(a + b, 1) and P having precisely the be(p, a,b)
density. This in particular shows that the integration constant is the correct one, i.e. that

Jo P11 = p)*~dp = T(a)T(b)/T(a + b).

(b) Compute and display a few of these densities, for (a,b) of your choice. Note that the
uniform is the special case of (a,b) = (1,1).

(c) Show that Ep = pg = a/(a +b) and that Varp = po(1 —po)/(a + b+ 1).

(d) Find a formula for Ep™, for m = 1,2,..., in terms of (a,b), and in terms of the
reparametrisation (cpg, ¢(1 — po)). Use this to find

— 2po(1 = po)(1 — 2po)
E(—p)’ = 0(c+1§(c—|—2) 07

with a consequent formula for the skewness. For fixed mean pg, show that the skewness
tends to zero with increasing c.

(e) Examine the particular Beta(, 1) distribution. Show that its density and c.d.f. be-
come f(p) = (1/7)/{p(1 —p)}*/? and F(p) = (2/7)arcsin(\/p). Find is quantile F~(g).
Plot these functions.
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Ex. 1.19 The Dirichlet distribution. Let Gi,..., Gk be independent and Gamma dis-
tributed, with parameters (a1,1),..., (ax, 1). With G = G1+- - -+ G}, their sum, consider
the random ratios

(X1,.... Xp_1) = (G1/G,...,Gp_1/G).

It inherits a distribution, with density h(x1,...,2x_1), worked with below, in the simplex
where each z; > 0 and z1+- - 42,1 < 1. Taking also Xy, = G,/G = 1—(X1+ -+ Xk_1)
on board, we have a vector (X1, ..., Xx) of random probabilities summing to 1 over its k
categories. Its distribution has a name: it’s the Dirichlet distribution, with k categories,
and parameters (aq,...,a), which we write as X ~ Dir(ay,...,ax).

(a) Suppose (X1, Xz, X3, )(47 X5, Xe) ~ Dir(al, as, as, a4, 0s, aﬁ). Show that (Xl + X4 +
X6, X2, X3+ X5) ~ Dir(a; + a4 +ag, az,as +as). Generalise and formalise this summing-
over-cells property of the Dirichlet distribution.

(b) With X ~ Dir(ay,...,ax), show that each X; ~ Dir(a;,a—a;), with a = a; +- - -+ay,
and that this is the same as a Beta(a;,a — a;). Show from this that

ED;=¢ =ai/a, VarD;=¢&(1-¢)/(a+1),
Show also the cov(D;, D;) = —§;€;/(a+ 1) for i # j.

(¢) We have been able to derive certain basic properties above, without really needing
an expression for the density of a Dirichlet vector. We tend to this now, using the
transformation machinery of Ex. 1.12. Show in fact, starting with (G1,...,Gg) and
transforming to (X1,..., Xx—1,G), (i) that (X1,..., Xk—1) has the density

F(a) a;—1 ag—1—1
—‘r ...:L'
T(ar)---T(ag) ™ bt

(I—z = —mpo)™ !

h(l’l, N 7.’)3;9,1) =
over the simplex; (ii) that G ~ Gam(a,1); (iii) that these are independent; and (iv)
that this also verifies the implied formula for integrating x’l“_l . -xzk_’f_l(l —xy— =
ZTp—1) over the simplex. Note that these efforts and results generalise the findings of
Ex. 1.18(a).

ap—1

Ex. 1.20 Dirichlets inside Dirichlets. The summing-over-cells property of the Dirich-
let, see Ex. 1.19, has other consequences and angles, and we shall learn here that long
Dirichlet vectors might be split into Dirichlet parts via Dirichlet cuts.

(a) Start with A, B,C independent gammas with parameters (a, 1), (b,1), (¢,1). Form
from these X = A/(A+B),Y = (A+B)/(A+B+C), Z = A+ B+ C. Explain that we
already know that X ~ Beta(a,b), Y ~ Beta(a + b,¢), Z ~ Gam(a + b+ ¢,1). Show in
fact that X,Y, Z also are independent. This means working out their joint distribution;
establish first that the inverse transform is A= XYZ B=(1-X)YZ, C=(1-Y)Z,
and that the associated Jacobi determinant becomes yz2. Explain that all of this leads
to the product Beta representation

A A A+ B
A+B+C A+BA+B+C

= Beta(a,b) Beta(a + b, ¢c) = Beta(a, b+ ¢).

the Dirichlet
distribution
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(b) (xx nils rant, to be edited. link to pinned-down Dirichlet processes. xx) Suppose
(X1,..., X, Y1,...,Yy) is Dir(ay,...,ax,b1,...,b¢), which we may represent as X; =
G;/(S+T),Y; =H;/(S+T), with the G; and H; being independent gamma variables
with the appropriate parameters, and sums S = Zle G;and T = Z§=1 H;. Explain
that W = Ele X;=5/(S+T) is a Beta(a, b), with a = Zle a; and b = E§:1 b;, and
show that

X, = Si"T _ W% — WX/ and Y, = STT — (- W)% — (- W)y,
where X' = (X1,...,X}) ~ Dir(as,...,a;) and Y’ = (Y{,...,Y/)) ~ Dir(by,...,b),
independent of W. We learn that the long Dirichlet vector (X,Y) may be split into two
separate Dirichlet vectors X' = X/w and Y’ = Y/(1 — w), by conditioning on W = w.

(c) Now generalise to longer vectors. Let X = (X3,..., X)) be a Dir(aq,...,ax), where
each X; is a vector (X;1,...,X;m,;), with corresponding a; = (a;,1,...,0;m,;). Write
W; = Z;n:l X, ; for the sum over X,. Explain first that (W1,..., W) ~ Dir(by, ..., bx),
where b, = Z;’;l a;; is the sum over a,. Show next that with X = X;/W;, then
X/ ~ Dir(a;), and that X7,..., X} are independent of (W7y,..., Wg).

(d) The previous point implies that a long Dirichlet vector may be split into independent
Dirichlet components, in several ways. In the setting above, starting with the long
(X1,...,X}), suppose we condition on (W1,...,Wy) = (wy,...,wy), a given probability
vector. With X! = X, /w;, show that X1,..., X} are independent, with X ~ Dir(a;).
This is the sorcerer’s apprentice property of the Dirichlet distribution; pin it down, into
subsets with given sums, and see that each part is a scaled Dirichlet again.

Ex. 1.21 The Beta-binomial distribution. Sometimes comparable binomial experiments
may be modelled and analysed jointly, but where the success probability is not the same
across studies. The p = Pr(girl) may e.g. vary from family to family, see Story i.2.

(a) Suppose in general terms that Y | p ~ binom(n, p), and that p has a distribution with
mean py and standard deviation 7g. Using the double expectation rule (1.2), show that

EY =npy and VarY =npy(1 — po) +n(n — 1)73.

Hence the extra-binomial component of the variance, the n(n — 1)78, becomes more
noticeable with increasing n. The case of 79 = 0 corresponds to the usual binomial.

(b) Suppose Y |p ~ binom(n,p) and that p ~ Beta(a,b). Show that this leads to the
distribution

Y
_ (n) T(a+b) T(a+y)T(b+n—y)
y) T(a)T'(b) F'n+a+b)

Pry =) = | 1 (”)pya )" Vg(p,a,b)dp

fory=0,1,...,n.

Give formulae for the mean and variance of Y. For the special case of the uniform for p,
show that all outcomes for Y are equally likely.
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Ex. 1.22 The Dirichlet-multinomial distribution. Here we deal with the natural exten-
sion of the Beta-binomial setup of Ex. 1.21, from the case of two categories to more than
two.

(a) Let Y = (Y1, ...,Y%), for given probability vector p = (py, .. ., pr), have a multinomial
(n,p1,...,pr) model, as per Ex. 1.5. Assume then that the p is not fixed, but with p;
variances Tg)i around mean pg ;. Show that Y;, marginally, has mean npy; and variance

npo,i(1 —pos) +n(n — 1)73,1*

(b) Let in particular p ~ Dir(cpg), with parameters cpg = (cpoi; - - -, Pok). Show that

c+n
VarY; = {n+n(n—1)/(c+1)}po,i(1 —po:) = mnpo,i(l — Do),

with a clear overdispersion factor with respect to multinomial variation.

(¢) Show that the marginal distribution of (Y7,...,Ys), now overdispersed compared to
the multinomial, becomes

- n! - )
.f(yla"'ayk) = /mpzfl "'pzil (1 — D1 —"'—pk—l)y’”
91y pr—1)dpr---dpr—1
__n I'(c) (cpo,t +y1) - T(cpok + yn)
y1! - ye! Tepo,n) - - T'(epo,k) T(c+n)

(d) For the case of Dirichlet parameters cpg = (1,..., 1), show that all outcomes (y1, ..., yx)
have the same probability, and find a formula for how many different outcomes there can
be.

Laws of small numbers, Poisson, geometric, negative binomial

Ex. 1.23 The Poisson distribution. Counting a high number of events with small
probabilities leads to the Poisson distribution, which we define here. A count variable Y
is said to have the Poisson distribution with parameter 6 > 0 if

Pr(Y =y) = exp(—0)8Y/y! for y=0,1,2,....
We write Y ~ Pois(f) to indicate this.

(a) Show that the probabilities indeed sum to 1. Verify next that EY = 0, EY (Y —
1) = 6? and show from this that the variance is equal to the mean. Show further that
EY(Y -1)(Y -2)=03 EY(Y —1)(Y — 2)(Y — 3) = 6*, and with further algebra that
for W = (Y — 0)/V/0, we have skew = EW? = 1/, kurt = EW* — 3 = 1/0. Show also
that Var (Y — 0)% = 202 + 6.

(b) With Y ~ Pois(), what is the most probable outcome? What is the probability
that Y is odd?

(¢) Show that the sum of two independent Poisson variables is Poisson, with parameter
equal to the sum of the two parameters. Generalise.
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(d) Consider Y ~ binom(n, p), and assume that n grows, while p becomes small, in the
fashion of np — 6. Show that Y then tends to the Pois(6) distribution, in the sense that
the point probabilities converge. See also Ex. 2.8 for a fuller picture.

(e) In some event counting applications there are more zeros than predicted by the
Poisson, leading naturally to a more general model with

Pr(Y =0) =po, Pr(Y =y)=(1—po)exp(—0)0/y! /{1 —exp(-0)} fory=>1.

Verify that these probabilities sum to 1, and find expressions for the mean and variance.
This model is sometimes called the zero-inflated Poisson, since situations with py >
exp(—#) are prevalent, but also cases with pg < exp(—#6) are allowed. Simulate say 1000
datapoints from the model with 6 = 3.00 and py = 0.25, and check the histogram.

Ex. 1.24 The geometric distribution. Suppose Y has the distribution with point prob-
abilities f(y) = (1 — p)¥~!p for y = 1,2,.... This is the geometric distribution, and we
write Y ~ geom(p) to indicate this.

(a) Show that the probabilities f(y) indeed sum to 1. Suppose independent experiments
are carried out, each time with probability p that a certain event A takes place. With Y
the first time A happens, show that Y ~ geom(p).

(b) Show that Y has mean 1/p and variance (1 — p)/p?, via direct summation of
Z;ozl yf(y) etc. If Y is the number of times you need to roll a six-sided die until it
shows a ‘6’, find the mean and the standard deviation.

(¢) Another way of finding the mean and variance is as follows. With probability p,
Y = 1; with complementary probability 1 — p, ¥ = 1 +Y’, with Y’ having the same
distribution as Y. Show that this leads to EY = p+ (1 —p)(1+EY) and solve. Use this
representation to also find the variance. Show also that E (Y —1/p)3 = (1—p)(2—p)/p>.

(d) Show that Pr(Y > y) = (1 — p)¥~1, derive a formula for Pr(Y > yo +y|Y > yo),
and comment.

(e) A simple related distribution is when one starts counting at 0, not at 1, so to speak.
Show that with Y ~ geom(p), as defined above, the variable Yy = Y — 1 has point
probabilities Pr(Yy = y) = ¢¥p for y = 0,1,..., writing ¢ = 1 — p. Show that Y; has
mean (1 — p)/p and variance (1 — p)/p*.

(f) Suppose Y given p has geometric probabilities (1 — p)¥~p for y = 1,2, ..., but that
p itself stems from a uniform distribution. Find the distribution for Y’; not that this
implies 1/2 +1/6 +1/12+1/20 + --- = 1.

Ex. 1.25 Time to last event. Suppose independent geometric experiments are carried
out by m individuals, say players throwing dice until they get the ‘6’. How long time
does it take until the event in question has taken place, for all individuals?

(a) Let Y7,...,Y,, be the time needed for the m individuals to see the event in question.
Show that F(y) =Pr(Y; <y)=1-(1—p)Y fory =1,2,.... For Z,,, = max(Y1,...,Y),
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F(z)™, and use this to find a formula for the median time

show that its c.d.f. is H,,(z) =
— (%)1/’”)/ log(1 — p) (which may be rounded to the nearest

to final event: z}, = log(1l
integer).

(b) For p = 1/6, compute also the mean E Z,,, for say m = 1,...,100. Plot this, along
with the median times 2, .

Ex. 1.26 Mizing the Poisson. Suppose observations come from Poisson mechanisms,
but with different parameters, forming their own distribution. There are several versions
and uses of such Poisson overdispersion models. (xx pointer to Poisson regression with
overdispersion, perhaps in Chb. xx)

(a) Suppose Y | § ~ Pois(f) but that 6 has a distribution with mean  and variance 2.

Show that Y has mean 6y and variance 6y + 73.

(b) Specialise to the case of § ~ Gam(a,b), see Ex. 1.9. Show that EY = 6y = a/b and
that VarY = 6y(1+1/b). Argue that with a large b we come back to pure Poisson. Show
also that the marginal distribution of Y becomes

I'(a+y) be F(a+y)( b )a( 1

f(y,a,b) = T'(a)y! (b+1)a+y: T(a)y! \b+1 b+1

We are discovering the general negative binomial distribution in the process, of the form

Yy
) fory =0,1,2,....

T(a+y)
['(a) y!

for parameters a > 0, p € (0,1); see Ex. 1.27 for more details.

g(yaa7p) = (1 _p)ypa fory:O71a"'7 (14)

(¢) (xx one more thing here, perhaps even mixture of a small and a larger 6 value. also
point to Consider a regression context, with observed pairs (x;,Y;), where Y; | z; has a
distribution determined by Y; | y; ~ Pois(u;) but u; ~ Gam(exp(zt3)/c,1/c). show that
Y; | z; has mean exp(z!3) and inflated variance exp(z!3)(1 + c).

Ex. 1.27 The negative binomial. We met the negative binomial distribution in Ex. 1.26
and now point to other features and constructions.

(a) Let X1, X2 be independent from the geometric distribution ¢*p for = 0,1,...,
with ¢ = 1 — p. Show that Y = X; + X5 has distribution Pr(Y = y) = (y + 1)¢¥p?, for
y=0,1,.... For Y = X; 4+ X5+ X3 a sum of three such independent geometric variables,
show that Pr(Y =y) = (ygz)qyp?’ fory=0,1,....

(b) Generalise to the case of Y = X7 + -+ + X, the sum of ¢ independent geometric
variables, each with ¢”p for x = 0,1,.... Show that

-1 T
yta )yazw(l—p)ypa for y =0,1,...,

ity =) =

-1 I'(a)y!
i.e. the negative binomial with parameters (a,p). Deduce that the number of ways in
which one may find nonnegative numbers z1,...,x, with a given sum y is (yl'le) =

(y+a—1)!/{(a—1)!y!'}. In how many ways may one find 5 nonnegative numbers with
sum 1007 And with 10 nonnegative numbers with sum 1007

negative
binomial
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(¢) How do we know that the negative binomial probabilities (1.4) sum to one, also when
the a is a non-integer? Deduce from this that
= T(y+a) u? 1
A B 0,1).
2 M) o  (—we orvel)

y=0
Show that EY = aq/p, VarY = aq/p?.

(d) (xx the step from Y = X; + --- + X,., counting from zero, to Y’ = X{ +--- + X/,
counting each from one, so that Y’ > a. and just a bit more. reason for the negative
binomial term. xx)

(e) In one of the episodes of the television series Siffer (NRK, 2011), programme leader
Jo Rgislien announced he would flip his coin and land ‘krone’ ten times in a row — which
he then proceeded to do. He looked a bit tired, though; he had just kept on doing this,
complete with his opening statement, until he had achieved the ten krone in a row event,
and then showed only this crowning minute on tv. About how many times did he need
to flip his coin, in total, before he (and his camera man) could show that final string of
crowns? Simulate the process, and give a histogram of say 1,000 realisations.

Ex. 1.28 Conditioning on Poisson sums and a generalised binomial. We start with
Poisson sums and see a connection to the binomial. Using generalised Poissons then lead
to generalisations of the binomial.

(a) Let X and Y be independent Poissons with parameters 61,6>. Show that X given
X+Y = nisabinomal (n,p), with p = 61/(01+63). Generalise to the case of X1,..., X,
being independent Poissons, with parameters 61,...,60,,. Show that their conditional
distribution given X; + --- 4+ X,,, = n is a multinomial with count n and probabilities
(P15---,Pm), where p; = 6;/(01 4+ -+ - + 0,,).

(b) To generalise the above, and in its turn also the binomial distribution, consider the
gamma-mixed Poissons of 1.26. Specifically, let X |6; ~ Pois(#;) and Y |2 ~ Pois(62),
with gamma distributions (cfp1,c) and (cfp2,c) for 6; and 62; when c is large, this
means tight concentration around 6 o, 6y 2, and we’re back to Poisson. Show that the
conditional distribution of X given X +Y = n may be written

fz|n) x (n>1"(090,1 +z)[(chp2+n—2x) forx=0,1,...,n,
x
where ‘o’ means ‘proportional to’. For a particular case, explain that with cfy 1 = clp 2 =

1, X has the uniform distribution on 0,1,...,n.

(¢) It may not be easy to sum the terms above directly, to find the normalisation constant,
but show via expressions in Ex. 1.21 that we in fact must have

Fla|n) = (n) I'(cbo,1 + cbo2) T'(cbo1 + x)T'(clp 2 +n — )

].—‘(00071)].—‘(60072) F(69071 + 09072 + Tl)
for x = 0,1,...,n. In yet other words, we have reinvented the Beta-binomial distribu-
tion with gamma-mixing of Poisson parameters. Also, for large ¢, we are back to plain
binomial (n,p), with p = 6¢.1/(60,1 + 6o,2)-

xT
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(d) To invent other generalisations of the binomial, therefore, we might attempt other
extensions of the Poisson. One such is to let X and Y have point probabilities propor-
tional to 67 /(x!)Y and 6% /(y!)?, for some v # 1; we work with such models in Ex. 4.34
and Story iv.6. Show here that X given X + Y = n has the distribution

¥
flxz|n) x (n) p"(1—p)"* forxz=0,1,...,n,
x

where p = 61/(01 + 62). Compute these probabilities, for say n = 50, p = 0.33, and
some values of v around 1. Check then numerically npg = E X and the dispersion ratio
p = Var X/{npo(1 — po)}, to learn that there is overdispersion and underdispersion,
compared to the binomial case, for v < 1 and v > 1, respectively.

Moments, moment-generating functions, characteristic functions

Ex. 1.29 Moments. Consider a random variable X with c¢.d.f. F'. Its mean is EX =
[ xdF(z), and we may of course define higher moments.

(a) Use results of Ex. A.15 to show that E X*, first seen as [ ydGy(y), the mean of the
variable Y = X* with distribution Gj, inherited from F, is also the same as [ 2* dF(z);
thus there is no ambiguity there.

(b) For r < s, show that (E|X|")Y/" < (E|X|*)Y*, ie. h(r) = (E|X|")Y/" is a non-
decreasing function in r. You may use the Jensen inequality (see e.g. Ex. 8.8). In
particular, note that if |X| has a finite s-moment, then all moments of smaller order
are also finite. Illustrate by computing and graphing h(r) and logh(r) for the case of
X ~ Expo(1).

(¢) For X astandard normal, show that E | X|P = 2P/2I'(1(p+1))/\/7 for p > 0, a formula
that also can be written (3)?/?T'(p+1)/T'(3p+1). Compute and graph the function h(r)
for this case. For p an even integer, the formula simplifies to (%)p/2p!/(%p)!.

(d) For a random variable X with finite fourth moment, we have defined its skewness
skew and kurtosis kurt in Ex. 1.3. Give expressions skew = hs(p1, p2, t3) and kurt =
ha(p1, po, pi3, pta) in terms of the moments p; = E X7, and also expressions skew =
h3(p3, p3) and kurt = hj(us, p3, ) in terms of the centralised moments pf = E (X —

pa).

Ex. 1.30 Moment-generating functions. (xx nils has lifted this from App, need post-
polish there and here. xx) For a random variable Y, with distribution P, its m.g.f. is

M(t) = E exp(ty) = [ explt) 4P ().

defined for each t at which the expectation exists. The moment-generating function is
useful for finding and characterising distributions, for finding their moments, for han-
dling the distributions of sums of variables, and in connection with distributional lim-
its. When Y has a density f(y) (with respect to Lebesgue measure), we have M(t) =
[ exp(ty) f(y) dy, and if it is discrete with pointmasses f(y) for sample space S, say,
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then M(t) = 3, c5exp(ty) f(y). The expectation operator is more general, however, and
M (t) is perfectly defined also for intermediate cases where Y can have both discrete and
continuous parts; see Ex. A.15.

(a) For astandard normal Y ~ N(0, 1), show that M (¢) = exp(4t?). When Y ~ N(u,0?),
derive M (t) = exp(ut + 30°t?).

(b) A moment-generating function has that name since it generates moments; we indeed
have M'(0) = EY, M"”(0) = EY?, etc., under mild conditions, see Ex. A.31 for details.
Use this to find the first four moments of the standard normal.

(¢) For Y ~ Expo(6), show that M(t) =1/(1 —t/6), for ¢t < 6.

(d) For Y ~ Gam(a,b), with density {b%/T'(a)}y*~! exp(—by), show that M (t) = {b/(b—
)}, for t < b. In particular, M(¢) = 1/(1 — t)* for Gam(a, 1).

(e) Suppose Y is equal to zero with probability 0.90, but a standard normal with prob-
ability 0.10. Find the M (¢), and generalise.

(f) For the binomial (n,p), show that M(t) = {1 —p + pexp(t)}™.

(g) For Y ~ Pois(f), find M (t) = exp{f(e’ — 1)}. Use this, with Ex. 1.26, to find M (t)
also for the negative binomial (a,p). (xx hm, should give the formula here. xx)

(h) Let Y = +1 with probabilities 1, 1. Show that

M(t) = cosh(t) = (e + e7") =1+ (1/2)> + (1/4)t* + (1/61)t° + - - .
(i) For the uniform distribution on the unit interval, show that M (t) = {exp(t) — 1} /4,

for t # 0, and with M(0) = 1. For Y having the uniform distribution on the [—1,1]
interval, show that
exp(t) — exp(—t)  sinht

M(t) = =
(1) 5 T

and that this function may be written as the infinite sum 1+ (1/3!)#% + (1/5!)t* +---.

Ex. 1.31 Distribution of sums via moment-generating functions. Importantly, the
m.g.f. M(t) = E exp(tY), if it exists in a neighbourhood around zero, characterises the
distribution; variables whose m.g.f.s are identical in such a neighbourhood have identical
distributions. See details in Ex. A.31.

(a) Suppose M (t) = (3)*{1+exp(t)}?>. What is the underlying distribution? Similarly,
if M(t) =0.99 +0.01 exp(4t?), what is the distribution?

(b) With X and Y being independent, with m.g.f.s M; and M, show that the sum
Z =X +Y has m.g.f. Mx(t)My(1).

(¢) With X and Y independent and standard normal, show that X +Y is N(0, 2). Redo
the questions of Ex. 1.2.

(d) Redo a part of Ex. 1.23, showing that sums of independent Poissons are Poisson.
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(e) If Xq,...,X, are independent gamma variables, with parameters (a1,b),..., (an,b),
find the distribution of X7 + --- + X,,.

Ex. 1.32 The Laplace distribution. The Laplace or double exponential distribution, in
its simplest form, has density fo(y) = 3 exp(—|y|), on the real line; note the cusp at its
centre point zero.

(a) Let V7 and V5 be independent standard exponentials. Show that Y = V4 — V5 has
this density fo(y). Deduce from this that its m.g.f. is My(t) = 1/(1 — ¢2), for |¢| < 1.

(b) More generally, consider Y = V; — V5 where these two are independent and Expo(0).
Show that Y has density f(y) = 16 exp(—0 |y|), with zero mean and variance 2/6%. Also,
show that its m.g.f. is M(t) = 1/{1 — (t/6)?} for |t| < 6. The Laplace with variance 1 is
hence that with 8 = /2.

(c) Suppose X for given o is a N(0,0?), but that the variance V = 02 has some distribu-
tion. Show that the m.g.f. for such a normal scale mixture becomes M (t) = E exp(tX) =
My (3t%), where My (s) is the m.g.f. for V. In particular, show that if X |o ~ N(0,0?)
and 0% ~ Expo(1), then X has the Laplace distribution with variance 1.

(d) f X|V ~ N(0,V), and V has density g(v), show that X has density f(x) =
¢ d(z/v/?)(1/v'/?)g(v) dv. Translate the result above to the interesting formula

< 1 cx?yexp(—v) <1 12, o 9
| e (5 0) S =2 [ gy el
= 3V2exp(—v2|z)).
Use this to find a formula for the integral [;° exp{—(av® + b/v?)} dv.

Ex. 1.33 Characteristic functions. Above we have found multiple uses for moment-
generating functions, as in Ex. 1.30, and also their close cousin the Laplace transform,
see Ex. 1.35, along with generating functions for distributions on the integers. Yet
another very useful transform is the characteristic function, worked with in App. A, see
Ex. A.34, which is also a crucial technical tool in the development of the large-sample
theory of Ch. 2. For a variable with distribution F, its definition is ¢(t) = E exp(itX) =
J{cos(tz) + isin(tz)} dF(z), with dF(z) to be read as f(z)dx when F has a density f.
Notably, this ¢(t) always exists, also for distributions without means, etc. We note here
the inversion theorem from Ex. 77, that if [|p(t)|d¢ is finite, then there is a density
flx) = ~1 [exp(—itx)p(t) dt, see Ex. 77, which is also seen to be continuous.

(a) For the standard normal, show that ¢(t) = exp(—3t%), and that ¢(t) = exp(—102t?)
for the N(0, 0?).

(b) Show that ¢(t) is real, and then equal to E cos(tX), if and only if the distribution
is symmetric around zero.

(¢) For U a unit exponential, show that ¢(t) = 1/(1 —it). Deduce that X = U —V, with
its Laplace distribution, has ¢(t) = 1/(1 + t2), and that

_ 1
3 exp(—|z]) = (2) 1/008(7533)1_’_7 dt.



cumulants

Moments, moment-generating functions, characteristic functions 25

(d) Show from this, essentially by changing from (x,t) to (¢,x), that the standard Cauchy
has o (t) = exp(—|t]).

(e) In Ex. 1.16(d) we saw that if a ball is kicked from distance r to an infinitely long

straight line, with random angle A being uniform on (*%7‘(, %ﬂ), then the position where
the ball crosses the line is X = r X, where X is Cauchy. Now assume 7 is not fixed, but
comes from a unit exponential distribution. Show that X, a scale mixture of Cauchys,

has characteristic function ¢(t) = 1/(1 + |¢]).

(f) For V a uniform on [—1,1], show ¢(t) = (sint)/t. Prove from this that even though
[(sint)/tdt = m, the integral [ |(sint)/t|d¢ must be infinite. Show that

2
flz) = (27r)—1/cos(tx)(%) dt
is equal to the triangular density on [—2,2].

(g) Just as for m.g.f.s, sums of independent components are associated with products of
characteristic functions. Show that if X,Y, Z are independent, with ¢;(t), p2(%), @3(t),
then X +Y 4 Z has ¢1(t)p2(t)ps(t) as its characteristic function. Whem X7,..., X,
are i.i.d. with characteristic function ¢(t), show that (X; + --- + X,,)/v/n has ¢, (t) =
o(t/y/n)". We learn in Ch. 2 that if the X; have mean zero and finite variance o2, then
on(t) — exp(—%aztz). In this connection, you may numerically compute

and verify that it tends to the N(0,1/12) density; cf. Ex. ??.

(h) Show that there cannot be two i.i.d. variables with sum having the uniform distri-
bution. (xx but pointer to story with U = Vj + V5, two independent but with different
distributions. xx)

(i) (xx be repaired. xx) If XY are independent with the same distribution, and (X +
Y)/V2 ~ X, show that X must be a zero-mean normal. (xx pointer to CLT. xx)

(j) (xxto berepaired. xx) For another characterisation lemma, suppose that (X+Y")/2 ~
X, and show by induction that this implies the curious property that with X;,..., X,
i.i.d. from such a model, then the sample mean X, has the same distribution for every
n. Show that X must be Cauchy. Why is this not contradicting the LLN?

Ex. 1.34 Cumulants and the cumulant-generating function. For a variable X with
m.g.f. M(t), assumed finite in an interval around zero, it is sometimes fruitful to work
with the cumulant-generating function K(t) = log M(t). When expanded in a power
series around zero, with
_ 1 2 _ J i
K(t)=K'0)t+ 3K"(0) +---=>" ﬁtﬂ,

j=1

we call the coefficients x; = K7 (0) the cumulants of the distribution.
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(a) For the N(&,o?) distribution, show that K (t) = £t + 30t%. For the unit exponential
distribution, show K (t) =t +t2/2+t3/3 + .-+, with r; = (j — 1)! for j > 1.

(b) If X has mean &, write X = & + X, Show that K () = &t + Ko(t), where K(t) =
log My(t), with My the m.g.f. of the zero-mean variable X,. Hence the cumulants x; for
X are the same as the cumulants ;¢ for X, for j > 2.

(c) Via successive derivatives of M(t) = exp{K (t)}, show that

M = MK',
M" = M{K" + (K')?},
M" = M{K" +3K"K' + (K')*},
M"" = M{K"" +AK" K' + 6K"(K')* + 3(K")* + (K')"}.

Write ¢ and o2 for the mean and variance of X. From the equations, show first that
K'(0) = k1 = £ and that K”(0) = kg = 02, and next that

EX? = k3 +3¢ka + €3, BEX* = ry +4€k3 + 662k + 3n3 + &4

(d) Skewness and kurtosis were defined in Ex. 1.3. We may now find useful expressions
for these in terms of the cumulants. Show first via formulae above that

E(X -6’ =rs E(X-'=ri+30"
Explain that this leads to skew(X) = k3/0?, kurt(X) = ry/0?.

Ex. 1.35 Generating functions. Moment-generating functions, studying distributions

via the transformation M (¢) = E exp(tX), have several close relatives, which might be

more convenient for certain classes of distributions. It is e.g. common to use Laplace
transformations L(s) = E exp(—sX) for distributions on [0, c0), then studied for s > 0. Laplace
Here we work through the basic properties of generating functions, primarily used for transforms
distributions on the nonnegative integers. If Pr(Y = j) = p;, for j = 0,1,2,..., define
G(s)=Es¥ = Z;io pjs’ =po+p1s+p2s®+---, called the generating function for that

distribution, or for variables having that distribution. generating
functions

(a) Show that G(s) = M (logs), for s such that the latter exists. Demonstrate that G(s)
is finite, for |s| < 1, and also for s = 1. Find the generating functions for (i) the binomial
(n,p); (ii) the Poisson with parameter 6; (iii) the geometric with Pr(Y = j) = ¢/~ !p for
j > 1, with ¢ = 1 — p; answers are

Gi(s)=(1—p+ps)", Ga(s) =exp{—-0(1—s)}, Gs(s) = 1 ?sqs’

the latter valid for |s| < 1/q.

(b) Returning to the general case, give an expression for G’(s), show that G'(1) = EY,
and that G”(1) = EY(Y — 1). Find the mean and variance for the Poisson using
generating functions.
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(¢) Suppose X and Y are random variables taking on values in {0,1,2,...}, and that
their generating functions are equal, on an interval around zero. Show that X and Y
must have identical distributions.

(d) Show that if X,Y, Z are independent, with generating functions Gy, G2, G, then the
generating function for X +Y + Z is G1(s)G2(s)G3(s). Show from this, and the previous
point, yet again, that a sum of independent Poissons is a Poisson.

Ex. 1.36 Getting Y from two copies of X. Let X7, X5 be independently drawn from
some distribution on the nonnegative integers, and from these draw Y from the binomial
(Xl + X27 %)

(a) Writing € and o2 for the mean and variance for the X distribution, set up formulae
for the conditional mean and variance of Y, given X7, X5. From these show that EY = £,
VarY = ¢+ 102,

(b) Write Go(s) = Es* for the generating function of the X;. Show that the generating
function for Y may be written G(s) = Go(5 + 35)%. When X; ~ binom(m, p), show from
this that ¥ ~ binom(2m, %p) Then show that if the X; are Poisson, then Y reproduces
the same distribution.

Ex. 1.37 Sums of random lengths and the compound Poisson. Let X1, X5, ... be ii.d.,
from a distribution with mean ¢, variance o2, and m.g.f. My(t). Consider then a random
sum of these random elements; Z = Zf\il X;, where N has some distribution with mean
)\, variance 72, and generating function G(s) = Es". We define Z as zero if N = 0.

(a) Show that Z has m.g.f. M(t) = G(My(t)). Show that Z has mean A{ and variance
Ao? + €272,

(b) Consider the so-called compound Poisson variable Z = Zf\;l X;, where the X; are
iid. with m.g.f. My(s) and N ~ Pois(A). Show that the m.g.f. of Z may be written

E exp(tZ) = E My(s)N = expM My(t) — 1}],

and that this leads to mean A\¢ and variance A\(¢2+40?). Find an expression for E exp(t2)
for the particular case of X; ~ Gam(a,b).

(c) Consider now Z = Zfil X;, where the X, are i.i.d. unit exponentials. For given N,
the Z is a Gam(N, 1). With N ~ geom(p), show that Z ~ Expo(p). Generalise.

(d) Using terminology and results from Ex. 1.34, show that the cumulant-generating
function for the compound Poisson is K(t) = MMy(t) — 1}, with cumulants x; =
AE X7, Show from this that skew(Z) = (1/\)'/?vy3 and kurt(Z) = (1/\)7s4, with
3 = EX3/(EX?)3/? and 74 = EX*/(EX?)2. For a Poisson sum Z = EfilXi of
i.i.d. standard normals, so that Z | (N =n) ~ N(0,n), find the variance and kurtosis.

Ex. 1.38 The logarithmic distribution. Consider a variable X with point probabilities
Pr(X = z) = c(p) " 'p*/z for x = 1,2, ..., with p a parameter in (0, 1). This distribution
is sometimes called the logarithmic distribution.
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(a) Show that we must have ¢(p) = —log(1 — p). Find expressions for the m.g.f. M(t),
its mean, and its variance. Comment on the cases where p is close to zero, or close to
one. Show also for its generating function that G(s) = Es* = c(ps)/c(p).

(b) Consider Z = vazl X;, with the X; being i.i.d. with this logarithmic distribution,
and N is Poisson, with parameter expressed as Ac(p). Find the mean and variance of
Z, and show that its distribution is a negative binomial. We learn that the negative
binomial is inside the class of compound Poissons.

The multinormal, the t, the chi-squared, the F

Ex. 1.39 Mean and variance matriz for a random vector. (xx calibrate with Story
vii.1. xx) Consider a random vector of length p, say Y = (Y1,...,Y,)". Its mean vector
is defined as the vector of means, i.e. { = EY = (EY3,...,EY))", and its variance matrix
Y (also often called the covariance matrix), of dimension p X p, has the variances on the
diagonal and the covariances outside.

(a) Show that the elements of ¥ are cov(Y;,Y;), for 4,5 =1,...,p. If we transform Y to
Z = AY + b, with A a m X p matrix and b a vector of length m, show that EZ = A£+b
and that Var Z = AY A'. Explain that this generalises the usual rule Var (aY) = a*Var Y’
for one-dimensional variables.

(b) Let Xi,Xo, X3, X4 be iid. standard normals. Set up the variance matrix for
(X1, X1+ X0, X1 + Xo + X3, X1 + Xo + X3+ Xy)"

(c) For the multinomial model studied in Ex. 1.5, with Y = (Y7,...,Y%)" counting the
number of n events that fall in categories 1,...,k, with probabilities p1, ..., pg, show
that EY = np, where p is the vector of py,...,pr. Show also that its variance matrix
can be written ¥ = D — pp®, where D is diagonal with elements p.

(d) For the multinomial model, with 1 the vector (1,...,1)", show that 1*D1 = 0.
Explain that this is related to the linear relationships Z?:l p; = 1 and Z?:l Y, = n.
The matrix is hence not of full rank, and not invertible. Work however with the shorter
vector Yy = (Y1,...,Yx_1)% and show that its variance matrix may be written Xy =
Do — popl, where pg = (p1,...,pk—1)" and Dy is diagonal with these elements. Show
that o' = Dy' + (1/px)1oll, where 1y is the vector of k — 1 1s. For any vector
x = (z1,...,2) with sum zero, and with zy being the shortened version (z1,...,zr_1),
demonstrate that z5%, 'zg = 2521 3 /pj.

Ex. 1.40 The multinormal distribution. Let Y = (Y1,...,Y,)" be a random vector of
length p. We say that it is multinormally distributed, with mean vector ¢ and variance
matrix Y, which needs to be positive definite, provided its joint density can be written

Fy) = 2m) P28 exp{—3(y — 'Sy~ O},
where the domain for y is all of RP. We write ¥ ~ N, (£, X) to indicate this distributon.

(a) Show that [y f(y) dy indeed is equal to &, so calling it the mean vector is appropriate.
Show also that E (Y — &)(Y — €)t, calculated from the density, is equal to X.
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(b) Show that if ¥ ~ N, (£, %), then Y — & ~ N, (0,%).

(¢) Assume now that A is an invertible p X p matrix, and consider the transformation
Z = AY. Show that if Y ~ N, (£, %), then Z = AY ~ N, (A€, AN AY).

(d) By the spectral decomposition theorem of linear algebra, there is an orthonormal
matrix P, with PP* = I = P'P, such that PXP* = D = diag(\1,..., ), with these
values being the eigenvalues of X. Show that Z = P(Y — &) has components Z1, ..., Z,
which are independent, with Z; ~ N(0, ;).

(e) Show that a vector Y is multinormal if and only if all linear combinations are normal.
In particular, if Y ~ N, (&, %), then V = 'Y = 1 Y1 + - - 4+ ¢,Y), is normal N(c'¢, ¢'Se).
[xx need to say something careful about allowing constants to be seen as normal, with
zero variance. xx|

(f) Generalise point (c) to state that with any matrix A, of size say ¢ x p, the transformed
Z = AY is a multinormal N (A, AXAY).

(g) For the binormal case, with means &1, &3, standard deviations o1, 09, and correlation
p, show that the density may be written

s () ()
21 oq02(1 — p2)1/2 P 21— p? o1 o2

() ()

Show that X and Y are independent if and only if the correlation is zero.

f(-T,y) =

(h) We learn that the situation is easy and clean for the multinormal case, where inde-
pendence is equivalent to zero correlation. This is in general more complicated. (i) Let
X ~N(0,1) and Y = DX, with D a random sign with equal probabilities for —1,1. Show
that Y also is standard normal, that the correlation is zero, but that they are dependent.
(ii) For another example, again with X ~ N(0,1),let Y = X if | X| <abut Y = -X if
|X| > a. Show that Y is standard normal. Show that the correlation p(a) goes from —1
to 1 as a goes from zero to infinity; thus there is an ag for which the correlation is zero.
Also, find this ap numerically (answer: 1.537). In these zero-correlation constructions,
with normal marginals, the point is that there is not joint binormality.

Ex. 1.41 The multinormal and conditional distributions. Consider a multinormally
distributed vector, of length p + ¢, blocked into subvectors of sizes p and q. Let us write

Y, & Y11 X2
(Yz> b Nerq((ﬁz) , (221 222))'

(a) By carrying out a linear transformation, and using results from Ex. 1.40, show that

this as

Z=Y, — 21255 Yo ~ Ny(€1 — T12855 &2, T11 — 212555 Y1),

and that this Z is independent of Y5.
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(b) Show that the distribution of Y] given Y2 = ys must be multinormal. Derive the
important formulae for the conditional mean and variance,

E(Y1]y2) =& + S12555 (2 — &), Var (Y1 |y2) = S11 — S12555 S

Note that the conditional mean is a linear function in y, and that the conditional variance
matrix is constant, not depending on ys.

(¢) Now study the simplest two-dimensional prototype case, with

() (o). G5

Show that Y |z ~ N(pz,1 — p?) and that X |y ~ N(py,1 — p?). Discuss implications
for situations where an easy to measure X might be a proxy for a harder to come by Y.
How can you estimate Y from X, and with what precision?

(d) In generalisation of this special binormal case, consider a binormal

Y & o2, pPoOog
() ~2((&) - (oo, "D

In particular, the X is seen as stemming from a N(&y,03) distribution. Show that
Y |(X = z) is normal, with constant variance o2(1 — p?) and linear mean function
E(Y|z) = £+ p(o/op)x. This is essentially the linear regression model, for Y |z, here
derived as a consequence of binormality. Without pretensions of having precise numbers,
guess the binormal parameters in your population for (X,Y") being height and weight,
and deduce from this a model predicting a person’s weight from his or her height.

(e) Generalise this to situations with a (p + 1)-dimensional normal distribution for
(Y, X1,...,Xp), with Y seen as the main outcome, influenced by covariates X, ..., X,.
Show that Y given these covariates is normal, with a constant variance, and find the lin-
ear conditional mean function E (Y | Xy,...,X,). This is essentially the linear multiple
regression model; see Ex. 3.31.

(f) (xx a bit here on regression towards the mean. xx)

Ex. 1.42 How tall is Nils? Assume that the heights of Norwegian men above the age
of twenty follow the normal distribution N(¢,02) with £ = 180 cm and 0 = 9 cm.

(a) Given this information only, what is your point estimate of his height, and what is
your 95 percent prediction interval?

(b) Assume now that you learn that his four brothers are actually 195 cm, 207 cm,
196 cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the
population of Norwegian men is equal to p = 0.80. Use this information about his four
brothers to revise your initial point estimate of his height, and provide the updated 95
percent prediction interval. Is Nils a statistical outlier in his family?
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(¢) Suppose that Nils has n brothers and that you learn their heights. Give formulae for
the updated normal parameters &, and o,, in the conditional distribution of his height
given these extra pieces of information. Use this to clarify the following statistical point:
Even if you get to know all facts concerning 99 brothers, there should be a limit to your
confidence in what you may infer about Nils.

Ex. 1.43 The chi-squared. This exercise goes through some basic properties of the chi-
squared; see also Ex. 1.47 for its eccentric cousin, the noncentral or eccentric chi-squared.

(a) We say that a nonnegative variable X has the chi-squared distribution, with degrees
of freedom m, and write X ~ 2, for this, when its density takes the form

B 1
~2m/2(m/2)

m/2—1

x exp(—3z) for z > 0.

gm (@)
Show that its m.g.f. becomes M (t) = (1—2t)~™/2 fort < 3. Show further that E X = m,
Var X = 2m, and that the skewness, i.e. EW? with W = (X — EX)/(Var X)'/2 =
(X —m)/(2m)'/?  is (8/m)'/2. From the density, show E (x2,)? = 2PT(m/2+p)/T'(m/2).

(b) Via the m.g.f., show the simple and basic convolution property for the chi-squared,
that if X7,...,X,, are independent and chi-squared distributed with degrees of freedom
mi,...,My, then the sum Z = Z?:l X, is chi-squared too, with degrees of freedom
Z?zl m;. A generalisation is given in Ex. 1.47.

(c) If N is standard normal, show that X = N? ~ x%. Establish that if X ~ x2,, with
m a natural number, then it may be represented as X = NZ + --- + N2,

independent standard normals Ny, ..., N,,. Note, however, that the x2, with the density

in terms of

gm(2) above may be used also when m is not a natural number.

(d) There are connections between the chi-squared and the Gamma distribution (see
Ex. 1.9). Show that the Gam(im, %) is the x2,; that if Y ~ Gam(a, b), then X = 2bY ~
X5 /ot and that if Z ~ x7,, then $7 ~ Gam(im,1).

(e) Consider independent X ~ x2 and Y ~ x7. Show, perhaps via Gamma distribution
ratios in Ex. 1.12, that R = X/(X +Y) ~ Beta(3a, $b).

(f) When X ~ x2,, show that E log X = log2 + 1(3m), where ¢(z) = I"'(z)/T'(x) is the
digamma function.

(g) Consider Z = XY, a product of independent standard normals. Use (1.2) to show
that its m.g.f. is M(t) = 1/(1 —t2)/2, for |t| < 1. Deduce from this that Z has the same
distribution as %(K — L), where K and L are independent with x? distributions.

(h) Consider the second degree equation 2%+ Bx + C = 0 from school. If there are many
such equations, with B and C' being independent standard normal, how many of these
equations will have both roots real?

Ex. 1.44 Tell me about X and X + Y. In exercises above we have seen that sums of
independent normals, Poissons, chi-squares are respectively normal, Poisson, chi-square.
Sometimes we meet questions going the other way.
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(a) Suppose X and Y are independent, and that you learn the distributions of X and
Z = X 4+Y. Show that Y must have m.g.f. My (t) = Mz(t)/Mx(t). As an illustration,
suppose X ~ N(0,1) and X +Y ~ N(0,2). Show that Y ~ N(0, 1).

(b) Explain similarly that if X and Y are independent, with X and X +Y being Poisson,
then Y is also Poisson.

(c) Suppose X and Y are independent, that X ~ x2 and that Z = X +Y ~ X?L—i—b' Show
that the only possibility is then the expected one, that Y ~ Xz%'

(d) Consider Xy,...,X,, ii.d. standard normal. Writing as usual X for the sample
mean, we know that \/nX is also standard normal. Show that the vector of X; — X is
independent of X. Writing @ = > | (X; — X)?, show from >_;" | X? = Q + nX? that
Q ~ x2_,. (xx calibrate with other things; this is giving a simpler proof of the lemma
below, with no orthogonal transformations. xx)

(e) (xx for later, perhaps in Ch3: also nice for p-dimensional things with Q(0) =
zle(yj—e)tzgl(yj—e), where Qumin = Q(0) ~ X%kfl)p’ independent of § = A~! 2521 E;lyj.
XX)

Ex. 1.45 Orthonormal transformations. [xx check and calibrate with chi-squared things,
to get the order right. restructure text. xx] We have seen in Ex. 1.40 that a multinormal
vector can be sent via a linear transformation to independent one-dimensional normal
components, and vice versa. This also leads to useful characterisation and representation
theorems involving independence. In the present exercise we shall e.g. find a proof that
the sample mean Y and the sample variance statistic S = E:L:l (Y;—Y)? are independent;
this fact, which does not hold outside the normal family, was actively used in Ex. 3.4,
and will also be utilised (xx in other exercises, like Ex. 3.6 xx).

(a) Suppose X = (Xq,...,X,) is a vector with i.i.d. and standard normal components,
and let A be an orthonormal matrix, which means AA* = I = A'A. In yet other words,
each row of A and each column of A has length 1, rows are ortogonal, as well as columns.
Show that Y = AX must have components Y7,...,Y,, which are also i.i.d. and standard
normal. — Here you may also use the general transformation formula of Ex. 1.12.

(b) To exemplify the above, show that if X7, X5 are independent and standard normal,
then also Y7, Ys, where

()= (v 0v) () = (G H3a)-
must be independent and standard normal.

(¢c) When A is orthonormal, show that it preserves length, so ||Au| = |lu||, for any
vector u; here ||u||| is Euclidean length, so |lu|? = u? + -+ + u2.

(d) Let again X,..., X, be i.i.d. standard normals. Construct an orthogonal matrix
A by letting its first row be (1/4/n,...,1/y/n), and define Y = AX. Then show that

Yy =vnX =31, X;/\/n, and that

Z = i(xi -X)? = in -nX?= iyﬁ
=1 i=1 =2
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(e) Conclude from this that (i) v/nX ~ N(0,1), (ii) Z ~ x2_,, and (iii) X and Z are
idependent. This was proven more directly in Ex. 1.44 above, via decompositions of
chi-squares.

(f) Show that this implies the following classical and important properties, starting
with an independent sample Y7,...,Y, from the N(u,o2): The statistics Y and Z =
> (Vi —Y)? are independent, with Y ~ N(u,0?/n) and Z ~ 0?x2_,. Show also from
this that the classical empirical variance

1 <« _

~2 2

= > (VimY) (15)
i=1

is unbiased for the population variance, i.e. EG? = 2. Construct an unbiased estimator

for o, of the type ¢,0. [xx point to generalisations for the linear regression model. xx]

(g) Consider the general multinormal distribution Y ~ N, (&, ¥), with invertible 3. Show
that K = (Y —&)'S71(Y — &) ~ x2. Suppose Y = yops is observed, that X is known,
but £ unknown. Give a confidence region R such that £ € R with probability 90 percent.
How does this region shrink, if you observe 100 vectors from the multinormal, rather
than merely 17

Ex. 1.46 The t distribution. Consider independent variables X ~ N(0,1) and K ~ x2,.
The ratio t = X/(K/m)'/? is then said to have the t distribution, with m degrees of
freedom. We write t ~ t,, to indicate this.

(a) Find the mean and variance of t.
(b) Show that its density can be written

RS 1
gm () = L(m/2) /mm (14 22/m)m+1)/2

Show that g, () tends to the standard normal density ¢(z) as m increases, and explain
why this is to be expected. Show also that the Cauchy distribution, see Ex. 1.16, is the
t1 distribution. (xx find the little fun fact from Hjort (1994). xx)

(c) Find also the skewness and kurtosis for the ¢, distribution. In particular, show that
the latter is kurt = 6/(m — 4) for m > 4.

(d) Assume Y7,...,Y, areii.d. N(u,o?). With & the empirical standard deviation, from
(1.5), show that

t=(Y —pn)/(G/vn)

has the t-distribution with n — 1 degrees of freedom. This is the classic t-statistic dating
all the way back to Student (1908),

Ex. 1.47 The noncentral chi-squared. Consider also the so-called noncentral chi-squared
distribution, say K ~ x2,(\), with A the excentre or eccentricity parameter; the case of
A = 0 corresponds to the ordinary K ~ x2,. It is the distribution of Y2+ ---+Y,2, where
the Y; are independent normals, with Y; ~ N(p;,1), and A = Y7, p2.
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(a) Show that the m.g.f. of K ~ x2 (\) may be written

exp{At/(1 - 20)} 1
fi =.
(1—275)7"/2 ort <3

M(t) = E exp(tK) =

(b) Also the noncentral chi-squared distributions have convolution properties, generalis-
ing those of Ex. 1.43. If K; ~ X%“(Ai)a and these are independent, for i = 1,...,n, show
that > | K; is another noncentral chi-squared, with degrees of freedom .., m; and
excentre parameter » ., A;.

(¢) Another property which can be established, remarkbly without yet having seen the
density of a x2,()), is the following, using Ex. 1.44: if X and Y and independent, with
X ~x2, (M) and X +Y ~ x2, 4. (A1 4 A2), then by necessity Y ~ x2, (X2).

(d) Its density can be expressed in several ways; show that this is one such valid formula:
Fllym, N) =Y {exp(=3 ) (3N /51} gmos25 (k)
j=0

where g425(k) is the x2, 42, density. In other words, the noncentral chi-squared is a
Poisson mixture of central chi-squared distributions. Show that this entails the repre-
sentation K | (J = j) ~ x5, 9, Where J ~ Pois(3A). Also non-integer values of m are
allowed here.

(e) Establish that for K ~ x2 (\), we have EK = m + X and Var K = 2m + 4\. Show
also that the skewness of K becomes 2%/2(m + 3)\)/(m + 2)\)3/2. What is required in
order for this skewness to tend to zero?

(f) Let K = (A2 + N)2, which has the x?()\) distribution. Consider the normalised
variable

K—(1+)\) N2+4+2X/2N—1

(2+4N)1/2  (24+4N)1/2

Work out its m.g.f. and show that it tends to exp(3t?) for growing A.

(g) More generally, with K ~ x2 (\), work out a formula for the m.g.f. M(t) for Z =
{K — (m+ \)}/(2m + 4\)"/2. For any fixed m, show that M(t) — exp(t?) as A grows,
and comment on this finding.

Ex. 1.48 Noncentral chi-squared for empirical variances. We saw in Ex. 1.45 that if
Xi,...,X, are iid. N(a,1), with common a, then Z = """ (X; — X)? ~ x2_;, with
consequences for the empirical variance estimator. Here are some fruitful generalisations.

(a) Let the X; have non-identical means, X; ~ N(a;,1). Show that Z ~ x2_;(\), with
noncentrality parameter A = > (a; — a).

(b) Assume now that X; ~ N(a;,1/m;) for i = 1,...,n, perhaps reflecing sample sizes
m; for different groups, and with M = 27 m;. Consider Z = 32" m;(X; — X)2, with
X = St (mi/M)X;. Show that Z = Y"1, m; X} — M X2, and that its distribution is
ax2_1(A\), with A =3"" m;(a; —a)?, where a = Y7, (m;/M)a,.
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(¢) Let X ~ N, (£, %). Show that Z = X'S71X ~ y2(£571¢).

Ex. 1.49 The F distribution. As we have seen Ex. 1.45, with a normal sample
X1,...,X,, the distribution of the classical empirical variance estimator 62 = (n —
D73 (X —X)? is governed by 62 ~ a%x2, /m, where m = n—1 is the degrees of free-
dom. Suppose there are two independent samples, from normal distributions N(¢1,0%)

and N(&2,03), of sample sizes n; and na, with estimators 57 and 73.

(a) Let p = o1/09, the ratio of standard deviations. For the ratio of the two empirical
variances, show that

~9 2
o Xy /1
RQZ%:pQF, Wherel;’rv;nli7
02 XmQ/mQ

with degrees of freedom m; = n; — 1 and ms = ny — 1, and with the two chi-squareds
being independent. We say that F' has the F distribution, or Fisher distribution, with
degrees of freedom (my,ms2), and write F' ~ F(mq,mz).

(b) Show that when F' ~ F(my,ms), then 1/F ~ F(mg, m1). Show furthermore that

mo EF2:m1+2 m3

EF = : ;
mo — 2 mq (m2 — 2) (m2 — 4)

these expressions being finite when ms > 2 and ms > 4, respectively. Find also an
expression for the variance. Verify that both EF and E F? tend to 1 as the degrees of
freedom increase.

(¢) The main aspects of the F distribution have been worked out, above, from the
constructive definition given in ((a)), without actually needing any formula for its density;
also, probabilities are found using software packages, like pf (x,m1,m2) in R. Once in a
while one needs the density function, however. Show first that the cumulative function
can be written

Pr(F < z) = Pr(x2,, /mi < ax2,, /m2) = /000 G(zy(m1/ma), m1)g(y, mz) dy,

in terms of the cumulative G(-,m) and densiy g(-, m) of the x2,. Then take the derivative
to get

B mams) = /O " glay(mafma),ma)y(ma fma)g(y, ms) dy.

Complete the math to land at

L((my + ma))
F(%ml)l"( ITTLQ)

2

xml/Zfl

{1+ (ma/ma)a}(mitma)/20

h(xz,my,ma) =

The exponential family class

Ex. 1.50 The exponential family class. Many parametric models fall under the wide
umbrella of the exponential family class, which we treat in this and the folllowing exer-
cises. This will be properly generalised and extended down the road, but we start with
this definition: Suppose Y has model density of the form
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f(y,0) = exp{6iTi(y) + - 0pTp(y) — k(bn,-..,0p) th(y)
= exp{0'T(y) — k(0)}h(y),

for appropriate functions Ti(y),...,T,(y) and h(y); the k(#) function is there to se-
cure integration to one. We require that there is no fixed linear relationship among
T1(y),...,Tp(y), and also that the support of the distribution, the smallest closed set
having probability 1, is the same, for all parameter values. We then say Y is of the
exponential family class, with data functions T(y) = (T4 (y), ..., Tp(y))" and natural pa-
rameters 6 = (61,...,0,)".

(1.6)

(a) Before we start developing the general theory for the full class, we verify that a few
classic models are under its umbrella. For the following models, write the model density
in a form matching (1.6). (i) Y ~ binom(n, p). (ii) Y ~ Pois(#). (iii) Y ~ Beta(a,b). (iv)
Y ~ Gam(a,b). (v) Y ~ N(£,0?), with known o (and see Ex. 1.51). (vi) Let (X,Y, Z)
be trinomial (n,p,q,r), with r =1 — p — ¢. First work with f(z,y,p,q), and then with

the submodel where p = a?, ¢ = 2a(1 — a), r = (1 — a)?.

(b) Show that we must have

1(6) = log( [ exp(6'T(0)}h(y) dy),

assumed to be finite for at least some 6. Let in fact © be the set of 6 such that k(#) is
finite, called the natural parameter region. Show that (2 is a convex set.

(c¢) The score function of a model is u(y,0) = dlog f(y,0)/90; see Ex. 5.14 for more on
this. For the class of models studied here, show that u(y,8) = T'(y) — £(6), where

() = K0) _ [T exp(# 7)1y dy
90 [ exp{0°T(y)}h(y)dy

Show that the score function must have mean zero, which here means Eg T(Y) = £(0).
Show also that Varg T(Y) = 8%k(0)/0006", giving variances and covariances of the T;(Y")

in one matrix formula.

(d) We come back to general likelihood theory in Ch. 5, but for now show that if
Y1,...,Y, are i.i.d. from the exponential family density, then the logarithm of the joint
density can be written

0a(0) = log £(Yi,0) = n{0'T — K(O)}
i=1
with T = (1/n) Y1, T(Y;) the vector of averages T; = (1/n)> i, T;(y;). If this is a
family with say p = 3 parameters, and n = 10000, then the full relevant information
required for computing the ¢, function is captured in the 3 averages T}, 75, T5. This is
related to the sufficiency concept, returned to in Ch. 5. Show also that this ¢,,(0) is a
concave function.

Ex. 1.51 The normal and binormal exponential family members. The normal and
binormal (and multinormal) classes of distributions belong under the exponential family
umbrella.

natural
parameter
region
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(a) Consider first the normal (¢, %) model. Explain that its density may be written

y72+§7y_l§
o2 T2 T 2,2)

F) = 77 exp(

(2)
and argue from this that the normal is of exponential family type, with natural param-
eters 1/02 and £/02, and data functions equivalent to (y,y?).

(b) Consider then (X,Y’) binormal, with its five parameters &1, &2, 01, 02, p, see Ex. 1.40.
Show that the distribution is of the exponential family type, with natural parameters

1 & 1 &2 P
(1=p?ot’ (1=p?)oi’ (1—p*)o3’ (1—p*)o3’ (1-p*)or02
In the terminology of exponential families, identify also the associated Ti(zx,y),...,

T5(‘T7y)'

(¢) Show that (&1,&2,01,09, p) is in one-to-one correspondence with the five exponential

class natural parameters above.

(d) Suppose now that & = & and o1 = o9, so this distribution for (X,Y’) has now
three parameters. Show that it is inside the exponential family, and identify its natural
parameters.

Ex. 1.52 A log-linear density model on the unit interval. The machinery of the expo-
nential family class makes it easy to construct new models, starting with relevant data
functions Tj, in the language of Ex. 1.50.

(a) For densities on the unit interval, start with data function T'(y) = y — 1, to define
f(y,0) = exp{0T(y) — k(0)} for y € [0,1]. Find the k(0), a formula for the c.d.f. F(y,6),
and the mean and variance for Y having this density.

(b) Then go on to

f(y,01,02) = exp{fi(y — 3) + O2(y — 3)* — k(61,062)},

i.e. using Tj(y) = (y — %)] as data functions, for j = 1,2. Set up an integral function for
k(61,02) and some algorithms for determining the means, variances, and covariance, for

T1(Y), T»(Y), for any given (61,0s).

(c) Spell out the necessary details for the third order log-linear density model, which
uses Tj(y) = (y — 1)7 for j =1,2,3. Again, set up algorithms so that you may compute
the means, variances, covariances for Ty, T5, T3, for any (61,62, 03).

Yet other models: log-normal, Weibull, Gompertz, Gumbel, et al.

Ex. 1.53 The log-normal distribution. Starting with X ~ N(&,02), the variable Y =
exp(X) is said to be a log-normal, and we write Y ~ logN (&, 02) to indicate this.

(a) Consider the view that the distribution should or could have been named the expo-
normal instead — would you agree? Show that with Y ~ logN(¢,0?), its mean and
variance are exp(§ + $02) and {exp(20?) — exp(c?)} exp(2€).
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(b) Show that its density may be written ¢, (logy — &)/y = o 1¢(c 1 (logy — £))/y, for
y > 0. Find its mode.

(c) Assume that Y | ~ logN(€,02), and that & ~ N(&,72). Show that marginally,
Y ~logN(&, % + 72). Make explicit the connection to Ex. 1.59.

(d) Show that a product of independent log-normals is log-normal. Suppose Y7,...,Y,
are i.i.d. from the logN(&, 0?) distribution. Explain what happens to their harmonic
mean, Z, = (Y1 ---Y,)"/™.

(e) Assume a random time variable T  has the logN(0, 1) distribution. Find a formula for
its hazard rate h(t), and show that h(t) = (logt)/t for growing ¢. Plot the exact hazard
rate, along with its approximation, and comment.

Ex. 1.54 The Weibull distribution. The Weibull distribution, with positive parameters
(a,b), has c.d.f. F(t) =1 —exp{—(t/a)®} for t > 0. The b is called the shape parameter,
with a a scale parameter. The Weibull generalises the exponential distribution, which
is the special case of b = 1. Other parametrisations are sometimes convenient, as with
1 — exp(—ct?).

(a) Find a formula for the median, and more generally for the g-quantile F~*(g). Show
that the density can be written f(t) = exp{—(t/a)’}bt’~!/a® for ¢ > 0. Find also a
formula for the hazard rate, and draw this in a diagram, for b = 0.9,1.0,1.1, say for
a=1.

(b) Use the general mean formula of Ex. 1.14(a) to work through the details of
BT — / Pr(T? > ) du = / exp{—(ul/? /a)’} du = a? T(1 + p/b).
0 0

Show that this leads to mean aT'(1 + 1/b) and variance a® {I'(1 + 2/b) — T'(1 + 1/b)}>.
With T from the Weibull (a, ), plot the function sd(T")/ET as a function of b. (xx write
out. also reparametrisation, with 1 — exp(—ct®). point to story. xx)

(c) Show that V = (T/a)® ~ Expo(l), and use this to give a recipe for simulating
outcomes from any Weibull.

Ex. 1.55 The Gompertz distribution. The Gompertz distribution, with positiver pa-
rameters (a, b), has hazard rate h(t) = aexp(bt).

(a) Find the cumulative hazard rate, the c.d.f., and the density. Find also a formula for
the median, and more generally for the ¢ quantile, expressed via (a,b). (xx pointer to
Story ii.1. more; round off. xx)

(b) Suppose an individual has survived up to time ¢y. Show that her cumulative hazard
rate, for the remaining lifetime, is H(t) — H(tp) = (a/b){exp(bt) — exp(bty)}. Give a
formula for t*(tp), her median survival time. (xx then brief application of this, for Nor-
weglan women, using perhaps rough estimates of (a,b), via data from Human Mortality
Index. give (to,t*(to)) as a graph, for women born in perhaps 1900, 1960, 2020. can also
be a Story. xx)
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Ex. 1.56 The Gumbel distribution. Here we work with the Gumbel distribution, useful
e.g. in models for extreme values.

(a) Let Xi,...,X, be iid. from the standard exponential distribution. Show that
their maximum value M,, has c.d.f. {1 — exp(—m)}". Deduce that M, — logn has
c.d.f. Gp(u) = {1 - (1/n) exp(—u)}™, for all u > —logn.

(b) Show that the limit c.d.f. for M,, —logn becomes G(u) = exp{— exp(—u)}, and that
this defines a c.d.f. on the full line. This is called the Gumbel distribution. Find its
median and interquartile range.

(c) Find its density g(u) = exp{—u — exp(—u)}, and draw it in a diagram, along with
the densities g,, for say n = 10,20, 30, for M,, — logn.

(d) With U having the Gumbel distribution, show that its m.g.f. becomes M (t) = I'(1—t),
for t < 1. To find the moments, show by taking derivatives of T'(a) = fooo v Lexp(—v)dv
at position a = 1 that

EUP = (-1)PT®) (1) = (=1)P /Ooo(log v)P exp(—v) dv.

These may be found numerically. You may also work with the cumulant-generating
function, where a certain connection can be made to the Riemann zeta function, namely

K(t) =logD(1 —t) = et + i ng)tj

for |t| < 1. Here v, = 0.5772... is the Euler constant, see Ex. 1.13, and ((j) = Y.~ 1/n’.
In the terminology of Ex. 1.34, show that k1 = 7, k2 = ((2), k3 = 2{(3), k4 = 6((4).
With ¢(2) = 72/6, ((3) = 73/25.7943, ((4) = 7*/90, establish that EU = ~,, VarU =
0% =m2/6, skew(U) = 2¢(3)/03 = 1.1395, kurt(U) = 12/5 = 2.4.

(e) To appreciate the perhaps strange-looking connection from Gumbel moments to the
zeta function, show from efforts of Ex. 1.13 that

M, —logn = ZWi/i—&—an

i=1

where W; = V; — 1, for i.i.d. unit exponentials V;, and a,, — 7.. Find formulae for the
mean, variance, skewness, kurtosis of M, — logn based on this, and take their limits;
these will agree with formulae found above.

Ex. 1.57 The logistic distribution. Consider the logistic distribution (in its standard
form), with c.d.f. H(z) = exp(z)/{1 + exp(x)}, over the real line.

(a) Show that H indeed is a proper c.d.f., and that its density is h(z) = exp(z)/{1 +
exp(r)}? = H(z){1 — H(z)}, symmetric around zero. Find its interquartile range.

the Gumbel
distribution
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(b) With X having the logistic distribution, show that its m.g.f. M (¢) becomes

exp{(t + 1)x}

B T i
{1+exp(x)}2dx_/0 (1+u)2d /0 (I—-ov)"dt=T1+I'(1—-1),

for |¢t| < 1. Show from this that actually X = U — V, in terms of independent Gumbel
distributed U and V, see Ex. 1.56. Demonstrate this fact also directly, via convolution.
Use this representation to show that Var X = 72/3 and that its kurtosis is kurt = 6/5 =
1.2.

(c) Here we managed to find moments of the logistic via the Gumbel difference rep-
resentation. We may also use the intriguing formula I'(1 + t)I'(1 — ¢) = #t/sin(nt), a
consequence of Euler’s reflection formula. Take derivatives of this function to find the
variance and kurtosis formulae.

(d) A scaled version of the logistic has c.d.f. H(z,7) = H(z/7) = exp(z/7)/{1 +
exp(z/7)}?, for a suitable positive 7. Show that the variance is 727%/3, which is 1
for 7 = \/§/7r Draw a figure with the density, alongside the standard normal, and
comment.

Ex. 1.58 The logistic-normal distribution on the unit interval. The most prominent
model for distributions on the unit interval is the Beta, also useful in various guises
and roles outside its direct use for fitting datasets; see Ex. 1.18. Here we work with a
different class, useful for versions of logistic regression, which we meet in Ch. 5. Let
H(u) = exp(u)/{1 4 exp(u)} the logistic transform, worked with in Ex. 1.57, taking any
real u to the unit interval.

(a) Solve H(u) = v to find the inverse transform H~!(v) = log{v/(1 — v)}. Start with
X a standard normal and define V' = H(X). Show that its c.d.f. is G(v) = Pr(X <
H=(v)) = ®((H (v))), with density

1 1

—1 _ 1 2 1
g9(v) = ¢(H (U))v(l o) = @i exp[—5{logv —log(1 — v)} ]m-

(b) Generalise to the case where X ~ N(&,02), where the density becomes

1 1

o0,€,0) = 6((H ™ (0) = /o) s

We call this the logistic-normal with parameters ({,0). Draw c.d.f.s and densities of
this type, for some combinations of parameters. Explain that if X;,..., X, has a joint
multinormal distribution, then the random probability

p(X1>---aXp) :H(60+161X1+"'+ﬂpo)

has the logistic-normal distribution, and identify its parameters. In this sense the logistic-
normal class is closed under linear combinations of the underlying H~!(V'), whereas the
Beta class does not have similar properties.
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(¢) Suppose Y |p is binom(n, p), and that p is logistic-normal. There are no closed-form
expressions for the resulting probabilities

1

_ n "

f(y): (y)/ py(l_p) yg(p7£’0-)dp fory:O71a"'7na
0

but it may be worked with numerically. Display a few of these f(y), for say n = 100 and

a few values of (§,0).

(d) We may also work the other way here: suppose V = H(X) is Beta(cpg, c(1 — po));
what is then the distribution for X7

Ex. 1.59 A normal with a normal mean is normal. (xx preliminary version; need just a
few editorial decisions regarding where to place it, and how. xx) The normal distribution
has a convenient coherence type property: if X given its mean parameter is normal, and
this mean parameter itself is normal, then X, marginally, is again normal. This is also
related to what is found in Ex. 1.41.

(a) Consider first independent X; and X, with densities f; and fo. Show that f fifodx
is the density of X; — X», evaluated at zero. Write then ¢, (z — &) = o~ 1¢(c 7 (z — a))
for the N(&, 02) density. Show that

/%1 (@ = &) 90, (z — &2) dz = @524 43)1/2 (&1 — &2)-

(b) Assume that X given £ has mean ¢ and variance o2, and further that & stems from
its own distribution, with mean & and variance 72. Show that X, marginally, has mean
& and variance o2 + 72. Then specialise to the normal case, with X | ¢ and ¢ having
normal distributions. Show that X indeed also is normal, (i) by integrating out the &,
with respect to its distribution, and also (ii) by arguing via X = {+¢& = {y+0 + &, where
e and § are zero-mean normals with variances o2 and 2. (xx point to connected thing
for logN. xx)

(c) Suppose Y | (z1,x2) is normal N(a + byz1 + bax,0?), as in linear regression models
we will study in later chapters; see e.g. Ex. 3.31. Assume then that (z1,z2) themselves
have a distribution, in its space of covariate pairs, and that this distribution is binormal.
Show that Y, marginally, is normal, and give formulae for its mean and variance.

Ex. 1.60 Mixing the normal scale. (xx at the moment nils thinks this exercise will go
away, partly with material in Story v.2 and partly elsewhere. point back to and calibrate
with Ex. 1.32. xx) Suppose X ~ N(&,02) for given parameters (£, ), but that there are
background mechanisms producing these (§,0). In various settings this leads to good
‘mixtures of normals’ models for actually observed data.

(a) Suppose a given individual has his ¢ and that his associated X is a N(£, 02). Assume

next that in a population of such X, there is a distribution ¢ ~ N(&,02,,,) of their

2

o ctra)- From a

means. Show that an X sampled from that population is a N(&, 02 + o
statistical modelling viewpoint we have simply ‘put in more in the ¢’, perhaps stretched
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its interpretation a little, without inventing or having to invent a new model for the ob-
served X, per se. Also, without knowing more, or perhaps having a separate experiment,
we cannot identify the components of the observed variance.

(b) Now turn attention to the scale. With the mean £ kept fixed, but o having some den-
sity 7(c), show that X has density f(z) = [(1/0)¢((x —&)/o)m(c) do, and the variance
of X is the mean of the distribution of 02. Assume for simplicity of presentation that
¢ =0, and work with the case where the distribution of ¢ is such that 1/0% ~ Gam(a, b)
(it is common to express this by saying that o2 has an inverse gamma distribution).
Work out that

A1 b T(a+3)
flx) = (2m)1/2T(a) (b + La2)a+1/2’

It is useful to transform this to a member of the well-known distributions, to facilitate
computations of probabilities etc. Show therefore that

V= (3X%/b)/(1+ $X?/b) ~ Beta(}, a),

and express the c.d.f. of X in terms of the c.d.f. of this Beta distribution: Pr(|X| < z) =
Be((32%/b)/(1+ 322 /b), £, a). Check these details via simulations. (xx nils jotting down
the details here, to land in solutions. xx) solving the V equation for X, this inverse
transformation is X = (2b)/2{v/(1 — v)}'/2. Since X is symmetric around zero, the
density of V must be

h(v) = 2f((26)/2{v/(1 = 0)}'/2) (26)/25{(1 — ) /0} /2 /(1 = v)*.
Sorting out terms with v and 1 — v gives the desired Beta distribution density.

Ex. 1.61 Normal miztures. [xx to come. mean, variance, skewness. xx| Suppose Y
is such that with probability p;, it is a normal (uj70]2), with probabilities p1,...,px
summing to 1. Its density may be written f(y) = Z?:l Pi%o; (Y — ), where ¢g(u) =
o~ 1¢(o7tu) is the density of a N(0,0?). Such distributions are called normal mixtures.

(a) With J taking values 1,.. ., k, with probabilities p1, ..., pg, let Y| (J = j) ~ N(y;, sz).
Show that this Y has the density above; this amounts to a way of representing and in-
terpreting a normal mixture.

b) From E(Y | J) = s and Var (Y | J) = 02, show that
( K J

EY == Zpguj, Vary = E(Y — fi)? ZwﬁZm
j=1

(¢) (xx someting; display a few. xx)

Ex. 1.62 The hypergeometric distribution. You draw a sample of n items from a bag
of N, which has A of Type One and B = N — A of type Two. Consider X, the number
among the sampled n which are of Type One.
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(a) Show that X has distribution

fo-pes-a- ()2 )/C)

For which z is this positive? Explain the identity Zf:o (‘3)( B ) = (A+B )

n—x n

(b) Show that EX = nA/N = np, with p = A/N the proportion of Type One in the
bag. This may be done work with >_"'_ zf(x), or by writing X = J; +---+ J,,, with J;
and indicator for selected item 7 being a Type One or not.

(¢) Explain that if one samples one item at the time, followed by replacing the item,
then the Ji, ..., J, above are independent Bernoulli variables with probability p = A/N,
leading in that case to binomial variance np(l — p). For the present hypergeometric
setting, where n items sampled in one go without replacement, the J; are dependent;
show that cov(Jy,J2) = p(A —1)/(N — 1) —p*> = —p(1 — p)/(N — 1). Deduce that
the variance formula becomes Var X = ¢,np(1 — p), with ¢, being the shrinking factor
(N —n)/(N —1). This may be accomplished working algebraically with E X (X — 1), or
via the representation above.

(d) (xx just a bit more. comparing with binomial. xx)

Ex. 1.63 Building bivariate dependence models. (xx something here. need to have
something beside the multinormal for dependence. xx) Let X and Y have deunsities f;(z)
and f2(y), with c.d.f.s Fi(z) and F5(y). To model dependence between them, the idea
pursued here is mapping them to the normal scale, then using the binormal model, and
mapping back.

(a) Write X = F7Y(®(U)) and Y = F; Y(®(V)), where (U, V) is binormal with zero
means, unit variances, and correlation p. Show that X and Y indeed have densities f;
and fp. Writing g,(u,v) for the binormal density, show that the joint density can be
written

9p(u,v)
p(u)p(v)”

with the dependence factor R, of course being 1 when p = 0. Show in fact that

fla,y) = fi(@) f2(y) Ro(27H (Fr(2)), @71 (2(y))), with R,(u,v) =

1 1
m exp{—% 1 — p2 (p2’l,l,2 + pQ'U2 — 2p’U/U)}

Rp(u7 U) =

(b) Now consider fi(z) = exp(—x) and fa(y) = exp(—y), i.e. two unit exponentials.
Construct a bivariare pair (X,Y’) via the recipe above, with a density f,(z,y) having
unit exponential marginals. Compute the correlations corr(X,Y) as a function of p,
which might be easiest via simulations. (xx note very different cases, p = —0.99 and
p = 0.99. xx)

(¢) (xx one more example. for the uniform case, we have corr(X,Y") quite close to p, but
they remain different. xx)
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Ex. 1.64 Alice and Bob correlate their binomials. Here we show how correlated bino-
mials may be constructed, leading also to correlated random walks.

(a) Alice flips her fair coin n times, with i.i.d. 0-1 outcomes A;,...,A,. Bob has two
coins, and mixes between them depending on Alice’s outcomes: if A; = 1, he uses the
plus-coin with probability %—&—a for heads; and if A; = 0 he uses his minus-coin with % —a
for heads. With B; his outcome, show that Pr(B; = 1) = %, and argue therefore that
both X,, and Y,, are binomial (n, §) variables, where X,, = > | A; and V,, = > | B;
are the number of heads for Alice and for Bob. Show that the correlation between these
two binomials is 2a.

(b) In the little story-telling above, Bob observes Alice’s outcomes, one by one, which
then influence his choice between two coins; Alice doesn’t even need to be aware of
Bob’s existence. Explain however that we from observed pairs of coin flips (A;, B;)
never can see the difference between that scenario and the alternative one, that Bob
is the one flipping his fair coin, without caring for Alice, before she chooses between
two biased ones. This is arguably an instance of what Breiman (2001) alludes to as the
Rashomon Effect (from a Japanese movie in which different persons report very differently
about something they have all observed): data alone cannot help us uncover which of
the chains of action have been at work. Show indeed that as long as Alice and Bob
have a joint scheme of producing outcomes (0,0), (0,1),(1,0),(1,1), with probabilities
respectively (1 + a),1(1 —a),1(1 — a), 7(1 + a), then (X,,Y,) have the correlated
binomial distribution.

(¢) Find a way to compute f(z,y) =Pr(X, ==z,Y, =y), for z,y =0,1,...,n.

(d) Leaving the Rashomon aspects to the side, generalise the first setup to the case of
two correlated binomials (n, p), where p is not necessarily % Take indeed Pr(A4; =1) =p
and then Pr(B; = 1|A; =1) =p+a, Pr(B; =04, =0) =1—p+ap/(1 —p), for
a < min(p,1 — p), and show that this works properly. What is the correlation between
X, and Y,,?

(e) Show that /n(X,/n —p,Y,/n — p) tends in distribution to a binormal zero-mean
(X,Y), with variances p(1 — p) and covariance ap.

(f) (xx brief pointer to two correlated random walks, Ch9, with two correlated Brownian
motions. also good ML exercise, finding @ based on having observed Alice and Bob
random walks, easy /n(a — a), test for a = 0, etc.)

Notes and pointers

(xx to come. a bit old literature, but crisply, and not systematic. brief genesis of the
normal, a few sentences on the chi-squared, Pearson (1900), the t, Student (1908), the
F, the Dirichlet, more. we also point to essential things in later chapters. point out that
the normal is famous and useful also because of a host of approximation methods. xx)

(xx where do we have a precise theorem on Mx = My implying F = G? inversion
formula? xx)

the Rashomon
Effect: different
models may
offer equally
good
explanations
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The chi-squared is on the list over deservedly famous distributions in probability
theory and statistics, and stems from Karl Pearson’s famous 1900 paper, ‘On the criterion
that a given system of deviations from the probable in the case of a correlated system
of variables is such that it can be reasonably supposed to have arisen from random
sampling’. [xx a bit more: he establishes the chi-square distribution, the test carrying the
chi-squared name, and sets up a rigorous concepttual framework for hypothesis testing.
XX]

(xx point to uses of expofamily in both Chs. 4 and 5. xx)






1.2

Large-sample theory

The broad themes of this chapter are the concepts, details, methods, results, appli-
cations pertaining to three modes of convergence for random variables: convergence
in probability, convergence almost surely, convergence in distribution. The first two
have to do with random variables X,, coming close to some limit X, with increas-
ing n, typically indexed by sample size; often the limit is merely a constant. The
chief result here, with various extensions and uses, is the Law of Large Numbers,
than the empirical average of a sequence of observations tends to the expected
value of the underlying distribution. The third mode of convergence rather involves
the distribution of X, coming close to the distribution of some limit X, with the
Central Limit Theorem being a prime statement. These machineries also lead to
practically useful approximations; the idea is that a complicated distribution may
be approximated by something much simpler. This is in particular helped by a col-
lection of approximation methods called the delta method. The theory is developed
first for functions of i.i.d. sequences, involving tools of moment-generating functions
and characteristic functions, along with various probability inequalities. It is then
extended to cover cases of independent variables from non-equal distributions, cul-
minating in the Lindeberg theorem, giving precise conditions under which a sum
of independent components approaches normality. Methods and results from this
chapter are crucial for developing the likelihood theory of Ch. 5, and also for several
later chapters.

Key words: central limit theorems, characteristic functions, delta method, large-
sample approximations, laws of large numbers, Lindeberg conditions, modes of con-
vergence

In this chapter we study convergence of sequences (X,),>1 of random elements. The
index n typically refers to the sample size, and X, is some function of the n data points
available. The modes of convergence we study take place as n grows without bounds;

hence the name large-sample theory.

A random element X is a function defined on a probability space (2, F, Pr), taking

its values in some space X', equipped with an appropriate o-algebra. When X is a subset
of the real line, X a random variable; when X is a subset of R* for some k > 1, X is a
random vector (so a random vector of dimension one is a random variable); and when X

47
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is a function space (i.e., a set of functions), X is called a random or stochastic process. In
this chapter we concentrate mainly on convergence of random variables and vectors, with
the more involved themes of convergence of stochastic processes studied in Ch. 9. Many
of the results of the present chapter are, however, valid for stochastic process, which ones
will be clear from the context.

Applications of large-sample theory are plentiful in probability and statistics, partly
to understand crucial phenomena better, and partly to provide fruitful and practical
approximations; an estimator or a statistic might have a very complicated exact distri-
bution, but have a simple to use and sometimes accurate large-sample approximation.
The key convergence concepts, with ensuing approximations and applications, are as

follows.
First, if X,, = (Xn1,...,Xnk) is a sequence of are random vectors in R¥, and
a = (ay,...,ay) is some point in R¥, we say that X, converges to a in probability,

written X,, —; a, if for each positive ¢,
Pr(]| X, —al]| > €) -0, asn tends to infinity. (2.1)
Here ||z|| = (Z?zl x;)1/? is simple Euclidean distance, and hence ordinary distance in
the one-dimensional case. If X,, = 6,, is an estimator, for some parameter 6, we say that
the estimator is consistent if 6,, = 6o, where 6y is the true parameter value.
Second, a stronger version of convergence is X,, converges to a almost surely, that
is, the convergence occurs with probability one. This means that the event

N ={we€ Q: lim X, (w) # a} has probability zero, (2.2)
n

and we write X,, —.. a. We say that an estimator én is strongly consistent for 6 if
0, —as. o. A strong achievement indeed is the strong Law of Large Numbers (LLN),
which says that

n
if X1, Xs,... are ii.d. with finite mean &, then X,, = n~* ZXi —as & (2.3)
i=1

with no further assumptions required. One may readily prove weaker versions of the
LLN, as in Ex. 2.11(a) and Ex. 2.16, but with the development of sharper tools, and
separate valuable results along the way, we reach the strong LLN in Ex. 2.52-2.53. It
immediately has many applications and uses, as we shall see.

We note that limits in probability and almost surely can easily be defined also when
the limit is a random variable X, just by replacing a with the X in (2.1)—(2.2). Most
often, though, these two convergence concepts are used for cases when the limit is a
constant.

The third and statistically speaking most important concept is that of convergence
in distribution. If the random vectors X,, and X of dimension k > 1 have c.d.f.s F},, and
F, we say that X,, converges in distribution to X, or, equivalently, that F;, converges in
distribution to F if

F,(z) — F(x), for all continuity points = (z1,...,xx) of F. (2.4)

consistency of
an estimator

the LLN
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We write X,, —4 X or F,, = F to indicate this, allowing for simplicity also statements
like X,, —4 N(0,1). The bigger sibling of the LLN is the Central Limit Theorem (CLT):
if X1, X5, ... are i.i.d. random variables with variance o2, then

Vn(X, —EX;) —a N(0,0%), (2.5)

again with no further assumptions needed beyond a finite variance. Below we go consid-
erably further, however, in detail, in extensions, in applications. In particular, with addi-
tional tools and efforts we reach the Lindeberg theorem, with precise necessary conditions
for a sum of independent variables from different distributions to approach normality.
Such results are, for example, used to establish approximate normality for estimators in
regression models.

Reaching the CLTs, with variations, requires hard mathematical work, with various
technical details to sort out. When the main theorems have been established, however,
along with further tools, their actual use for statistical applications might be relatively
straightforward. In particular, functions of approximately normal variables are also ap-
proximately normal, as we learn in the subsection on delta methods.

Modes of convergence

Ex. 2.1 Almost surely implies pr implies d. Of the three modes of convergence, con-
vergence almost surely is the strongest, convergence in distribution the weakest, with
convergence in probability lying somewhere in the middle. In the following, X, and
X are random vectors. In statistical applications, (X, )n>1 will often be a sequence of
estimators, and the limit a constant.

(a) Show that if X,, —,s X, then X,, =, X. To show this, consider the sets A4, =
{|X,, — X| > €} for some ¢ > 0, and establish that Ny,>1 Up>pn A C A, where A is the
set where X,, does not converge to X, and take it from there.

(b) Show that if X,, —p X then X,, =4 X.

(¢) Let Y be a nonnegative random variable, and show Markov’s inequality: for any
a>0,Pr(Y >a) <E(Y)/a. Use this to show that if E || X,, — X||P for some p > 1, then
X, converges in probability to X. In applications, we often have p = 2 and X constant,
equal to a parameter 0, say. Show that E|X,, — 0> — 0 if and only if E X,, — 6 and
Var(X,) — 0.

Ex. 2.2 The Borel-Cantelli lemma and convergence almost surely. Let Ai, As,... be a
sequence of events. Consider A, = Np>1 Um>n A, the full-sequence event correspond-
ing to the A,, occurring infinitely often.

(a) Let Ay, A, ... be a sequence of events, and let N be the total number of occurrences
of the A;. Show that EN =32 Pr(4;).

(b) Show that if >~ | Pr(A,) is convergent, then Pr(4;, ) = 0. So sooner or later there
will be a finite (but random n), such that none of the A,, will ever occur, for m > n.
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(c) Assume in addition that the Ay, A, ... are independent events. Show that if >, p;
is divergent, then Pr(A4;,.) = 1. To show this, prove and use the inequality 1+z < exp(z),
valid for all z € R. In particular, for the case of independent events, there can’t be say
a b0 percent chance that there will be infinitely many occurrences.

(d) Let X3, Xs,...beli.id. from the unit exponential distribution. Will there be infinitely
many cases with X; > 0.99 log i, with X; > log, with X; > 1.01 log?

(e) Let X1, Xo,... be ii.d. standard normal. Show first that

¢(a)

Pr(X;>a)=1—®(a) = .

(I+0(1)), asa— oc.

Show that there will be infinitely many cases with |X;| > (2 log4)'/2.

(f) (xx one or two more. new records, Pr(R,, = 1) = 1/n. xx)

(g) Show that || X,, — X || —a.s. 0is equivalent to | X, ; — X;| —a.s. 0 for each j. The same
is true for convergence in probability. Consider the random vectors X,, = (X, 1, Xy 2)
and X = (X1, X3). Show that (X, 1, X, 2) —pr (X1, X2), by the definition of (2.1), is
equivalent to X, 1 —pr X1 and X,, 2 —p Xo, that is, ordinary one-dimensional conver-
gence for each component. Generalise to higher dimensions.

Ex. 2.3 The converses do not hold. This exercise shows that the implications arrows in
Ex. 2.1 only point in one direction, that is, the converses do not hold.

(a) Let X1, Xo,... be Bernoulli random variables with success probabilities pi,pa, .. ..
Show that X,, —, 0 as long as p, — 0, but that X,, —,, 0 takes more. What is
the probability for having infinitely many X,, = 1, for p, = 1/n%%, for p, = 1/n, for
pn = 1/n'017 Conclude that we can have convergence in probability, but not almost
surely.

(b) Let U be unif (0,1), and divide the unit interval in 2,3,... pieces: 4; = [0,1/2],
Ay = (1/2,1], A3 = [0,1/4], Ay = (1/4,1/2], A5 = (1/2,3/4], and so on. Define the
random variables X, = I(U € A,,), and show that X,, —, 0, but not almost surely.

(¢) Find an example where X,, —4 X, but there is not convergence in probability.

(d) Let X,, be a sequence of binary random variable with distributions Pr(X,, = a,,) = p,
and Pr(X, =0) =1 — p,. Construct the a,, and p,, sequences such that X,, =, 0, but
E|X,,| does not converge to zero. In the same vein, Let X,, = 6 + ¢, for § € R, where
€1,€2,... are independent random variable with distribution Pr(e,, = 2") = Pr(e,, =
—2") =1/(3n) and Pr(e,, = 0) =1 —1/(3n). Show that X,, —, 0, but that E|X,, — 6]
does not converge to zero.

Ex. 2.4 Partial converses. As we have just seen, the implication arrows of Ex. 2.1 only
point in one direction. We do, however, have certain partial converses.

(a) As as partial converse to Ex. 2.1(a), show that if X,, —,, X, then there is a sub-
sequence (ng)g>1 such that X, —a.s X. To construct such a subsequence, you may
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use the Borel-Cantelli lemma. Since any subsequence of a sequence converging in prob-
ability also converges in probability, you have just proved that if X,, —,, X, then every
subsequence has a further subsequence converging almost surely.

(b) As a partial converse to Ex. 2.1(b), show that if X,, —4 a for some constant a € R,
then X,, —pr a. Generalise to higher dimensions.

(c) As a partial converse to Ex. 2.1(c), we have that if X,, —,. X and ||X,,|| is bounded
by a random variable Y such that |Y|P is integrable, then E || X, — X||? — 0, for some
p > 1. Notice that this is a version of Lebesgue’s dominated convergence theorem (see
Ex. A.11(d), and you may consult that exercise before solving this one).

(d) Another partial converse to Ex. 2.1(c) is provided by (a version of) Scheffé’s lemma,
which states that if X,, is a sequence of nonnegative random vectors such that X,, —,, X
and EX, — EX, with X integrable, then E || X, — X| — 0. Prove it first in one
dimension, where you may use that |y| = y + 2max(—y, 0), then generalise.

Ex. 2.5 Uniform integrability. Yet another partial converse to Ex. 2.1(c) is obtained
by introducing the concept of uniform integrability. A sequence X1, Xs, ... of random
variables is uniformly integrable if

lim supE|X,|I(|X,| > M) =0. (2.6)

M —o0 n>1

As we show in this exercise, if (X,,),>1 is uniformly integrable and X,, —,, X, then
E|X, — X| — 0. Thus, compared to Ex. 2.4(c) (which is essentially Lebesgue’s domi-
nated convergence theorem), the uniform integrability assumption takes the place of the
boundedness assumption imposed in the dominated convergence theorem. Moreover, as
we show in (¢) and (i), uniformly integrability is a bit weaker than boundedness, and
turns out to be a necessary for convergence in mean.

(a) Show that E|X| < oo is equivalent to limy;oo E|X|I(]X]| > M) = 0. This explains
why the property in (2.6) is called uniform integrability.

(b) Show that if (X,,)p>1 is uniformly integrable, then sup, E|X,| < oco. Exhibit a
sequence of random variables for which the converse does not hold.

(c) Show that if (X,,),>1 is dominated by an integrable Y, then it is uniformly integrable.
Construct a sequence of random variables that is uniformly integrable, but that is not
dominated by an integrable random variable.

(d) Let (X,)n>1 be a uniformly integrable sequence of random variables such that
X, —as. X. Show that the limit X must be integrable. To show this you may first
consult Fatou’s lemma, see Ex. A.11(b) in the appendix.

(e) Let (X,)n>1 be as in (d). Show that E|X,, — X| — 0. The trick is to truncate
Y,, = |X,, — X| and take it from there.

(f) Show that in (e), it is sufficient that X,, converges in probability to X.
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(g) Show that if (X, )n>1 is such that E|X,|'*° < oo for all n, for some § > 0, then it
is uniformly integrable.

(h) Show that (X,,)n>1 is uniformly integrable if and only if it is asymptotically uniformly
integrable, that is, limps_,o0 limsup,, , o E|X,|I(|X,| > M) = 0.

(i) Finally, (e) has a converse. Show that if (X,,),>1 and X are nonnegative and inte-
grable, X,, =, X, and EX,, - EX, then (X,,)p>1 is uniformly integrable. Deduce
from this that if (X,,),>1 and X are integrable, X,, =, X, and E|X,, — X| — 0, then
(X1n)n>1 is uniformly integrable.

Ex. 2.6 Scheffé’s lemma. If we replace the random vectors in Ex. 2.4(d) with the
densities (fy)n>1 and f, then the limit is automatically integrable, and we obtain the
lemma typically known by the name of Scheffé.

(a) Let Y, and Y be random vectors with densities f,, and f, respectively. Show that if
fn(y) = f(y) for all y, then [ |f.(y) — f(y)|dy — 0. Conclude from this that Y;, —4 Y.

(b) Let X1, Xs,... be iid. unif (0,1), and set M,, = max;<,, X;. Use Scheffé’s lemma
to show that n(1 — M,,) converges in distribution to a unit exponential. [xx this is not a
great examples xx]

(¢) [xx a couple of simple examples here, where f, — f. xx]|

(d) Show that under the conditions of (a) we have supg |[Pr(Y,, € B) — Pr(Y € B)| — 0.
Since Y;, —4 Y only requires Pr(Y,, € B) — Pr(Y € B) for sets of the form B =
(—o0,y] (or, more generally for all continuity sets B, see Ex. 2.19), convergence Pr(Y,, €
B) — Pr(Y € B) uniformly in B is stronger than what is required for convergence in
distribution: For a classical example thereof, consider the sequence Y;, = 1/n. Clearly,
Y., —4 0, but show that supy |Pr(Y, € B) — Pr(Y € B)| = 1. More examples are given
in Ex. 2.7.

(e) IfY,, and Y have densities f,, and f, and Y,, —4 Y, we should expect f,, — f. This is
not alway happening, however. Consider the case of F,(y) = y + (nm)~!sin(nmy). Plot
the F,, and its density f,, for some n. Show that Y,, —4 unif, but that f,(y) does not
converge to 1 for all y. It is also instructive to transform to the approximate normal scale,
via X = ®~1(Y). Show that X then has density g,(z) = ¢(x){1 + cos(nm®(x))}, with
very notable oscillations, but where the c.d.f. G, (x) nevertheless tends to the standard
normal.

Ex. 2.7 From discrete to continuous. Often enough discrete distributions have contin-
uous limits.

(a) Let X,, have distribution Pr(X,, = j/n) =1/(n+ 1) for j = 0,1,...,n. Show that
X, —q X, where X has the uniform distribution on the unit interval. Show also that
supp |Pr(X,, € B) — Pr(X € B)| does not converge to zero (cf. Ex. 2.6(d)).

(b) With perhaps similar techniques as in (a), consider X,, with distribution Pr(X, =
j/n)=j/{n(n+1)/2} for j =1,...,n. Find its limit distribution.

Scheffé’s lemma
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(¢) Let X1, Xa,... be independent Bernoulli random variables with success probability
p. Only using (2.4), show that \/n(X,, —p)} =4 X, with X a N(0,p(1 — p)) distribution.
You may use Stirling’s formula n! ~ v/27n(n/e)™ here; see Ex. 2.39.

(d) Suppose X ~ Pois(A) and that A grows. Again, using only the definition in (2.4),
show that (X — \)/A/2 —, N(0,1).

Ex. 2.8 Many small probabilities give a Poisson. The Law of Small Numbers, der
Gesetz der kleinen Zahlen, says that if we sum a high number of 0-1 variables, with each
having a small probability of 1, then we’re close to a Poisson.

(a) Suppose Y,, is binomial (n,p,), with p, becoming small with growing n in a way
which has np, — A. Show that Y;, —4 Pois(\).

(b) More generally, suppose X,...,X,, are independent 0-1 Bernoulli variables with
pi = Pr(X; = 1). Show that if max;<,p; — 0 and > p; — A, then > I X; —y
Pois(A).

(¢) Suppose X7, X5, ... are independent Bernoulli with p; = i/n, and consider Y,,(t) =
>i<tym Xi- Show that Yy, () —a Pois($t?). The limit is actually a full Poisson process
in ¢, with independent increments (see Ch. 9).

(d) Suppose (X,,Y,) has the trinomial distribution, with parameters (n,pn,qn), see
Ex. 1.4. Assume now that p,, g, become small with n, such that np,, — A1, ng, — Aa.
Show that the correlation betweem X, and Y,, tends to zero, and that (X,,Y,) —4
(X,Y), where X and Y are independent and Poisson with parameters A1, \2. Generalise
to a situation extending that of point (b); use the multinomial model of Ex. 1.5.

Ex. 2.9 Mazimum of uniforms. Let Xi,...,X, be ii.d. random variables with the
uniform distribution on (0, 1), and set M,, = max;<, X;.

(a) Show that M,, —, 0, that is, the maximum of the observations is consistent for the
unknown endpoint.

(b) Find the limit distribution of V,, = n(¢ — M,,), and use this result to find an approxi-
mate 90 percent confidence interval for 6, i.e., a random interval [L,, (M), U, (M,)] such
that Pr(L,, <60 < U,) is approximately 0.95. on confidence intervals.

Ex. 2.10 Stochastic Opy and op, symbols. [xx can we make one or two nice exercises?
And where to place it? xx]

Convergence in probability and tail bounds

Ex. 2.11 Markov, Chebyshov, and the Law of Large Numbers. In view of the definition
of convergence in probability in (2.1), it is certainly useful to find mathematically man-
ageable bounds for so-called tail probabilities, i.e., Pr(]X| > a) for a random variable
X. There are several such, as we learn here, with more to come in Ex. 2.17. Their uses
include assessing how likely it might be that an estimator is some distance off its target.
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(a) Markov’s inequality was proven in Ex. 2.1(c): If X is nonnegative, then Pr(X > a) <
E (X)/a for each a > 0. More generally, if h(z) nonnegative and nondecreasing, with
h(a) positive, show that Pr(X > a) < Eh(X)/h(a). From this, deduce the Chebyshov
inequality: if X has finite variance (but is not necessarily nonnegative), then

Pr(|X —EX| >¢) < Var (X)/e?, fore>0.

(b) With X3,..., X, being ii.d. from the same distribution as X, with mean ¢ and
standard deviation o, show that for the empirical mean X,, that Pr(|X, —&| > ¢) <
02 /(ne?). Since the right hand side tends to zero as n tends to infinity, you have now
proven the version of the Law of Large Numbers (LLN) that says that the empirical mean
of n i.i.d. random variables with finite second moments converges in probability to its
expectation as n tends to infinity.

(c) Let Y1,Ys,... be i.i.d. random variables with expectation @ and finite variance o2.

Consider the weighted average 6 = S wYi/ Y w;, for nonnegative and fixed
weights w;. Give a condition for consistency of the estimator, in terms of these weights.
What happens for w; = 1/i, and for w; = 1/i'-5?

(d) If X has mean &, and a finite fourth moment, show that Pr(|X —¢| > ¢) < E|X —
£[*/et. For X ~ N(&,0?), deduce that Pr(|X —¢| > ¢) < 30/e?.

(e) With X4,...,X, iid. from a distribution with finite fourth moment, write v, =
E{(X; —¢&)/o}* — 3 for its kurtosis. Show that

E|X, —¢|*= %{nm +3n(n—1)} = %{3 + (1/n)(v4 — 3)}.

Show hence that Pr(|X,, —&| > ) < 3.010%/(n2e?), for all large enough n. When is this
a sharper result than that of the Chebyshov inequality?

Ex. 2.12 Continuous mapping for convergence in probability. The theorem known as
the continuous mapping theorem (which will be proved in its entirety during the course
of this chapter) says that the three modes of convergence introduced above are preserved
under a continuous mapping. In this exercise we look at the convergence in probability
part of this theorem. Below you may take X,, and X as random vectors or variables, the
proofs are much the same.

(a) Suppose X,, —pr a, with a being a constant. Show that if g: R¥ — R™ (so k =
m = 1 in the one dimensional case) is a function continuous at point & = a, then indeed

9(Xp) —=pr g(a).

(b) Suppose more generally that X,, —,. X, with the limit being a random variable
or vector such that Pr(X € C) = 1, for C C R or C C R, respectively. Show that if
g: R¥ — R™ is uniformly continuous on C, then g(X,) —pr g(X).

(¢) Show that in (b) it is sufficient that g is continuous. [xx might include a hint or two

here xx].

the Chebyshov
inequality

the LLN via
Chebyshov
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Ex. 2.13 The binomial and the empirical distribution function. For i.i.d. observa-
tions Y7,...,Y,, we form the empirical cumulative distribution function, the e.c.d.f.,
with F,(t) =n~' 3" | I(Y; <t). Plotting F, for a given dataset is informative, also for
comparing with given distributions.

(a) Before returning to F,, consider X, ~ binom(n,p) and the familiar ratio p,, =
X, /n. Show that indeed p,, —pr p. Historically speaking, this is the earliest clear LLN
statement. Explain that this also provides an interpretation of what probability means.

(b) Coming back to the empirical c.d.f., explain that F),(¢) for given t is just a binomial
proportion, and that F,,(¢t) —,, F(t) for each ¢t. In particular, the events F),(t) < F(t)—e¢
and F,(t) > F(t) + ¢ both have probabilities going to zero, for positive €.

(c) We come back to finer analysis of F;, in Ex. 2.55 and 9.22, but find the variance of
F,,(t) and the covariance betweem F,(t1) and F,(t2).

Ex. 2.14 Quantiles. Here we learn that the empirical quantiles are consistent for their
population counterparts. Further informative analyses are in Ex. 3.18, including conver-
gence in distribution, but here we limit attention to direct convergence in probability.

(a) Suppose first that Uy, ...,U, are i.i.d. from the uniform distribution on the unit
interval, and let M,, be the empirical median. With the empirical c.d.f. F;, from Ex. 2.13,
use the fact that F,(t) —p t, for each ¢, to show that M,, —p, % Then generalise to the

case of observations Y1, ..., Y, from a distribution with continuous and strictly increasing
c.d.f. F, showing for the empirical median that M, —, F~1(3).
(b) Asin (a), let Uy, ..., U, are i.i.d. from the uniform distribution on the unit interval,

and M, the empirical median. Use Scheffé’s lemma (Ex. 2.6) to show that \/n(M,, —
3) —a N(0,1/4).

(c) More generally, for a ¢ € (0,1), let Q,, = @,(q) be the empirical g-quantile, defined
here to be Y|4y, the [ng| order statistic, where |x| = max{m € Z: m < x}. Show that
Qn is consistent for the population quantile F~1(g). [xx comment briefly on different
definitions of quantile, but this does not matter here, differences are small. xx]

(d) Show that the interquartile range, the 0.75 quantile minus the 0.25 quantile, is consis-
tent for the population interquartile range F~1(0.75) — F~1(0.25). Show more generally
that if 0 = g(F~'(q1),...,F~!(g-)) is any continuous function of a finite number of

o~

quantiles, then 6 = g(Q,(q1),...,Qn(g)) is consistent for 6.

Ex. 2.15 Smooth functions of means and quantiles. (xx write down. all the easy
consequences. continuous functions of means and quantiles are consistent. more to
come. Xx)

Ex. 2.16 Improving on the weak LLN. We have seen in Ex. 2.11(a) that the LLN holds
if the distribution has a finite variance. Here we get rid of the finite variance condition.
For the almost sure version of the LLN see Ex. 2.52.
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(a) Let Xi,Xa,... be iid. with finite mean . Show X, = n='> " X; —p &€ by
truncating the random variables involved, i.e., write X; = X;I(|X;| > M) + X;1(|X;] <
M) for some M > 0, then show that

_ SM 2
Pr(| X, —¢ >¢) < —2E|X\ + -EXIx>u,
ne €

for any £ > 0; and conclude. You will need Jensen’s inequality, see Ex. A.15(f), at some
point in this argument.

(b) Let X1, Xs,... be i.i.d. random variables with fininte variance o2. Show that the
empirical variance n~1 Y | (X; — X,,)? is consistent for 2.

Ex. 2.17 Further tail bound inequalities. In Ex. 2.11 we learned about the Markov and
Chebyshov inequalities; here we work out further tail bounds for our toolboxes.

(a) Suppose X has a finite moment-generating function (m.g.f.) M(t) = E exp(tX), as
per Ex. 1.30. Show that

Pr(X > a) < q(a) = min{t: exp(—ta)M(t)}.

Writing M (t) = exp{K (¢)}, show that this leads to q(a) = exp{K(t.) — at,}, where t,
is the solution to K’(t,) = a. Apply this to X ~ N(0,1) and a positive, and show that
Pr(X > a) < exp(—3a?). Show that this is indeed sharper than the tail bound 1/a?,
from the simpler Chebyshov inequality, for all a > 0.

(b) For X ~ N(0,1) and a positive, show that

_ 1 3 15 L
Pr(]X| > a) is smaller than each of peibwebe S 2exp(—za”).

(xx a bit more here, rounding it off. more inequalities in Ch. 2. xx)

(¢) (xx here or later, perhaps after the mgf things. we also do the expo, which is simpler
than the x2. xx) Let X ~ x2,, which has mean and variance m and 2m. Consider
pm(a) = Pr(X > m + am'/?). Show that

(1—2t)"m/2
exp{t(m + aml/2)}

Pm(a) < min{t: } = (1+a/m"?)™/% exp(—Lam!/?).
Compare this bound both with bounds from the Markov inequality, and with the exact
limit of p,,(a), as m grows.

(d) Let X1, Xo,... bei.i.d. with mean zero and variance one, so that \/n.X,, —4 N(0, 1),
but you don’t need to use that here. Assume the m.g.f. M(t) = E exp(tX;) = exp{K(t)}
is finite. Show that

oo M)

Pr(\/ﬁXn >a) < exp(ta) = exp{nK(t/\/ﬁ) — ta},

for each t. (xx then a bit more. tail inequality. not too far from good bound exp(—%ag).
briefly mention and point to large deviations theory. xx)
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Ex. 2.18 Bernshtein and Weierstrafs. [xx Nils, can you fix the notation in this exercise.
I propose that we drop the = notation, and use 0,(1), etc. instead xx| In c. 1885, Karl
Weierstrafl proved one of the fundamental and insightful results of approximation theory,
that any given continuous function can be approximated uniformly well, on any finite in-
terval, by polynomials; see also Hveberg (2019). A generation or so later, such results had
been generalised to so-called Stone—Weierstrafl theorems, stating, in various forms, that
certain classes of functions are rich enough to deliver uniform approximations to bigger
classes of functions. This is useful also in branches of probability theory. Here we give
a constructive and relatively straightforward proof of the Weierstrafl theorem, involving
so-called Bernshtein polynomials. Let g: [0,1] — R be continuous, and construct

Bn(p) = Epg(Xn/n) => g(j/n) (?)pj(l —p)"~7 forpe[0,1],
i=0

where X,, ~ binom(n, p). Note that B, (p) is a polynomial of degree n.

15 20

1.0
Bernstein and repaired Bernstein

g(p), with Bernstein polynomials

Figure 2.1: Left panel: The given non-polynomial function g(p) (full black curve), along
with approximating Bernshtein polynomials of order 10, 20, ..., 100. Right panel: For the
function g»(p) = (2p — 1)*, the Bernshtein polynomials B,,, along with the bias-modified
ones B}, or order 4,6, 8, 10.

(a) Show that B, (p) —pr 9(p), for each p. Then show that the convergence is actually
uniform. In some detail, for € > 0, find § > 0 such that |[z—y| < ¢ implies |g(z)—g(y)| < €
(which is possible, as a continuous function on a compact interval is always uniformly
continuous). Then show

1Bn(p) = 9(p)| < &+ 2M Pr(|X,/n - p| > 9),
with M a bound on |g(p)|. Show from this that indeed max, |B,(p) — g(p)| — 0.
(b) Consider the marvellous function

g1(p) = sin(2mp) + exp(1.234sin® \/p) — exp(—4.321 cos® p?)
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on the unit interval. Compute the Bernshtein polynomials of various orders, and display
these in a diagram, alongside the curve of g. Construct a version of Figure 2.1, left
panel, which does this for n = 10, 20, ...,90,100. How high n is needed for the maximum
absolute difference to creep below 0.017

(¢) Assuming smoothness of the g function, and writing p = X,,/n for the binomial
fraction, use Taylor expansion g(p) = g(p) + ¢'(p)(P — p) + 39" (p)(P — p)* to show that
B,(p) = g(p) + 29" (p)p(1 — p)/n. This invites a repaired Bernshtein polynomial, of the
form B;(p) = By (p) — 3Cn(p)p(1—p)/n, with Cy,(p) = E,g” (X, /n). Explain that this is
still a polynomial, now of order n+ 2, and show in examples that it often succeeds better
than B, in coming close to the target g(p). Make a version of Figure 2.1, right panel,

which shows the B,, and the B}, of order 4, 6,8, 10, for the case of ga(p) = (2p — 1)*.

(d) Assuming g has a derivative, construct a confidence band of the type B, (p) =
1.965(p)//n, for a certain o(p), with the property that it for each given p covers the
underlying g(p) with probability tending to 0.95.

(e) Let now g(x,y) be an arbitrary function on the unit simplex, {(z,y): x > 0,y >
0,2 +y < 1}. Construct a mixed polynomial B, (z,y) of degree n such that it converges
uniformly to g on the simplex.

Convergence in distribution

Ex. 2.19 The Portmanteau theorem. So far we have taken as our definition of X,, —4 X
(see (2.4)) that F,,(z) — F(z) for all continuity points x of F', where F,, and F are the
c.d.f.s of X, and X, respectively. A limitation of this definition is that c.d.f.s are only
defined for random vectors, and since we soon enough want to study convergence in
distribution in spaces other than R, we need a more general definition. Let P, and P
be probability measures on some measurable space (X, B). We say that P, converges
weakly to P, denoted P, = P, if

/gdPn — /ng for all g € Cy(X), (2.7)

where C(X) is the collection of all continuous and bounded functions g: X — R. If
P, and P are the distributions of random vectors X,, and X, then (2.7) is equivalent to
X, —a X as defined in (2.4) (a fact we prove in (g)). As will become clear as we proceed,
however, the definition in (2.7) is vastly more general, in particular, it works when X is
a function space, see Ch. 9. It is also often much easier to work with. In this exercise
we first prove the ‘bare bones’ Portmanteau theorem, valid for all types of metric spaces,
then proceed to proving its equivalence with X,, —4 X. Ex. 2.20 presents additional
equivalent statements. The Portmanteau theorem says the following four statements are
equivalent:

(i) P, = P;
(ii) limsup,, P, (F)
(ifi) liminf, P,(B)

P(F) for every closed set F

<
> P(B) for every open set B;

weak
convergence

P, = P

Cy(X)
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(iv) P,(C) — P(C) for every set C that is P-continuous, in the sense that P(9C) = 0,
where C = C'\ C° is the boundary of C' (the closure minus the interior);

Notice that in the case that X,, and X are random vectors, (i) can be written E f(X,,) —
E f(X) for all f € Cyp(R¥); and (ii) limsup,, Pr(X,, € F) < Pr(X € F) for every closed
set ' C R*; and so on. We follow the classical text Billingsley (1968) and prove the
Portmanteau theorem through a string of subexercises.

(a) Let d be a metric, and for any set A define d(x, A) = inf{d(z,y): y € A}, i.e., the
distance from x to A. For ¢ > 0 and a set A, define the function fa .(z) = n(d(z, A)/e)
where

1, ift<o,
nt) =< 1—t,if0<t <1,
0, ift>1.

The function fa () will be used to approximate the indicator function I4. Let F' = [a, D]
be a closed interval on the real line, and make a sketch of fr.(z) for some ¢ > 0. For
arbitrary closed sets F' and ¢ > 0, show that fp. is continuous (it is clearly bounded),
that fre =1 for z € F; and that fr.(z) =0 when d(z, F) > «.

(b) Show that (i) implies (ii): Let F' be a closed set. Given ¢ > 0 we can find € > 0 such
that the open set B = {z: d(z, F) < oo} is such that P(B) < P(F) + . Notice that
fre(x) =1 for all x € B. Use these facts to show that limsup,, P,,(F) < P(F) + ¢, and
conclude.

(¢) Show that (ii) and (iii) are equivalent.

(d) Show that (ii) implies (i): Let g be a bounded and continuous function, a < g(x) < b
for all z, say. Define f(z) = {g(z) —a}/(b—a), so that 0 < f(z) < 1. Why does it suffice
to prove the implication for f? Since f is continuous, the sets F; = {x: g(x) > i/k} =
f71([i/k,1]) for i = 0,1,...,k are closed. Define the functions

k. k.
t—1 t—1
Frtow(z) = 5 Aroyr(@), and fruwp() = > — Aryr(@).

=1 i=1

and use these facts to prove the implication.
(e) Show that (ii) implies (iv).

(f) Show that (iv) implies (ii): For a closed set F' and an arbitrary ¢ > 0, the boundary
NHz:d(x,F) <} C {z:d(x,F) = §}. For any sequence of positive ) tending to zero
as k — oo, F, = {z: d(z, F) < 6} decreases to F' as k — co. Explain why we can choose
these 0 so that the Fj are continuity sets, and use this fact to prove the implication.
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(g) Tt is time to prove that the definition of X, —4 X, as we defined it in (2.4), is equiv-
alent to (i)—(iv) of the Portmanteau theorem. In this setting, P, and P are the distribu-
tions of X,, and X, respectively, e.g., P, = Pr X, 1, where Pr is the probability measure
on the space on which X, is defined; and F),(x) = P,,(—o0, z] and F(z) = P(—o0,z] are
the respective c.d.f.s. The reader is of course welcome to prove the equivalence with any
of the four statements of that theorem. Here we give a gentle push towards proving that
(2.4) implies (iii) for the case of random variables: Any open set B C R can be written
as a countable union of disjoint open intervals, B = U;?‘;l(aj, b;). Explain why we, for
any € > 0 and each of these intervals, can find continuity points ag and b;» of F' such that
(af;,05] C (ag,b;) but P(a}, ;] > P(a;,b;) —e/27 for j =1,2,.... Take it from here, and
try to generalise this proof to the setting where X,, and X are random vectors.

Ex. 2.20 More in the Portmanteau. In the exercise we add some equivalent statements
to the Portmanteau theorem, and look at some consequences. Throughout, P, and P
are measures on R equipped with the Borel o-algebra. Each of the equivalent statements
hold for general metric spaces, but the proofs pointed to in these exercises may then need
to be modified.

(a) Let f: R — R be a bounded and continuous function. Let X ~ F' and Z ~ N(0, 1),
be independent, and o > 0. Show that E f(X 4+ ¢Z) = E f,(X) where

fola) = / F@)o((u — 2)/o)/o du,

and ¢ is the standard normal density; see Ex. A.35.Show that f,(x) is bounded and
continuous, and has continuous derivatives of all orders.

(b) Let Z be a standard normal random variable independent of (X,),>1. Show that
X,+0Z =4 X +0Z for all 0 >0 if and only if X,, =4 X.

(¢) From (a) and (b), to conclude that X,, —4 X if and only if E f(X,,) = E f(X) for
all bounded and continuous functions, having continuous derivatives of all orders.

(d) Show that X, —4 X if and only if E f(X,,) — E f(X) for all continuous functions
that vanish outside of a compact set, i.e., for all continuous functions that are nonzero
only on a compact set.

(e) In fact, X,, —4 X if and only if Eg(X,,) = E g(X) for infinitely smooth functions
that vanish outside of a compact set. Let f be an infinitely smooth density with support
[—1,1] (see Ex. A.17 for the existence of such a density), and let g be a continuous function
that vanishes outside of a compact set C. For some 0 < § < 1, define fs(x) = f(x/d)/9.
From Ex. A.17(e) we know that the convolution (g * fs5)(z) = [g(z — z)fs(z)dz =
[ fs(z — y)g(y) dy is also infinitely smooth and vanishes outside of a compact set. Find
a compact interval [—a, a] containing C, such that
sup |(g* fs5)(z) —g(z)|— 0, asd—0.
z€[—a,a]

In words, the continuous function that vanish outside of a compact set can be uniformly
approximated by infinitely smooth functions that vanish outside of a compact set. These
latter functions then have bounded derivatives of all orders, a fact we exploit in Ex. 2.28.
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(f) Finally, prove the if-and-only-if statement at the start of (d).

(g) If f is a bounded function such that Pr(X € Cy) = 1, where Cf is the set of continuity
points of f, then, for any € > 0, there exists bounded and continuous functions fio and
fup such that fiow < f < fup and E fup(X) — fiow(X) < e. Consider the functions
frow k(z) = inf, {f(y) + klz — y|} and fupk(x) = sup, {f(y) — klz —y|} for k =1,2,..,
and show the existence of functions fiow and fup, as described. [xx cite Ferguson 1996 for
this one xx].

(h) Show that X,, =4 X ifand only if E f(X,,) — E f(X) for all bounded and measurable
functions such that Pr(X € Cf) =1, where Cy = {x: f is continuous at z}.

(i) Let X, X, Xo,... and Y,Y7,Y5,... be random variables. Show that (X,,Y,) —4
(X,Y) is equivalent to both (1) E f(X,,)g(Y,) — E f(X)g(Y) for all bounded and con-
tinuous f and g; and (2) E f(X,)g(Y,) — E f(X)g(Y) for all bounded and continuous
f, and all bounded ¢ such that Pr(Y € Cy) =1, where Cy = {y: g is continuous at y}.

Continuous Ex. 2.21 Continuous mapping for convergence in distribution. Let X1, X5, ... and X
mapping be k dimensional random vectors, and g: R¥ — R™ a function that is continuous on a
set C' C R* such that Pr(X € C) = 1. Suppose that X,, —4 X.

(a) Show that g(X,) —4 g(X) when g is continuous on all of R¥, that is, when C' = RF.

(b) Now suppose that C' is a subset of R¥, and show that h(X,,) —4 h(X) in this more
general case as well. You may first show that for F a closed set, the closure of h=1(F)
is included in A=*(F) U C*¢, then use the Portmanteau theorem. [xx try to find another
proof. Can use Portmanteau theorem (8) directly? xx].

Ex. 2.22 Skorokhod’s theorem [xx I'm not sure if this is the right place to introduce the
probability transform, nor am I sure Ex. 7.1 is (which repeats (a)). we can have it in
the appendix, and there use it to prove the existence of infinite sequences of independent
random variables xx]

(a) Let U ~ unif(0,1). For any c.d.f. F, define X (u) = inf{z: F(z) > u} for 0 < u < 1,
probability so X (u) = F~!(u) whenever F is continuous. Show that X(U) ~ F'..

transform

(b) Suppose that F,, = F and let (][0,1],B,A) be the unit interval equipped with its
Borel-o-algebra and Lebesgue measure. On this space, construct the random variables
Y. (w) =inf{z: F,(z) > w} and Y(w) = inf{z: F(z) > w}. Show that ¥;, =, Y.

(¢) Let (X,,)n>1 and X be random variables. Show that if X,, —4 X, then E[|X| <
liminf,, E||X,|; and that if (X,,),>1 is uniformly integrable, then X is integrable and
EX, - EX.

(d) Show that X, —4 X if and only if f(X,,) —q4 f(X) for all f € Cp(R).

Ex. 2.23 The Cramér-Slutsky rules. The utility of the three results in (c) below, to-
gether known as the Cramér—Slutksy rules, will become abundantly clear as we progress.

(a) Show that if X,, —4 X, and Y,, — X,, =, 0, then also Y,, —4 X. This says that
variables which are essentially close, for growing n, have identical limit distributions.
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(b) Show that if X,, and Y, are sequences of random vectors such that X,, —4; X and
Y., — a, for a random variable X and a constant a, then (X,,Y,) —q4 (X, a).

¢) Show that if X,, —4 X and Y,, =, a, as above, then Cramér—Slutsky
p: 9 )

(1) Xn+Yn —>dX+a;
(i) X, Y, =4 Xa;
(iil) X, /Y, —a X/a, provided a # 0.

Explain why rules (ii) and (iii) also hold when Y,, and a are matrices.

(d) Let Xi,...,X, be iid. Bernoulli(p). Look back at Ex. 2.7(c) and Ex. 2.16(b) and
show that \/n(X,, —p)/52 —4 N(0,1), where 52 =n~1 31" | (X; — X,,)2

Ex. 2.24 Showing convergence in two steps. (xx needs xref and calibration, depending
on how it is presented and where applications follow. it is valid for any metric space with
distance d(z,y), not merely R*. xx) Suppose one wishes to prove that X, —4 X, but
that technical issues make it easier to first prove that an approximation to X,, converges
to an approximation to X. With a suitable extra condition this might suffice. (xx may
point briefly to Story vii.7 to see this in use. xx)

(a) For the approximations A4, ; to X, and Ay to X, suppose (i) that A, —4 A, for
each k; (ii) that Ay —4 X as k — oo; and also (iii) that

lim limsup Pr(d(X,, An k) >¢) =0 for each € > 0.

—00 n—oo

Show that X,, —4 X.

(b) Suppose somebody clever has managed to prove the CLT for bounded i.i.d. variables
(for example using m.g.f.s): if Ay, Ay, ... are 1.i.d. with mean zero with variance one, and
|A;] < k, then Z,, = /nA, —4 N(0,1). How can you then prove that the CLT is valid
also for unbounded i.i.d. random variables, as long at only their variance is finite?

Ex. 2.25 Tightness, Helly, and Prokhorov. Consider the sequence (X,,),>1 of random
variables with distribution Pr(X,, = x) =1/3 for = 0,1/2,n. You may verify that the
sequence Fy,(z) = Pr(X,, < z) of distribution functions converges pointwise the limiting
function,

G(z) = , 0

)

whowl—= O
SIVANES
vV 8 A
wi= A O
o=

The function G(x) is a limit of distributions functions, but it is not itself a distribution
function: the problem is that G(co) = 2/3, meaning that one third of the probability
mass of F,(x) has escaped to inifinity! Tightness is a condition ensuring that a limit of
distribution functions is itself a distribution function. Here is the definition: A sequence
Y1,Y5, ... of random variables is tight if for any € > 0 there exists a constant K so that Tightness

Pr(|Y,| > K) <e, forall n.
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You may verify that the sequence X, defined above is not tight. A tight sequence of
random variables is also said to be bounded in probability (see Ex. 2.10).

We start with an exercise on other characterisations of tightness, before we proceed to
Prokohorov’s theorem, and finally Helly’s theorem which is key to proving Prokohorov’s.
In Ex. 2.40 the notion of tightness is extended to random vectors, and Prokohorov’s
theorem is proven for random vectors.

(a) Show first that any random variable is tight. Next, let (Y},),>1 be a sequence of ran-
dom variables with c.d.f.s F},, and show that the following three statements are equivalent:

(1) (Yn)n>1 is tight;
(ii) For any € > 0 there is a K > 0 so that limsup,,_, . Pr(|Y,| > K) < ¢;
(iii) For any & > 0 there are a and b such that F,(a) < ¢ and F,,(b) > 1 — ¢ for all n.
)

(iv) For any sequence of constants a1, ag, ... > 0 tending to zero, a,Y, —, 0.

Finally, show that (v) if for some ¢ > 0 there is an M > 0 and an ny > 1 so that
E|Y,|° < M for all n > ng, then (Y,,),>1 is tight; and that (v) implies (i) if there is a
§ > 0 so that |Y,|° is integrable.

(b) Prokhorov’s theorem says that

(i) If X,, =4 X for some random variable X, then (X,,),>1 is tight;

(ii) If (X,)n>1 is tight, then there is a subsequence (ny)r>1 such that X,,, —4 X for
some random variable X.

Use the Portmanteau theorem (Ex. 2.19) to prove the first part of Prokhorov’s theorem;
and Helly’s theorem, which we prove in (c), to prove the second part.

Notice that since any subsequence of a tight sequence must itself be tight, (ii) is
the same as saying that if (X,,),>1 is tight, then any subsequence (ny)r>1 has a further
subsequence (ng;);>1 such that Xnkj converges in distribution.

(c) Let (F,)n>1 be a sequence of distribution functions on the real line. Helly’s theorem
says that for any such sequence there is a right continuous and nondecreasing function
F with range contained in [0,1] and a subsequence (nj)r>1 such that F,, () — F(x)
at every continuity point of F'. Thus F' has two of the defining properties of c.d.f.s (see
A.14(a)). The property that may be lacking is that F(x) may not tend to 0 or 1 as
x — —00 or  — 00, respectively. To prove Helly’s theorem, let Q = {q1,¢2,...} be the
rational numbers, and consider the infinite array

Fi(q1) Fa(q1) Fs(qn) --.
Fi(q2) F5(q2) Fs(q2) ..
Fi(gs) Fa(gs) Fs(gs) --.

Since F,(qx) lies between zero and one for all n and k, each row of this array is bounded,
and, as we know from the Bolzano—Weierstrass theorem, every bounded sequence has
a convergent subsequence. In particular, there is a subsequence n; 1,11 2,... so that
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Fn,,(q1) has a limit as k tends to infinity. Call this limit G(q1). Extract a further

subsequence nz 1,ng22 from ny 1,11 2,. .. along which F,,, , converges to a limit, say G(go),
as j tends to infinity. Continue like this and argue that the diagonal sequence nj;, = ny k
of the array the diagonal

ni1 N2 N13 - method

n2,1 N22 N23 ...
n31 N32 N33 ...

is such that F,,, (¢;) = G(g;) for j =1,2... as k tends to infinity. Define the function
F(z) =inf{G(q): ¢ > =},

and use that the rationals are dense in the reals to show that Fj,, (z) converges to F'(x)
as k — oo for every continuity point = of F. Show that F necessarily has two of the
three defining properties of a c.d.f., but not necessarily the third, as described above.

(d) The following lemma is often useful for proving convergence in distribution, see

Ex. 2.27(c) and Ex. 2.29(c) for applications. Suppose that (X,,),>1 is tight, and that

every subsequence of X,,, that converges weakly at all, converges to the same random subsequence
variable X. Show that then X,, —4 X. To prove this, assume that (X,),>1 does not lemma
converge in distribution to X, and use Prokohorov’s theorem to derive a contradiction.

Ex. 2.26 Characteristic functions converging to a characteristic function. Let (X,)n>1
be a sequence of random variables with characteristic functions ¢1(t), p2(t), . ... Suppose
that ¢, (t) — ©(t), and that we recognise ¢(t) as the characteristic function of some
random variable X. In such cases we can conclude that X,, —+4 X without further ado.

(a) Suppose that X,, and X have characteristic functions ¢, (t) and ¢(t), respectively,
and that ¢, (t) = (). As an auxiliary assumption, suppose that ¢, (t) is dominated by
a function g(¢) such that [ g(¢)dt < oo, so that by Ex. A.35(h) the X,, have densities

fulz) = % /exp(—itx)gon(t) dt.

Show that under these assumptions X,, —4 X.

(b) Next, we reduce the general case (i.e., the case of X,, that do not necessarily have
integrable characteristic functions) to the special case studied in (a), by using the result
from Ex. 2.20(b). Suppose that X,, and X have characteristic functions ¢, (t) and p(t),
respectively, and that ¢, (t) — ¢(t). Let Z be a standard normal random variable, and
o some positive constant. Show that X,, + cZ —4 X + ¢Z, and conclude from 7?7 that
©n(t) = @(t) implies X,, —4 X.

Ex. 2.27 Lévy’s continuity theorem and some more. In Ex. 2.26 we made two crucial
assumptions: that ¢, (t) — ©(t), and that the limiting function ¢(t) is a characteristic
function. What if we drop the second assumption? That is, suppose that X, is such that
its characteristic functions ¢,, converge to some function ¢(t), but we do not immediately
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know that this limit is a characteristic function. Lévy’s continuity theorem says that if
this limiting function is continuous at zero, then it is a characteristic function, for some
appropriate random variable X, and X,, —4 X. The key to this theorem is that the
continuity of ¢(t) at zero entails that X, is tight. In fact, given that ¢, (t) — ¢(t) for
some function ¢(t), there is equivalence between the following three statements:

(i) ¢(t) is continuous at zero;
(ii) The X,, sequence is tight;
(iii) ¢(t) is a characteristic function.
In (a)-(b) we prove the implication (i)=-(ii), which is Lévy’s continuity theorem; the
implication (ii)=-(iii) is proven in (c); while the implication (iii)=-(i) is immediate from
the uniform continuity of characteristic functions, see Ex. A.34(a).

(a) Start by using Fubini’s theorem (see Ex. A.16) to show that if X has characteristic
function ¢ and cumulative distribution function F', then

/_g {1— ()} dt = 25/ (1- Sin(m)) dF ().

xre

In particular, the integral of ¢(t) on a symmetric interval around zero is really a real
number, that is, the complex component disappears. Deduce that

i/i“ ez [ (-2 ar() > 50 - 10 Pr{IX] 2 e/e)

lze] >e xe

with the value ¢ = 2 yielding the tail inequality
1 €
Pr{|X| >2/e} < - {1 = o(t)}dt. (2.8)
—&

(b) If we now have a collection of random variables, where their characteristic functions
have approximately the same level of smoothness around zero, then we should get tight-
ness from (2.8). Assume that Xp, Xs,... have characteristic functions ¢1, @2, ..., and
that ¢, (t) converges to some function ¢(t) that is continuous at zero. For a given ¢’ > 0,
find € > 0 such that |1 — ¢(t)| < &’ for [t| < e. Show that

1 €

limsup Pr{|X,|>2/e} < = [ {1 —p(t)}dt <2¢.
n— oo g J_¢

We’ve hence found a broad interval, namely [—2/¢,2/¢], inside which each X, lies, with

high enough probability, which means that the X,, sequence is tight, and thus establishes

the implication (i)=-(ii).

(¢c) Now we prove the implication (ii)=-(iii), i.e., that if (X,,),>1 is tight and ¢, (t)
converges to some function (t), then ¢(t) must be the characteristic function of some
random variable. To prove this, assume that (X,),>1 is tight and ¢, (t) = ¢(t), but
that X,, —4 X is false; then use tightness to extract a subsequence X,,, converging to a
random variable X, and the lemma in Ex. 2.25(d) to extract another subsequence Xt
converging to some other random variable Y'; and derive a contradiction.
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(d) Since we're at it with tightness and characteristic functions: Show that if Xy, Xo, ...
is a tight sequence of random variables with characteristic functions ¢1, s, ..., then
(¢n)n>1 is uniformly equicontinuous. That is, for each € > 0 there is a § > 0 such that
[t — s] < ¢ implies |, (t) — ¢n(s)| < € for all n.

Central limit theorems

Ex. 2.28 The central limit theorem, Lindeberg’s proof. Let X1, X5 ... be i.i.d. random
variables with mean zero and unit variance, and define X, ; = X,/ v/n. The goal is
to show that Eg(}_;_, X,.;) = Eg(Z), for all infinitely smooth functions g with com-
pact support, where Z is a standard normal random variable, which is equivalent to
Z?:l Xni —a Z, see the Portmanteau theorem, Ex. 2.19. Introduce Z,; = Z;//n,
where the Zy, Zs, ... are i.i.d. standard normals, so that > | Z,; ~ Z by Ex. A.35(g).

(a) What is in essence Lindeberg’s idea was to show that Eg(3>""_ | X».:)—E g1, Zn:)
tends to zero by replacing the summands X, ; by the Gaussiand summands Z,, ;, one by
one. Convince yourself that by so doing the difference g(3.7" | X, ;) — 9(> 1y Zi) is
equal to the telescoping sum on the right, that is,

n n n k n k—1 n
i=1 i=1 k=1 i=1 i=1 i=k

i=k+1

(b) Since g is infinitely smooth with compact support, we have from Taylor’s theorem
that there exists a K < oo and d > 0 such that for any ¢ > 0,

lg(z +y) — g(x) — ¢'(2)y — 39" (x)y?| < ey?, when |y| <4, and,

lg(z +y) — g(x) — ¢ (2)y — 1¢"(x)y?| < Ky?, when |y| > 6.

Show that for each £k =1,...,n,

k n k—1 n
E{g) " Xui+ Y. Zui) =900 Xni+ Y Zui)} =Ern(Xi) + Ern(Z),
i=1 i=k+1 i=1 i=k
where
e o K

ro(z) < —2% + —22I(|z| > V/nd).
n n
Please conclude, and you will have shown the CLT for i.i.d. random variables.

(c) Suppose Y1,Ys, ... are i.i.d. with finite mean & and standard deviation o. Show that
the random sum, normalised to have mean zero and variance one, i.e.,

(ZY —ng) Vna? = (Vo €)/o,

tends to the N(0, 1) in distribution.

(d) We now extend the central limit theorem to independent random variables that do not
necessarily have the same distribution. Let X7, X, ... be independent mean zero random
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variables with variances 07,03 ..., and form X,, ; = X;/B,, where B2 = 0} + --- + o2.
In view of the remainder term in (b), the Lindeberg condition is natural: Assume that
for every € > 0, it is the case that

Zszz,jIﬂXn,ﬂ >e}—0, asn— oco.
j=1

Show that Z?zl Xn,; —a N(0,1) by making the appropriate modifications to the proof
of the i.i.d. case worked with in (a) and (b).

Ex. 2.29 Proving the CLT with moment-generating functions. In this exercise we prove
a central limit theorem for i.i.d. random variables X7, X5, ... whose moment generating
functions M (t) = E exp(tX1) exist on an interval around zero. See Ex. A.31 for what this
assumption entails about the random variables. Throughout, we assume that E X; =0
and Var(X;) = o2. [xx we should perhaps move 1.30, jamfgr fortellerproblem Nils

mentions xx|

(a) Show that M(t) =1+ £0%t* 4 o(t?) as t — 0.

(b) Show that v/nX, =n"/23"" | X; has moment generating function of the form
M,(t) = M(t/yn)" = {1+ 30°t*/n + o(t*/n)}",

and conclude that M, (t) — exp(3t20?) as n — oo, where we recognise the limit as the
m.g.f. of the N(0,02) distribution (see Ex. 1.30). Exercise (c) gives us what we need
to conclude that this indeed implies that \/nX,, converges in distribution to a N(0,0?)
distributed random variable.

(¢) The result of this exercise can be seen as an m.g.f. analogue of Lévy’s continuity
theorem. Let (X,,),>1 have m.g.f.s {M,,(¢)}n>1 and suppose that all these m.g.f.s exist
on the same interval [—a,a]. Expand on Ex. 2.17(a) to show that

Pr(|X,| > K) < exp(—Ka){Mp(a) + M,(—a)}, for all n.

Show that if M, (¢) converges to some function M (¢) for all ¢ in some interval around
zero that contains [—a,al, then (X,,)n>1 is tight; and X,, —4 X where X is a random
variable with m.g.f. M (¢). You may use Ex. 2.27(d) and Ex. A.38 to show this.

Ex. 2.30 Two useful lemmas. In proving the central limit theorems below, the following
two lemmas will be useful.

(a) Demonstrate that with z, 1, 22, . . . & sequence of real numbers coming closer to zero,
we have [ | (14 2,;) — exp(z), provided (i) D1, zn,; — 2; (ii) max;<y, |2, 5] — 0; and
(iii) 37, |#n,i| stays bounded. It may be helpful to show first that

log(l+2z) =2 —32° + 32° — - = 2+ K(z)2?,

with K (z) a continuous function such that |[K(z)| <1 for |z| < 1, and K(z) — —1 when
2 — 0. These statements are valid also when the z,; and the z are complex numbers
inside the unit ball, in which case the logarithm is the natural complex extension of the
real logarithm.
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(b) Let 1,...,2, and y1,...,y, be complex numbers such that |z;|, |y;| < 1 for all j.
Show that |z122 — y1y2| < |21 — y1| + |22 — y2|, and proceed by induction to show that

n n n
| ij - HZ/j| < Z |z; —y,|, for all n.
Jj=1 j=1 j=1

Ex. 2.31 The Lindeberg CLT via truncations. In this exercise we present a proof of
the CLT for independent random variables using m.g.f.s., but without assuming that the
m.g.f.s. of the random variables involved necessarily exist (this is a slight generalisation
of a proof presented in Inlow (2010)). Since the m.g.f. of a bounded random variable
always exists (prove it), the trick is to truncate the random variables involved: Let
X1, Xa,... be independent random variables with mean zero and variances 0%, 03, .. ..
Write B2 = 07 + -+ 02 and X,,; = X;/B, for j = 1,...,n. We are to show that
Z?Zl Xp,j converges in distribution to a standard normal random variable, provided the
Lindeberg condition is satisfied, Ly (¢) = 37_ EX} I(| X, ;] > €) — 0, for each £ > 0,
which we assume throughout.

(a) For some € > 0, define p, ; = EX, ;I(|X, ;| <€), as well as the random variables
Yn,j = Xn,j1(|Xn,j| < E) — Hn,j and Un,j = Xn,jI(|Xn,j‘ > 6) + Hn,j- Verlfy that

Xnj=Ynj+vn;

Verify that |Y;, ;| < 2¢, which implies that the m.g.f. of Y,, ; exist for all j and n. Show
that
E exp(tY, ;) =1+ %tQE Yrij + 75 (t),

where the remainders are so that | Y27, 7, ;(t)| < eexp(2¢) for [t| < 1.

(b) By the first lemma of Ex. 2.30, showing that H?Zl E exp(tY, ;) — exp(3t?) now
comes down to verifying that (i) Y7, EY;?, — 1; (i) that max;<, EY;?, — 0 and
max;<n |rp,;| — 0 ; and (iii) that limsup,,_, . |E exp(tY,, ;) — 1| is finite. Please verify

these conditions (remember that it is sufficient to consider |¢] < 1).
(c) Finally, show that > 7_, v, ; —pr 0 and conclude that Y77 X, j =4 N(0,1).

Ex. 2.32 Proving the CLT with characteristic functions. It can be argued that the most
elegant, unified, and general proof of the CLT is obtained by the use of characteristic
functions. This is because, contrary to the m.g.f., the characteristic function of a random
variable always exists.

(a) Show that if X has finite mean &, then its characteristic function satisfies ¢(t) =
1+ it + o(t) as t — 0. Also, its derivative exists, with ¢'(t) = EiX exp(itX), and in
particular ¢’(0) = i€ (see Ex. A.34 for more details).

(b) Show similarly that if X has finite variance o2, then

p(t) =1+ict — 3+ o?)t2 +o(t?) ast— 0.
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(c) If X1, Xs,... are i.i.d. with mean zero and finite variance o2, then show that Z,, =
VnX, =n"1/? >i; X; has characteristic function of the form

on(t) =4{1- %02752/11 +o(1/n)}".
Prove the CLT from this.

Ex. 2.33 The Liapunov and Lindeberg theorems: main story. Let X1, Xs,... be in-
dependent zero-mean variables with at the outset different distributions Fi, Fs,... and
hence different standard deviations o1, 09,.... Below we also need their characteristic
functions @1, @9, - - -. The question is when we can rest assured that the normalised sum

n n ) 1/2
Zn:(X1++Xn)/Bn:ZXz/(ZUz) 5
=1 1

1=
really tends to the standard normal, as n increases.

(a) Show that Z,, has characteristic function

kn(t) =E exp(itZ,) = ¢1(t/By) - - - on(t/Bn).
(b) From Ex. A.34 we have that |exp(iz) — 1 — iz — §(iz)?| < §|z|* and that ¢;(s) =
1— 1_.2.2

5075 + o(s) for small s, so the essential idea is to write

n
kn(t) = [[{1 = $07¢°/ B} + ni(t)},
i=1

and prevail until one has found conditions that secure convergence to the desired exp(— %tZ).
In view of the first lemma in Ex. 2.30, this essentially takes (i) Y., en:(t) — 0; (ii)
max;<, 07/B%2 — 0 and max;<, |£,:(t)] — 0; and (iii) Y./, |1 — ¢;i(t/By)| staying
bounded. Show that

li(s) — (1 — 30757

‘ /{exp(isx) — 1 —isz — (isz)*} dFi(z)
< /|exp(isx) — 1 —isz — (isz)?|dF;(z) < s E|X;[°

(c) This leads to the ycaosue Jlsmynosa version of the Lindeberg theorem: show that
if the variables all have finite third order moments, with B,, — oo and

> B3

i=1 "

then r,(t) — exp(—3t?), which from Ex. 2.26 we know is equivalent to the desired

Zn —q N(0,1). This is (already) a highly significant extension of the CLT. If the X;

are uniformly bounded, for example, with B2/n having a positive limit, which would

rather often be the case, then the Lyapunov condition holds. It is also possible to refine
arguments and methods to show that

B|Z

> E|5

i=1

3
— 0,

240
— 0, for some § > 0,

is sufficient for limiting normality.
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(d) The issue waits however for even milder and actually minimal conditions, and that

=z

Show that if the Lyapunov condition is in force, then the Lindeberg condition holds (so

is, precisely, the Lindeberg condition:

} — 0 foralle>0. (2.9)

Lindeberg assumes less than Lyapunov).

Ex. 2.34 The Lindeberg theorems: nitty-gritty details. The essential story, regarding
Lyapunov and Lindeberg, has been told in the previous exercise. Here we tend to the
smaller-level but nevertheless crucial remaining details, in order for the ball to be shoven

across the finishing line after all the preliminary work. Again, let Xi, Xs,... be inde-
pendent, with distributions Fj, Fs, ..., zero means, standard deviations oy, 09, ..., and
characteristic functions @1, @2, .... The crucial random variable studied is

Xi+-
Z"_(U%+ +02 1/2 ZB

with B2 = Y""" | 02. We assume that the Lindeberg condition holds, i.e. (2.9) is true.
(a) Show that max;<,(c?/B2) — 0, from the Lindeberg condition. Show further that

lpi(t/Bn) — 1] < /|exp(itx/Bn) —1—itx/B,|dF;(z)
< 12 [(@/Ba) R (o) < 3 max(o? /B2),

so all ¢;(t/B,) are eventually inside radius say % of 1. We are hence in a position to
take the logarithm of k,,(t) = E exp(itZ,,), and work with log r,,(t) = Y., log ¢:(t/By),
etc.; see the first lemma in Ex. 2.30.

(b) In continuation and refinement of arguments above, show that

ra(t) = @i(t/Bn) — (1 — 307t/ By),

can be bounded, as follows:

ra®)] = | / {exp(ita/By) — 1 = it/ By — }(itz/ Ba)*} dFi(a)

< /|exp(itm/Bn) —1—itx/B, — L(itz/B,)*| dF;(z)
t*zf 22 | o e
< 1] dF'(l‘)‘l’/ (1 +1 )dF-(x)
/|:1:/B <s6 B3 ' 2/ Bnse N2 B2 > B2 '
X |2 X,
< Ltfeli 4 2E| 1 I{‘—z > }
< slifeqy +0E[5 | g, 2

(¢) Show that this leads to

Y leit/Ba) = (1= 50763/ B2)| < §ltl*e + ¢ Lu(e),
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with L, (¢) as defined in (2.9) (the Lindeberg condition), and by way of the first lemma
in Ex. 2.30, that this secures what we were after, namely that

n

[T ei(t/Bn) = exp(=3t%),
=1

and hence triumphantly Z,, —4 N(0,1), under the Lindeberg condition only.

(d) Suppose that a > 0 is so that B, /n® — 0 > 0, and that the Lindeberg condition

1 n
— E E X2I(|X;| > n®/%¢) =0, for each e > 0,
n

i=1

holds. Show that then n=*/23"" | X; —4 N(0,02).

Ex. 2.35 Lindeberg, Liapunov, etc.. Let us summarise the implications related to
the various conditions mentioned in the preceding couple of exercises, and some more.
Let X3, X5,... be independent random variables with means g1, o, ... and variances
02,03,.... Let B2 = 07 +---+ 02, and set X,,; = (X; — p;)/B,. In Ex. 2.33(d)
it was established that the Liapunov condition implies the Lindeberg condition, i.e., if
S 1 Xnl?t0 — 0 for some § > 0, then > E|X,|?I(|Xn,| > €) — 0 for each
e > 0. Also, in Ex. 2.34(a) it was show that if the Lindeberg condition holds, then
max;<, 07/B2 — 0. In this exercise we explore some other implications related to the
Lindeberg condition.

(a) Show that if | X;| < M for all 4, and B,, — oo, then the Lindeberg condition holds.

(b) Show that E |X;|?*9 < M for all 4, and the sequence of variances 02,03, ... is either
i) bounded below; or (ii) such that B,,/n — ¢2 > 0; or (iii) 62 — o2 > 0, then the
(i) 5

Lindeberg condition holds.

(c) Suppose that there is a sequence of constants K1, Ks, ... such that | X;| < K, almost
surely for each ¢, and that K,,/B,, — 0. Show that the Z?:l Xn,i —a N(0,1).

(d) Let Y1,Ys,... be i.i.d. random variables with finite second moments. Show that
max(Yy,...,Y,)/y/n tends to zero in probability.

(e) Show that if Y7,Y5,... are i.i.d. with mean p and variance o2, then the Lindeberg
condition holds. Thus, the Lindeberg CLT contains the CLT for i.i.d. random variables.

Ex. 2.36 The Lindeberg CLT, yet again. Let (X, ;)i<nn>1 be a triangular array of
mean zero random variables with variances (Uz,i)ign,nzl such that X, 1,..., X, , are
independent for each n. We say that the triangular array is rowwise independent. If
>ii 04, — 1, and the Lindeberg condition holds, i.e., Y3i"y X7 I(|Xp | > &) — 0 for
each € > 0, then > " | X, ; —4 N(0,1). In this exercise we prove this fact using slightly
different means than in Ex. 2.33-2.34.
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(a) Let (Yi,i)i<n,n>1 be a triangular array of rowwise independent mean zero normally
distributed random variables with variances Var(Y;, ;) = o5 ; for all 7 and n. Using the
second lemma of Ex. 2.30, show that for any ¢ > 0

|E exp(it Z Xni)—E exp(itz Vo)l < [t%e Z on i+ Lu(e) + L, (e),
i—1 i=1 i=1
where Ly (e) = Y21 X2 I(1X,i| > €) and L, () = Y21, V.2, 1(]Y,,i] > €). Deduce that
S X —a N(O,1).

(b) (xx we invent one more point to make the exercise have both (a) and (b). xx)

Ex. 2.37 Limiting normality of linear combinations of i.i.d. variables. Let €1,¢4,... be
i.i.d. from some distribution with mean zero and finite variance o2. For a sequence of
multiplicative constants aq, as, . .., consider

n

Zn:21 1 9i%i Zal/B i, WlthB2 Zal,

which has mean zero and variance 1. The question is what should be demanded of the
a; sequence, to ensure that Z,, —4 N(0,1) (even if the ¢; distribution might be looking
say skewed and multimodal and strange).

(a) Let D,, = max;<y, |a;|/By. Writing G for the distribution of €;, show that

5[ (5

and conclude that Z,, —4 N(0,1) provided D,, — 0.

;&4

> 6) < Z ?Eaf I(Dyple;| = 6) < / u? dG (u),
=1 n

|u|=6/Dn,

(b) Under a variety of setups, one actually has D,, — 0, which is hence not at all a strict
condition. Verify that the condition holds, and hence limiting normality, in the following
cases: (i) a; = 1 (which corresponds to the plain CLT); (ii) all |a;| inside some positive
[b, c] interval; (iii) a; = 4; (iv) a; = i (and generalise); (v) a; = 1/v/i. Show however
that the condition does not hold for a; = 1/i.

(c) A grasshopper sits at zero and then starts jumping, to the right and left with equal
probability, and with jump sizes 1,2,3,.... With S,, her position after n jumps, show
that S, /n%/? has a normal limit. Though she keeps on passing zero, she will not be in
that vicinity; show that Pr(|S,| < en!49) — 0, for each c.

(d) [xx fikse xx]Another important case to understand well is when the a; can be con-
sidered an i.i.d. sequence, drawn from their own distribution. Show that D,, — . 0 if the
a; distribution has finite variance. (xx nils thinks this is if and only if, actually. what
happens with Z,, if the a; are drawn from say the 1/|z|? distribution, for |z| > 1?7 xx)

Ex. 2.38 Higher-order expansions of m.g.f.s. (xx to be polished. the aim is to give
more info for CLT, of the type |F,(t) — ®(t)| < ¢/y/n for some c. xx) [xx intro text here,
perhaps by Nils. (xx nils pushes an earlier thing from Ch2 to this place; then we edit
and prune and clean. xx) |
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(a) Consider a variable Y, with m.g.f. M (t) = E exp(tY'), assumed to be finite in at least
a neighbourhood around zero. We have seen in Ex. A.31 that EY" = M () (0). Write &
and o2 for the mean and variance of Y. Show that M (t) = 1 + &t + o(h), for |¢| small.
Taking a Taylor expansion to the next step, show that M (t) = 1+&t+ % (240 t2+o(t?).
Deduce also that log M (t) = &t + 0212 + o(t?).

(b) We may also take the expansion to the third order, but it is simpler and more
insightful to proceed from Y = £ 4 Y}, with Y; having mean zero. Show that

M(t) = exp(t&) E exp(tYy) = exp(t&){1 + %ath + %’Ygts + 0(|t|3)},
where v3 = E (Y — £)3.

(c) Consider Yi,...,Y, iid. from a distribution with mean zero and m.g.f. M(t) being
finite around zero. Show that Z,, = v/nY has

M, (t) = B exp(iZ,) = M(t/vn)"
= {14 3022 0+ st /2 oftf )"

Show from this that under the assumptions given, log M, (t) = %ath + %"}’3t3/\/’ﬁ +
o(1/4/n). Explain why this is a proof of the CLT (via criteria given in Ex. 77, with
attention to certain further details in Ch 3 xx).

(d) (xx round off, point to CLT, identify remainder term with skewness. xx)

Ex. 2.39 Proving the Stirling formula. The approximation formula

. . n!
27n, in the sense of nlggo s exp(—n)(27m)1/2 =1,

n!l=n"e™ "

is a famous one, named after J. Stirling (1692-1770) (xx though stated earlier by A. de
Moivre xx). Here we shall prove this formula via the CLT for Poisson variables.

(a) If X,, ~ Pois(n), show that Z,, = (X, — n)/v/n —4 Z, a standard normal. Show
that exp(—n)(1 +n/14+n?/20 4+ -+ n"/nl) — L.

(b) Show that with € small,

Z j_nex (—n)n—j471 €
S CPUTT = oz

n<j<n+ev/n

and attempt to prove Stirling from this. Show also that

i J

E max(0, Z,) = Z J\/ﬁn exp(—n)?—! — E max(0, Z),
jzn

that the left hand side may be written \/nexp(—n)n™/n!, and that the right hand side

is 1/(27)'/2. Deduce Stirling from this. As part of your solution, show that >~ -, (j —

n)p(j,n) = np(n,n).
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Joint convergence in distribution

Ex. 2.40 Continuity theorem for vector variables. With X = (X7,...,X,)" a random
vector, in dimension p, we define its characteristic functions as

o(t1,.. . tp) =Eexp(it'X) = E exp{i(ti X1 + -+ + tx X))}

for t = (t1,...,t,)". See Ex. A.36 in the appendix for multi-dimensional inversion formu-
lae, and other properties of ¢(t1,...,t,) that you will need in solving the this exercise.
In this exercise we concentrate on extending the results of Ex. 2.26 and Ex. 2.27 to the
multi-dimensional setting.

(a) Let X,, = (Xpn1,...,Xnp)" be a sequence of random vectors with characteristic
functions @, (t1,...,tp). Suppose that @,(t1,...,tp) — @(t1,...,t,), where ¢ is the
characteristic function of some random vector X = (Xy,...,X,)" Mimic the steps

taken in Ex. 2.26 to show that then X,, —4 X.

(b) Show that X,, —4 X if and only if a*X,, —4 a*X for each a, i.e. if and only if all Cramér Wold

linear combinations converge. This is the Cramér—Wold theorem. theorem
(¢) Show that a random pair (X,,,Y,,) converges in distribution to the binormal N2 (0, ),

with ¥ having diagonal elements 1, 1, and correlation p, if and only if a X, + bY,, —q4

N(0,a? + b + 2pab) for each (a,b).

(d) A sequence of random vectors X,, = (X, 1,..., Xpp)" is tight if for any & > 0 there tightness in
is a K such that dimension k

Pr(]| X,] > K) <e forall n,

where ||z|| = (x1 4 -+ -+ xx)/2. Show that all the X,, 1,..., X, , are tight if and only if
X, is tight. Show also that X, is tight if and only if any linear combination

atXn = a'an,l + -+ a/an,pa
is tight, where a = (a1, ..., ap)"

(e) Show that if the sequence (X,,)n>1 of random vectors is tight, then the corresponding
sequence of characteristic functions {¢,(t1,...,tp)}n>1 is uniformly equicontinuous.

(f) We must extend Prokohorov’s theorem, proven for the one-dimensional case in Ex. 2.25(b),

to the multi-dimensional case: Demonstrate that (i) if X,, —4 X, then X,, is tight; and, Prokohorov’s
(i) that if (X,),>1 is tight, then there is a subsequence (ng)r>1 such that (X, )gs; thecrem in B
converges in distribution.

(g) For each n, let ¢,, be the characteristic function of the random vector X,, = (X,,.1,..., Xn p)-
Amend the derivations of Ex. 2.27 to show that for any € > 0, Lévy’s

continuity

1 € ¢ heorem in
S [ et )ty 2 20 YPH(X ) 2 o/ forall ).y
—e —e

Deduce from this that if ¢y, (1, ..., tx) converges to a limit function that is continuous at
zero, say o(t1,...,tp), then X,, —4 X, where X is a random vector with characteristic
function ¢(t1,...,t,). This is thus Lévy’s continuity theorem in dimension p.
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Ex. 2.41 The multi-dimensional CLT. In this exercise we prove the two central limit
theorems for random vectors taking values in RP.

(a) Suppose Xi, Xo,... are i.i.d. random vectors with mean £ and variance matrix X.
Invoke the Cramér—Wold device to show that /n(X, — &) —4 N,(0,%).

(b) Let X1, X5,... be independent random vectors in dimension p, with means &, &, .. .,
and with finite positive definite variance matrices 1, s, . ... Let B, = (31 +---+%,)Y2,
and write Z,; = B, 1(X; — &). Show that

n

n
Zn = (Zl + -+ En)il/Q Z(Xz - &) = Z Zn,z’ —d Np(Oalp)v

=1 i=1

provided the multivariate Lindeberg condition holds, i.e.,

> B ZnllI(|Znll > €) =0, for each £ > 0. (2.10)
i=1
(c) Show that the multidimensional Liapunov condition Y"1 | E||Z, ;/|>*® — 0 for some
0 > 0, implies the Lindeberg condition in (2.10).

(d) In analogy with Ex. 2.34(d), suppose that B2 /n converges to some positive definite
3}, and that the Lindeberg condition

1 n
- S BIIX: — &GIPI(IX: — &l > vne) — 0, for each & > 0,
=1

holds. Show that n=/2 3" (X; — &) —a N,(0,%).

(e) Suppose that B2 /n converges to some positive definite ¥ and that the third moment
of each component of X;—¢; is bounded for all 4, i.e., there is a K so that E|X; ; —¢&; ;|* <
K for j=1,...,pand all i > 1. Show that n=%/23°" | (X; — &) —a N,(0,%).

(f) Suppose X1, Xo, ... are i.i.d. with mean ¢ and standard deviation . We assume that
also the skewness and kurtosis are finite, v3 = E (X;—¢)3 /0% amd 74 = E (X; —¢)*/o?-3.
Show from the two-dimensional CLT that

(e =) 2%(a)- (L o)

where 62 =n"t Y (X; — )2

(g) Then show that with 5% = n=! Y7 | (X;—X)?2, which is a ‘real estimator’, as opposed
to 52, which uses &, then we have \/n(62—53) —p; 0; see Ex. 2.23. Conclude that the two-
dimensional limit distribution result above continues to hold with /n(52 — 0?) replacing

Vn(o2 — a?).
(h) Let in particular the distribution of the X; be normal, so X; ~ N(£,02). Show that
~v3 and 4 are equal to zero, so the general result above simplifies to

(o) %(a) (3 o)

For another instructive application, involving the Gamma distribution, see Ex. 3.25.
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The delta method

Ex. 2.42 The delta method: the basics. There are important and often reasonably simple
to use approximation methods, in probability theory and statistics, going by the name of
the delta method. 1t is related to functions of variables often being approximately linear,
if the variables in question are not too spread out, with consequences for approximate
normality.

(a) We start out in dimension one. Suppose in generic terms that \/n(A, —a) —q4 Z,
with random variables A,, and a constant a. The limits are taken with respect to the
index n tending to infinity, where n typically but not always is the size of an underlying
sample. that A,, =, a. Now consider a function g, defined in at least a neighbourhood
around a, and assumed to have a continuous derivative there. Show via the mean value
theorem that g(4,) — g(a) = ¢'(Bn)(A, — a), for some B,, between A,, and a, and use
this to show that v/n{g(A,) —g(a)} =4 ¢'(a)Z.

(b) For the typical case where the limit is a zero-mean normal, say Z ~ N(0, 72), explain
that \/n{g(An) — g(a)} —a N(0,g'(a)’7?).

(¢) For the vector case, assume y/n(A, —a) —4 Z in dimension p, and consider a
smooth function g(a) = g(as,...,a,), assumed to have continuous first order deriva-
tives in a neighbourhood around a. Explain that A, —; a, so A, will be inside that
neighbourhood with probability tending to one. With ¢ = ¢g*(a) the vector of deriva-
tives dg(a)/day,...,0g(a)/da,, evaluated at a, show that \/n{g(A,) — g(a)} =4 'Z =
c1Z1+- - -+cpZy. In particular, if Z ~ N, (0,X), explain that the limit ¢*Z is a N(0, ¢"Xe).
The main point is that the convergence in distribution, from the previous points, holds
also jointly.

(d) Sometimes one also needs the vector-to-vector extension of results above, leading to
the joint limit distribution of several such g functions. Let g = (g1,...,94)": R? — R?
be such a function, with component functions having first order derivatives at position
a, yielding a Jacobi matrix J = dg(a)/0a of dimension ¢ x p. Show that /n{g(4,) —
g(a)} —a JZ. In particular, if Z ~ N,(0,X), then the limit is N, (0, JEJ*).

(e) The delta method has been formulated here in terms of limit distributions, implying
approximate normality for function of approximately normal variables. Explain that in
the framework above, with v/n(A4,—a) —4 N,(0,X), then g(A,,) is approximately normal,
with mean g(a) and variance c¢'¥c/n. The delta method hence gives approximations also
to means, variances, and covariances of smooth functions of other variables.

(f) The \/n factor above comes from the most typical uses of these methods, where
variances of estimators go to zero with speed 1/n, in terms of sample size. Show however
that the mathematics goes through for any increasing sequence; if d,, (A, —a) —4 Z, with
d,, tending to infinity, then d,,{g(A,) — g(a)} —4 ¢'(a)Z. There are indeed situations

2/3 1/3.

where the rate might be n*/® or n

Ex. 2.43 Applying the delta method. Here we exercise our delta method muscles, to see
how the general recipes of Ex. 2.42 may be applied in a few situations. As is clear, once
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we have established limiting normality for certain quantities, e.g. via the CLT, there is
a host of easy-to-harvest applications for functions of these start quantities.

(a) If /n(A,—a) —4 N(0, 1), find out what happens to \/n(A2 —a?), and to v/n{exp(kA,)—
exp(ka)}, where k is a constant.

(b) For Y a binomial (n, p), we have of course Varp = p(1—p)/n for the classic estimator
p = Y/n. Use the delta method to find approximations to the means, variances, and
distributions of (i) the estimated odds ratio p/(1 — p); (ii) the estimated log-odds-ratio
log p — log(1 — p); (iii) the transformed estimator 4 = 2arcsin(p'/?). In particular, for
the latter, show /n(3 — ) —4 N(0,1), with v = 2arcsin(p'/?).

(¢) Suppose p1 = Y3 /n and p2 = Ys/n are two binomial estimates, with the same sample
size n. Then \/n(p1 — p1) —a Z1 and \/n(p2 — p2) —aq Z2, where Z; ~ N(0,p;(1 — p;)).
Find the approximate normal distribution of p;/ps, viewed as an estimator of py/ps.
Modify arguments appropriately to find a good approximation to the variance of p;/pa,
and its approximate normal distribution, also in the case of unequal sample sizes, say 11
and ng. [xx pointer to Story i.1. xx]

(d) Suppose Y7,...,Y, are independent from the geometric distribution with Pr(Y; =
y) = (1—p)¥~Ipfory=1,2,.... We learned in Ex. 1.24 that the mean and variance are
1/p and (1 — p)/p?. Find first the limiting distribution of \/n(Y — 1/p) and then that of

Vn(p —p), where p=1/Y.

(e) Suppose (a,b) is a certain position on the map, where one only has estimates, say
A, and B,, for its x- and y-coordinates. Assume these are independent, approximately
unbiased, and approximate normal, after n measurements. We formalise a version of
this as /n(A4, —a) —¢ N1 and /n(B, — b) —4 N2, the limit variables Ny, Ny being
independent and standard normal. Having observed A,, and B,,, explain how you can
put up 90 percent confidence intervals for a and b separately. Construct also a 90 percent
confidence circle for (a, b).

(f) Let us pass from Cartesian to polar coordinates, letting
R, = |(An, Bn)|| = (A2 + B3)Y? and @&, = arctan(B,,/A,),

seen as estimators of the length r = ||(a,d)|| and angle o = arctan(b/a). Find the limit
distributions for \/n(R,, — r) and \/n(a@, — a), and show that these are independent in
the limit.

(g) Suppose one observes (A, By,) = (4.44,2.22), with n = 100. Construct and display
an approximate 90 percent confidence circle for (a,b), and then approximate 90 percent
confidence intervals for the length r and angle a. How can you construct confidence
intervals for r and « jointly, say I, and I, ,, such that the probability that (r €
I.,,) N (a € I,,) converges to 0.90?

Ex. 2.44 Limiting normality for multinomials. Consider the multinomial setup of
Ex. 1.5, with (Y7,...,Y})) counting the number of events of type 1, ...,k in n independent
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experiments, each time with probabilities p = (p1,...,px)’. Here we sort out the basic
large-sample behaviour of the relative frequencies p; = Y;/n. This is used e.g. in the
Karl Pearson 1900 Story vii.l.

(a) Show that these p; = Y;/n are consistent, with /n(p; — p;) —a N(0,p;(1 — p;)).
Show more generally that there is full joint convergence in distribution here; X, =
Vn(p—p) —a Z ~ Ni(0,%), where ¥ is the matrix with elements ;¢ = p;d;.¢ — p;pe-
It may be written ¥ = D — pp* with D diagonal with elements p,. Verify that this is
consistent with Zle Z; = 0.

(b) For v = g(p1,...,px) any smooth function of the relative frequencies, with natural
estimator ¥ = g(p1,...,Pr), show that /n(¥ — ) —4 N(0,72), with 72 = 'S¢ =
¢! Dc—(ctp)?, where ¢ = dg(p)/0p. Check what this says, for the case of v = py +- - - +py.

(c) Consider (X,Y, Z) being trinomial (n,p, q,r). Withp = X/n,g=Y/n, 7= Z/n, find
the limit distribution for 7 = p/(gr)'/?, as well as for § = 2arcsin(p'/?) — 2 arcsin(g'/?).

Ex. 2.45 Delta method calculus for the normal case. Let Yq,...,Y, be ii.d. from the
normal N(¢, 02), with standard estimators £ = Y and 62 = (n — 1)L 3.7 (V; —= V)2 In
various exercises in Ch. 1 we have worked with exact finite-sample calculus, for certain
basic parameters, like the mean, variance, the quantile v, = £ + z,0. Here we show
how the delta method, starting with the basic limit distributions for the two parameters,
can be used to put up large-sample normal approximations for any functions of the
parameters, in cases where it might be too hard to carry out exact finite-sample calculus.

(a) Since the skewness and the kurtosis for the normal are zero, show that the general
result from Ex. 2.41 implies that (v/n(Y — €),/n(c — o)) tends to say (A, B)', with
these being independent and zero-mean normals with variances o2 and %02. Show this
directly, from the normality assumptions, as opposed to deriving it as a special case of
the general statement. Note also that the \/n(Y — &) ~ N(0,0?) holds exactly, for each

finite n.

(b) With a = g(&, 0), for any smooth function of the two parameters, the natural esti-
mator is @ = g(Y, 7). Show that

V(@ — a) —q cA+dB ~ N(0, (¢® + 1d*)o?),

where ¢ and d are the partial derivatives of g, evaluated at the position (£, ). Show how
this leads to construction of confidence intervals for the o parameter.

(c¢) Consider the probability p = Pr(Y > yo) = 1—®((yo—p)/0), for some given threshold
Yo, and the associated estimator p = 1 — ®((yo — Y)/5). Finr the limit distribution of
v/n(p—p), and use this to put up a confidence interval for p, with coverage level converging
to 0.90. Compare with the simpler estimator p* = n=*>."" | I(Y; > yo), the binomial
proportion, which bypasses the normal assumption.

(d) Then consider the parameter k = £/o, the normalised mean (so its value is unchanged
when one passes from say millimetres to metres). Find the limit distribution for & = Y /7,
and construct an approximate 90 percent confidence interval. [xx also try exact inference
for this parameter, and compare. xx]
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(e) Assume ¢ is positive, so that the so-called coefficient of variation v = o /£ has a natural
interpretation. With 7 = 3/2 the plug-in estimator, show that /n(y¥ — v) tends to a
normal with variance 72 = £42(1+2+?2). Find also a variance stabilising transformation,
from v to v* = h(y), with the property that \/n(7* — v*) —4 N(0,1): one such is
h(v) = logvy — log(1 + (1 4 2+?)'/2). Explain how confidence intervals can be set for y
via this.

Ex. 2.46 Estimating mean and standard deviation outside normality. Let Y1,...,Y, be
i.id. from a distribution with finite fourth moment, and consider the usual mean Y,, and
empirical standard deviation S,,. Under normality we have precise finite-sample results
regarding their distributions, see Ex. 1.45, but here we investigate behaviour outside
normality.

(a) Let as on previous occasions 3 and -4 be the skewness and kurtotis of the distribu-
tion. Use the delta method, with previous results from Ex. 2.41, to show that

(Gator Z5)) o) (4 0 )

Explain that this implies Pr(|Y,, — & < 1.965) — 0.95, even outside normality; the
normality-based standard recipes regarding inference for the mean parameter is hence
not muich hampered by that modelling assumption.

(b) The situation is different when it comes to inference for the standard deviation,
however. Show that \/n(c — c)/k —4 N(0,1), if K is a consistent estimator for x =
(% + %74)1/2. Construct indeed such an estimator; see also Ex. 3.12. For an application
of this, with sample size up to a million, see Story vii.2.

Ex. 2.47 Approzimate variances and the delta method. We have built a well-working
apparatus around the delta method and seen various applications. Statements reached
are in terms of precise limit distributions, though without going into the quality of the
resulting approximations. The present exercise goes into the details of variances and
covariances for functions of sample averages.

(a) Suppose X1i,..., X, are i.i.d. with mean zero, variance o2, and finite skewness 3 =
E (X;/0)? and kurtosis 74 = E (X;/0)* — 3. With X, as usual being the average, show
then that

EX? = o%/n,

EXS = (0% /%),

EX, = (0" /n)(3 +ya/n),
Var X2 = (0% /n?)(2 + 4 /n).

(b) Let then Yy,...,Y, be iid., with finite mean &, standard deviation o, skewness vs,
kurtosis 74. With Y,, the sample average, consider then the variable

Ly =ag + al(Yn - g) + %GQ(Yn - 5)2
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Show that E Z,, = ag + lagoQ/n, and that
Var Z,, = ajo® /n + (1/n*){%a30*(2 + ya/n) + a1a20%v3}.

(c) Consider any smooth function Z,, = g(¥,,). Since Y, is close to & with high probability
(see Ex. 2.11), it makes sense to carry out a Taylor expansion,

Zn=9(&) + 9 (Y =€) + 39" (O)(Y — &) + b,

where 6, is a smaller-sized remainder term — you may prove that n3/2§,, is bounded in
probability, provided g has three derivatives in a neighbourhood around £. Show from
the above that

Var Z, = ¢'(€)%0” /n + (1/n*){ 19" (€)*0" (2 + 14 /n) + ¢'(€)g" (€)o*y3} + o(1/n?).

There is hence a clear leading O(1/n) term for the variance, with other terms being of
size O(1/n?). Explain how this relates to the basics of the delta method from Ex. 2.42.

(d) Suppose A is a random variable with mean a and finite variance, and that g(y) is
smooth in a neighbourhood around a. Use the Taylor approximation

9(y) = 9(a) + ¢'(@)(y — a) + 59" (a)(y — @)* + O(ly — al*),
valid for y close to a, to show that
Eg(4) = g(a) + 3¢"(a)VarY, Varg(Y) = ¢/(a)? VarY,
and indicate the sizes of the error terms involved.

Ex. 2.48 The empirical correlation coefficient under binormality. For i.i.d. data pairs
(X;,Y;), the classical empirical correlation coefficient is
o S -XW-Y)
{3 (Xi = X2 P20, (Vi - V)22
with 57 and 53 the empirical variances n =1 Y| (X; —X)?and n=t 31" | (Yi—Y)?. Here
we find the the limit distribution of R,, under binormality.

"X, -XY,-Y

g2

. (2.11)

(a) Assume first that the (X;,Y;) pairs are from a zero-mean binormal with variances 1
and correlation p € (—1,1); see Ex. 1.40. Use results from Ex. 1.41, including Y; | X; ~
N(pX;,1 — p?), to derive expressions for EX2Y? E X}Y;, EX,Y?. Use these to show
that

X? 2, 202, 2p
Y=Var | Y2 | =202 2 2p
XZY; 2p7 2p7 1+ p2
Use the CLT to argue that
A, n1 Z;?l X2 -1 A
B, | =vn| n 'Y V21 | =4 | B| ~N;30,%).
C, ntY XY —p C

With R, o = Cn/(A,B,)"?, use the delta method to show that V(R —p) =4 Z =
—3pA — 3pB+ C, and that in fact Z ~ N(0, (1 — p?)?).
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(b) Then generalise to the situation where the (X;,Y;) pairs are i.i.d. from a zero-mean
binormal, with standard deviations 01,02 and correlation p. Show that we still have

VIR0 — p) —a N(0, (1 - p2)?).

(¢) Then go one step further, to the full five-parameter binormal situation, with unknown
means 1, &2, standard deviations o1, 02, and correlation p. Argue first that we must have
Vi(Ry1 — p) —a N(O, (1 — p?)), where R, 1 is as in (2.11) but using &1, & instead of

(X,Y). Then, finally, show what we really are after, that /n(R, — p) must have the
same limit distribution.

(d) Explain that if h(p) is a smooth function, then /n{h(R,) — h(p)} —a #'(p)(1 —
p?)N(0,1). Show that with the particular choice ¢ = 5log{(1+ p)/(1— p)} the variance
is being stabilised, and /n(C — ¢) —¢ N(0,1), where { = Llog{(1 4+ R,)/(1 — Rn)}.
This is called Fisher’s zeta. Show that E +1.645/4/n becomes an approximate 90 percent
confidence interval for ¢, and transform this to an approximate 90 percent confidence
interval for p.

Ex. 2.49 The empirical correlation coefficient, general case. Here we use some of
the arguments of Ex. 2.48 to find the limit distribution of the empirical correlation R,
of (2.11) also outside binormality. Assume (X1,Y7),...,(X,,Y,) are i.i.d. pairs from a
distribution with means &;, §2, standard deviations o1, 02, and correlation p. Write a; 5, =
E UZ]VJ’c for cross moments of the standardised U; = (X; — &1)/o1 and V; = (Y; — &) /02,
where it is assumed that fourth order moments a4, and ag 4 are finite.

(a) Show that /n(R,,—Ry0) —pr 0, where R, o is as R,,, but using the real &, &, instead
of their estimators X,Y. Show also that the distribution of R, and R, o must depend
on p but not on &1,&3,01,02. We may hence carry out our large-sample investigation
with the standardised (U;, V;) rather than the (X;,Y;). Work with

Ap, \/ﬁ(nil Z;L:1 Uz‘2 -1)
B, |=| va(n ' XL, VA1) |,
Cn \/ﬁ(n_l 2?21 UiVi = p)

and show that (A,, B,,Cy)" —4 (A, B,C)* ~ N3(0,%), for the variance matrix 3 of
(U2, V2 U;V;)t. Spell out the elements of this matrix, using the a;j;. Check that this
agrees with the ¥ of Ex. 2.48 under binormality.

(b) Then show that \/n(R, — p) =4 Z = —3pA — $pB + C, and give an expression for
the limit distribution variance 72. Explain how 7 may be estimated from the data, and
how this leads to confidence intervals of the type R, £+ 1.967/+/n for p.

(c) For a concrete illustration, consider the joint density f(z,y) = 1+a(z—1)(y—3) for
(z,y) in the unit square. Find the allowed parameter range for a, and a formula for the

correlation coefficient p in terms of a. Then apply the above to find the limit distribution
Of \/H(Rn - p).

Ex. 2.50 The delta method outside root-n terrain. (xx to come. not always /n(X, —
a) —q N(0,72) terrain. different limits, different speeds. xx)
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Ex. 2.51 Stretching the delta method. (xx to be filled in. with /n(X, —a) —4 V,
we have Z, = /n{g(X,) — g(a)} —aq ¢'(a)V for a fixed g(x). here we consider Z,, =
V1{gn (X)) — gn(a)}. with ¢//(a) = o(y/n) we may still have the right approximation.
example: Z,, = v/n{exp(c, X,,) — 1}. xx)

The strong law of large numbers

Ex. 2.52 The Strong Law of Large Numbers: the basics. (xx to be cleaned. xx) Suppose
X1,Xo,. .. areiid. from a distribution with finite E | X;|. Then the mean £ = E X exists,
and we are aiming to prove the strong LLN of (2.3), that the event

A= {Xn — 5} = MNe>0 Ung>1 ﬂnanﬂXn' < 5}

has probability equal to one hundred percent. We may for simplicity and without loss of
generality take £ = 0 below.

(a) Show that A is the same as Ny>1Ung>1Nn>no {|Xn| < 1/N}, and deduce in particular
from this that A is actually measurable — so it does make well-defined sense to work with
its probability.

(b) Show that if Pr(Ayx) =1 for all N, then Pr(Ny>1A4n) = 1 — if you're fully certain
about a countable number of events, then you're also fully certain about all of them,
jointly. This is actually not true with a bigger index set: if X ~ N(0, 1), then you’re 100
percent sure that B, = {X is not x} takes place, for each single x, but from this does it
not follow that you should be sure about N,y »B;. Explain why.

(¢) Show that Pr(A) = 1 if and only if Pr(B,,) — 0, for each ¢ > 0, where B,, =
Un>no{|Xn| > €}. In words: for a given e, the probability should be very low that there
is any n > ng with | X,,| > e.

(d) A simple bound is of course Pr(Bp,) <>, <, Pr{|X,| > ¢}, so it suffices to show,
if possible, under appropriate conditions, that ) -, Pr{|X,| > €} is a convergent series.
With finite variance o2, show that the classic simple Chebyshov bound, see Ex. 2.11,
does not solve any problem here.

(e) (xx calibrate better with Ex. 2.11. xx) Show, however, that if the fourth moment is
finite, then

_ 1 - c 1
for a suitable ¢. So under this condition, which is moderately hard, we’ve proven the
strong LLN.

(f) One may squeeze more out of the chain of arguments below, which we indicate here,
without full details. Assume E |X;|" is finite, for some r > 2, like r = 2.02. Then one
may show, via arguments in von Bahr (1965), that the sequence E |\/nX,|" is bounded.
This leads to the bound

Pr{X,| > 6} € BV,
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and these form a convergent series. We have hence proven (modulo the von Bahr thing)
that the strong LLN holds for finite E |X;|?>T¢, an improvement over the finite E|X;[*
condition. — To get further, trimming away on the conditions until we are at the Kol-
mogorovian position of only requiring finite mean, we need more technicalities; see the
following Ex. 2.53.

Ex. 2.53 The Strong Law of Large Numbers: mnitty-gritty details. This exercise goes
through the required extra technical details, along with a few intermediate lemmas,
to secure a full proof of the full LLN theorem: as long as E|X;| is finite, the infinite
sequence of sample means X,, will with probability equal to a hundred percent converge
to ¢ =EX;.

(a) We start with Kolmogorov’s inequality: Consider independent zero-mean variables

X1,..., X, with variances 0?,...,02, and with partial sums S; = X; +--- + X;. Then

Var S, 1 — 9
Pr{r§1§a3<|5i|25}§ = :?Zoi.

Note that this is a much stronger result than the special case of caring only about |S,],
with Pr{|S,| > ¢} < Var S, /e2, which is the Chebyshov inequality. To prove it, work
with the disjoint decomposition

A ={|S1| <e,...,|8-1] <&|Si| >} and A=U} A4; = {m<ax|Si| > e}

Show that ES2 > ES2I(A) =>"1" | ES2I(4;), that
ES2I(A;) =E(S; + S, — S;)*I(4;) > e*Pr(4;),
and that this leads to the inequality asked for.

(b) Consider a sequence of independent X1, Xo, ... with means zero and variances 0%, 03, . . ..
Show that if "2, o? is convergent, then Yoo, X is convergent with probability 1. — It
suffices to show that the sequence of partial sums S, = X; + --- + X, is Cauchy with
probability 1. Show that this is the same as

lim Pr[U; >n{|Si —S;j| =€} =0 for each e > 0.

n—oo

Use the Kolmogorov inequality to show this.

(¢) A quick example to illustrate this result is as follows. Consider X = X;/10+X5/100+
X5/1000+- - -, a random number in the unit interval, with the X; independent, and with
no further assumptions. Show that X exists with probability 1.

(d) Prove that if Y .2, a;/i converges, then a, = (1/n)> " ,a; — 0. To show this,
consider b, = > | a;/i, so that b, — b for some b. Show a,, = n(b, — n,_1), valid also
for n =1 if we set by = 0, and which leads to Y ., a; = nb, — by — by — -+ — b,_1.

(e) From the above, deduce that if Xi,Xs,... are independent with means &;,&s,. ..
and variances 0‘%,0‘%, ..., and Z;’il U%/i2 converges, then X, — En —as. 0. Here En =

(1/n) 3200 &
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(f) Use the above to show that if X7, X5, ... are independent with zero means, and all
variances are bounded, then indeed X,, —,.s 0. Note that this is a solid generalisation
of what we managed to show in (xx calibrate xx) — first, the distributions are allowed
to be different (not identical); second, we have landed at a.s. convergence with the mild
assumption of finite and bounded variances, whereas we there needed the harsher condi-
tions of finite fourth moments.

(g) We're close to the Pole. For i.i.d. zero mean variables X1, Xs, ..., split them up with
the little trick

We have X,, = Y,,+Z,, so it suffices to demonstrate that ¥,, =, 0and Z,, =, 0 (since
an intersection of two sure events is sure). Use the Borel-Cantelli lemma, in concert with
E|X;| = [, Pr(|X;i| > ) dz, to show that only finitely many Z; are non-zero. Then use
previous results to demonstrate Y,, — &, —.s.— 0 and &, — 0, where &, is the average

(h) So we’ve managed to prove the Strong LLN; good. Attempt also to prove the
interesting converse that if E|X;| = oo, then the sequence of sample means is pretty
erratic indeed:
Pr{limsup X,, = oo} =1, Pr{liminf X,, = —00} = 1.
n—00 n—oo

Simulate a million realisations from the density f(x) = 1/22, for z > 1, in your nearest
computer, display the sequence of X,, on your screen, and comment.

Ex. 2.54 Yes, we converge with probability 1. We’ve proven that the sequence of
empirical means converges almost surely to the population mean, under the sole condition
that this mean is finite. This half-automatically secures almost sure convergence of
various other natural quantities, almost without further efforts.

(a) Suppose X1, Xa, ... arei.i.d. with finite variance o2. Show that the classical empirical
standard deviation & = {31, (X; — X,,)?/(n — 1)}!/2 converges a.s. to 0. Note again
that nothing more is required than a finite second moment.

(b) Suppose the third moment is finite, such that the skewness v3 = E{(X — &)/o}? is
finite. Show that 5 ,, = (1/n) >, (X; — X,,)3/5? is strongly consistent for 73.

(¢) Then suppose the fourth moment is finite, such that the kurtosis 74 = E{(X —
€)/o}* — 3 is finite. Construct a strongly consistent estimator for this kurtosis.

(d) Assume that (X7,Y7),(Xo,Y2),... is an i.i.d. sequence of random pairs, with finite
variances, and define the population correlation coefficient in the usual fashion, as p =
cov(X,Y)/(o102). Show that the usual empirical correlation coefficient

_ Y (X = Xa) (V= V)
L (X = X PP, (Vi — Va1

converges with probability one hundred percent to p.

Ry
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(e) Formulate and prove a suitable statement regarding almost sure convergence of
smooth functions of means.

(f) Let X1, Xa,... be an i.i.d. sequence of nonnegative variables such that E log X; = ¢
is finite. Show that the harmonic means H,, = (X --- X, )"/" converge with probability

1 to exp(§).

Ex. 2.55 Glivenko—Cantelli theorem. For i.i.d. observations Y7,...,Y,, we form the
empirical c.d.f., as in Ex. 2.13, with F,(t) = n=' Y7 | I(Y; < t). We have seen that
since F,(t) is just a binomial ratio, F,(t) —as. F(t), for each t. It is a remarkable
fact that this convergence also takes place uniformly, with probability 1. This is the
Glivenko—Cantelli theorem: with D,, = max; |F,,(t) — F(t)], the max taken over all ¢ in
the domain in question, we have Pr(D,, — 0) = 1. This means that regardless of any
strange or complicated aspects of the distribution F', with enough data one will be able
to learn these. See also Ex. 3.9 and 9.22 for more information, regarding the speed with

Glivenko— which D,, — 0.

Cantelli
(a) Choose t; < --- < ty,, creating a finite number of cells [t;,%;41), where we take
to = —oo and tpq1 = oo. With A, ; the event that F,(t;) — F(t;), argue that

Pr(ﬂ;nzlAmJ') =1.
(b) Consider any ¢ in the cell [t;,t;41). Writing D, (t) = F,,(t) — F(t), use monotinicity
of F}, and F to show that

D(t) = {F(tj1) = Ft;)} < Fa(t) = F(t) < Dn(tjg) + Ftja — F(t5).
Deduce that

max | D,(t)] < By + Ch,s
tj<t<tjii

where Bm = maxi<ji<m |Dn(t])‘ and C’m = maxlgjgm{F(tj+1) — F(t])}
(¢) Show that Pr(limsup D,, < C,,) = 1.

(d) For each e > 0, show that a partition into cells can be arranged, with high m if
required, so that C,, < e. Conclude that Pr(D,, — 0) = 1.

(e) Choose some moderately complicated normal mixture, of the type f = Z?Zl piN(u;j, oJQ-);
see Ex. 1.61. Then simulate a high number n of data from this distribution, and read off
D,, = max; |F,(t) — F(t)|]. Check out how high n needs to be to have D,, < 0.01, say,
with high probability, in a few situations.

Stable and conditional convergence, and nonnormal limits

Ex. 2.56 Stable convergence. This exercise introduces the notion of stable convergence of
random variables, which is a form of convergence lying between convergence in probability
and convergence in distribution (to paraphrase Jacod and Mémin (1981), an early article
on the topic). On a probability space (2, F,Pr), let (X,,)n,>1 be a sequence of random
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variables, and let G C F. The sequence X,, converges G-stably to the random variable
X, where X is defined on an extension (Q x R,G @ B(R), Pr’), if

ESf(Xn) = B Ef(X), (2.12)

for every bounded G-measurable random variable £, and every bounded and continu-
ous function f. See Ex. A.27 for extensions of probability spaces. Here E’(-) denotes
the expectation with respect to Pr’. We write X, —g-st. X to indicate this form of
convergence.

(a) Show that if X, —G-st. X then X,, —4 X.

(b) To see that the converse of (a) is not true, consider the sequence X,, = I(n odd)Y +
I(n even)Y’, where Y and Y are i.i.d. random variables with common distribution F'.
Show that X,, —4 F, but that X, fails to converge G = o(Y") stably, for example. This
example is from Aldous and Eagleson (1978).

(¢) Suppose that (X,,,Y) =4 (X,Y) for every G-measurable Y. We’ll soon see that this
is equivalent to X,, —g.st. X. For now, assume that the limit X is also G-measurable,
and show that then X,, —, X. — This illustrates that to have G-stable convergence of X,
to X without also having convergence in probability, X must be realised in a fashion that
does not render it G-measurable, hence the extension of the original probability space.

(d) Show that the following are equivalent:

(i) Xn —G-st. X;
(ii) (Xn,Y) —q4 (X,Y) for every G-measurable random vector Y';
(i)
(iv) (Xn,Yn) —a (X,Y) for every sequence (Y;,)n>1 of random variables and every
G-measurable Y such that Y,, =, Y;
(v) Elgf(X,) = E' I¢f(X) for every G € G and every bounded and continuous f;

(vi) E{f(X,)|G} — E'{f(X)|G}, for every G € G with Pr(G) > 0, and every
bounded and continuous f;

(vil) Elgexp(itX,) — E Igexp(itX) for every G € G.

(X0, Y) =gt (X,Y) for every G-measurable random vector Y;

To prove this, Ex. 77?7 and Ex. A.28(c¢) might be of help.

(e) [xx rewrite xx] Let @,, and @ be versions of the conditional distributions of X,, and X
given G, respectively, and let Q. f = [; f(2)Qn(-,dz), with Qf similarly defined. Show
that X,, —g.st. X is equivalent to EEQ,, f — E£Qf, for every € and f as above.

(f) [xx cramer slutsky for stable convergence here xx]
Ex. 2.57 Conditional convergence.[xx introtext here xx]

(a) Suppose that (X,,Y,) —4 (X,Y). Show that we then also have marginal conver-
gence, that is X;, ¢ X and Y,, —4 Y.
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(b) Show that (X,,Y,) —4 (X,Y) is equivalent to
E{f(Xn)[Yn € B} = E{f(Xy)|Yn € B},

for all f € Cy(R) and all sets B € B(R) such that Pr(Y € B) > 0 and Pr(Y,, € B) > 0
for all n, and Pr(Y € 9B) =0, i.e., B is a continuity set of the distribution of Y.

(¢) Suppose (X,,Y,) —q4 (X,Y), a binormal zero-mean limit, say N5 (0, X), with

pPOXOY, O’%; '
Deduce from (b) that X, | (|Y,] < ) =4 X|(JY| < €) for each € > 0, i.e., that the
conditional distribution of X,, given |Y,,| > € converges in distribution to that of X given
|Y| > e. Show that X |(|Y] <e) —4 X | (Y =0) ~ N(0,(1 - p?)o%) as e — 0.

(d) Consider a distribution for X; with mean zero and variance o?

know that v/nX,, —4 N(0,02). Suppose X; also has an integrable characteristic function
©(t), implying by Ex. A.35 the existence of a smooth density f for X; and also a density
fn for /nX,. Show that

, where we indeed

fn(2) =1/(27) /exp(—itz)ga(t/\/ﬁ)" dt — o 'g(o712),

i.e., that there is convergence not merely for the cumulatives, but for the densities too.
To do so, you may split the domain of integration in two parts |t| > ey/n and |t| < e/n,
for some € > 0, and use Ex. A.37.

(e) Suppose next that X; is discrete, without a continuous density; for a concrete ex-
ample, consider X; = +1 with equal probabilities, and for which ¢(t) = cost. Then
Zn, = /nX, does not have a density, but we may add a little Gaussian noise, to form
Z¥ = /nX, + &, with &, ~ N(0,£2). Show that Z* has density

faZ") = 1/(27T)/eXp(*itZ*)w(t/\/ﬁ)”eXp(*%ﬁtQ)dt,

and that this again converges to the normal density o~ 1¢(o~12*) provided merely that
en — 0.

(f) We may use the same trick also in the vector case. Specifically, with a p-dimensional
X; having zero mean and covariance matrix X, show (i) that if X; has an integrable
characteristic function, then the density for Z, = \/nX,, tends to the N,(0,%) density;
and (ii) that if X; is discrete, without a density, then Z* = \/nX,, + &,, with some small
Gaussian added noise &, ~ N,(0,e2¥) with &, — 0, has a density f;*(z*) which tends to
the same N, (0, X) density.

(g) Suppose (X,,Y,)" =4 (X,Y)", a zero-mean binormal. If there is also density conver-
gence, with (X,,,Y},) having density f,(z,y) tending to the appropriate binormal density
f(z,y), show that X, |(|Y,] < &,) tends to X | (Y = 0), as long as §, — 0. Show
that the same limiting distribution statement holds also when (X,,Y,,) has a discrete
distribution, using the ‘adding small Gaussian noise to get densities’ trick.



88 Large-sample theory

Ex. 2.58 Limiting normality of rank sums statistics. (xx to be edited and polished;
nils rant so far. we put it in if it looks smooth enough, and with a brief pointer to Story
v.5. point to Swensen (1983). xx) In a population of n individuals, followed on some
continuous scale, a subgroup of interest, of size m, has ranks Xi,...,X,,. These form
a randomly selected subset of size m from {1,...,n}, with all such (") subsets equally
likely. The rank sum Z,, = X7 + --- + X,,, is the Wilcoxon statistic.

(a) Explain that one may write Z,, = > | i.J;, where the 0-1 variables J; are such that
precisely m of them are 1, and with all (:1) subsets of such 1s being equally likely. Find
E J;, Var J;, cov(J;, J;) for j # i. Writing p = m/n for the sample ratio, show using
either of the representations Y ., X; or >, iJ; that

EZ,=1im(n+1) = in’p, VarZ, = (1/12)(n+ 1)m(n —m) = (1/12)n’p(1 — p).

(b) We aim indeed at showing limiting normality of Z,, here, with both n and m becoming
larger, with m/n — p. Explain that this must mean

(Zn — $n°p)/n®? =4 N(0, (1/12)p(1 — p)).

We cannot use CLT or Lindeberg for studying Z,,, since the X; are dependent, as are the
J;. Consider however a different parallel setup, involving independent Bernoulli variables
Ji, ..o, JJF with Pr(Jf = 1) = p = m/n. Explain that the distribution of Z,, is the same
as the distribution of Z} = Y"1 | iJ} given Y., JF = m. Show now that

?

(An> _ <(1/\/ﬁ) Z?:l(z/n)(‘]z* _p)> N (A) ~ N (<0) <1/37 1/2>)
B, Wm i -p) ) 8] o) 2 1 )
(c¢) Find the distribution of A|(B = b), and show in particular that A|(B = 0) ~
N(0,1/12). This gives a clear limiting normality statement for Z*, conditional on
Z?:l J¥ = m, and nicely solves our Wilcoxon problem; show that it corresponds pre-
cisely to the (Z, — 3n?p)/n®/? limiting statement above. (xx some extra care needed. but

an easy and instructive way to show normality for Wilcoxon, and also for other related
variables. to illustrate, find limiting normality for Xll/2 T+ XM= S i2 0 xx)

(d) (xx if we manage: also a link via the uniform order statistic process, and to integrals
of salt-and-pepper processes, with W,, = fol([ns]/n) dC,,(s), with the dC),(s) being ds or
0 with probabilities p and 1 — p, but conditional on the random region fol dC;,(s) being
p = m/n. if we’re lucky there is a limit expressible as integral or Brownian bridge, for
Ch9. nils will attempt to fix this and at least make the idea more precise. xx)

Ex. 2.59 Nonnormal limits. (xx polish this. point to process version, with more results
for hitting times, etc., in Ch. 9. xx) Normally limits are normal, but not always. Here
we shall indeed work with variables with mean zero and variance one, where the sample
averages have nonnormal limits. The basic construction is as follows. Let Uy, Us,...
be i.i.d., with mean zero and variance one, and with m.g.f. My(s) = E exp(sU;) finite
in a neighbourhood around zero; in particular, all moments for the U; are finite. Let
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independently of these Ji, Js, ... be independent Bernoulli variables with Pr(J; = 1) =
1/i, Pr(J; =0) =1 — 1/i. Then form

1 n n
Zp = 7 ; JiViU; = ; Ji/i/nU;.

A picture to have in mind is that most of the terms will be zero, with non-zero contri-
butions becoming both more rare and more big as time proceeds.

(a) Show that there will with probability one be infinitely many .J; = 1, i.e. non-zero
terms in the Z,, sum as n grows.

(b) Show that the terms J;v/iU; have mean zero and variance one; hence also the nor-
malised sample average Z,, has mean zero and variance one. Find also an expression for
the kurtosis k,, = E Z2 — 3 of Z,,, and show that &, — %a4, where a4 = EUi4. Compare
this to what we are ‘used to’ from the Lindeberg theorem.

(¢) We already know that if Z,, has a limit distribution, it can’t be normal. Working
with the m.g.f., show that

n

M, (t) = E exp(tZ,) H[l—l— {My(t i/n)—l}},

i=1
for all ¢ around zero for which M(¢) is finite.

(d) Show that

ﬁ[lJr —{Moy(t Z/n)—l} s exp / Motf—l }

i=1

Work first with Special Case One, where we let U; have the simple symmetric two-point
distribution Pr(U; = 1) = Pr(U = —1) = 1. Find the limiting kurtosis for Z, in this
case. Show that My(s) = £e®+ $e~° = 1+ (1/2!)s% + (1/41)s* +- - -, and use this to find
an infinite-sum expression for the limit of M, (t). Have you now proved that Z,, has a
limit distribution?

M

(e) Then work with Special Case Two, where the U; have a double exponential distri-
bution, of the form f(u) = $v/2exp(—v/2|u|) on the real line (the v/2 factor is there to
ensure variance one). Find the m.g.f. My(s) for the U;, and then the m.g.f. M (t) for the
limit distribution of Z,.

(f) For most cases, regarding the distribution for the Uj;, it is hard to learn the explicit
distribution for Z,, (even in cases where there might be a clear distribution for its limit).
For Special Case Two, however, find the explicit distribution for Z,, for any given n.

CLTs for dependent random variables

Ex. 2.60 A CLT for 1-dependent variables. (xx decide later if these few should be
pushed to Ch. 12. xx) Consider a stationary sequence Y7, Ys,..., with mean zero and
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variance one, being 1-dependent. Stationarity means (Y7,...,Y;) having the same dis-
tribution as (Y;11,...,Y;4,), for any ¢ and block lengths r, and 1-dependence means
that Y;, Y;+1 may be dependent, but Yi,...,Y; is independent of Y, 2, Y;13,.... This
exercise reaches a CLT for Z?:l Y;, representing a genuine extension of the usual CLT
and Lindeberg theorems from independence.

(a) Writing p = corr(Y;, Yi4+1), show that (1/k)Var(Y1+---+Y;) = 14+2(1—1/k)p which
then goes to 1 + 2p for increasing k.

(b) For a given block length k, split Y7 + -+ +Y,, into [n/k]| blocks, and write block j of
these as U; + V;, with U; as sum of £ — 1 consecutive observations and V; the last one
of that block. Write then

n [n/k] [n/k]
Zo= (VM) Y Vi = (VI (D U+ X2 Vi+ ),

with E,, any extra left after the k[n/k] variables captured in these first [n/k] blocks.

(¢) Explain why Uy, Us,... are independent, so that the usual CLT applies to these.
Show that (1/v/n) S0/ Uy =4 N(0,72), with 72 = (1/k)Var (Y1 + - + Yi_1).

(d) Then use Ex. 2.24 to prove that (1/y/n)> ;Y —4 N(0,1 + 2p), i.e. a CLT for
1-dependent variables.

(e) Assume Xi,Xs,... are i.i.d. with mean zero and variance one. Consider Z, =
(1/y/n) (X1 Xo + Xo X3+ -+ X,,_1X,,). Show that Z,, —4 N(0,1). Show also that

n—1

Z;z = (1/\/5) Z(Xz - XTL)(Xi-‘rl - Xn)

i=1
has the same limit distribution, where X,, as usual is the sample mean.

Ex. 2.61 A CLT for m-dependent variables. In natural generalisation of Ex. 2.60,
consider a stationary m-dependent sequence Y7, Y5, ..., with mean zero and variance o2.
There is accordingly potential dependence among Y7, ...,Y,,, but for any i, (Y7,...,Y;)

is independent of (Yitmy1,...,Yn).

(a) Writing cov(Y;,Y;) = 0?p(|j — i]), with the autocorrelation function p(-), show first
that in general terms,

(1/m) Var (3o%3) = {14230~ j/m)p(i) -
i=1 j=1
Then show that for the case of m-dependence, for any k > m, we have (1/k) Var(Y; +
e+ V) = o {1+ 2307 p(h)),

(b) Extend arguments and techniques from Ex. 2.60 to show that (1/y/n) Y"1, Y; tends
to a zero-mean normal with variance o2{1 + 2p(1) + - -+ + 2p(m)}.

(c) (xx a bit on how the acf works for an i.i.d. sequence: /np(j) —4 N(0,1), for each j.
XX)
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Ex. 2.62 Local asymptotics. The CLT and Lindeberg machineries yield normal limits
and hence approximations in situations where independent observations come from given
models. It is sometimes useful to extend such results to situations where observations
stem from distributions close to, but not equal to, the postulated start models. The
standard +/n speed of convergence for the CLT and relatives leads naturally to the notion
of O(1/ v/n) neighbourhoods. If there is limiting zero-mean normality of variables like

v/n(0 —0), under a relevant null model at 6, then such variables typically have limiting
non-zero-mean normal limits at such O(1/y/n) alternatives.

(a) A simple setup illustrating such ideas is the following. Suppose Xi,...,X,, are
i.i.d. from a distribution with mean & + §/y/n and variance 02 = 02 + d/n. Consider
then Z,, = v/n(X, —&). Use the Lindeberg theorem, or a triangular version of the CLT,
to demonstrate that Z,, —4 N(§,0?).

(b) (xx for Ch. 5, an exercise with \/ﬁ(é\f 0o) —a N(b5,J71), when data stem from
f(y,00) + 6/+/nh(y). natural special case: f(y,600,79/v/n). xx)

(c) xx

Ex. 2.63 Approzimate normality when combining information sources. (xx this is a nils
rant, so far. it needs intro sentences. the point is partly that yes, Lindeberg gives us
limiting normality of sums, but we also need consistent variance estimators. xx) To illus-
trate the general themes, in a situation exhibiting these general components, consider the
following setup. There are Poisson parameters 64, ..., 0, with associated independent
Poisson observations y; ,...,y;m, for 6;, leading to §j =g; = (1/mj) >}, vie. The

object is to make inference for the linear combination ¢ = a'f = Zk

=1 ajﬁj, for which

_ N N . PO .
we use the estimator ¢ = a'¢ = > _, a;0;, with variance

k
B} = Var¢ = Zafej/mj.

j=1

(a) For Y ~ Pois(f), show that E (Y —#0)3 = 6..., and that this implies that its skewness
is 1/6/2. Show also that with Y3,...,Y,, i.i.d. from this distribution, we have E (Y —
0) = 6/m, with skew(Y) = 1/(mf)*/2. Thus the skewness tends to zero, indicating
limiting normality, as long as with 8, or m, or both, grow.

(b) Show furthermore that

5 _p (0 _ _Timaalim,
ew(@) =B (T57) = 5 e

(xx then some Lindeberg things here, understanding when this tends to zero, leading to
Zio = (¢ — ¢)/Br —q N(0,1). play a bit with a;j, m;. xx)

(¢) (xx then wish to find a case where variance is not well enough estimated. xx) We
k 2
j=1%

estimate the variance using B2 = > é\] /m;. To make inference for ¢ we need not
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merely the result of (b), but also relative consistency of the variance estimate. Show that
Vi = B?/B? has mean 1 and variance

k
- .
(Zj:l a?Gj/mj)z
(xx rigging the game so that Zj o —4 N(0, 1), but not Zj. As a special case to consider,

take a common m; = mg for all sample sizes, a; = j, and assume 6; = 1/j. What
happens to By, By, Vi, and the natural ratio Zy = (¢ — ¢)/B? xx)

Var Vk =

(d) (xx then find the typical behaviour of Vi, to ensure also Z, = (¢—) /By —q N(0,1).
make connections to chapter 4 stuff on deviance and wilks. the Wilks thing is close to
Z2. xx)

Ex. 2.64 Limiting normality of the sample variance matriz. (xx can be better placed,
inside Ch 3. results are used for Ex. ??. xx) Consider i.i.d. vectors Y7,...,Y;, from the
multinormal N,(§,Y), first with known mean vector £, which we for convenience then
set to zero. The estimated variance matrix is & = (1/n) PR A AN

(a) Write o, for the elements of the p x p matrix X, and O'JQ- for o; ;, the variance of
component j of Y;. Show that its estimator is 7 = (1/n) Y.'_; ¥;*;, and that it has the
distribution of ajz«x%/n. Show also that \/n(d,; — 0;;) — M, ;, with this limit having
the N(0,207) distribution.

(b) Using first the one-dimensional CLT, show that /n(6;; — 0, ) has a normal limit
M; 1, and find its variance.

(¢) Then show that there is convergence in distribution of the full matrix, say \/ﬁ(i —
Y) —a M, with M = (M; ;)i j=1,..p multinormal with zero means, and that

COV(MZ"J', Mk,l) = 04,k0j1+ 010k

(d) Assume ¥ has full rank p. Show that limiting normality for & implies limiting
normality for ¥~1 and that in fact /n(E71 — X7 =4 M* = —S"1MX~1. Writing

o7* for the elements of ¥ 7!, show that cov(M};, My ;) = obkgil 4 ghlgik,

(e) In case of an unknown mean vector, one uses the sample variance matrix £ = (n —
D=L (Y — V)(Yi — Y)'. Show that /a(X — £) =, 0, where & = =1 327 (V; —
6)(Y; — €)' uses the &. Deduce that /(X — %) —¢ M and /n(S7! = %71 =y M* =
—Y7 MY, ie. with the same limits as above.

(f) (xx something to round if off. perhaps dimension 2. mention the Wishart distri-
bution, but here we derive limits without knowing or using that. also, not lost at sea
outside multinormality, but the covariance structure for the limit M becomes much more
complicated. xx)

Ex. 2.65 Summing geometrically many terms. Suppose Y7,Ys, ... are i.i.d. with mean
zero, variance o2, and m.g.f. My(t). With Pr(N =n) = (1 —p)"“p for n > 1, ie. a
geometric distribution, consider Z, = p/? (Y1 +---+Yyn), with the Y; being independent
of N.
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(a) Show first that the generating function for N is Es" = ps/{1 — (1 — p)s} for |s| <
1/(1—p); see Ex. 1.35. Show that Z, has variance o2, and that its m.g.f. may be written

K,(t) = E exp(tZ,) = pMo(p"/*t) /{1 — (1 — p) Mo (p'/*1)}.

(b) Then use My(t) =1+ $0°t* + o(|t|*) to demonstrate that as p — 0, with increasing
number of terms EN = 1/p, we have K,(t) — 1/(1 — $02t?) for |¢t| < v/2/o. This shows
that Z, —4 L., the Laplace distribution with standard deviation o, see Ex. 1.32.

(¢) For the particular case of a sum of randomly many normal terms, let the Y; be
iid. standard normal. Show what Z,|N ~ N(0,pN), and that pN —4 Expo(1l) as
p — 0. Explain how this matches Ex. 1.32.(c).

(d) (xx one or two further illustrations, with Laplace limit of p*/2(Yy 4 --- + Yy). with
Y; = Q; — 1, Poisson, we learn p'/2(Vy — N) —4 L, where Viy ~ Pois(N). similarly with
p/2(Wy — N), where Wy | N ~ x%, randomly many degrees of freedom. xx)

(e) (xx something to simulate, to illustrate the cusp behaviour at the centre. with the
Y, having mean ¢ and variance 1, we have

p A1 =€+ + Yy — &) =p'AN(Y — &) = (pN)/2NY2Y — €) =4 L.

this gives different inference for &, and different predictions for Y, than what we’re used to
from normal terrain. we’re also in scale mixtures of normal terrain, with random variance
tending to a unit exponential. i’ll look for variations. i do like the pN —4; Expo(1), since
it gives the cool cusp in the limit for Z,, but other variations for pN —4 V are ok too.
XX

)

(f) (xx just ranting away a bit until things settle. xx) More generally, with Y7,Y5,...
being i.i.d. with zero mean and unit variance, consider

Zy =pY2(Yi +-- 4+ Yn) = (pN)Y2NV2yy,

with N having a distribution such that pN —4 V, say, as p — 0. From the CLT,
NY2Yy —4 N(0,1), so this amounts to a situation with a normal limit, but a random
variance, as in X |V ~ N(0,V) but V random. Here E exp(tX) = E exp(3t?V) =
Mo(3t?), where My(u) = E exp(uV) is the mgf for V. Also, X has density

f(a) = / o /v 2)(1/0"/?) dH (),

with H the distribution of V. — The special case above amounts to N ~ geom(1/p),
where pN tends to the unit exponential, and where X gets the Laplace distribution. For
another case, consider N |\ ~ Pois(\/p), and with A having its own distribution with
mean and variance \g and 73, say. Show that EpN = \g and that VarpN — 78. Also
consider the special case for this setup where A ~ Gam(a,b). From

E {exp(—spN) | A} = exp[—(A\/p){1 — exp(—sp)}]
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deduce
1 R 1
[L+(1/6)(1/p){1 — exp(—sp)H* = (1+s/b)*’

and that pN —g V, 5, another Gam(a, b). With the construction above, the normal scale
mixture variable X has mgf 1/(1 — ¢?/b)*, and density

E exp(—spN) =

i) = [ ¢<x/v1/2><1/v1/2>r’z;v“-l exp(—bv) do.

This is a Laplace, for a = 1. (xx but different, and interesting, for other a. round this
off. xx)

(g) (xx i think we can use these tools to form a full Laplace process, for BNP use or
otherwise. we should tune in to a Z,(t) = p'/?(Y; 4+ -+ + Yy(y)), with a clever N(¢). will
look at N (t) being a negative binomial process with mean ¢/p. nils thinks this works: (i)
A ~ Gam(1,b), with mean A\g = 1/n. (ii) N | X ~ Pois(A/p). write down E (pN | \) and
Var (pN | ), then unconditional mean and variance for pN. (iii) find limit in distribution
of pN. (iv) study Z, = p'/2 Zfil Y;, close to (pN)'/? times a normal, etc. (v) make it
into a full Laplace process, by having A\; ~ Gam(1, b;). xx)

Ex. 2.66 Mazimum sample value of exponentials and the Gumbel distribution. (xx nils
reorganises some of these exercises which need tidying up. i now start with the gumbel
and the maximum of exponentials, before taking up other gumbel related matters. xx)
We define the Gumbel distribution on the real line by its cumulative distribution function

Go(u) = exp{—exp(—u)}.

(a) Show that G is indeed a cumulative distribution function, that its density is go(u) =
exp{—u — exp(—u)}, and that its Laplace transform is Ly(s) = E exp(—sU) = T'(1 + s),
in terms of the gamma function.

(b) Use properties of the gamma function to show that the mean and variance of the
Gumbel distribution is v, and 72/6, where v, = 0.5772... is the Euler constant. The
latter has several equivalent definitions, among which is that H, — logn — <., where
H,=1+1/2+---+1/n is the partial sum of the divergent harmonic series.

(¢c) With U having the Gumbel distribution, show also that its mode is 0 and that its
median is —log(log 2) = 0.367. Find an expression for the g-quantile Gal(q). Show that
Pr(—1.097 < U < 2.970) = 0.90.

(d) The Gumbel distribution turns up in various contexts concerning extreme values.
The simplest such case is as follows: let Xq,...,X,, be ii.d. from the unit exponential
model, with M,, = max;<,, X; their maximum. Show that M, —logn —4 U, the Gumbel
distribution.

(e) We may learn more about the distribution of M,, via first investigating the spacings.
With Xy < -+ < X(5) being the order statistics, let D1 = X1y, D2 = X9y — X(1),
up to Dy, = X(,) — X(n—1)- We have seen via Ex. 1.12 and 1.13 that the spacings are

the Gumbel
distribution

the Euler—
Mascheroni
constant
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independent (for this special case of the exponential), with D; ~ Expo(n — i+ 1). Show
that this leads to the representation

Xpy=Di1+ -+ Dp=V1/1+Va/2+ -+ Vy/n,
with Vi,...,V, being i.i.d. and unit exponential.

(f) Show from this that M,, has mean H,, = logn + 7. and variance Y ;_, 1/i%, tending
to 72/6. This is agreement with the Gumbel limit for M,, — logn.

(g) Show that M,, — H,, —4 U — 7., the zero-mean version of the Gumbel. Deduce from
this that

. exp(s/i)
nlggoE exp{—s(M, — H,)} = H 1+ s/i =T'(1+ s)exp(yes).

This infinite-product form of the gamma function is actually equivalent to a famous
formula by Weierstrafl. Show also that

Z{s/z —log(1+s/i)} =7es +1log'(1 +5) = Z(—l)jC(J,j)sj,

i=1 j=2

valid for |s| < 1, where ((j) = 1+ 1/27 +1/37 + -+ is Riemann’s zeta function, at j.
(xx two more sentences. here we derive these deep mathematical facts from a simple
convergence in distribution result; could also go the other way, if we start with gamma
function knowledge. xx)

(h) Yet another fruitful perspective on what we’ve learned above is in terms of an infinite
sum of smaller and smaller exponentials. Consider independent exponentials Wi, Wa, ...,
where W; ~ Expo(i), i.e. with mean 1/i. Show that W =Y .2 (W, — 1/i) is finite, with
probability one, and that its distribution is that of U — ~,, the zero-mean Gumbel.

Ex. 2.67 Weibull and Gamma mazima. The basic result of Ex. 2.66, concerning the
maximum of a sample of exponentials, leads to limit distribution results also for maxima
from other distributions.

(a) Suppose that Xi,..., X, are ii.d. from the Weibull distribution, with cumulative
function F(z) = 1 — exp{—(z/a)}, for certain parameters (a,b). With M, the sample
maximum, show that (M,,/a)’ — logn tends to the Gumbel distribution.

|—=

(b) In two minutes, simulate n = 1000 values from the Weibull with (a,b) = (1,
Guess in advance how large M,, will be, using the representation M,, = a(logn + U, )*/?,
where U, tends to the Gumbel.

)-
b

~.N

(c) Similarly consider the Gamma distribution with parameters (a,b) = (2, 1), where the
cumulative can be expressed as F'(z) = 1 — exp(—x)(1 + x), see Ex. 1.9. With M,, the
maximum of a sample of size n from this distribution, show that M,, —log(1+ M,,)—logn
tends to the Gumbel distribution. What is the approximate median for the M7
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(d) More generally, suppose F(x) = 1 — exp{—A(x)}, with A(z) the cumulative hazard
rate, and let again M,, be the maximum value from a sample of size n. Show that
A(M,,) — logn tends to the Gumbel.

Ex. 2.68 Maximum of independent geometric variables. Let T have the geometric
waiting time distribution with parameter p, i.e. with point probabilities (1 — p)!~!p for
t=1,2,.... We write T' ~ geom(p) to indicate this distribution; see Ex. 1.24.

(a) Show that V = pT has mean 1 and variance 1 — p. Show also that if p — 0, then
V = pT tends to the unit exponential in distribution. Give an approximate formula for
the median of a geometric distribution with small p.

(b) Now suppose Vi,...,V,, are independent geometric waiting times with parameter
1/n, hence with mean value n. With Z,, = max(Vi,...,V,,) the time until all waiting
times have been completed, we then have Z, /n = max(Vi/n,...,V,/n), which is close
in distribution to max(FE, ..., E,), with these E; being independent unit exponentials.
By results of Ex. 2.66 we should there expect Z,,/n —logn —4 U, the Gumbel. Show
that indeed this holds. (xx needs some technicalities and a hint, see nils diehard. xx)

(¢) (xx one more thing here. can we make something useful out of this, with mgf for
Zyn/n. not easy. xx) we do have

Pr(Z,/n <v) =Pr(V; <nv)" =[1—(1-1/n)""".

Ex. 2.69 Collecting cards: how long time? (xx nils will reorganise this a bit, after the
abels taarn things. plan is basic things T} + - - - + T, here, Gumbel limit, a bit more in
next exercise, this being Ch4. then likelihood things in Story iv.5 about estimating n
from V, =T+ - -+T,, time to having seen r different cards. then story about estimating
n from observed V,.. xx) Consider a deck of n cards, with X7, Xo, ... independent draws
from these, i.e. uniform on {1,...,n}. How many such random draws are necessary,
before you have seen all n cards? — There are several reformulations of this card collecting
problem, and with other metaphors. You may think of a fair die, with n faces, and ask
how many times you need to roll it until you've seen all faces.

(a) Show that the time needed, until we have seen all n cards, can be represented as
V.. =Ty + -+ + T,,, where T; is geometric with parameter p; = (n — i + 1)/n. Hence
ET; =n/(n—1i41), and the card finding process is easy in the beginning, then steadily
harder. We may also re-order the T; to V,, = T + - -+ T}, where T ~ geom(i/n), which
for some purposes is an easier representation.

(b) Let (Ny,...,N,) be the number of times cards 1, ..., n have been seen, in the course
of z independent random draws from the deck. Show that this is a multiomial with
count z and probabilities (1/n,...,1/n); in particular, N; ~ binom(z,1/n). Show that
the correlation between N; and N; is —1/(n — 1).

(¢) Show also that another representation of V,, is as max(Wi,...,W,), where W; is
the first time N; > 1. Show that W; ~ geom(1/n), with mean n. These are however
dependent, so the Gumbel limit result of Ex. 2.68 does not immediately apply. Show
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that the correlation between W; and W} is small, however, namely — (n 1), indicating
that (V,, —nlogn)/n should converge to the Gumbel, even with these waiting times being
dependent. (xx polish wording here. xx)

(d) (xx nils will coordinate and calibrate this with what is placed in Ex. 1.24. xx) For
T;, with distribution (1 — p;)!~!p; for t = 1,2,3,..., show that

1 1-pi 1=pi)(2—pi
ET, = —, VarT;, = 2p , E(Ti—1/pi)* = (p)#,
Di D; pi

so the skewness of Tj is E (T} — 1/p;)% /o3 = (2 — ps) /(1 — pi) /2.
(e) Show that
EV,=n(1+1/24---+1/n) =nH, = n(y +logn),

using Ex. 2.66. Show also that

7

" n? ony
VarV,, = g (72—*.) = n%(7%/6) — n(y +logn).
i=1

(f) (xx limit of skewness. not zero. xx) Now consider

Vn _EVn Vn—n(’y+logn)

U = —— U =
n (Var Un)1/2 ) n,0 nﬂ/\/é )

and show that U,, — U, o0 —pr 0. Show further that

g = i BT —p)® | 20500 (1)) + O(n?) | 2-1.2021
(Var Z,,)3/2 n373 /63/2 736372

= 1.1396.

(g) So we're outside limiting normality; show indeed that the Lindeberg condition cannot
hold here. (xx limit distribution. other things. xx)

(h) (xx check this. xx) With U/, = (V,, — nlogn)/n = T, — logn, show that

E exp(—sU),) = exp(slogn) HE exp{—(s/n)T;}
i=1
e[ Gimespsim
palel (1 —14/n)exp(—s/n)
s (n!/n") exp(—s)
[Tz {1 = (i/n) exp(—s/n)}
Then show that U/, —4 U. (xx hmm, have not landed this properly yet, but can be cool

story. and if we prove U/ —4 U in some other way, we are automatically deriving the
side consequence

=N

n® exp(—n — 5)(2wn)/?

) =TT — /m) exp(s/m)} = 2P PR

i=1
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or

n

[T{exp(s/n) = (i/n)} =

=1

n® exp(—n)(2mwn)'/?
I'(l1+s) '

which for s = 0 is Stirling. need a bit more work. xx)

(i) Tt is also useful to find the distribution of G, (v) = Pr(V,, < v) explicitly. Argue that
V., < w is equivalent to A; N---N A,,, where A; is the event that 7 is seen in the course
of the first z attempts. With B; = A its complement, that ¢ has not been seen during
these first v attempts. Use this to deduce that 1 — G,,(v) can be written

(?) Pr(Bi) — <Zj) Pr(By N By) + (g) Pr(B; N By N By) — ...

Pr(B,U---UB,)

n

Sy (M- iy

Jj=1

for v > n. Use algebra to also derive

_ ) — - i—1(n—1 o\u—1
gn(v) =Pr(V,, =v) = ;(fl)J (] B 1)(1 —j/n) for v > n.
Use 2" 1+ 2" + ... = 2" 1 /(1 — 2) for || < 1 to derive the identity
n—1 n
Sy (D) a =i -
; J
j=1

(j) Use the case (Th =1,...,T,, = 1) to derive

n n—1
. n! . (n—1 ) \m—
[T =2 =S = (0 D
, n . j—1

=1 Jj=1

and argue that these expressions are close to exp(—n)(27n)'/2, by the Stirling approx-
imation. Show via arrangements of this formula that Z?:O(—l)j (?)j” = nl (xx
—4-146-16—4-814 256 = 24, etc. xx)

(k) (xx pointer here to a different story, where we estimate n based on how long time it
took us to reach level r, i.e. W, =Ty + --- 4+ T,.. it might be a CD story with C,.(n) =
Pr, (W, < Wi obs) + %Prn(WT = W, obs). how many Italians in my neighbourhood? xx)
Ex. 2.70 The 2nd largest, 3rd largest, etc., for exponentials. Let as in Ex. 2.66
X1,...,X, be iid. from the unit exponential model. For the largest observation we

saw there that X(,) —logn — U, the Gumbel distribution with c.d.f. exp{—exp(—u)}.
Here we shall work with the 2nd largest, the 3rd largest, etc.

(a) For a positive, consider W,, with density
ga(w) = T(a) " exp{—aw — exp(—w)} (2.13)

on the real line. Show that V,, = exp(—W,) has the gamma distribution with parameters
(a,1), and that the Laplace transform becomes E exp(—tW,) = T'(a + t)/T'(a). The
Gumbel distribution is the case of a = 1, so we may consider (2.13) a generalised Gumbel.
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Figure 2.2: For n = 25, the dashed curves are limit-approximation densities (left panel)
and cumulatives (right panel) for order statistics 23, 24, 25 for i.i.d. exponentials, com-
puted via the limits logn + W, for ¢« = 1,2,3. The full curves are the real densities and
cumulatives, based on having simulated 10* outcomes for each.

(b) Deduce that W, = log(1/V,) has mean —(a) and variance ¢’(a), with ¥(a) =
0logT'(a)/0a the digamma function. Show that the c.d.f.s for g1, g2, g3 are

G1(w) = exp{—w — exp(—w)},
Go(w) = exp{—w — exp(—w) }{1 + exp(—w)},
Gs(w) = exp{—w — exp(—w) }{1 + exp(—w) + 1 exp(—2w)}.

(c) With order statistics X (1) < --- < X(y), consider W, ; = X(,,_;41) — logn, for given
i; the case i = 11is W, 1 = X(,,) — logn already considered in Ex. 2.66. Show that

Pr(X(—it1) —logn < w) =Pr(Up—it1) < 1= (1/n)exp(—w)),

in terms of the order statistics for the uniform. Use the Beta connection of Ex. 3.17 to
deduce that the density of W,, ; may be written

gn.i(w) =be(l — (1/n) exp(—w),n — i+ 1,7)(1/n) exp(—w)

in terms of the Beta density with parameters (n — i+ 1,i). Take the limit to prove that
Wn,i —d Wi.

(d) Construct a version of Figure 2.2, showing that the approximations based on the limit
distributions work well already for n = 25. The dashed curves are using the limits, with
T(n—it+1) = logn + W;, wheras the dashed curves are the real densities and cumulatives,
obtained by 10* simulations from Xn—2)s X(n—1), X(n). (xx these are kernel estimates so
need a pointer to Ch. 13. can we make a story out of this, insurance company cares for
these most extreme outcomes. xx)
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Ex. 2.71 How many records are set? Consider i.i.d. observations X1, Xs, ... from some
continuous distribution on the line. Define R, = 1 if X, is bigger than all previous
datapoints, i.e. a new record has been set.

(a) Explain first that the number of records set, in the course of the first n occasions, is
Z, =Y. | R;. Show that Pr(R, = 1) = 1/n,sothat E Z,, = H,, = 14+1/2+---+1/n, the
partial sum of the harmonic series. As we have noted earlier, H, —logn — v, = 0.5772...,
the Euler constant, so the number of records set is approximately logn + 7.

(b) Show that Ry,...,R, are independent, and deduce from this that Var Z,, = H,, —

S, 1/i? =logn+vy.—m2/6. Use the Lindeberg theorem to show that (Zn—Hn)/H},/2 —d
N(0,1). Show also that (Z,, — logn)/(logn)'/? —4 N(0,1), which gives a simpler but

somewhat more crude approximation to Z,, probabilities. Use these normal limits to give

a prediction band, with Pr(a, < Z, <b,) — 0.95.

(¢) Now consider A,, = Zs, — Z,, the number of records set during n,n + 1,...,2n.
Show that A,, tends to the Poisson with mean log 2. Generalise.

Ex. 2.72 When the 00 box is hidden. Consider a 2 x 2 table setup with counts
No,o, No,1, N1,0, N1,1, corresponding to N, ; counting the cases of (X = i,Y = j), for
i,7 =0, 1, for two factors X and Y. We take the four counts to be a multinomial vector
with probabilities pg o, po,1,P1,0,P1,1. Assume now that the 00 box is hidden, hence also
the total number N = Ny o+ No 1 + Ny,0+ Ni,1; one has observed counts Ny 1, N1, N1 1,
but not the Ny in question. How can one estimate the hidden Vg o, and then in its turn
N7 Such questions and estimation methods go back to Petersen (1896), who needed to
estimate fish populations in the 1890ies. Versions of methods methods developed below
is being used in Story iii.13 to estimate the number of killed persons in Srebrenica 1995.
See also Ex. 77 for generalisations.

(a) Assume in this exercise that factors X and Y are independent, with Pr(X = 1) =
p = p1,. and Pr(Y = 1) = ¢ = p.1; we use ‘-’ notation to indicate that the index in

question is being summed over. Show that

poo=1-p)(1-9q), po1=1-p)g, pro=p(l-q), p11=Dpq.
(b) Argue that Ni.N;./N? and Ni 1/N are both valid estimates of p; ;. Discuss condi-
tions under which N* = N; .N;./Nj is a reasonable estimator of V.

(c) The N is unknown, but we may still study the usual ratios p; ; = N; ;/N. Show that
there is joint convergence in distribution, say N'/2 (Pi,j — pij) —a Aij, as N increases,
with the A;; forming a four-dimensional mean zero normal. Give its variance matrix.
Under independence, show that (N* —N)/N'/2 = N'/2(N* /N —1) has limit distribution

U= (1/p)(Aro0+ A11) + (1/q)(Aoa + A1) — {1/(pg)} A1
= {pAo1 +qA1 0+ (p+q—1)A11}/(pg)

This is a normal (0,72); show that indeed 72 = (1 — p)(1 — ¢)/(pq). How can this be
used to form a confidence interval for N? (More general schemes, for estimators and
confidence intervals, are developed in See Ex. ?7?.)
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(d) Show that the N* leads to the natural estimator p = Nj1/N;p,. for p. Find its
approximate distribution, and assess how much is lost in precision by not knowing V.
(xx check also with the implied Ngo = N* — (Noo + No1 + N1i). xx)

(e) The setup and methods above can be used in a variety of setups, for estimating
the sizes of populations based on incomplete surveys; the N* estimator above goes back
to Petersen (1896), estimating the number of fish based on capture-recapture surveys.
Carry out a few simulation experiments, as follows. There are fish {1,..., N} in your
pond. Your first catch, with fish being caught as in a binomial setup with probability
p1, gives the index set Ajp; your captured fish are marked and released in the pond.
Similarly your second catch, with catch probability ps, gives index set As. By counting
the numbers Ny o, No.1, V1,1 in the associated Venn diagram, estimate the total number
of fish N (and your analysis should work without knowing pq,ps). Check if your 95
percent confidence interval captures the real V. To play with these methods, also to
understand how the catch probabilities py, p2 influence estimates and precision, there are
helpful and easy-to-use algorithms in R, namely intersect, union, setdiff.

(f) (xx might bypass this point. but might include the case of three surveys, or leave it
t0 Lpror (V) analysis in Ch 5. but we can ask for analysis of the estimator
_ M1,0,0M0,1,0 + 711,0,010,0,1 + 70,1,070,0,1

*
n pry
0,0,0 )
n1,1,0 + N1,0,1 +N0,1,1

used in Lum et al. (2013). xx)

Notes and pointers

(xx to come. we point to certain famous things from the past: Kolmogorov (1933b),
Lindeberg (1922), Borel and Cantelli. tail bounds. emil’s extension of the Inlow (2010)
paper, from CLT to Lindeberg. more on Lindeberg and the history of CLT developments
in Cramér (1976), also see Schweder (1980, 1999). xx)

[xx the first of the two lemmas: Nils beta 1990. xx]

(xx include also something on Fra Preface i Life and Times of CLT: “For those
who teach a course in probability whose objective is to prove the Central limit theorem
of interest [...] is commentary on the characteristic function approach employed by
Lyapunov versus the ‘very simple’ proof, as Le Cam describes it, given by Lindeberg”.
also, LeCam (1986). xx)

[xx for Scheffé: see Scheffé (1947), but also Kusolitsch (2010), who explains that the
result is a special case of results published by F. Riesz in 1928. see also what Scheffe
says in his paper about comments he got from Morse. xx]

(xx push this to Notes. xx) Inlow (2010) has shown how one can prove the usual
CLT without the technical use of characteristic and hence complex functions. Essentially,
he writes the X; in question as Y; + Z; with Y; = X, I{|X;| < ey/n} and Z; = X, {|X;| >
ey/n}, after which ‘ordinary’ m.g.f.s may be used for the part involving the Y;, yielding
the normal limit, supplemented with analysis to show that the part involving the Z;
tends to zero in probability. — It is a non-trivial matter to extend Inlow’s arguments,
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from the CLT to the Lindeberg theorem, but this is precisely what is done in Stoltenberg
(2019). Check that note, on the book website, and make sure you understand its main
tricks and steps.

(xx When Jarl Waldemar Lindeberg was reproached for not being sufficiently active
in his scientific work, he said, ‘Well, I am really a farmer’. And if somebody happened
to say that his farm was not properly cultivated, his answer was, ‘Of course my real job
is to be a mathematics professor’. Hundred years ago!, i.e. in 1920, he published his
first paper on the CLT, and in 1922 he generalised his findings to the classical Lindeberg
Theorem, with the famous Lindeberg Condition, securing limiting normality of a sum of
independent but not identically distributed random variables. He did not know about
Jlanyuor’s earlier work, and therefore not about ycsmosue Jlanymosa, the Lyapunov
condition, which we treat below as a simpler-to-reach condition than the more general
one of Lindeberg. Other luminaries whose work touch on these themes around the 1920ies
and beyond include Paul Lévy, Harald Cramér, William Feller, and, intriguingly, Alan
Turing who (allegedly) won the war and invented computers etc. xx)

(xx point to a couple of characterisation theorems books, kagan linnik rao, one more.
XX)

(xx for Notes: The little log(1 + z) lemma is stated, proven, and used in Hjort
(1990b, Appendix). xx)

(xx the material is from Hjort and Pollard (1993) and Hjort (1986a). xx)

[xx For notes and pointers: Ex. 2.20(a) is from Jacod and Protter (2004, p. 166),
they have it from Pollard (1984) xx].

ToDo notes, of 12-August-2024.

Clean and calibrate. Include a couple of classic nonparametric test procedures, like
Wilcoxon, the sign test, more, to showcase the use of Lindeberg things to show limiting
normality of such statistics too. point to Hjort and Pollard (1993) and Hjort (1986a).

Include some non-normal limits. Can take i* = {1 —c(D,) Hinarr + ¢(Dy)fiwide from

model selection. And point to n2/® rates for f estimation.



focus parameter

1.3

Parameters, estimators, precision, confidence

With data observed from a statistical model, the theme of this chapter is that of
constructing estimators for unknown statistical parameters, along with assessing
their precision. This provides ways of comparing competing estimation methods.
Basic concepts include the bias, the variance, the mean squared error of estimators.
The development also naturally leads to the important notion and basic machin-
ery of confidence intervals. General estimation methods covered here include the
method of moments and the method of quantiles; these can also be combined. For
regression setups, with response variables influenced by covariates, we go through
the method of least squares. To understand and utilise the properties of classes of
estimators in general models, we utilise the machinery of large-sample normal ap-
proximations, from Ch. 2. This also enables one to assess precision and to compare
different competing estimators. Similar remarks apply also for the more versatile
method of maximum likelihood, treated in Ch. 5.

Key words: approximations, confidence, estimators, linear regression, model param-
eters, moment matching, quantile matching, risk

Most statistical models have parameters, as we learn from the generous variety of models
in Ch. 1. Parameters may then be fine-tuned, or estimated, from data, which is the
grand theme of the present chapter. In generic terms, if a model has density f(y,0),
with 6 = (01,...,6,)" its parameter vector, we use data D to construct an estimator
0= g(D) Thus f(y, 5) is the fitted model, which we use for interpretation and inference,
themes we return to in more detail in later chapters. The data D can often be in the form
of direct independent observations ¥, ..., ¥y, from the model, but can also be different
in character, involving censoring mechanisms, or measurement error.

A sensible minimum demand for an estimator is that it should tend to the right value,
with increasing data volume. Formally, if = @L is the estimator for some parameter
whose true value is 6y, based on a sample of size n, then we say that the estimator
(or, more pedantically, the sequence of estimators) is consistent provided §n converges in
probability to 6y, i.e. §n —pr 0o in the terminology of Ch. 2.

One often needs estimates and inference methods for focus parameters, those of par-
ticular and context-driven interest, which are one-dimensional functions ¢ = ¢(61,...,0,)

103
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of the underlying model parameter vector. If qAS is an estimator for this parameter, we
often care about its mean, represented here as

Eg 6 = ¢ + b(0). (3.1)

The footscript signals that the expectation operator is at work at the parameter position
0. The b(0) is termed the bias; in various cases it is a function of ¢ only, but in general
it depends on the full parameter vector 6. If Eg QAS = ¢, at all positions 6, we say the
estimator is unbiased. In addition to wishing for estimators with small bias, we care
about its variability, and often about its mean squared error

mse(9, 0) = B (¢ — ¢)? = Vary ¢ + b(0)?, (32)

the classic variance plus squared bias. This is a function of the unknown parameter,
and gives a way of understanding and comparing performance for competing estimation
schemes. When we can sort out the mathematics properly, depending on the situation
at hand, we then choose estimators with smaller mse than those of competitors.

The mse(¢, 0) of (3.2) is sometimes called the risk, or risk function, and relates to
having chosen squared error ($ — ¢)? as the underlying measure of quality. Other ways
in which to compare and rank performance, involving also different quality functions and
risk functions, will be dealt with in Ch. 8.

Fundamental and conspicuous instruments in the statistical toolkits, when sum-
marising and reporting findings of investigations, are confidence intervals and testing of
null hypotheses. The development in the present chapter deals with the former, regard-
ing interpretation, construction, properties, performance, whereas the following chapter
handles the latter, along with further connections.

Consider in general terms data y, perhaps a long vector or a data matrix, from a
model with parameter § = (61,...,6,), with ¢ = ¢(61,...,6,) a parameter of interest.
Then [L(y), U(y)] is a confidence interval, with confidence level o, like 0.90 or 0.95 or an
even higher 0.99, provided

Pro{L(Y)< ¢ <UY)}=a forallé. (3.3)

Thus [L(Y),U(Y)] is a random interval, and with a high number of repeated situations it
will capture the underlying ¢ a fraction « of the times. The reported confidence interval
is [Lobs, Uobs] = [L(Yobs), U(Yobs)], computed based on the actually observed data yops.
Occasionally one also wants to construct confidence regions for a parameter vector, as
opposed to confidence intervals for each of its components. Thus is (a,b) is a parameter
pair in a model, a random region R, based on data, is a 95 percent confidence region
provided Prg((a,b) € R) = 0.95 for all model parameters 6.

In various setups one can study distributions, biases, variances, confidence etc. quite
accurately, as will be seen in many exercises below. Often enough this might be too
complicated, however, and one relies instead on good approximations. There is indeed a
host of normal approximations, sometimes with additional tools for finetuning these, as
studied in Ch. 2, with yet more to come in Ch. 5. These methods may be understood,
appreciated, seen in action, and used for new situations, without necessarily having been
through each § and € of Ch. 2.

unbiased
estimator

mean squared
error

confidence
interval
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In this chapter we learn certain estimation principles, including those associated with
the method of moments and the method of quantiles. There is also room for combining
such methods, or for coming up with new estimators in unfamiliar waters. We go on to
more advanced models and hence estimation methods in later chapters (and in several
of our stories), but included below is the basics of linear regression and the least sum
of squares methods. The more versatile and often well-performing method of mazimum
likelihood will be studied with care in Ch. 5.

(xx ToDo nils, not yet fully done as of 12-August-2024: moment method; quantile
method; both with transformation and delta method things from Ch3; least squares with
a bit more written out for linear regression. xx)

[xx In this brief intro there should be a figure, conveying some basic ideas. We may
snikinnfgre confidence intervals, but that comes with more weight in Ch. 4, along with
testing and power and p-values. we do mention a few key concepts here in intro, like
unbiasedness, low variance, etc. xx]

Precise estimation in a few classical models

Ex. 3.1 Mean squared error. Suppose data lead to an estimator a for a focus parameter
¢ = ¢(0), in a model with parameter 6.

(a) Verify the mse formula (3.2), and note its Pythagorean character. Make a little
right-angle triangle figure with absolute bias and standard deviation for the two short
1/2 on the long side. These root operations bring the risk
components down to the original scale of the measurements.

sides and root-mse, rmse = mse

(b) For a simple situation, let Y ~ N(6, 1), with 6 to be estimated. Find formulae for the
mean squared errors of the three estimators 0.9Y, Y, 1.1Y. Note the interplay between
bias and variance.

(c) Generalise to the case of Y7,...,Y,, being i.i.d. from N(6,1). Find mse(@, 0) for the
three estimators 0.99Y, Y, 1.01Y, with Y the sample average. Comment on what you
find.

(d) In somewhat more general terms, consider an i.i.d. sample Y7,...,Y;, from a distri-
bution with unknown mean g and variance 0. Show that Y is unbiased with variance
o2 /n. If your estimator for y is ¢, Y, what is required of ¢, in order for the mean squared
error to go to zero with growing n?

Ex. 3.2 Binomial estimation. Consider Y being binomial (n,p), as in Ex. 1.3.

(a) To estimate p the canonical choice is p = Y/n. Find its mean and variance, and a
formula for mse(p, p) = E, (p — p)*.

(b) Then compare the simple binomial unbiased proportion with the estimator pp =
(Y +1)/(n+2) Find its bias and variance, and a formula for mse(pg, p). Draw the two
mse functions in a diagram, for say n = 10. When is the Bayes estimator better than
the Y/n, according to this criterion?



106 Parameters, estimators, precision, confidence

Ex. 3.3 FEstimating the normal mean. Suppose we have independent observations
Y1,...,Y, from the normal distribution N(u, 02).

(a) Prove that the sample average Y = n~1 Y | Y; has the N(u,0?/n) distribution.
This Y is the canonical estimator for p. Find also a clear formula for its risk, or mean
squared error, namely mse(Y,u,0) = E, »(Y — )% The subscript indicates that the
mean operator is with respect to the probability mechanism dictated by (u, o).

(b) Then generalise the above somewhat, by finding the mean and variance also for the
estimator i = bY, with b a constant (which might be close to 1). Use this to put up a
clear expression for

mse(bY, 1, 7) = By o (57 — p)?.

Illustrate this, for values b = 0.98,1.00,1.02, and comment. For what values of the
parameters (p, o) will the estimator 0.98Y be better than the classic Y? Are there
values of the parameters where 1.02Y is better than the plain 1.00Y?

(c) Suppose the starting assumptions about the data at hand are changed to merely
saying that the Y; are i.i.d. with mean p and standard deviation o, i.e. we avoid saying
that the distribution of the error terms ¢; = (Y; — 1) /o needs to be exactly normal. How
does this affect your findings and claims for the previous points?

Ex. 3.4 Estimating the normal variance. As in Ex. 3.3, suppose there are i.i.d. data
Y1,...,Y, from the N(u,o?). Here we care about the standard deviation parameter o.
As we saw in Ex. 1.45, Z = " (YV; = Y)? ~ 02x2,, where m = n — 1. Also, the Z is
stochastically independent of the sample mean Y.

(a) Use the statement above to find the mean and variance of 52 = ¢Z (where ¢ ought
to be about 1/n). Find the mean squared error mse(cZ, o) = E, (cZ — 02)2. Check in
particular the result for ¢ = 1/(n—1), the classical factor to make the estimator unbiased;
for ¢ = 1/n, which comes out of the maximum likelihood paradigm (see Ch. 5); and for
c=1/(n+1).

(b) Find the best possible constant ¢ for estimators of this type c¢Z, using the mean
squared error on the o2 scale as criterion.

(¢) Find also the mean and variance of dZ'/2, seen as an estimator of o, i.e. on the
standard deviation scale, not that of the variance. Find an expression for mse(dZ'/2, ) =
E, (dZ'/? — ¢)2. Find the best d, according to this criterion.

(d) We may also finetune o estimation on the log-scale. Examine the risk function
mse(kZ'/?,0) = B, {log(kZ'/?) —log¢}?, and find the best value of k.

(e) A different solution to the issue of determining ‘the best constant’ when estimating
o, disregarding tradition and mathematical convenience, might be as follows. With
6% = Z/(n — 1) being the traditional sample variance, with 1/(n — 1) selected to achieve
unbiasedness on the o2 scale, consider o* = ¢,7, with ¢, to be fine-tweaked perhaps
a little bit away from 1. Find the ¢, that makes risk(c,0,0) = E, |¢,0 — o| smallest.
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This means relying on absolute error as loss function, and the solution needs numerical
minimisation of a function which needs numerical integration. Give a table with these
optimal ¢, for say n =10,...,30. Show that ¢, — 1 as n grows.

Ex. 3.5 Confidence interval for an exponential rate. Choose a sample size n, and
simulate i.i.d. variables Y7,...,Y,, from the exponential distribution, see Ex. 1.8, with
parameter 6 equal to say 6y = 3.33.

(a) Construct a 90 percent confidence interval [L, U] for 6. Check if 6y is contained in
this interval, for the data you generated. Repeat the experiment say 100 times, and
record how often the intervals contain 6y. What is in fact the distribution of N, the
number of the 100 intervals which cover the truth?

(b) In addition to checking whether the intervals cover the truth, compute the length
D = U — L, and give a histogram of its distribution. Find E D. Repeat also these
experiments with a couple of other sample sizes, and comment.

Ex. 3.6 Confidence interval for a normal variance. Let Yi,...,Y, be ii.d. from a
normal distribution. How can we set up confidence intervals for the standard deviation
o (or, equivalently, for the variance 02)? Writing m = n — 1, the sample variance is
02 =Z/m, with Z =" (YV; = Y)? ~ 02x?2,, from Ex. 1.45.

(a) Start with [a, b] = [[',,,}(0.05),T,,1(0.95)], an interval covering the x2, with probability
0.90. Transform a < ma?2/a? < b to the confidence interval ci = [(m/b)'/?5, (m/a)'/?5].
Show in detail that indeed Pr, (o € ci) = 0.90.

(b) Most often one wishes to estimate and assess the o parameter directly, being on
the same scale as the measurements, but once in a while it would be more natural to
communicate and interpret results on the variance scale. Show in suitable detail that
Pr,((m/b)5? < 02 < (m/a)5?) = 0.90; confidence intervals can in this fashion be easily
transformed, say from @ to g(6), as here, from o2 to o, or the other way around.

(¢) The construction above is ‘equitailed’, starting with 0.05 probability to the left of a
and 0.05 probability to the right of b. One might somewhat more generally use any [a, b]
with 0.90 probability for the x2,, needing I'y,(b) — I';,(a) = 0.90. The length of the 90

percent o interval above is proportional to 1/ a2 -1 / b/2. Minimise this function, say
for m = 10, 20, 30,40. Compare these length-minimising 0.90 intervals with the simpler

ones, and comment,.

(d) (xx same exercise for minimising 1/a—1/b, for 0. moral: it doesn’t matter so much,
and we're largely happy with the equitailed scheme. xx)

(e) (xx simple illustration with an easy dataset. xx)

Ex. 3.7 Confidence interval for a normal mean. Here we go through the basics for
constructing confidence intervals for normal means. Since approximations to normality
abound in statistical theory and practice, what we learn here quickly finds use also outside
the strict normality assumptions.
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(a) Start with the simplest prototype setup, a single Y from the N(&, 1) model. Show
that the random interval [Y — 1.96,Y + 1.96] captures ¢ with probability 0.95.

(b) Suppose Yi,...,Y, areii.d. from the N(&, %) model, at the moment with standard
deviation parameter o taken known. With Y as usual being the data average, show that
V(Y =€) /o is standard normal, and deduce from this that Y +1.96 ¢ /y/n is a 95 percent
confidence interval for €.

(¢) In most cases also the o is unknown, however. Let ¢ be the usual empirical standard
deviation, see e.g. Ex. 3.4. Show that the natural construction
Y& VY -§ VnY -/
t= = = — = — (3.4)
a/vn o oo

has a distribution not depending on the two parameters, and that this distribution, call

it G, is symmetric around zero. Deduce also that with ¢y, = G, 1(0.975), the random
interval Y + 0 ,,6/+/n covers & with probability 0.95.

(d) Tt is then ‘only” a matter of finding and perhaps tabulating the distribution G,, of t.
It is in fact the celebrated t distribution, with df = n—1 degrees of freedom, see Ex. 1.46.
But even without that specific knowledge detail, we could easily have simulated a high
number for ¢, from (3.4), and read off the required quantile. (xx also: ¢y, not far from
1.96 with n moderate to big. xx)

(e) In more generality, suppose 3 is a model parameter for which there is an estimator
B with distribution N(8, c2a?), say, with a known factor ¢,. Suppose also that there is
a statistically independent estimator & for o, with the property that 52/02 ~ x2, /m, for
a known m. Then show that ¢ = (3— B)/(cnG) ~ ty,. Put up a 0.99 confidence interval

for 8 based on this.

(f) Suppose Xi,...,X,, and Yi,...,Y,, are random samples from two normal groups
with equal variance, say N(&;,02) and N(&,0?). Find the distribution of the difference

of sample means D,, = X — Y, and construct a confidence interval for 6 = & — &. (xx
check for other cases in the book, testing, CDs. xx)

Ex. 3.8 Normal quantiles: estimation and confidence. Consider again the setup of
Ex. 3.3, with a sample of Y; from the normal N(y, 0%) model. In the present exercise we
care about quantiles, as opposed to ‘only’ the mean or the standard deviation.

(a) Show that the c.d.f. of Y; may be written F(y) = Pr(Y; <y) = ®((y — p)/0), with
®(x) the c.d.f. for the standard normal (i.e. the pnorm function in R). Show that the ¢
quantile F~1(q) is equal to v, = p + z,0, with 2z, = ®7!(g). Thus the 0.95 quantile is
Yo.05 = 4+ 1.645 0, etc.

(b) Find the mean and variance of the natural estimator 3, = Y + z,5, where o =
(Z/m)Y/?, with Z as in Ex. 3.4 and m =n — 1.

(¢) Show that we may write

Ta =4 ~ 1+ (@[ VRN + 200 (K fm)'/? = 1 = 240
= o[(1/VR)N + z{ (K /m)'/? = 1],
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in terms of N ~ N(0,1) and K,, ~ x2,, with these being independent. Verify that the
pivot
Vn(Yg — Vq) N N+ Zq\/ﬁ{(Km/m)l/2 —1}

W, =
i G (Ko /m)!/?

has a distribution not depending on p,o. It can be simulated, for any given sample size
n and quantile level g. With a, such that Pr(—a,, < W, , < a,) = 0.95, convert this
to a 95 percent confidence interval for v,. Note that for ¢ = 0.50, the median case, the
distribution of the W), , is the t¢,,, the t with degrees of freedom m =n — 1.

(d) (xx nils calibrate better, in view of large-sample things coming below. xx) Use the
delta method of Ex. 2.47 to show that /n{(X,/m)/?—1} —4 N(0, ), and explain that
Wiq —a N(0,1+ %zg) Construct an approximate 95 percent confidence interval for v,
based on this. [xx simple data illustration, perhaps inside story xx]

(e) Consider more generally any smooth function v = g(p, o). With 7 = ¢(f1, ), use the
delta method to find the limit distribution of /n(¥ — ). Use this to set up a confidence
interval for ~.

Ex. 3.9 The empirical distribution function. (xx nils will perestroik this in view of
exercises in Ch2. xx) Assume there is an i.i.d. dataset Yp,...,Y, from an unknown
distribution, with c.d.f. F(t) = Pr(Y; < t). The empirical distribution functionis F,(t) =
n~t 3" I(Y; < t), the simple binomial proportion of points falling in (—oo,t]. We saw
in Ex. 2.55 that F,, with probability 1 tends uniformly to F'; here we learn about how
fast this happens, via convergence in distribution.

(a) Explain that the empirical distribution function is the cumulative of the probabil-
ity measure that puts probability mass 1/n at each data point. This is the natural
nonparametric estimator of the unknown F'.

(b) Construct a version of Figure 3.1, left panel, where n = 100 datapoints are simulated
from the distribution f = 0.50 Expo(r1) 4 0.50 Expo(ry), with rates r1 = 2.00 and ro =
4.00. The empirical F,(t) is the natural nonparametric estimator of the underlying (and
typically unkwown) F.

(c) Since we know so much about the binomial, we quickly learn a few basic properties of
the F,,. Show that F,(t) is unbiased for F'(t), and that its variance is F(t){1 — F(t)}/n.

(d) Consider the process Z,(t) = /n{F,(t) — F(t)}. Show that it has mean zero, and
that Z,(t) —4 Z(t), say, where Z(t) is a zero-mean normal with variance F(t){1— F(t)}.
Show also that

cov{Z,(t), Z,(t)} = F(t){1 — F(t")} fort<t.

Compute and display the Z, plot, using the same data values as for the previous figure;
in other words, construct a version of Figure 3.1, right panel. [xx nils emil: we might
contemplate putting comments such as the following in a ‘comments’ format, at the end
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Figure 3.1: Left panel: the real underlying data-generating F(t) (dashed, red), with
the empirical distribution function F,(t) (full line, black), computed from a sample of
n = 100 data points from F'. Right panel: the process Z,(t), computed for the data used
for the same data. In 95 percent of such cases, the maximum absolute value of the Z,,
process will be below 1.358.

of certain exercises, with pointsrs to things to come, connections, etc. xx| Such plots may
e.g. be used to check model adequacy — if the data come from a distribution not close
to the F' used to construct the plot, then the Z, plot will deviate aignificantly from the
zero line. To understand what might qualify as ‘significantly different from the zero line’
means we need theory for the behaviour of the full Z, process, not merely the pointwise
result that Z,(t) —q4 N(0, F(¢t){1 — F(t)}).

(e) (xx some pointers: to Ch. 9. the 1.358 limit. kolmogorov-smirnov. and to Glivenko—
Cantelli theorem, in Ex. 2.55. the F;, is used in CoW Story. there is full process conver-
gence Z,, —q Z, a Gaussian zero-mean process with covariance function F(y)(1— F(y)),
see Ch. 9. kolmogorov-smirnov things. xx)

Ex. 3.10 Estimating the normal density. Most often the statistical interest lies in
estimating some parameter related to, or expressed through, the normal distribution,
like the mean, spread, or quantile, as illustrated above. In some situations one wishes
to estimate the density itself. Consider once again a sample Y7, ...,Y, from the normal

N(p, 0?).

(a) For the parameter o, we shall again use Z = > (V;—Y)? ~ 0%x2,, withm = n—1,
as in several previous exercises. With the traditional default estimator 6% = Z/(n — 1)
of (1.5), find formulae for the mean of 1/5% and loga.

(b) Construct unbiased estimators for 1/02 and for logo, and then for the log-density
function log f(y,&,0) = —logo — 3(y — p)?/o? — log(27). In (xx pointer to exercise
Ch8) we also construct an unbiased estimator on the direct scale f(y,&, o).
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(c) For independent samples X1, ..., X,, and Y7, ...,Y,, from normal populations N(¢1, 0%)
and N(&3,03), construct an unbiased estimator for d(y) = log{ f2(v)/f1(y)}

Confidence via normal approximations

Ex. 3.11 Confidence intervals via normal approzimations. (xx make connection to Wald
tests to come in Ex. 4.5. xx) As we've already seen in various situations of Ch. 2, there
are often estimators for interest parameters for which there is approximate normality.
Then various recipes under strict normality can still be used, but as approximations.

(a) Suppose ¢ is such a parameter of interest, for which there is an estimator (}E, being
approximately normal, in the mathematical sense of \/ﬁ(QAS — ¢) —4 N(0,72), for some
appropriate limiting variance 72. Suppose also that there is a consistent estimator 7 of 7,
with 7/7 —, 1. Show that Z,, = Vnld— ) /7 =4 N(0,1); you may check with Ex. 2.23.

(b) Show under these mild and very frequently met assumptions that
Pr(¢ € ¢ +1.967//n) — 0.95.

In other words, the [$— 1.96 7/+/n, 3—!— 1.967/y/n] is an approximate or asymptotic 95
percent interval for ¢. Note the grand generality here; this simple construction works in
a large variety of situations, also in nonparametric setups, cases with dependent data,
etc.

(¢) The simplest interesting application of this standard recipe is for the unknown mean
¢ of a population. Verify via the CLT of Ch. 2 that \/n(Y — &)/ —4 N(0,1). Hence the
t-based interval Y +1.96 5 /y/n, for which we have very precise probability computations
under normality, is large-sample correct even if the data are not at all normal.

(d) Suppose (X,Y, Z) is trinomial (n,p,q,r), with p+ g +r = 1. Construct an approxi-
mate 90 percent confidence interval for d = ¢ — p. — Check that you see how similar and
not complicated tasks can be tended to in the examples of Ex. 2.43.

Ex. 3.12 Confidence intervals for the standard deviation, outside normality. Consider
i.i.d. data Y7,...,Y,, from which we compute the classical

E:Y:nflim and a:{nili(nq’/f}l/g.

i=1 i=1

Here we illustrate the general large-sample methods by building confidence intervals for
o, with no assumptions on the distribution of the data, like normality. The only mild
assumption we make is a finite fourth moment, in order for & to have a clear limit
distribution. See Figure 3.2 for 100 simulated confidence intervals, all attempting to
capture the true value, here o = 1, for two different sample sizes.

(a) Make sure you understand and can prove that E and ¢ are consistent for £ and o,
from the LLN theorems of Ch. 2.
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Figure 3.2: Simulations, with datasets from the unit exponential, displaying lower and
upper confidence points for 90 percent intervals; the intervals attempt to cover the true
value 0 = 1, and will succeed about 90 percent of the time. Left panel: with n = 333;
right panel: with n = 1000.

(b) For S2 =n=1Y" (Vi — Y)?, use Ex. 2.41 to establish that v/n(S2 — 0?) tends to
N(0,0%(2 4+ v4)), in terms of the kurtosis parameter 74 = E{(Y; — &)/o}* — 3. Then
transform this, from variance to its square root, getting back to the real scale of the
measurements: using the delta methods of Ch. 2, show that /n(c — o) —4 N(0, (3 +

i'y4)02).

(c) Show that 34, = (1/n)> i {(Yi — Y)/5}* — 3 is consistent for 74, and use this
to construct an approximate 90 percent confidence interval for . Note that this is a
nonparametric procedure, totally free of other distributional assumptions, like normality;
if one assumes normality, as an extra condition, one may do more, of course.

(d) For an illustration, consider the unit exponential distribution; show that the standard
deviation is 1 and that the kurtosis is 74 = 6. Simulate a suitably high number of datasets
of size n = 333 from this distribution. For each simulated dataset, compute 74, to check
how close it is to ~4, along with the approximate 90 percent confidence interval for o.
Construct a version of Figure 3.2 (left panel for n = 333 and right panel for n = 1000).
Examine in particular the coverage of your intervals: how often do they contain the
correct o? Use simulations to check How big n must be, in order for 44 to be inside
[5.8,6.2] with probability at least 95 percent.

(e) Coming back to the general situation, show that

(Vs ~ o) =a%((o) (UZ; a4<0231374>>)’
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and also that

(x/\/ﬁﬁg: ?)) s NZ((S) 16 (;17’3’ ! ?5’74)),

in terms of kurtosis 4 and skewness 73 = E{(Y — £)/o}3.

(f) Generate a dataset of size n = 333 from the unit exponential, and construct an
approximate 90 percent confidence ellipsoid on your screen for (£, 0). Check if it contains
the true values.

Ex. 3.13 Inference for the normal density, via large-sample methods. Consider again
iid. data Y7,...,Y, from a normal density f(y,£,0). In Ex. 3.10 we constructed an
estimator f(y) with the property that log fA(y) is exactly unbiased for log f(y, &, o), for
any given n. Here we instead work out the large-sample approximations for the direct
estimator f*(y) = f(y, fA, 0), having plugged in the usual empirical mean and empirical

standard deviation.

(a) We have seen in Ex. 2.45 that (y/n(€ — ), /n(3 — ) tends to (A, B), independent
zero-mean normals with variances o2 and %02. For fixed y, wite x = (y — §)/o. Use the
delta method to explain that (i) v/n(loga —logo) —4 (1/0)B; (ii) vn((y — 2)/3 —(y—
€)/0) —a (1/0)(—A - 2BY); (ili) va{(y — £)?/62 — 2%} —4 (1/0)(~20A — 2°B). Then

combine these to show that

vn{log f*(y) — f(y, € 0)} —a (1/0)(—=B +zA + 32°B),

a zero-mean normal with variance 72 = 22 + (322 — 1)? = (1 4+ 2%).
(b) Show that the log-unbiased estimator log f(y) is close enough to this log f*(y) to

make the scaled difference v/n{log f*(y) — log f(y)} go to zero in probability; explain
that the two estimators therefore have the same limit distribution.

(c¢) Explain how a pointwise 90 percent confidence band can be constructed for the log-
density, of the type log f*(y) & 1.6457(y), which then may be transformed back to the
density scale.

Ex. 3.14 Variance of the variance estimator. Let Yi,...,Y, be ii.d., with mean &,
variance o2, and finite kurtosis v4 = E (Y; — £)*/o* — 3.

(a) With A =", (V; —Y)?, show that EA = (n—1)o?. This says that 02 = A/(n—1)
is unbiased for the variance, regardless of the underlying distribution.

(b) If the Y; are actually normal, then A ~ o2x?2,, with m = n — 1. Show that Varo? =
20%/(n —1).

(¢) Outside normality, work out an expression for Var A, and show that

n—3)a4 204 +”y4a4.

Varg? = (3+’Y4 -

n—1/n n—1 n
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(xx check carefully. use Ex. 2.47. with normality, 74 = 0; show that it reduces to chi-
squared based formula above. may perhaps check with O’Neill (2014). simulate a high
number of samples of size n = 12 from the t distribution ¢,,, with say m = 6, and ‘verify’
the formula. xx)

(d) (xx tie this to large-sample results, with (2 4 74)o* variances for limits, etc. xx)

Ex. 3.15 The binomial, the normal approximation, and confidence intervals. Consider
Y., a binomial (n,p). To invoke the CLT it is practical to use the ¥;, = X1 +--- + X,
representation, in terms of X; being i.i.d. Bernoullis.

(a) Use the CLT of Ch. 2 to deduce that the normalised variable

W 2imXi=p)  _ Ya-mp _ pop
{Var 350 (X —p)}/2 0 {np(1—p)}/2 {p(1 —p)/n}/?
converges to the standard normal N(0, 1) with increasing n. Discuss briefly the skewness
result from Ex. 1.3 above in light of the limiting normality.

(b) With pp = (Y +1)/(n + 2), show that the difference between W,, and W, p =
vn(pe — p) is so small, for large n, that W,, p must have the same normal limit. The
confidence intervals we construct below, based on p, can therefore alternatively be based

on ﬁB-

(c) Verify from the above that Pr(—1.96 < W,, < 1.96) — 0.95 as sample size increases,
and use this to construct an interval, based on having observed Y;, = y in a given binomial
experiment with known n, which covers the true p with probability approximately 95 cnfidence

percent.

(d) There are actually several constructions of such confidence intervals, with this prop-
erty. Here we shall point to one more such, since the method is famous and easy to
use, and since carefully considering these matters for the simple binomial model paves
and points the way to various partly related, partly similar findings and constructions
in more complicated situations, covered later in this chapter. Considering the basic es-
timator p = Y/n again, write 02 = p(1 — p)/n for its variance, and 52 = p(1 — p)/n for

its estimated variance. Verify that both asymptotic
equivalence

Wy = (ﬁ_p)/o'n and erz = (ﬁ_p)/an

tend to the standard normal in distribution. Now show that the arguments above, used
for W) in lieu of W,,, lead to the confidence interval p+1.96 7,, instead. Exemplify, with
n = 100, for the three cases y = 22, y = 55, y = 77, where you compute both versions of
the 95 percent confidence interval for p.

(e) Suppose certain details related to your applied research project require that you
compute the probability p that L < 1.33 R, where

L ={(G1/G)(G2/G)(G3/G)(Ga/G)}/*,  R={(CGs/G)(Gs/G)(G7/G)}?,
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in terms of G, . .., Gg being i.i.d. from the x?%, distribution (the chi-squared with degrees
of freedom equal to 12), and G = Z§:1 G;. Since it’s hard to find an exact formula, or an
exact answer in other ways, you sirnulate a high number sim of such vectors (G, ..., Gs),
and check for each simulation whether the event just described takes place or not. How
large should sim be, in order for your simulation based estimate of p to be correct to three
decimal places? Carry out such simulations and thus find p. Display also a histogram of
simulated L/R.

Quantiles and sample quantiles

Ex. 3.16 The sample median. Let Yi,...,Y, be ii.d. from a positive density f with

true median 6 = F~1(3).

(a) Suppose for simplicity that n is odd, say n = 2m + 1. Show that M,, has density of
the form

Cn AR ey - Py ().

(b) Show then that the density of Z,, = v/n(M,, —0) can be written in the form h,(z) =
gn(0 + z/+/n)/\/n. Prove that

hn(2) = (277)_1/22]”(9) exp{—%4f(9)222},

gn(y) =

where the Stirling approximation formula of Ex. 2.39 may be of use. The limit is the
density h(z) of the normal N(0,72), with 7 = 3/f(f). We have hence proved Z, —q
N(0,72), by Scheffé’s lemma; see Ex. 2.6.

(¢) So when is the sample mean best, and when might the sample median be the better
estimator, when it comes to estimating the centre point 8 of a symmetric density? This
is a matter of the ratio

p= =20 f(0),

_7
3/f(0)
where o is the standard deviation for f. Explain that if p < 1, then the sample mean is
best, and that if p > 1, then the sample median is the best.

(d) Compare the limiting distributions for the sample mean and the sample median for
the normal density, the double exponential density %exp(—|y|), and the Cauchy density

1/m)/(1+y?).

(e) Consider t distribution, with degrees of freedom v, see Ex. 1.46. find an expression for
the ratio p = p(v), plot (v, p(v)) in a diagram, and comment. Show that p(v) approaches
(2/7)1/? = 0.7979 for large v. Show that for v < 4.678, there is roughness at the top,
and the median is best; whereas for v > 4.678, there is a smoother density at the top,
and the mean is best. (xx See also Ex. 4.12. xx)

(f) Carry out a similar analysis for the binormal symmetric mixture model f = % N(—a, 1)+
3 N(a,1). For which values of a is the sample median a better estimator of the centre
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point then the sample mean? [xx later on, another chapter: the estimator which says )
is sample median if A, and sample mean if A, where A4, is the event that % /f(bo) < 0.
XX|

Ex. 3.17 Uniform ordering. Consider Uy,...,U, ii.d. from the uniform distribution.
Order these, to Uy < -+ < Upy-

(a) Show that U(z) has density connection to
Beta
n! distributions

gi(u) = S Z,)!ui_l(l —u)""" foru € (0,1).

Explain that Ug;y ~ Beta(i,n — i+ 1), see Ex. 1.21, show that EUy) = p; = i/(n + 1),
and that Var Ugy = pi(1 — p;)/(n +2).

(b) With i < j, show that (U, U;)) has density

n!
i G —i— D) (n—j)!

9i.g(u,v) = ( u o —u) TN = o)

for u < v. The idea behind the reasoning, and the ensuing notation, is that in order to
see Ugy € [u,u + du] and Uy € [v,v + dv], there is a multinomial situation, with five
boxes [0, u], [u,uw + du], [u + du,v], [v,v + dv], [v + dv, 1], inside which we need to find
i—1,1,7—¢—1,1,n — j datapoints.

(c¢) For an i.i.d. uniform sample Us,...,U, on [0,1], consider the uniform range R,, =
Uy — Uqy, where we know that Uy ~ Be(1,n). Show that given Uny = u, Uy,
can be represented as u + Z, where Z is the maximum of another uniform sample, of
size n — 1, on [0,1 — u]. Use this to show that the c.d.f. of R, can be expressed as
H,(r) =nr""1(1 —7) + " = nr"~! — (n — 1)r", and show that this is the Be(n — 1,2)
distribution. (xx pointer to exercises in Ch6, Ch7, or perhaps just to Story ii.5, depending
on how Abel story is written out. xx)

(d) In general, if Y7,...,Y,, are i.i.d. from a density f, show that the joint density for
the full order statistic vector (Y{(1),...,Y¥(y)) is n! f(ya))--- f(ym)), on the set where
Yy < -+ < Y(n)- In particular, for order statistics from the uniform distribution, show
that the joint density of (U(yy, ..., U,)) is flat and equal to n! on the set u(;) < -+ < u(y).

(e) Use this, in conjunction with Ex. 1.19, to demonstrate that connection to
Dirichlet

(U, Ugys -+, Umy) =a (D1,D1+ Da,..., Dy + -+ D)
=4 V1/S, (Vi +Vo)/S,...,(Vi+---+V,,)/S),

with Vi,...,V,, V41 being i.i.d. from the unit exponential, with sum S = V3 +-- -4V, 41,
and (Dy, ..., Dy, Dypi1) is a flat Dirichlet (1,...,1,1). The differences D; = Uy — Uiy
‘=4’ to signal equality in distributions. Show that this
leads to the representation of the order statistics process as

are called the spacings. We use

[nq] n+1

Ulnay = 9 _Vi/ D Vi for0<g<1. (3.5)

i=1 =1
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Here [ng| is the largest integer less than or equal to ng. (xx check things and where
they appear. Use the law of large numbers to show from this that U,q) —pr ¢- point
to things in Ch9 with full process convergence v/n(Up,q — ¢) =4 W(q), the Brownian
bridge. xx)

Ex. 3.18 Sample quantiles. Suppose Yi,...,Y, are independent observations coming
from the same distribution, with positive density f and c.d.f. F. The sample median
estimates the population median F~1(0.50), and similarly the sample quantile Q,(q), at
any prescribed level ¢ € (0, 1), estimates the population quantiles F~*(g). Built-in func-
tions like quantile(data,0.33) in R find such sample quantiles directly, so users do not
need the cumbersome linear interpolation fiddling between the two ordered observations
coming closest to ng, or to care too much about ties in the data due to rounding-off er-
rors. This exercise finds limit distributions for v/n{Q, (q) — F~'(g)}, where the previous
exercise corresponds to g = 0.50.

(a) Suppose U ~ unif and let Y = F~1(U). Show that Y has distribution F', and hence
density f.

(b) Explain that the full order statistic vector Y{;y < --- < Y{;) may be represented via
a correspondingly ordered sample of the uniform, as F’l(U(l)) << F*I(U(n)), with
Uiy being the ith ordered observations in an i.i.d. sample Uy, ..., U, from the uniform,
studied in Ex. 3.17. In particular, Y{;) has the same distribution as F~(U;).

(c¢) This also means that if we work out basic approximation results for the order statistics
from the uniform, we are a modest delta method step away from similar results for the
general case of a density f. In particular, suppose we manage to show \/ﬁ(U([an —q) =
Z,, for some Z,. Show that we then will have /n{Q,(q) — F~(¢)} —a (F~')'(q)Z,.

(d) To illustrate this point in a simple case first, show from what we already know
in Ex. 3.16 that \/n(U0.50,) — 0.50) —a N(0,0.502), for the uniform median. Then
show for a general density f that \/n{Q,(0.50) — u} —4 N(0,0.50%/f(u)?), with g =
F~1(0.50) the population median. Here we used an exact expression for the density of
the median. There are actually several other ways of proving this median of uniforms
result. Such an alternative approach is to use the representation (3.5). Explain that
Ugo.s50n)) = An/(An + By), with A, and B,, the averages of the first and second half of
ii.d. variables Vi,...,V,41 from the unit exponential. Use the CLT for the joint limit
distributions of \/n(A, — %) and v/n(B,, — 1), and then use the delta method to land
the N(0,0.50?) limit.

(e) Then generalise to the case of any given quantile level g. Show first that v/n(Up,q —
q) —a N(0,q(1 — q)), and then that the limit distribution is N(0,q(1 — q)/f(1q)?) for
V{@n(q) = g}, with pg = F~1(q).

(f) For the case of two quantiles jointly, like the lower and upper sample quartiles, show
for the uniform case that with g1 < ¢q,

(Vatanton o) sl (g) (20 2 02

Prove this via the explicit density for (U, Uy;)), given in Ex. 3.17.
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(¢) Tt is also instructive to use representation (3.5) via i.i.d. unit exponentials. Do
this. Then generalise to the case of r quantiles, for levels ¢; < -+ < .. Show for the
uniform case that there is a joint multivariate normal limit, with variances ¢;(1 —g¢;) and
covariances —q;qf for j < I. Then carry out the transformation arguments needed to
prove that for the case of an underlying positive density f, there is limiting joint normality
for \/n(Qn,; — pj}, where the limit has variances g¢;(1 — g;)/f(u;)* and covariances
q; (1 —qo)/{f(p;) f(pe)} for j < €, where uj = F~(q;). See Ex. 9.30 for convergence of
a full quantile process.

(h) (xx something here, or in new separate not long exercise: checking c¢(q){q(1—¢q)}'/? =
{q(1—q)}/?/f(F~'(q)) for a few densities, which tells us the sizes of confidence intervals
for quantiles, and more. link to g-q plots briefly discussed in Ch9. xx)

Ex. 3.19 Min and maz of two uniforms. Suppose Y7, Y5 are ii.d. from a density
f(y), and order them, to V; < V5. (xx ask per august and martin why this particular
probability calculation was of value. xx)

(a) Show that (Vi,V2) has joint density 2f(vy)f(v2), on the set where vy < vs.

(b) Then consider the special case of two datapoints from the uniform distribution on
the unit interval, ordered to Vi < V5. Show that R = V;/V; is another uniform on the
unit interval, and that W = Y, — Y] is a Beta(1,2). Show that Pr(Ys —Y; < ¢) =
Pr(Y —Y; >¢) =3, for c=1-1/v2 =0.2929.

(c¢) Find also the joint distribution for (R, W) here.

Ex. 3.20 Good and bad estimators. Suppose Xi,...,X, are i.i.d. from the density
f(z,0) = exp{—(z — 0)} for y > 6, i.e. a unit exponential starting at parameter 6.

(a) Explain that we have X; = 0 +Y;, with the Y; being i.i.d. from the unit exponential,
and hene that the order statistics can be represented as X(;) = 0 + Y(;), cf. Ex. 1.13.

(b) For the smallest and largest observations, show that 04 = Xy —1/n and Op =
X(n) — sn are unbiased estimators of 6, with s,, = 1 +1/2+ -+ 1/n the partial sum of
the harmonic series. Find their variances.

(¢) (xx a bit more. spell out that f5 is not consistent. a bit on X(iy — ¢; too, where
ci=1/n+---4+1/(n—i+1)=s, — s,—;. median is ok. xx)

Ex. 3.21 Ratios of ordered uniforms. (xx again, need checing and calibration, regarding
what is told where. xx) Let Uy, ..., U, be an i.i.d. sample from the uniform distribution
on the unit interval, and order these into Uy < -+ < Uy,). From these form the ratios

Vi=Un)/Ug, V2 =Ux/Ug), -, Vae1 =Uun-1)/Uw), Vo = Uwy/1.
(a) Show that the inverse transformation leads to the representation

U(n) = Vna U(nfl) = VnVn—h ceey U(Z) =V Vi1 ‘/Qa U(l) = VoVt Vol
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(b) Find the joint probability density for (V,...,V,), and show in fact that these are
independent, with

Vi ~ Beta(1,1), Vo ~ Beta(2,1), ...,V,,—1 ~ Beta(n —1,1), V,, ~ Beta(n, 1).

(c) Independently of the details above, find the density of Uy;y, and show that it is a
Beta(i,n — ¢ + 1). In particular, we have

7 1 ) 1
EUy = —— and VarUpy = (1— )
@ n+1 an A n+2n+1 n+1
The previous point then tells us that this Beta(i,n — ¢ + 1) can be represented as a
product of different independent Beta variables.

(d) It is of course a somewhat cumbersome simulation recipe for generating a uniform
sample, but it is a useful exercise, opening doors & minds to fruitful generalisations:
For n = 10, say, generate ordered uniform samples of size n in your computer via the
representation above, in terms of products of Beta variables. Carry out some checks to
see that each single U;) then has the right distribution, i.e. as described in (c).

(e) Work with the following generalisation of the construction above: Let X1, ..., X, be
an i.i.d. sample from the distribution with density f(x) = ax®~!, i.e. a Beta(a,1). Again
form the ratios V; = X(;)/X(;41) as above, leading to X(;y = V;Viy1---V,. Show that
the V; are again independent, now with V; ~ Beta(at,1).

(f) (xx just a bit more. indicate how this may be used to build more general models,
possibly in BNP. xx)

Ex. 3.22 Ezercises with sample quantiles. [xx various things, using the general results
above. interquartile range R,, = Q,,(0.75)—Q,(0.25), e.g. for the normal. for the Cauchy,
cool factoid: /n(R, —2) —4 N(0,72). Limit distribution of sample median, given the
two 0.25 and 0.75 quartiles. a little link to the nonparametric quantile processes of Hjort
and Petrone (2007) and the more general quantile pyramids of Hjort and Walker (2009).
also pointer to fuller process result in Ch. 9. the limit is (F~!)'(¢)W%(q). xx]

(a) (xx perhaps pushed to BNP chapter. xx) Consider building a model for V; < V5 < V3
as follows: (i) Vo ~ unif(0,1); (ii) given V5 = vg, let independently Vi ~ unif(0, v2) and
V3 ~ unif(vg, 1). Show that (Vi, V5, V3) has mean (1/4,2/4,3/4).

(b) Show that the densities of V1 and V3 become g1 (v1) = —log v; and g3(v3) = — log(1—
v3) on the unit interval.

(¢) Generalise to the case of V; < .-+ < V7, thought of as random versions of the
seven octiles: (i) V4 ~ unif(0,1); (ii) given Vi, let Vo ~ unif(0,Vy) and Vs ~ (V4 1),
independently; (iii) given Va, Vi, Vg, let Vi, Vs, Vs, V7 be independent and uniform on the
intervals (0, V2), (Va, Va), (Va, Vs), (Vs, 1), respectively. Show that V; has mean j/8, and
find the densities for each individual V.
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Ex. 3.23 Which order statistics interval contains the true median? (xx nilsrant, as
of 12-August-2024, to be properly cleaned and with motivation. xx) Let Y3,...,Y, be
ii.d. from a positive and smooth density f, with cumulative F'. With Y(;) <--- <Y,
the order statistics, which of the subintervals (Y(;), Y(;41)) will contain the true median,
p=F"1(3)

(a) Show that p; = Pr{u € (Y(3), Yis1))} = Pr{% € (U, Ugis1))}, in terms of the order
statistics from a uniform sample. We allow ¢ = 0,1, ..., n, here, for the n+ 1 possibilities
for which interval shall contain p, writing ug) = 0 and u(,41) = 1.

(b) Given U;y = u, show that the distribution of U(; 1) is the same as that of u+-(1—u)W,
where W is the smallest of n — 7 observations from the uniforom in the unit interval. Use
this to show that

1/2
pi = Pr{U(i) < % < U(i+1)} :/ PI‘{U(Z-+1) > % | U(i) = u}gl(u) du
0
1

1/2 = n—i
:/ ( 2 ) be(u,i,n — i+ 1) du,
0

1—u

involving a Beta density, as per Ex. 3.18. Show that this indeed leads to the explicit
probability

n= e, e (o

Hence we’ve reached the binomial probabilities, for a binom(n, %), via direct probability
calculations. Try also to give a direct argument.

(c) (xx generalise to general quantile y, = F~!(p). xx)

Moment matching methods

Ex. 3.24 Moment matching estimators. Suppose Y1,...,Y, are ii.d. from some model
f(y,0), where 6 = (64,...,0,)" is of dimension p. The method of moments consists in
fitting the first p empirical moments to the theoretical ones. In detail, one computes

My =Y =n"Y Y, My=n"'> (V;=YV)% ... . My=n""> (Y;i-Y),
i=1 i=1 i=1
and solves the p equations My = g1(0),..., M, = g,(0), where g1(8) = EpY, g2(0) =
Eg {Y —g1(0)}?, up to g,(0) = Eg {Y — ¢1(0)}7.

(a) For one-parameter models, explain that this amounts to fitting the empirical and
theoretical mean. If Y7,...,Y,, areii.d. geom(p), see Ex. 1.24, use EY; = 1/p to find the
method of moments estimator for p. For another application, assume Y7,...,Y, follow
the distribution with c.d.f. % on [0, 1]. Find the method of moments estimator for 6.

(b) For two-parameter models, explain that the method of moments means fitting the
empirical mean and variance to the theoretical ones. If Y7,...,Y;, are i.i.d. Beta(a,b),
see Ex. 1.18, find expressions for the method of moments estimators for a, b.

method of
moments
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(c) Define now hj(f) = Eg Y7 and N; =n~' 3", Y7 for j =1,...,p. The ‘method of
direct moments’ is to solve the equations h;(0) = N, for j =1,...,p. For p = 3, set ut
the two systems of three equations with three unknowns, i.e. g;(6) = M; and h;(0) = N;
for j = 1,2,3, and show that the solutions 6 = (51,152,53) are the same. Show in fact
that the two methods, fitting centralised or direct methods, are identical, in the general
case, for p > 2.

(d) For a given application one may choose one’s method based on convenience and
practicality. Sometimes formulae for the direct moments are more easily found that
those for the centralised moments. The case for using centralised moments is partly
numerical safety; the M; numbers may be much smaller than the N;. Exemplify this by
seeting up the two equations, with two unknowns, both for the centralised moments and
for the direct moments, for the case of the Beta(a,b) distribution.

(e) Generate n = 100 data points via the equation y; = [exp{a(§ + oN;)} — 1]/a, for
say (a,&,0) = (0.33,0.55,0.77), with the N; being standard normal. This is a skewed
extension of the usual normal model, which corresponds to a — 0 here. Find formulae
for the first three moments for this distribution. From your data, use the method of
moments to estimate the three parameters.

Ex. 3.25 Moment fitting estimators for the Gamma distribution. We now apply the
moment matching principle of Ex. 3.24 to the Gamma model with parameters (a, b), with

a—1

density proportional to y®~* exp(—by) for y positive; see Ex. 1.9, where we also give the

mean, variance, skewness, kurtosis.

(a) With Y and V,, the usual sample mean and sample variance, find explicit formulae
for the moment estimators @, b; show that @ = Y2/V,, and b = Y /V,,.

(b) Use skewness and kurtosis formulae, in combination with Ex. ??, to show that

V(Y —a/b) U 0 a/b?, 2a/b3
(Vatrn ) =2 () ~0(0) (st o oy n)

Transform this, via the delta method, using Ex. ??(d), to find the limit distribution

for the moment estimators. (xx nils drafting for solution, all algebra needs check-

ing: first gy (x,y) = 2?/y, derivatives 2z/y, —x?/y? computed at the means become
(2a/b)/(a/b®) = 2b and —(a/b)?/(a/b*)? = —b*. so /n(@ — a) —4 2bU — b*W. then
g2(z,y) = x/y, derivatives 1/y, —x/y* computed at the means become b?/a and —(a/b)/(a/b*)* =
—b3/a. so /n(b—b) =4 (b?/a)U — (b3/a)W. xx)

~

(¢) (xx application in Story ii.1. delta method for g(a, b), like the median. xx)
(d) xx

Ex. 3.26 Moment method estimators for the exponential family. Consider an expo-
nential family type model, studied in Ex. 1.50, with density of the form f(y,0) =
exp{0*T (y) — k(0)}h(y). Here T(y) = (T1(y),...,Tp(y))" is a collection of data func-
tions. As we saw in the exercise pointed to, many classical models are special cases. Now
suppose Y7,...,Y, are i.i.d. from such a model.
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(a) Spell out the basic moment matching method, fitting empirical and model based

moments for V;, Y2, ..., Y7,

(b) The moment matching idea is however flexible enough to allow us to choose other
data functions than those associated with Y;,..., Y. Show that matching the moments
of T1(Y;),...,Tp(Y;) lead to solving the equations

T; =¢;(0) = 0k(0)/00; forj=1,...,p,
with Tj =n! Z?:l Tj(Yi)~

(¢) Consider the setup of Ex. 3.25, with the Gam(a,b) distribution. There we studied
moment matching estimators based on sample mean Y and sample variance V,,. Show
that the principle above, using the exponential family structure, leads to fitting Y = a/b
and n=!>°" logV; = t(a) — logb.

Ex. 3.27 Mean and variance for background distribution for random sums. Suppose
there is a hidden background machine drawing first the number of dice N and then
reporting the sum Z = X7 + --- + Xy of outcomes from having thrown those N dice
(without reporting N).

(a) For the individual random X;, show that the mean and variance are £ = 3.50 and
0? = 35/12 = 2.9167. Use results from Ex. 1.37 to put of formulae for the mean and
variance of Z.

(b) If Z1,...,Z,, are observed, from such a two-layer-random machine, with mean 33.33
and standard deviation 12.12, estimate the mean and standard deviation for N.

Quantile matching methods

Ex. 3.28 Quantile fitting estimators. [xx will be used for GoT story. and for CoW
story. fitting parameters by solving quantile matching equations. xx] An alternative
to the method of moments, described in Ex. 3.24, we may fit empirical and theoretical
quantiles (actually in several ways). If Y7,...,Y, are i.i.d. from a density f(y,8), for
a parameter vector of length p, with quantiles Q(r,0) = F~1(r,0), we choose quantile
levels r1 < -+ < rp, and solve the p equations @, (r;) = Q(r;,8) with respect to the p
unknown parameters, where Q,,(r) = F;(r) is the empirical quantile.

(a) Suppose the distribution to be fitted has c.d.f. F(y) = ¢’ on the unit interval. Find
the estimator corresponding to fitting the empirical to the theoretical median. Starting
with the limit distribution for the median, see Ex. 3.16, find the limit distribution for
\/ﬁ(é\— 6). More generally, find the estimator 6, corresponding to fitting the r level
quantile, and then the limit distribution for \/n(6, — ).

(b) Consider Yi,...,Y, from the location Cauchy density fo(y — 0), with fo(x) =
(1/m)/(142?) the standard Cauchy. Its c.d.f. is Fy(z) = 3+ (1/7) arctan z, see Ex. 1.16.
Show that the r level quantile is u + F; '(r), and that this leads to the estimator
fr = Qu(r) — F;Y(r). Find the limit distribution for \/n(fi, — p). What quantile
level r leads to the sharpest estimator?

method of
quantiles
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(¢) (xx the normal, with median and interquartile range. more generally Q, (1 —r) —
Qn(r), and find the best r. xx)

(d) (xx the Weibull, with two equations. xx)

(e) (xx point to more general versions, minimising A,,(0) = 3wy, (r)){Qn(r;)—F 1 (r;,0)}>.

XX)

Ex. 3.29 Moment fitting and quantile fitting for the Weibull. As a general illustration
of moment and quantile fitting estimation methods, consider the Weibull distribution
with c.d.f. F(t) = 1 — exp{—(t/a)’} for t > 0, see Ex. 1.54.

(a) Take e.g. (a,b) = (3.33,1.44), and simulate n = 100 realisations. (i) Compute average

~

and standard deviation for these, and compute estimates (@, by,). (ii) From 0.25 and
0.75 quantiles, fit the two relevant equations to compute (a4, b,). Take the trouble to
display three curves, the correct underlying cumulative hazard function A(t) = (t/a)®

along with the two estimated versions.

(b) Repeat the experiment many times, to see how close the two (a,b) is to (a,b). Also,
as an instance of a focused question, how close the two median estimates m = a(log 2)*/*
is closest to the real median? Which of the two estimating schemes is best? We should
point here to the likelihood methodologies of Ch. 5; the maximum likelihood method
will be the winning strategy, beating both moment and quantile fitting, under model
conditions.

Minimum sum of squares and linear regression

Ex. 3.30 Linear regression and least squares estimation. Consider observed pairs (z;, Y;)
fori =1,...,n, where Y; conditionally on covariate x; is modelled to have mean ag + bz;

2. This is classical linear regression, widely used in theoretical

and common variance o
and applied statistics, most often analysed and used with the additional assumption
that the Y; are normally distributed. Importantly, the model is extended to the case
of multiple covariates below, see Ex. 3.31, 3.32, with more to come regarding statistical
testing (xx in Ex. 4.36 and one more xx). To see some of these classical methods in

action, check out Stories iii.1 and iv.1.

(a) It is helpful to reparametrise the regression line from ag + bx; to a +b(z; — z). Show
that minimising the sum of squares Q(a,b) = >_i"  {y; — a — b(x; — 7)}? leads to

n

a=1/m)> yi=7. b= (1;—3)yi/M,, with M, = (z; — 7).

i=1 i=1 i=1
(b) Show that @ and b are unbiased, with zero covariance, and variances o /n and o2 /M,,.

(¢) Let Qo = ming, Q(a,b) = X7, {y; —a—b(x; — Z)}2 be the minimum sum of squares,
Show that

Q(a,b) = {yi = a—blzi — 1)} = Qo +n(@ — 0)” + Ma(b — )".

Use this to show that 62 = Qg/(n — 2) is an unbiased estimator of .
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(d) We have found natural and unbiased estimators for a,b,o?, without yet making
assumptions of the underlying distributions for Y;, beyond means and variance. Assume
now, however, that the distributions are normal, so that Y; ~ N(a+ b(z; — ), 0?). Show
that (i) @ ~ N(a,0?/n); (ii) b~ N(b,0%/M,,); (iii) 62 ~ 02x2,/m, with m = n — 2; and
(iv) that these three statistics are mutually independent. For this last point, it may be
helpful to follow the line of proof for independence of sample mean and sample variance
for normal data, used in Ex. 1.45, now with an orthonormal matrix A with first row

(1//n,...,1//n) and second row ((z1 — z)/My'>, ... (z, — 7)/M}/?).

(e) Construct confidence intervals for b, for o, and for E (Y |zg) = a + b(zo — Z), the
mean value at a given position xg.

Ex. 3.31 Linear multiple regression and least squares. The celebrated linear multiple
regression model remains a cornerstone success story of theoretical and applied statistics.
It is a bag of tools for investigating the extent to which covariates x influence the outcomes
of certain interest variables Y. The standard formulation of the model is as follows. The
data collected can be organised into (z;,Y;), for individuals or objects i = 1,...,n,
where z; = (;1,...,2;p)" is of dimension p and y; of dimension one. The model then
postulates that

Y;:J]Eﬁ—l—EiZ.’lﬁi,lﬁl-i--"-‘r.’l?i’pﬂp-i-gi fori:l,...,m

where the ¢; are i.i.d. from the normal N(0,02). Thus there are p+ 1 parameters at work
here, the regression coefficients 8 = (f1,...,/3,)" and the error distributiuon standard
deviation . — Note that the very classical case of y; = a + bx; + ;, associated with a
scatterplot of (z;,Y;), is a special case; see Ex. 3.30.

(a) With Y the vector of Y;, & the vector of ¢;, and X the n x p matrix having
(Ti1s---,xip) as its row 4, show that

Y = XB+¢e~N,(XB,0%I),

with I the n x n identity matrix. This is a practical and compact linear algebra version
of the model formulation. We do assume that X is of full rank p, so that the symmetric
matrix X'X is invertible. This amounts to there being at least p linearly independent
covariate vectors in the X matrix; in particular, we must have n > p to identify the f;
coefficients directly from data. [xx but quick pointers to later chapters with Bayes and
to regularisation and to lasso and ridge here. xx]

(b) The least squares estimator J3 is the minimiser of Q(8) = ||Y — X 3|2 = S (v —
ztB)?. Show that > 1" | (V; — z!B)x; = 0. With ¥,, the p x p matrix n™* Y| z;at =
n 1 X'X, show that

B=(X'X)T'X'Y =571 a Y
=1

Prove also that Q(8) = Qo + n(B — B)'En(8 — B), with Qo = minay 5 Q(8) = Y1, &2,

A~

writing &; = Y; — x!f3 for the estimated residuals.
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c¢) Show that 3 is unbiased and that its variance matrix can be written cA(X'X)t =

(
(0 /)55t

(d) Show also that B has a multinormal distribution, so that in fact 3 ~ N, (83, (6% /n)S,;1).
This is the key result about the least squares estimators. We also need precise information
for estimating o; see Ex. 3.32.

Ex. 3.32 The residuals and their variances. The setup is an in the previous Ex. 3.31,
the Y ~ N, (Xf3,02%I) linear regression model. Above we focused on the least squared
method and the ensuing properties for the estimators of the regression coefficients, and
found B ~ N, (8, (6%/n)2,; ). We also need to deal carefully with estimators of o, the
residual standard deviation, also since we encounter statistics of the type (E] - B5)/0.

(a) From the basic Y = X + ¢ we may define the estimated residuals as
£=Y - XB=(—-H)Y, where H=X(X'X)"'X",

the so-called hat matrix, of size n x n. Show that H is symmetric and idempotent, which
means that H® = H and H? = H. This also implies (I — H)H = 0.

(b) Now consider the random minimum achieved by the Q(/5) which was used in the
least squares operation,

n

Qo = min{Q(B): all B} = Q(B) = |Y — XB|* = (Vi — aiB)%.

i=1

The main result, arrived at below, is that Qg/0? ~ x2,, with degrees of freedom m = n—p,
and that Qg is independent of 3. Show first that

()= () =0 (3, )

In particular, these two random vectors are independent; also, Qo = [|€]|> = Y*(I — H)Y
is consequently independent of X 3.

(¢) Show that (I — H)X =0, which impliese = (I—-H)Y = (I-H)(Y-Xp5)=(I—-H)e
and hence Qo = ¢*(I — H)e. We also reach the simple idenity

|el|* = " He + (I — H)e,

where the left-hand side is a 0?x2 and the two terms on the right-hand side being
independent. Show that the first term on the right-hand side is a 0?x2. Via independence
and a moment-generating function argument show then that Qo ~ 02)(31_1,. [xx pointer
to Ex. A.33. might rearrange the sequence of exercises to have mgf before this. xx]

(d) (xx a few things regarding estimating o. standard version is 2 = Qo/(n—p) ~ o2x2,/m.
make clear that things we’ve learned for the simple i.i.d. normal setup can be used here
too, without further ado. xx)
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(e) (xx can put in estimation of v = ¢/ things here, or in separate exercise. t distribu-
tions, intervals, tests. and how to predict yo for a new xg. xx)

Ex. 3.33 Confidence intervals for key parameters in linear regression models. Consider
the general linear regression setup of Ex. 3.31-3.32, where Y; = 28 +¢; fori =1,...,n,
and the g; being i.i.d. N(0,0?). The compact version of this is Y ~ N, (X3, o21).

(a) Construct a 90 percent confidence interval for o.

(b) From the general results obtained above, show that B\j ~ N(Bj,0%r;/n), with r; the
diagonal (j, j) element of X;;1. Show from this that t; = \/n(3; — 5j)/(r]1./2
distribution, with degrees of freedom m = n — p, and construct a confidence interval for

B; from this. If a 99 percent confidence interval for 3; is outside zero, how can this be

0) has a t,,

interpreted and used?

(¢) More generally, consider v = ¢'8 = ¢181 + - -+ + ¢,0p, a linear combnination of the
regression coefficients. Find the distribution of ¥ = ¢!, and construct a confidence
interval. This may be used to assess the size of 81 — 32, of 81 — %(52 + B3), and similar
constrasts. (xx could go on to max over all contrasts, Scheffé things. xx)

(d) Show that n(3 — B)'S.(B — B) ~ o?x2. Use this to construct a confidence region,
actually a confidence ellipsoid, for the full 8 vector.

Ex. 3.34 Predicting the next y. Suppose linear regression analysis has been carried
out, for a given dataset (z1,41),...,(Zn,yn). How can we predict what happens with
Yy, associated with another covariate vector x¢? This could be for an individual outside
the dataset, or in a time context, speculating about the next datapoint in a sequence.
An illustration of methods given below is in Story iv.1.

(a) Assume the regression data are of the form y; ~ N(2'3,02) for i = 1,...,n, as
with Ex. 3.31, and consider a new g, for which the not yet unobserved Y; is inde-
pendent of the other data, and with distribution N(z$3,02). Show that 7 = IBB ~
N(z§8, 255, 129 02 /n), and use this to form a confidence interval for the mean of Yy, as
opposed to for Yy itself.

(b) Then show that
Yo — Yo ~ N(0,0%(1 + n~af ¥, wo/n))

Construct a prediction confidence interval for Y based on this. Comment on the situation
with a large n, and on the difference between confidence for Yy and its mean.

(¢) Then consider the classic linear regression case with only one variable studied in
Ex. 3.30, with Y; ~ N(a + b(z; — Z),02). For predicting a not yet observed Yy ~
N(a + b(zg — ), %), demonstrate that

Yo — {@+b(zo — 7)} ~ N(0,0* {1+ 1/n + (z0 — 7)*/M,}),
with M, = 31" | (z; — £)?. Show that this leads to the 95 percent confidence band

Y(xo) €a+ b(wo — &) £ co{1+ 1/n+ (zo — ) /M, }'/?,
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for an appropriate range of z( values, where ¢ = tg 975 ,—2 the ¢ upper quantile. Illustrate
this with a simulated dataset, to see both where the band is tight and where it becomes
very broad. (xx two more sentences. easiest to predict for individuals not far from the
centre of the covariate distributions. xx)

Ex. 3.35 Linear regression outside normality. The aim here is to show and appreciate
that the classical coefficient estimators in linear regression setups are still approximately
normal, even when the error terms distribution is not normal. That this is so is essentially
thanks to basic large-sample theory, as partly summarised in Ex. 3.11, and specifically
to the Lindeberg type theorems of Ch. 2; see in particular Ex. 2.37. (xx pointer to other
regression large-sample results in Ch. 5. xx)

(a) We first deal with a simple setup with a single regression coefficient. Suppose y; =
x;f +¢; for i = 1,...,n, with covariates x; and error terms ¢; being i.i.d. from a zero-
mean distribution with finite variance 02. Show that the estimator minimising Q,,(3) =
S (yi —@iB)? is B = > xyi/M,, where M,, = "  x?. Show further that 3 is
unbiased with variance o2 /M,,.

(b) Then consider Z,, = M%/Q(B— ). Show that it has zero mean and variance o2, and
that it can be written Z?:l(xi/M}Lﬂ)si.

(¢) Deduce that B is approximately normal, even if the ¢; are not normal, provided
merely that D, = max;<y |$Z|/M71L/2 — 0. If in particular (1/n) Y., 27 stays bounded,
then the natural condition is (1/+/n) max;<y, |z;| — O.

(d) Then consider the general linear regression model Y; = z!8 + ¢; of Ex. 3.31, with
the z; being p-dimensional covariate vectors and S a p-dimensional vector of regression
coefficients. We take the ¢; to be i.i.d. with mean zero and finite variance o2, but do
not stipulate normality. The least squares estimator is 3 = X 1(1/n) Yo ;Y with
Y, =n'3" @zl It is unbiased with variance matrix (o2 /n)X; !, assumed to have

n

full rank. Assume 3, — X, a full rank matrix. Show that Z,, = \/ﬁ(ﬁ— B) =4 N,(0,X%),
under the condition R,, = (1/y/n) max;<,, ||z;|| — 0.

(e) Assume now that the x; are drawn i.i.d. from a distribution over the covariate space,
with finite variance matrix. Show that R,, —p. 0.

(f) Argue that the fine-tuned finite-sample confidence methods, developed in Ex. 3.31-
3.32 under exact normality, continue to hold in the large-sample sense, even if the distri-
butions are not normal. Give conditions for such results to hold.

(g) Suppose the same type of phenomenon is studied in both Denmark and Sweden, with
the same meaning for Y and covariates x7 and xo. This leads to regression estimators
Bp and Bg for the two analyses. Construct confidence intervals for d; = 8p ; — fBs,j, for
j=1,2.

Ex. 3.36 Least squares estimation in other setups. (xx to come. point is that minimising
Q0) = X" {yi — &(0)}? is a general principle, also outside linear regression. xx)

(a) (xx some easy cases. binomial. normal mean. poisson. xx)
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(b) Assume yi,...,y, are i.i.d. and gamma distributed (a,b), with known a. Find the
least squares estimator b. Then find the mean and variance of this estimator.

(¢) (xx regression, with mean a + bx;, then mean a exp(bz;). xx)

Notes and pointers

(xx to come. we point to various matters, genesis of crucial concepts, and also point to
chapters ahead. explain that yes, we’ve touched and used CLT and delta method and a
bit more here, but with details and more material to come in Ch 4. xx)

[xx CLT for binomials: associated with the famous names de Moivre (who showed a
version of this in 1733) and Laplace (who had a clearer and more general proof in 1812).
XX]

Briefly genesis of nepasennBo Mapkosa, the Markov, and the nepasernso Yeboiména,
the Chebyshov (often anglisised to Chebyshev, but his name was really Ye6oumés). men-
tion Kahneman et al. (2020).



1.4

Testing, sufficiency, power

In previous chapters we have learned about classes of distributions, their param-
eters, ways of estimating these from data, along with assessment of precision and
confidence intervals. The present chapter goes on to the fundamental statistical re-
porting tool of hypothesis testing. Statistical testing of hypotheses are data-based
rules for when to reject (and hence, when not to reject) a hypothesis about the
parameters of a model. Theory is developed to construct such tests in quite gen-
eral setups. A test is constructed to have a certain significance level, like 0.05,
the intended low probability of rejecting the hypothesis if it is in fact true. It
also has has a power function, the probability of rejection as a function of how far
the model parameters might be from the hypothesis. We learn the basics of the
Neyman—Pearson theory for optimal testing, and see it panned out for many situ-
ations, including the general setting of exponential families. The fruitful concept
of sufficiency, the notion that a lower-dimensional vector of summaries contains all
statistical information about a model, is also developed in this chapter, with im-
plications for both estimation and testing. (xx more to come in Chapters 5, 7, 8.
XX

)

Key words: ancillarity, completeness, conditional tests, exponential family, factori-
sation theorem, Neyman—Pearson optimality, power, p-value, sufficiency, testing,
Wald ratios

In the broad context of analysing data from models, the previous chapter dealt generally
speaking with estimators of relevant parameters, their precision, and comparisons, lead-
ing in particular to confidence intervals. The present chapter develops the methods and
applications further, in the direction of statistical testing of null hypotheses. Studying
such tests involves their interpretation, construction, properties, performance, along with
connections to confidence and yet other themes.

Consider in general terms data y stemming from a model with a parameter vector
0 = (61,...,0,), and suppose one wishes to test the null hypothesis Hy that 6 is inside a
well-defined subset © of the full parameter region ©. Precisely what constitutes a null
hypothesis is a matter of scientific and statistical context, often reflecting the intentions
and the overall aims of the data collection and its analysis. The null hypothesis is typically
a statement, concerning the nature of the mechanisms studied, the incorrect rejection

129
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of which one attempts to avoid. A simple illustration is testing whether a particular
regression coefficient is equal to zero (so Hy could be ‘B3 = 0°), or testing whether two
parameters, perhaps for two groups, are equal (so Hy would be ‘94 = 05’).

A test for such a hypothesis is a rule saying ‘Hy is to be rejected if data y fall in
the set R’, along with the complementary statement ‘Hg is not rejected if data y fall
in the set R®’. We talk here of the rejection region R and the acceptance region R¢. A
fundamental aspect of such a test to look for is its significance level, typically meant to
be a relatively small probability, like 0.05 or 0.01 or even smaller. We say that the test
has level a provided

Pry(reject Hy) < a for all 0 € ©y. (4.1)

With level 0.01 one is guaranteed such a low chance of falsely claiming that Hy is wrong,
if it is indeed correct. So for the illustrations briefly alluded to above, when statisticians
after careful analyses reject ‘63 =0’ or ‘04 = 6p’, therefore going on to claim that their
alternatives are valid, with ‘83 # 0’ and ‘04 # 0p’, these claims are seen as trustworthy
(and may make into publications), since the probability of these claims being false is so
low.

Often tests are carried out via appropriate test statistics, as when constructing a
T = T(y), a function of the data y, with the property that T ought to be inside some
normal and well-understood range under Hy conditions (we shall meet many cases of
determining the null distribution of such test statistics), but bigger, if Hy is wrong. In
such cases, the rejection region takes the form R = {y: T(y) > to}, with t( the rejection
threshold, chosen to have Pry(T(Y) > ty) < « for all f congruent with Hy.

Conceptually and operationally, there is a certain direction implied when setting up
an hypothesis Hy and its alternative. Rejecting Hy, with a test with low level testing
level «, leads to a positive claim about the alternative being true; the observed data have
landed in a region which if Hy were true has low probability. On the other hand, not
rejecting the null hypothesis should not be seen as ‘verifying’ Hy; one needs to be content
with the not so bold statement ‘the observed data do not provide sufficient evidence for
claiming that Hy does not hold’.

We are also keenly interested in the power of a test, which is the detection chance
Prg(reject Hy) as a function of 0, in the alternative parameter domain © — 0y. Thus
some tests are stronger than other tests with the same level, and we learn recipes for
constructing such in the exercises below. The power of a test clearly depends on the
quality of data, and typically of the sample size, as we shall see in exercises. Thus
detecing that 84 # 0p, for parameters of two groups, in a setup where there really is a
difference, becomes more likely with more data.

Below we also define, discuss, and use p-values, which are commonly quoted in most
branches of applied statistics work, typically to indicate how clear a potential finding is.
The idea is to quantify how unlikely it is, to observe what is actually observed, if some
relevant null hypothesis Hy is actually true. If the test is set up to reject the null if an
appropriate test statistic T" is sufficiently large, we're after p = Pry, (T > tobs), With tobs
the observed T for the given dataset. Some care is needed since that probability might
depend on parameters under Hy. The more careful version is

the level of a
test

test statistic,
rejection
threshold

the p-value
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p =max{Prg(T > tops): 0 € Op}. (4.2)

A small p-value, like p < 0.01, casts serious doubt on Hy, since the observed t,ps is so
unlikely. A rephrasing of the testing scheme, with significance level say 0.01, is to reject
Hy if p < 0.01.

A classic result for testing theory is the Neyman—Pearson Lemma, which in an
idealised setup with just two possible densities identifies the most powerful method for
testing one density against the other; see Ex. 4.7-4.9. This sharpens further questions
for more general setups, and we manage to find optimal tests in a variety of setups,
including for the broad exponential family class. This also necessitates exploring and
developing certain themes of independent interest and use, those of sufficiency, ancillarity,
completeness, conditional testing; see the string of exercises starting with Ex. 4.16. A
core idea in that terrain is that of data compression; for various models, a low-dimensional
vector of data summaries contains all relevant statistical information.

(xx then one paragraph with pointers to other chapters and perhaps to a few of the
stories. xx)

Testing, testing

Ex. 4.1 Testing a null hypothesis. Here we introduce the notion of null hypotheses and
their testing in a few simple setups.

(a) The probability p = Pr(A) of a certain event is meant to be py = 0.33, if the ma-
chinery around it works as it should. To test this one carries out the relevant experiment
n = 100 times, and the event takes place y = 44 times. Should you reject the 0.33 hy-
pothesis? Show that with Y ~ binom(n, p), the statistic T = (Y — npg)?/{npo(1 — po)}
is approximately a x?, under the null assumption that p = py. Show also that W tends
to be bigger than a x?, if p # po. Show that when using T as test statistic, the p-value of
(4.2) becomes p = Pr, (T > tops), with tons the value of T' seen with yons = 44. Compute
this p-value, and decide whether the p = 0.33 hypothesis should be rejected at the 0.05
level.

(b) Suppose (X,Y,Z) is trinomial with sum n and probabilities (p,q,r); see Ex. 1.5.
For concreteness, suppose a theory holds that (p,q,7) = (0.20,0.30,0.50), and that
(X,Y,Z) = (42,47,111) is observed. Is this enough to reject the theory in question?
Show that

W = (X —np)?/(np) + (Y —ng)*/(ng) + (Z — nr)?/(nr)

has mean equal to 2, and that it is approximately a x3, using the multidimensional CLT
for (X,Y, Z). Explain how this may be used to test the theory mentioned, and carry out
the test. This is actually the classic Pearson chi-squared test for multinomials; see Story
vii.1 for details, generalisations, and discussion.

(¢) You're rolling your die, but it takes you as many as yons = 15 rolls to get your first
‘6’. Does this make you suspect that the probability p of a ‘6’ is not 1/6, but lower?
With testing level o = 0.05, what is the set of suspicious outcomes of Y, the number of
throws to get the first ‘6’7
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Ex. 4.2 Connections from confidence intervals to testing. Though confidence intervals
and testing are two different reporting tools, when summarising inference, there are
clear connections. Suppose ¢ is a parameter of inference, perhaps a function of model
parameters, for which we can build both confidence intervals and tests.

(a) Suppose one needs to test the one-point null hypothesis that ¢ = ¢, a given value,
and that [L,U] is a 99 percent confidence interval. Show that the test consisting in
rejecting, if ¢g is outside this interval, has level 0.01.

(b) Suppose on the other hand that there is a well-defined 0.01 level test procedure for
testing ¢ = ¢, against ¢ # ¢g, for each candidate value ¢g. Gather together in a set A
all the ¢y values which are not rejected by the corresponding 0.01 level test. Show that
Pry(¢ € A) = 0.99, making A a 99 percent confidence region.

(¢) Go through the relevant details, from confidence interval to test and vice versa, for
the simple prototype case of the observation being Y ~ N(6,1).

Ex. 4.3 Confidence intervals for quantiles. Let Yi1,...,Y, be ii.d. from a continuous
density, positive on its sample space. How can we construct confidence intervals for the
median y = F~1(1), and more generally for quantiles 11, = F~1(q)? There are several
approaches here, but here we give the basic method via the empirical c.d.f.

(a) Let F, be the empirical c.d.f. for the data, see Ex. 3.9. If pg is the true median,
show that F,(uo) is a simple B,/n, with B, ~ binom(n,3), and that this implies
W (po) = vn{F,(po) — 3}/5 being approximately a standard normal. Argue that a
natural 0.05 level test for p = pp is to accept the hypothesis provided |W,,(uo)| < 1.96.

(b) Following the general testing-to-confidence connection of Ex. 4.2, show that the
associated 95 percent confidence interval becomes ci, = {u: |F,, (1) — 3| < 1.96/(2y/n)}.
In other words, we may read off the interval from a plot of F},, without knowing or taking
on board the details of the exact or approximate distribution of sample quantiles, as with
Ex. 3.18.

(c) Generalise to the case of any quantile u, = F~!(g). Show that the recipe above
leads to the confidence interval ci,, = {j,: |Fn(ttq) — q| < za{q(1 — q)}*/?/\/n}, where
Pr(|N(0,1)] < z4) = a, the confidence leve. For an illustration of these methods, check
Story 1.6, where we plot the empirical c.d.f. and read off confidence intervals for quantiles
F~1(q) at levels 0.10, 0.50, 0.90, for the weight of mothers pre pregnancy.

(d) Discuss ways in which more accurate confidence intervals can be constructed, using
the exact binomial distribution; for the median, for example, nF,(x) ~ binom(n, %)
This leads to slight modification of the horizontal bands when reading off intervals from
the empirical c.d.f.

Ex. 4.4 t testing, one and two samples. Testing the mean based on a sample of normal
observations is a recurring problem, in several guises, and with the famous t test being
the canonical procedure; details are given below. We also go through the basics for
testing the difference of means for two normals samples. Due to the connections to
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confidence intervals discussed in Ex. 4.2 we also find accurate confidence intervals for
the key parameters. Beyond their concrete relevance and repeated use in these standard
setups, the t testing procedures are important since similar constructions can be worked
with in large classes of more complicated setups, but then typically with approximations
to key distributions, rather than the exact solutions found under these classic strict
modelling assumptions.

(a) Suppose Xi,...,X, are i.i.d. N(§,0?), so far assuming o to be known, and that
one wishes to test Hy: & = &y against the alternative that £ # £y, where &y is some
appropriate given value, like zero. Using the exact distribution of X, cf. Ex. 1.2, show
that Z = (X — &) /(0/v/n) = /n(X — &) /o is standard normal under Hy, and that | Z]|
will tend to be bigger than a normal if Hy is not true. Explain that the test which rejects
Hy when |Z| > 1.96 has level 0.05.

(b) For the more realistic case of o not being known, the natural construction is the t
statistic ¢t = \/n(X — &)/, with & the empirical standard deviation. Show from Ex. 1.46
that t ~ t,,_1 under Hy, and write down a precise 0.05 level test.

(¢) Suppose now that the mean £ for the population of X; is to be compared with the
mean 7 for another population, where we have i.i.d. data Y1,...,Y,, ~ N(5,02). So the
task is to test Hy that & = n. Show first that Y — X ~ N(n — &,0%(1/m + 1/n). To
build a t statistic we need an estimator for the denominator. Writing &; and &5 for the
empirical deviances for samples 1 and 2, show that with

0% =101 + 205, usingc; =(n—1)/(n+m—2), co=(m—1)/(n+m—2),

we have 6% ~ o?x2,,,_o/(n +m — 2), independent of X — Y. Conclude that t =
(X =Y)/R ~ ty1m_o under Hy, where R = 5(1/m + 1/n)/2.

(d) Use these building blocks to also construct a 90 percent confidence interval for d =
§=n.

Ex. 4.5 Wald tests. Here we present the basics of so-called Wald tests, a general
and practical way of forming tests via approximate normality. Such tests are used very
routinely when looking for and reporting findings about regression coeffiecients in all
standard regression models; see Story i.6 for an illustration of this. The Wald tests can
be constructed almost immediately, from the confidence interval construction of Ex. 3.11,
via the interval-to-test connection of Ex. 4.2, but we tend to a few details to allow for
potential simplifications of assumptions. — Assume Y7,...,Y, comprise the data (not
necessarily i.i.d.), from a suitable model with vector parameter 6. Suppose further that
¢ = ¢(0) is a focus parameter, for which we need to test ¢ = ¢g, for a given null value

bo-

(a) Suppose there is an estimator gg with the property that \/ﬁ(af ®) —q N(0,72), and
that there is a consistent estimator 7 for this limit spread 7. Show as with Ex. 3.11 that
W, = \/ﬁ(qg — &)/T —4 N(0,1). Show that the arguments go through, with a limiting
standard normal, for W,, o = Vn(é — ¢o)/7, at the null hypothesis, as long as 7y is
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consistent for 7 at this null position; also, technically speaking, we only need to establish
Vi(d — do) —a N(0,72) at the null hypothesis. Conclude that the test which rejects
¢ = ¢ when |W,, o] > 1.96 has level approaching 0.05 (and of course similarly with other
chosen testing levels; level 0.01 corresponds to threshold 2.576, etc.).

(b) Explain that p = Pr(|N(0,1)| > Wy, 0.0bs) is an approximation to the exact p-value.

(¢) Suppose X ~ binom(100,p), with a need for testing p = 0.33. Set up a Wald
test, and compute the p-value, if z,,s = 44. Suppose then that there is an additional
Y ~ binom(100, ¢), and that one wishes to test p = ¢q. Set up a Wald test, and compute
the p-value, if (X,Y) are observed to be (44, 55).

Ex. 4.6 When confidence intervals for two parameters overlap. Suppose confidence
intervals for parameters a and b overlap. It might sound plausible that the null hypothesis
a = b will then not be rejected. To check aspects of this and related questions, consider
a prototype setup where a ~ N(a, 1) and b~ N(b, 1) are independent.

(a) With confidence level 1 — a, show that the canonical intervals are @ + zp and b+ 20,
with 29 = ®71(1 — a/2), e.g. the standard 1.96 for level 0.95. Show that overlapping
intervals corresponds to |d| < 2zg, where d =b—a ~ N(b—a,2)

(b) Consider the test of a = b which rejects when the intervals for a and b are dis-
joint. Show that this test has considerably lower significance level than «; for 95 percent
intervals this level is 0.0056.

(c) Yes, it is possible to have overlapping 95 percent intervals and yet reject a = b at
level 5 percent. Identify the range of d where this happens.

Neyman—Pearson optimal testing

Ex. 4.7 The Neyman—Pearson Lemma: the basics. (xx finetune the intro prose here.
xx) Suppose data y come from a density f, where there are just two possibilities: either
f = fo, which is the null hypothesis to be tested, or f = fi, the alternative. Here there’s
an optimal strategy, made clear by the so-called Neyman—Pearson Lemma, part of the
49-page landmark paper Neyman and Pearson (1933). For simplicity of presentation we
consider the continuous case, where fy and f; are densities on the relevant sample space
Y (which can be multidimensional). — A test functionis a T: Y — [0, 1], with T'(y) the
probability of rejecting fy if the the data take on value y. This setup even allows the
possibility of an element of randomisation, as in ‘if y turns out be 3.33 I throw some coins
and I reject Hy with probability 0.77’. Once in a blue while this might be of relevance,
with discrete data, but in practice such a test function T'(y) takes on only values 1, for
a rejection set R, and 0, for the complementary acceptance set R€.

(a) Show that the probability of rejecting the null, if the null is true, can be written
Pry, (reject) = [ foT dy.

(b) For a given testing level «, like 0.01, let T* be the test which rejects when f1(y)/fo(y) >
¢, with ¢ tuned such that

Pry (T* rejects) = / fo(y)dy = a.
y: f1(y)/fo(y)2e
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Let T be any other test function with the same level a. Show that the power difference
at f1 can be written

rr(f1) — wr(f1) = / Fi(T* —T)dy = / (hr — cfo)(T* — T) dy.

(¢) Show that among all possible tests, with level «, the 7™ has the strongest detection
power at position fi.

(d) (xx a bit more, to cover discrete case; and we may also allow competitors with
[ foT < a. xx)

Ex. 4.8 The Neyman—Pearson Lemma: more details. Here we tend to some further
details, related to the Neyman—Pearson Lemma and its proof, in Ex. 4.7.

(a) For two positive densities fo and f; defined on the same sample space, as with the
Neyman—Pearson Lemma, consider the event A. = {f1(Y)/fo(Y) > c}. Show that the
function p(c) = Pry, (A¢) = ffl(y)cho(y) fo(y) dy is a continuous and monotone function,
starting at 1 and ending at 0, when ¢ travels through [0,00). Hence deduce that there
for given « really is a unique ¢ in the Neyman—Pearson recipe.

(b) Illustrate the p(c) = Pry,(A.) in a few concrete situations, including (i) fo ~ N(0,1)
and f1 ~ N(1,1); (ii) fo ~ Gam(2.2,3.3) and f; ~ Gam(3.3,2.2).

(¢) (xx something about power at fi, when testing fo, is different from power at fo,
when testing f;. link to other exercise. xx)

Ex. 4.9 The Neyman—Pearson Lemma: applications. For the simple two-possibilities
setup we learn from the Neyman—Pearson lemma that there is a clear recipe for setting
up the optimal test for f = fy against f = f;. Here are some examples.

(a) Suppose Y ~ N(6,1). Show that the optimal test of level a = 0.01, for testing 8 = 0
vs. 8 = 1.234, is to reject if Y > zg.99 = 2.326, the upper 0.01 point of the standard
normal.

(b) In this situation, verify that one finds the very same optimal 0.01 level test, for any
alternative point 6; > 0. Hence the Y > zg.99 test is uniformly most powerful, against
all positive alternative.

(c) Generalise this to the case of data Yi,...,Y,, being i.i.d. from the normal N(6,c?),
with known . Show that the test which rejects § = 0 against § > 0 when Z,, = \/nY /o >
21_¢q is uniformly most powerful, among all tets with level a; here z;_, = ®71(1 — a).
Find its power function, and draw it in a diagram, for 6y = 1.234, ¢ = 1, and for
n = 10, 20, 30.

(d) Let Yi,...,Y, beii.d. from the N(y, 0?) distribution, with fy known. Consider the
problem of testing o = og against ¢ > gq, at level say 0.01, where oy is a prescribed null
value. Show that the test which rejects when V,, = 3" (Y; — 69)? > 75,0.99, the 0.99
quantile of the x2, is uniformly optimal. Find its power function.
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(e) Consider fy, the standard normal, and fi(y) = $v2exp(—+v/2[y|); they have both
zero mean and unit variance. Find the optimal test for fy against fi, with level 0.05,
and find its detection power at f;. Then do the opposite, constructing the best test at
level 0.05 for f; against fj, and find the power at fj.

(f) (xx with n = 10 data points, not merely one. put up the tests, find their powers.
comment. make separate exercise to see optimal tests for fy against f, with n data
points, KL approximations. xx)

(g) Suppose Yi,...,Y, are ii.d. from the exponential 6 exp(—0y). Find the strongest
0.10 level test for 8 = 0y against an alternative 1 > 5. Your test will not depend on the
01, as long as it is to the right of fy; hence this test is uniformly most powerful against
these alternatives.

Ex. 4.10 Density ratios and optimal testing: the normal and the Cauchy. The Neyman—
Pearson recipe is to reject when the density ratio fi(y)/fo(y) is sufficiently big. This
pans out differently in different situations, as illustrated here.
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Figure 4.1: Left panel: for the Cauchy density model, see Ex. 4.10, ratios f(y,61)/f(y,0)
(full line) and f(y,02)/f(y,0) (slanted) are shown, for alternative values 61 = 0.50 and
02 = 1.00 to the null. Also indicated are the rejection intervals [aq,b1] and [as, bs], for
the optimal tests against 61 and 6. Right panel: two pairs of power. Testing £ = 0
against £ > 0, see Ex. 4.12, for a normal sample of size 10 (lower pair) and 20 (upper
pair), at test level 0.05, as a function of £/o. The lower power is for the t test (slanted,
red); the upper power if for the normal based test (full, black), which requires that o is
known.

(a) For a single observation Y, consider testing fo = N(0, 1) against f; = N(6;,1), with
01 positive. Show that
fily) _ exp{—3(y—01)%}

- = exp(01y — 307).
fo(y) exp(—3y?) exp(bry — 567)
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Verify that this is a monotone function in y, regardless of the value of ; > 0. Argue
that ‘reject fo provided Y is big enough’ becomes the uniformly optimal test. Exhibit
the rejection threshold in Y > ¢, if the significance level is to be 0.10.

(b) The situation is rather different for the case of the Cauchy density f(y,0) = (1/7){1+
(y — 0)*} 1. Suppose we wish to test = 0 versus a positive ;. Show that

fly)  fly,6h) 1497

foly) — f(y,0) 1+ (y—61)

and draw this function in a diagram, for a few values of 6.

(c¢) For a concrete illustration, work through the alternative cases ¢; = 0.50 and 6, =
1.00, for each case finding the rejection interval, say [a1, ;] for the first and [ag, bo] for
the second, to give the optimal test, of level 0.10. (xx answers: [0.933,1.804] for 6;
[1.161,2.388] for #5. construct a version of Figure 4.1, left panel. xx) — The point is that
these rejection regions are different; the optimal test depends on the specific alternative,
and there can be no uniformly optimal test.

(d) Again for the sake of concreteness, compute the optimal possible power, for any 0.10
level test, at #; = 0.50 and at #; = 1.00. Compare these powers with that of the simple
test Y > 3.078.

(e) (xx there are two drastic differences here, between the simple normal and the non-
simple Cauchy. the first is that the log-density-ratio R(y, 6o, 61) = log f(y, 01)—log f(y, 6o)
is monotone, for the normal, and not at all monotone for the Cauchy. the second is that
of there being a simple one-dimensional sufficient statistic, in the case of Y7,...,Y, from
the normal, whereas no such statistic exists for the Cauchy. where is sufficiency in kiosk?
XX

)

(f) (xx something about more regularity with n data points; above we just did n = 1.
XX)

Ex. 4.11 Optimal average power. Supppose Y is observed, perhaps a full vector, from
a density f, where one wishes to test the null hypothesis f = fj, a given density. As we
saw in Ex. 4.10, there are cases where there is no uniformly optimal test, against all or
a subset of alternatives; the optimal test at f; might be different from the one at f5. In
one-parameter models, this is caused by the log-density-ratio not being monotone.

(a) Consider alternative densities fi,..., fm, given nonnegative weights of importance
Wi, ..., Wn. These may be taken to have sum 1. The weighted average power of a test
T, at these points and with these weights, is

m m
fr =y wmr(f;) = ij/fj(y)T(y) dy,
j=1 j=1
with 77(f;) the power at f;. Let f(y) = Z;n:1 wj f;. Show that this average power is

maximised, among all test functions T'(y) with level « at the null, by the T*(y) which
rejects Ho when f(y)/fo(y) > ¢, with ¢ tuned to give rejection probability o at the null.
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(b) For a one-parameter model f(y,#), consider testing of § = 6, against § > 6. For
any test function T'(y) with rejection level a at the null, consider in general terms the
weighted average power

fir = /MO 2 (6) dw(6),

with 77(8) = [ f(y,0)T(y)dy the power of the test at position . Show that 7r =
Jy=o, FW)T(y) dy, featuring the density f(y) = [,., f(y,0)dw(6). This is the model
density averaged over all alternatives to the null, as weighted by the dw(f) measure.

(¢c) Show that the test maximising this weighted average power is rejecting the null if
f()/f(y,00) > ¢, with ¢ tuned to have null level a.

(d) (xx alittle more. the marginal density, or predictive density, with a link to Bayes, but
specifically with a ‘prior’ over the alternative space. can take Cauchy with aexp(—a#)
over the halfline. xx)

(e) (xx can look at N(&,02) model, testing the null that f = N(0,1), against the alter-
native that £ > 0, or ¢ > 1, or both. show first that the NP test against alternatives
(1.1,2.2) and (2.2,3.3) are indeed different, so there is no uniformly most powerful test.
then maximise average power, using a weight density we give our readers, with

n

Fonveessom = [ (Il & o) faute.o)

perhaps a data example. xx)

(f) (xx make sure we have a good version on board of a lemma which says the Wilks test
D,, = 2{l;, max — ¥n(60)} is an approximation to this optimal weighted power test. can
be in Ch 4, but then pointed to already here. xx)

Ex. 4.12 The t test and its power. Suppose Y1,...,Y, areii.d. from the N(¢, 0?), with
testing of £ = 0 required against £ > 0. This is simple and standard, in the case of o
being known, but needs the t test in the case of ¢ being unknown and estimated from
the data, as we have seen in Ex. 4.4, Setting up the test uses the relevant t distribution,
from ¢t = \/nY /G ~ t,_1, but for studying the power function also the noncentral t
distribution is required.

(a) Consider first the case of ¢ being known. Show that z = \/nY /o is standard normal
under the null, and that the 0.05 level test becomes that of rejecting when z > zy =
$-1(0.95) = 1.645.

(b) Show that at a given & > 0, we have z ~ N(y/n¢/o,1), and that this leads to the
power function m, n(&/0) = ®(v/n&/o — zp). Compute and display this power function
for the case of n = 10 and n = 20, as with the black full curves of Figure 4.1 (right
panel).
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(¢) Then consider the more complex situation where o is not known, needing the empir-
ical standard deviation & of (1.5). We have seen in Ex. 1.46 that

L VY _ VnY o N, 1)
o oo (X3 /db)t/2’

with nominator and denominator being independent, and where the degrees of freedom is
df = n— 1. The probability density gqs(«) and cumulative distribution Ga¢(z) of this t4s
distribution are moderately complicated, see the exercise mentioned, but that does not
concern us much, as long as we can consult a table or run an algorithm to find associated
quantiles and probabilities. Show hence that the t test, with level 0.05, must consist of
rejecting when ¢t > ¢y = Ggfl (0.95). Using qt(0.95,df) in R, we find 1.833 and 1.729
for n = 10 and n = 20. Check that qt (0.95,df) becomes close to 1.645 as df increases,
and explain why.

(d) For the power of the t test, show that 7, ;({/0) = Pre/(t > to), where

ViY  N(v/ag/o,1)
T 6 GG/
again with nominator and denominator independent. Explain that the power function
therefore can be written

Wn,t(g/o—) - Pr{/o(t Z tO.m) =1- Gm(to,m, \/’ﬁg/g)v

with G, (x, A) denoting the cumulative distribution for this noncentral ¢ with degrees of
freedom m and noncentrality parameter A. This function is complicated, but can easily
be found numerically via e.g. pt(x,m,lambda) in R. Construct a version of Figure 4.1,
right panel, perhaps with other sample sizes than 10, 20. Comment on your findings.

t

(e) Describe how the two-sided tests and power functions pan out here, whem & = 0 is
to be tested against £ # 0. Make a corresponding version of Figure 4.1, right panel, with
the relevant two-sided power functions.

Ex. 4.13 Establishing that a parameter is close to zero. Suppose 0 is some effect
parameter, where the scientific context relates to establishing that it is close to zero. In
such situations it might be natural to test Hy: |0] > ¢, for some known small threshold e,
against the alternative that § € (—¢,¢). In some applications the § might be the difference
between two effect parameters, aiming to infer that these are close. This is turning the
tables, somehow, compared to the more traditional setups, where the hypothesis to be
tested is that a parameter is close to zero, against the alternative that it is some distance
away.

(a) To study the main features of such a situation, consider a prototype setup with
i.i.d. observations Y1,...,Y, being N(§,1). Show that \/nY ~ N(y/nd, 1), which implies
Zp =nY? ~ x3(nd?).

(b) Explain that it is natural to reject the null, and hence claim that |6| is small, if
[v/nY| < ¢, or equivalently Z, < 2, for ¢ calibrated to reach testing level e.g. o = 0.05.

This is equivalent to Z,, < c¢?. Show that Prs(|y/nY| < ¢) = I'1(c?,n6%), in terms of the
c.d.f. for the noncentral x3.
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Figure 4.2: Left panel: power functions for the bioequivalence tests of Ex. 4.13, with
n = 200 (slanted curve) and n = 400 (full curve), and threshold ¢ = 0.20. Right panel:
limiting local power functions for the two tests of Ex. 4.14, for 8 < 6y against 6 > 6, in
terms of the local alternatives parameter §, with 6, = 6y + §//n. The more powerful
test is based on Y, the other on the median M,,.

(c) Explain that to have significance level 0.05, we need I'; (¢?, ne?) = 0.05. Find the full
power curve 7, (8) = Prs(Z, < ¢?), and comment on the level of its maximum. Construct

a version of Figure 4.2, left panel, for threshold ¢ = 0.20, for sample sizes n = 200 and
n = 400.

Ex. 4.14 Power and local power: a particular case. This exercise studies a prototype
situation in some detail; the type of calculations and results will be seen to be rather
similar in a long range of different situations. Let Y7,...,Y,, be i.i.d. data from N(6,0?).
One wishes to test Hy: 6 = 0y vs. the alternative that 8 > 6y, where g is a known value
(e.g. 3.14). Two tests will be considered, based on respectively ¥, = n=! > " | Y; and
the median M,,.

(a) For a given value of 6, prove that /n(Y, — 60) —4 N(0,02) and /n(M, — ) —4
N(0, (7/2)c?). Note that the first result is immediate and actually holds with exactness
for each n; the second result requires more care and follows from Ex. 3.16.

(b) Working under the null hypothesis 6 = 6y, show that

7z, = M —4N(0,1), Z!= W —a N(0,1),

where 7 is any consistent estimator of o.

(c) With 2995 = ®71(0.95) = 1.645, conclude from the above that the two tests that
reject Hy provided respectively

Xn > 0+ ZOA953/\/ﬁ and M, > 60y + 20_95(71'/2)1/26'\/\/5,
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have the required asymptotic significance level 0.05; o, = Pr{reject Hy |6 = 6y} — 0.05.
(There is one such «,, for the first test, and one for the other; both converge however to
0.05.)

(d) Our object is then to study the local power, the chance of rejecting the null hypothesis
under alternatives of the type 6,, = 0y+d/+/n, i.e. close to the null value. In generalisation
of (b), show that

2= VA=) o), 2= YO R)  N( /225 ),
where the convergence in question takes place under the indicated 6y + §/y/n parameter
values. Here we need to generalise the result of Ex. 3.16, to the case where 6,, moves with
n. Writing F, for the distribution of Y;, you may do this by first showing that M,, has
the same distribution as F;1(M?) = 0y + §//n + o®~1(M?), where M is the median
for an i.i.d. sample from the uniform, and then using the delta method.

(e) Use these results to show that

7, (8) = Pr{reject with Y;, test |0y + d/v/n} — ®(6/0 — 20.95),
7 (8) = Pr{reject with M, test |0y 4+ 6/v/n} — ®((2/7)26/0 — 20.05),

n

for the two power functions. Draw these in a diagram, and compare, as with Figure 4.2,
right panel.

(f) Assume one wishes n to be large enough to secure that the power function is at least
at level § for a certain alternative point #;. Using the local power approximation, show
that the required sample sizes are respectively
2 2.2

o 9 . o?/c 9
—— (21— d = ———(z_
(0, — g e FEe) A e = g e e )
for tests A (based on the mean) and B (based on the median), with ¢ = 1/2/7. With
level a@ = 0.05, compute these sample sizes for the case of § = 0.95 and 6, = 6y + %0.

TlAi

(g) One sometimes defines the ARE, the asymptotic relative efficiency of test B with
respect to test A, as

ARE =1limnx (01, 8)/np(01,5),

the limit in question in the sense of alternatives #; coming closer to the null hypothesis at
speed 1/y/n. Show that the ARE in this particular situation becomes ¢? = 2/7 = 0.6366;
test A needs only ca. 64 percent as many data points to reach the same detection power
as B needs.

Ex. 4.15 Power and local power: general results. In Ex. 4.14 we examined two particular
estimators and tests, for the mean parameter in the normal distribution, and found
precise limit distributions and local power functions, for alternatives of order 1/y/n from
the null hypothesis. Here we go through the appropriate generalities. The setup is that of
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data, of sample size n, informing us about a key parameter 6, where the null hypothesis
Hy: 0 = 0y is to be tested against the alternative 8 > 6, with 6, some specified value.
We assume the data leads to one or more estimators 5, with the basic premise that at
the null parameter 6y, we have A, = \/ﬁ(t’?f o) —q N(0, k?), for the appropriate &.

(a) With 8 an estimator for x, under Hy conditions, show that Z,, = \/ﬁ(é\— 00)/Ro —a
N(0,1) under Hy. Explain that the test which rejects when Z,, > 21_, = ®7!(1 — ) has
asymptotic testing level o, i.e. a, = Pro(Z, > z1-4) — a.

(b) We now make two more assumptions, concerning natural smoothness in a O(1/+/n)
size local neighbourhood around 6y: (i) if the true parameter behind the data is 6,, =
80 + 6/+/n, then the same limit N(0, x2) obtains for A, = /n{6 — (8o + 6//n)}; (ii) the
estimator K still converges to the same  in probability. Show that Z,, —4 N(d/k,1),
and that this gives a limiting local power function,

7, = Pr(reject |0y + 5/v/n) = 7(8) = ®(0/k — 21-0)-
Show that this limit power function has derivative ¢(z1_4)/k at zero.

(¢) The above result is useful in its own right, providing an easy approximation to the
power function for alternatives not far from the null hypothesis value. It may also be
used for comparing different tests, built as above, for different estimators, say é\j Assume
the conditions above hold for these, with \/ﬁ(@ —6) —a N(0,£7), leading to estimators

kj for k; and to test statistics Z,, ; = v/n(0; — 6p)/%K;. Explain that the best estimators
lead to the best tests, with derivatives ¢(z1_q)/k; at zero.

(d) (xx briefly about ARE, as above. xx)

Sufficiency, factorisation theorem, completeness

Ex. 4.16 Sufficiency. (xx below we use the Bayes theorem; where should we point. xx)
Flip a coin ten times and record the number of heads. It is intuitively clear that the
number of heads in the ten tosses is as informative about the unknown 6§ = Pr(heads) of
the coin, as the exact ordering in which the heads and tails occurred. In fact, the ordering
in which the heads and tails occurred appear irrelevant for making inference about 6.
This leads us to the notion of a sufficient statistic. If X is your data, stemming from
a member of the family of distributions P = {FPy: § € O}, and T = T'(X) is a statistic
(i.e., any function of the data, real of vector valued, not depending on the parameter),
then T is sufficient for P, we often just say for 6, if the distribution of X given T is the
same for all values of the parameter 8. We look more into this definition in Ex. 4.18.

(a) Here are a few examples. (i) Let Xi,..., X, be independent Bernoulli(f) random
variables, and set T = > " | X;. Use the Bayes theorem to show that Pre(X; =
21, Xn = 2, [T = t) = 1/(}) on {(z1,...,2n): 2 = 0,1,21" | &, = t}, from
which we conclude that T is sufficient for 6. (ii) Let Yi,...,Y, be ii.d. Pois(d) and
set S =31 ,Y;, and, again, use the Bayes theorem to show that Pro(Y; = y1,...,Y, =

yn|5 = 8) = (H:‘L:l 1/yl')/(n§/3')7 on {(y17~-~7yn): Yi = 07172a"'72?:1yi = S},

sufficient
statistic
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which shows that S is sufficient for 6. (iii) Let Zy,...,Z, be ii.d. unif(0,0) and let
T = max;<p Z;. Provide an intuitive argument for T' being sufficient for §. (iv) Let
W ~ N(0,02) and consider T = |[W|. Again, provide an intuitive argument for why 7T is
sufficient for o2.

(b) In view of Ex. (a) we may deduce the following result: Let Xi,..., X, be discrete

random variables and T' = T'(X3,..., X,,) a statistic. Show that T is sufficient if and

only if

Pro{X1 =21,..., X = 25}
Pro{T(x1,...,2,) =t}

(4.3)

is constant for every x1,...,2,. In Ex. 4.18(f) we will see that this result holds more
generally, that is, if X = (X,...,X,) has density fy and T = T(X) has density gq(t),
then T is sufficient if and only if 8 — fy(x)/ge(T(x)) is constant for every .

(¢) The problem with the approach in (b) is that one has to make a guess at a sufficient
statistic, find its distribution, and then compute the ratio in (4.3). The Fisher-Neyman
factorisation theorem provides us with an automatic way for finding sufficient statistics.
Suppose that Xi,...,X,, are random variables with joint density (e.g., joint p.m.f. or
joint p.d.f.) fo(x1,...,x,), and let T = T(X4,...,X,) be a statistic. The factorisation
theorem says that T is sufficient if and only if there exists nonnegative functions h and
g so that for all § and z

fo(xr, .. xn) = go(T(x1, ... xn))h(z1, ... xy).

Prove the discrete version of this theorem, that is, the version where fg(z1,...,2z,) =
Pro(X1 = 21,...,X, = x,,). For a general proof of this theorem, i.e., one in which fy is
any density, see Ex. 4.18.

(d) Use the factorisation theorem verify that the statistics from (a) are indeed sufficient.
Find also a sufficient statistic based on an independent sample from the unif(6,6 + 1)
distribution. Compared to the four other sufficient statistics of this exercise, what is
particular about this latter?

(e) A sufficient statistic is not unique, and different sufficient statistics may provide
varying degress of data compression. At one extreme are sufficient statistics not providing
any compression of the data: (i) If Xy, ..., X,, stem from a distribution with density fy,
then then full sample is sufficient. Prove it. (ii) Let X1,..., X, be i.i.d. from an unknown
continuous distribution ', and let T' = (X(1), ..., X(5)) be the order statistics. Show that
the conditional distribution of X1, ..., X, given T does not depend on F'.

(f) For the lack of uniqueness, you can use the factorisation theorem to prove that any
one-to-one transformation of a sufficient statistic is sufficient. And, for an example of
increasing data compression, let Xy, ..., X, be i.i.d. N(0,02) and consider the statistics
Ty = (X1,..., X)), Ty = (X3,...,X2), Ts = (X{ + -+ X}, X 4+ -+ + X2), and
Ty = X? +---+ X2. Clearly, Ty is a function of T3, T3 is a function of Ty, and T is a
function of 77, so the data compression is increasing in the indices. Use the factorisation
theorem to prove that they are all sufficient.
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Ex. 4.17 Simulating data based on sufficient statistics. A sufficient statistic T contains
all the information provided by the original sample X = (Xi,...,X,,) about some pa-
rameter 6. Thus, given the sufficient statistic 7', one may throw away the original data,
and create an equally good data set X' = (X1,..., X/ ). What makes this possible is,
of course, that the conditional distribution of X given T does not depend on 6. That
X’ is as good as X means that X’ has the same distribution as X, so, for example, an
estimator based on X’ will be as good (i.e., same risk, see Ch. 8) as the same estimator
computed from X. Let us look at a few examples.

(a) Let X and Y be independent Expo(¢). Show that T = X + Y is sufficient for 6.
Consider the random variables X’ = UT and Y’ = (1 — U)T, where U is unif(0,1)
and independent of X and Y. Think of U as a random variable you simulate on your
computer knowing 7. Show that (X', Y') ~ (X,Y).

(b) Let X and Y be independent unif(0, §) for some § > 0. Show that T" = max(X,Y)
is sufficient for . Consider the random variables X’ = nUT + (1 — )T and Y’ = (1 —
nUT +nT, where U ~ unif (0, 1) and 17 ~ Bernoulli($) are independent and independent
of X and Y. Show that (X', Y’) ~ (X,Y). Find the conditional distribution of (X,Y)
given T' = t.

(¢) Prove the general version of the above results, as discussed in the classical article
Halmos and Savage (1949). That is, let X € R™ be a random variable with distribution
Pry, and assume that T is sufficient for §. Suppose we use a random number generator to
simulate X’ € R™ from the conditional distribution Q;(B) = Pry(X € B|T = t). Show
that X’ ~ X for all 6.

Ex. 4.18 The factorisation theorem. Above, in Ex. 4.16(b) we proved the factorisation
theorem for discrete random variables. In this exercise we prove the general version,
valid for any distribution dominated by a o-finite measure (see Ex. A.2(a) for definition
of o-finiteness). First, we must be more formal in our definition of a sufficient statistic.
Let {Py: 0 € O} be a family of probability distributions on a measurable space (X, .A).
The statistic T is sufficient for {Py: 6 € O} if there is a function p(4,z) of A € A and
x € X, not depending on 6, such that for all A € A and 0 € O,

/ p(A,z)dPy(x) = / Is(z)dPy(x), forall G €gG.
G €]
Using the terminology introduced in Ex. 7?7 on conditional expectation, this means that
p(4, ) is a version of the conditional probability Py(A|T) for all A € A and 6 € ©. Here,
Py(A|T) is shorthand for the more cumbersome Py(A|o(T)), with o(T') the o-algebra
generated by T

We now turn to the factorisation theorem. Suppose that the family {Py: 0§ € ©} is
dominated by a o-finite measure p. For each 6, let fy be the density of Py with respect
to p. The statistic T is sufficient for {Py: 6 € O} if and only if there exist nonnegative
functions h and gy such that
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for all # € ©. The proof of the factorisation theorem relies on the existence of a proba-
bility measure @ dominating {Py: 0 € O}, i.e., Py < @ for all §, with this dominating
probability measure on the form @ = Zj’;l a;Py,, with a; > 0 and each P, belonging
to the family {FPy: 0 € ©}. In the following string of exercises we first prove the factori-
sation theorem assuming the existence of such a probability measure ), and defer the
construction of @ to Ex. (d) [xx or perhaps the appendix? xx].

(a) Before we get to the proof of the factorisation theorem, let us work through some
preliminaries. Let @ be as just described. First, show that @ is indeed a probability
measure. Second, show that Py < p if and only if Q < p. Finally, show that when u is
o-finite, dQ/du = Z;’;l ajdPy, /dp.

(b) Suppose that {Py: 6 € O} < Q < u, as described above. Assume that 7T is sufficient
for {Py: 6 € O}, i.e., there exists p(A,-) that is a version of Py(A|T) for every 6 € O.
First, show that

/QMWWMM@=/MA@M@%
G G

for all G € o(T'). This shows that T is sufficient for the augmented family {FPy: § € ©} U
{Q}. Next, since Py < @, we can switch measure, dPy = (dPy/dQ) dQ (see Ex. 7). Use
this measure switching in combination with the tower property of conditional expectation
to show that

mw=/%w@wmw@,

for all A € A, where h(z) = dQ/du(zr) and go(T'(z)) = Ee{dPy/dQ |o(T)}(x), which
proves (why?) one way of the factorisation theorem.

(¢) To prove a converse of (b), still under the {Py: 6 € ©} < @ < p assumption, show
first that if, for all § € ©, the density of Py with respect to @ only depends on z through
T'(z), and is hence o(T')-measurable, then Q(A|o(T)) is a version of Py(A|o(T)) for all
0 € O. Next, assume that fyo(x) = go(T(x))h(x) as described in the theorem. Appeal
to (a) and Ex. 7?7 in the appendix, to show that

90(T (x)

ap, )
>y aige, (T(x))’

@(T/) =

and conclude that T is sufficient.
(d) [xx construction of @ here or in appendix xx]

(e) Suppose that {Py: 6 € O} satisfies the conditions of the factorisation theorem, and
let T be a sufficient statistic, taking values in the measurable space (7,C). Thus, for
every 0 € O, the density of Py with respect to u is fo(z) = go(T'(z))h(z). For every
0, we let PJ(B) = Py({x € X: T(x) € B}) for B € C, be the distributions induced
by T on (T,C). Let Q = 3°72, a; Py, be as described above, let (QT~')(B) = Q({z €
X: (T(x) € B}) be the measure induced on (7,C) via @, and define a measure v on
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(T,C) by v(B) = [53°72, ajge,(t) A(QT~1)(¢), for B € C. Use what you found in (c)
and the change of variable formula (see Ex. A.15(c)), to show that

PI(B) = /B 9o (1) du(t),

for every B € C. This shows that PJ has density go(t) with respect to v.
(f) Use (e) and the factorisation theorem to prove the general version of (4.3) in Ex. 4.16.

(g) Let us look at the result in (e) for a concrete example. Suppose Xi,..., X, are
iid. Expo(f), and let T = >"" , X,;. Show that the joint density of X1,...,X, can
be written fo(z1,...,2,) = go(T(21,...,2n))h(21,...,2y), and conclude that T is suffi-
cient. To find the marginal distribution of 7', show that the m.g.f. of T is Eg {exp(aT)} =
(1 —-a/8)™™, a < 0, from which we get that T ~ Gamma(n,#). Find a measure v on
the range of T, with respect to which P (B) = Py(T € B) has density go(t). Convince
yourself that v is o-finite.

Ex. 4.19 The exponential family class, II. (xx some technical but important things for
the expo family. calibrate how and when we do sufficiency. xx)

(a) Suppose Y1, ...,Y, arei.i.d. from an exponential family model f(y,0) = exp{0*T(y)—
k(0)}h(y). From the factorisation theorem (Ex. 4.16(c)), the statistic T = (T1,...,T,)",
with T; = (1/n) >i, T;(Y;) for j = 1,...,p, is clearly sufficient for the natural param-
eter @ = (61,...,0,). Use Ex. 4.18(e) to show that T has a distribution following the

same exponential form, i.e., a distribution with density, say
gn(t7 0) = exp{91t_1 + T + epfp - kn(e)}hn(yla e ayn)v
for suitable k,, and h,,.

(b) (xxabout conditioning. Point to Ex. 4.32. Rewrite this exercise xx). Let {P, 4: (a,b) €
O = 0, X0} be a family probability measures having densities of the exponential family
form f,5(y) = exp{a®U(y) + b*'V (y) — k(a,b) }h(y) with respect to pu. By the form of
fa,p(y), you might, in view of the factorisation theorem, conjecture that for each a, V' is
sufficient for b. To see this, fix a, write the density f, 5 as

fap(y) = exp{b"V (y) — ka(b) }ha(y),

where kq(b) = k(a,b) and h,(y) = exp{a'U(y)}h(y), and appeal to the factorisation
theorem. That V is sufficient means that there exists a version of the conditional prob-
ability P, (A |V) not depending on b, say pYl V(A). The distribution of U conditional
on V is then PglV(U € B) = Pg‘vU’l(B), for B a measurable set in the range of
U. It remains to construct a measure A\, dominating P,U~!, and an expression for the
conditional density (dPY V-1 /d\,)(u) belonging to the exponential class.

Ex. 4.20 The exponential family class, III. (xx more on the exponential family, more
general parametrisations, examples. the moderate jump from (1.6) to

f(y,0) = exp{Q1(O)T1(y) + - -+ + Qp(0)Tp(y) — k(01,- .., 0,)}h(y),

with @Q1(0),...,Qp(8). and, crucially, lift to regression models. xx)
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(a)

(b)

Ex. 4.21 Minimal sufficiency. In Ex. 4.16(e) we saw that for any model there are
many different sufficient statistics, often with some providing more compression of the
data than others. Since the purpose of sufficient statistics is to compress the data, this
naturally leads to a search for a sufficient statistic providing the maximum amount of
data compression, while still retaining all the information about the unknown parameter
of interest. Such a statistic is called a minimal sufficient statistic.

The formal definition is as follows: Let T be sufficient for {Py: § € ©}. Then T is
minimal sufficient if for any other sufficient statistic S, there is a measurable function g
so that T' = g(S) almost surely, for all values of . Another way of saying this is that if
T is such that the implication ‘if S(z) = S(y) then T'(x) = T(y)’ holds for any sufficient
statistic S, then 7' is minimal sufficient.

(a) (xx emil, what is U here. xx) Let X ~ N(0,0%). Show that both X and |X| are
sufficient for o2. Let X’ = U|X| + (1 — U)|X]|, and show that X ~ X’. We see that |X|
provides more data compression than X, but is it minimal? We will soon have the tools
to find out.

(b) Suppose that T is minimal sufficient, and let S be some sufficient statistic. Show
that the o-algebra generated by 7" must be contained in the o-algebra generated by S.
Show that any one-to-one function of a minimal sufficient statistic is minimal sufficient.

(¢) The following theorem say the mapping from data to likelihood function, that is,
x — {fo(x): 0 € ©}, is minimal sufficient. The proof is based on the observation that
from the factorisation fy(z) = fX15(x|s)f5 (s), the likelihood 6 ~ fy(z) is proportional
to 0 — f5 (s), for any sufficient statistic S. In other words, the likelihood function fp(x)
is a function of the likelihood function f5'(s) of any sufficient statistic S, and therefore
the fp(x) is minimal sufficient.

Here is the theorem: Let fp(x) be the density of X. Suppose there is a function
T(x) is such that T'(x) = T'(y) if and only if for some h(z,y) >0

fo(x) = fo(x)h(x,y) for all 6.

Then T'(X) is minimal sufficient. To prove this, first, use the factorisation theorem to
show that T is sufficient. Second, introduce another sufficient statistic S, and again use
the factorisation theorem to show that 7" must be a function of S.

(d) (i) With X ~ N(0,02), show that the absolute value |X| is minimal sufficient. (ii)
Let Xi,...,X, be iid. N(u,0?), and show that (X,,S,) with X,, =n~! 3" | X, and
S, = > (X;—X)? is minimal sufficient. (iii) Let Y1,...,Y, be ii.d. from a distribution
with density fo(y) = exp(—(y—0)) for x > 6 and § € R. Find a minimal sufficient statistic
for 6.

(e) Let g(x) be a positive and integrable function on (—oo, 00). Set c(a,b)™1 = fab g(x) dz,
and define f,,(x) = c(a,b)g(x)l(qp) (x). Let Xi,..., X, beiid., from the distribution
with density f,(x). Find a minimal sufficient statistic for (a,b).
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(f) Let Xq,...,X, be iid. from a distribution with density fo(x) = 1/2exp(—|z —
0]), z,0 € R. Show that the order statistics are minimal sufficient.

(g) Let Y7,...,Y, be iid. from a distribution with a density of the exponential class
foly) = exp{zg’:l Q;(0)T;(y) —k(61,...,0,)}h(y) of full rank (see Ex. 4.20). Show that
T = (Ty,...,Tp), where T; = n=t 3" T;(Y;) is minimal sufficient for (61,...,6,). (xx
coordinate this with Ex. 4.23 completeness below. xx) In fact, a stronger result holds,
namely that T is complete (see, e.g., Schervish (1995, Theorem 2.74, p. 108) for a proof
of this fact, and Ex. ?? for a proper treatment of completeness). That T being complete
and sufficient (the latter follows from the factorisation theorem) is stronger than minimal
sufficiency, is proven in Ex. 7?(g).

(h)

Ex. 4.22 Ancillary statistics. The opposite of sufficiency, in a sense, is ancillarity. If
X ~ Py, a statistic U = U(X) is ancillary if its distribution is the same for all §. In
other words, U by itself does not provide any information about 6. This does not mean
that U should be disregarded when making inference on 6. It just means that if you only
learn U = u, you have not learned anything about 6.

(a)
(b) [xx ancillary stat in location families, and in scale families xx|

Ex. 4.23 Completeness. Often, models are so harmoniously constructed that there are
clear one-to-one connections between estimators (perhaps based on a set of summary
statistics) and estimands, in the sense that there for each estimand is only one unbiased
estimator. Clarifying such regularity leads to the concept of completeness, which turns
out to be useful also when coming to conditional testing and optimal power in exercises
below. Technically, suppose some vector T' = (T4,...,T,)" has a distribution f(¢,6),
with the property that Eg h(T) = 0 for all § € © implies Pro{h(T) = 0} = 1 for all 0,
i.e. h(t) = 0 almost everywhere. We then say that T', or more formally its distribution,
over the relevant parameter region, is complete.

(a) Let X ~ binom(n,d), with & € (0,1). Show that X is complete; zero is the only
unbiased estimator of zero. (You may appeal to properties of power series.) Show that
X is complete as long as the parameter region contains an open interval. Show similarly
that if X ~ geom(p), see Ex. 1.24, then X is complete, again requiring only that the
parameter range for p contains an open interval.

(b) With Y3,...,Y, iid. from the uniform on [0, 6], consider M = max;<, Y;. Show
that if the parameter region is the full halfline § > 0, then M is sufficient and complete,
but that M is not complete if it is a priori known that § > 1.234, i.e. with a restricted
parameter range.

(¢) Suppose Y1,...,Y, are i.i.d. from the uniform distribution over [# — 1,6 + 1]. Show
that (Y{1), Y(n)), the smallest and largest, is sufficient, but not complete.

ancillary
statistic

complete
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(d) Consider Y being uniform on {1,...,0}, where 6 € {1,2,...} is an unknown param-
eter. Show that Y is complete. When the parameter region is e.g. {4,5,...}, however,
show that Y is not complete.

(e) If T is complete, show that any one-to-one transformation variable T/ = a(T) is also
complete.

(f) Consider Y7,...,Y, anii.d. sample from the double exponential with density f(y,0) =
3 exp(—|y —0]). Show that the full set of order statistics (Y(1),...,Y{y)) is sufficient, but
not complete; do this, by exhibiting two different unbiased estimators of 6.

Ex. 4.24 Completeness for the exponential family. For the large class of exponential
family models, see Ex. 1.50 (xx and follow-up exercises above xx), there is a completeness
lemma, as follows. Suppose Yi,...,Y,, are i.i.d. from the model f(y,0) = exp{6*T(y) —
k(0)}h(y), with T = (T1,...,T,)" and 6 = (64,...,0,)" varying in an open set, then the
vector of sample averages (77, . .. ,Tp)t is not merely sufficient, as seen in Ex. 4.21, but also
complete. We shall freely use this lemma. (xx but point to proof, check BickelDoksum or
Johansen or Brown or Schervish. perhaps requiring analyting continuation arguments.

point is that a(f) = Ey h(T) is a super smooth functions with all derivatives smooth. xx)

(a) Let Y3,...,Y, be iid. from the N(&,1). Show that the full set (Y1,...,Y,) is not
complete, but that the sample mean Y is.

(b) Consider Y7,...,Y,, i.i.d. from the Gam(a, b) model. Show that (3>"1 , V;, > " | log¥;)
is sufficient and complete. Identify similarly a sufficient and complete pair of statistics
for a sample from the Beta(a,b).

(c) Consider an i.i.d. sample Y1, ...,Y, from the N(¢,02). Show that (3, ¥;, > | V%)
is sufficient and complete, and also that (Y, ) is sufficient and complete. Suppose then
that the variance is postulated to be equal to the squared mean, so that the sample
is from N(6,6%). Construct two different unbiased estimators of 6, and show that this
means that (Y, ) is not complete. You may similarly construct two different unbiased
estimators of 62.

(d) Consider the linear regression model with Y; ~ N(a + bz;, 0?), studied in Ex. 3.30.
With @, b the least squares estimators, and Qg = Sy fafﬁ(xi —7)}?, show that the
log-likelihood can be written —nlogo — 2{Qo+n(a—a)*+ Mn@— )22 /0%, with M,, =
S (x; — )% Write this in the exponential family fashion, with natural parameters
1/02%,a/0?,b/c?. Argue via the general exponential family results that (Qo,fi,g) is both
sufficient and complete. Extend this, arguments and results, to the general multiple
linear regression model of Ex. 3.31.

Ex. 4.25 Basu’s Lemma. Consider a setting with data Y from some parametric family,
indexed by 0 € ©, where a suitable T is sufficient and complete.

(a) Assume that a suitable statistic Z = Z(Y) has a distribution not depending on the
0. Show that Z is independent of T'. This is called Basu’s Lemma. You may follow
this path: start writing Pre(Z € A) = p, by assumption not depending on 6. Show that
p = Eg h(T), for all 0, where h(t) = Pro(Z € A|T = t), another function not depending
on 6. Explain that this implies Pry(Z € A|T =t) = p for all 6.
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(b) Consider the familiar setup with Yi,...,Y, being i.i.d. from N(u,c?). For o fixed,
show that the mean Y is sufficient and complete for u; explain that all statistics Z with
distribution not depending on x must be independent of Y. Explain hence in particular
that 1, (¥; — Y)? is independent of Y. This has been demonstrated in different ways
in Ex. 1.44 and 1.45.

(c) In this normal sample setting, argue that the classic t ratio t = /n(Y — )/, with
& the sample standard deviation, is independent of (Y, 7).

(d) We have seen in Ex. 1.51 that the five-parameter binormal distribution is inside
the exponential family class. With (X1,Y1),...,(X,,Y,) ii.d. from the binormal, show
first that ()_( Y, 51,09, R,,) is complete and sufficient, with R,, the empirical correlation
coefficient. Show that R,, is independent of X,Y, 51,5 (xx check this with care xx).

Optimal conditional testing

Ex. 4.26 Conditional tests. Suppose in general terms that data y are observed from a
model with parameter 8, where the null hypothesis Hy: 6 € Oy is to be tested, against the
alternative that 6 ¢ ©y. Assume one computes U = U(y) and V =V (y). A conditional
test, with respect to V, with level «, is then to find a rejection region R(v), using the
distribution of U given V(y) = v, with

Pro{U(Y) € R(v)|V(Y) =v} <a forall § € ©.

Such tests are natural and important in multiparameter setups, as we shall see, and
various constructions succeed in ‘reducing the dimensionality’ down to the analysis of a
one-parameter family, where e.g. Neyman—Pearson more readily applies.

(a) Even when such a test has been constructed in a conditional modus, ‘what is unlikely
null behaviour of U given that V = ¢’, it may of course be translated or paraphrased
without the conditioning: one rejects if U(Y) € R(V). Show that the test also has
unconditional level a.

(b) From unconditional to conditional: Conditional tests as above have the form T(U, V) =
I(U € R(V)), built to have Ey {I(U € R(v))|v} = a. Assume now that V is complete
at the boundary 00 of the null hypothesis parameter region; see Ex. 4.23. Show that
if any test T(U,V) has constant level a at this boundary, then it is a conditional test,
with this level; Eg {T'(U, V)|V = v} = a for all § € ©y. (It might be useful to check the
function h(v) = E¢ {T(U, V)|V =v} —a.)

Ex. 4.27 Conditional tests: pairs of exponentials. Suppose X ~ Expo(a) and Y ~
Expo(a + ¢), and that one wishes to test 6 = 0, i.e. equal distributions, against § > 0.

(a) Show that the joint density may be written a(a + J) exp(—az — dy), with z = = + .
Find the distribution of Z = X 4+ Y, and show that the distribution of Y given Z = z
has the density

dexp(—dy) _ dexp(—dy)
Sexp(—dy)dy’ 1 —exp(—dz)

ga(yIZ):fz for 0 <y < z.
0

conditional
tests
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In particular, it does not depend on the 6. For the null hypothesis case of § = 0, show
that Y| z is uniform on [0, z].

(b) The natural conditional 0.05 level test is then to first compute z, and then to reject
if y < 0.05z. Show that it indeed has level 0.05, and that is the power optimal test
among all conditional tests, using Y given z. Verify that this conditional test is the same
as the unconditional test of rejecting when R =Y/(X +Y) < 0.05. Compute the power
function of the T* = I(Y < 0.05 %) test (in the testing function parlance of Ex. 4.7),
conditional on z, and unconditionally.

(c) At the boundary of the null, where § = 0, show that Z is complete. Show hence that
any test with level 0.05 also must be a conditional on Z 0.05 level test, via Ex. 4.27.

(d) We know that T*(y, z) = I(y < 0.05%) is the most powerful conditional test with
level 0.05; we now wish to extend this statement to T actually being the most powerful
among all tests with level 0.05. For any competing test T(Y, Z) with level 0.05, show,
since it must be a z-conditional 0.05 level test, where it cannot beat T, that

Eos{T*(Y,Z)| 2} > Eqs{T(Y,Z) |2z} forall§d>0,2z>0.

There is equality, to 0.05, at § = 0. Show from this that 7™ is more powerful than such
T, unconditionally; in suitable power function symbols, 7p«(a,d) > 7mr(a,d) for all 6 > 0.

(e) Suppose now that there are m independent pairs, X; ~ Expo(a;) and Y; ~ Expo(a; +
0), with sums Z; = X; +Y;; there are hence m+ 1 parameters with 2m data points. Show
that the optimal test is to reject when U,, = Y7 + --- + Y}, is small, given zq,..., 2p,.
Explain how the null distribution of U,,, can be evaluated via simulations. For an illustra-
tion, suppose three pairs (z;, y;) are observed: (0.927,0.819), (1.479,0.408), (3.780, 1.311).
Carry out the test of 4, and compute the p-value.

Ex. 4.28 Conditional tests: normal. (xx various situations with distribution of U | (V =
v), followed by natural conditional test. xx) Consider a pair of normals, where interest
lies in assessing their difference in means. This may of course be parametrised in different
ways, but one natural way is  ~ N(6,1) and y ~ N(0 + J,1). One wishes to test 6 =0
vs. & > 0, equivalent, of course, to testing equality of the means vs. Ey > Ex.

(a) Show that the joint likelihood can be written

f(x7y, 97 5) = (271—)_1 exp[—% (.’L’ - 0)2 + (y —0— 6)2}]
(2m) " exp{0z + oy — 22® — 1y® — 167 — L6+ )%},

where z = x + y, and with the main interaction between parameters and data being in
the 0z + dy part.

(b) Show that (y,z) is a binormal, and set up its mean vector and variance matrix.
Then use Ex. 1.41, or other algebraic methods, to show that y|z ~ N(3(z +6), 3); in
particular, its conditional distribution does not depend on 6.
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(¢) Through the conditioning on z the testing problem has been reduced from a two-
parameter to a one-parameter situation. For y|z ~ N(5(z+46), 5), show that the optimal
test is to reject when y—1z > (1/v/2)¢, with ¢ = ®~!(1—a) the standard normal quantile.

(d) Show that the above test, constructed to be optimal in the model for y| z, is equiv-
alent to that of rejecting whem D = y — z > /2c. (xx so the conditional test is an
ordinary unconditional test in disguise, or vice versa, in this particular situation. the
point is the general principle. xx)

(e) (xx Consider m pairs of normal data, of the form z; ~ N(6;,1) and y; ~ N(6; + 4, 1).

do the math, with the steps above. log joint density >~ (0;z; + 0y;), with z; = z; + y;.
conditional test, Zle y; big given 21, ..., 2. XX)

(f) (xx something re power. xx)

Ex. 4.29 Conditional tests: Poisson. (xx various situations with distribution of U | (V =
v), followed by natural conditional test. xx)

(a) We start with a single pair of Poissons, x with mean 6, y with mean 6v. Show that
the joint distribution becomes exp(—60 — 0)0*T¥~¥ /(z!y!). This inspires inspecting the
distribution of y given z = z + y. Show that y |z ~ binom(z,v/(y + 1)).

(b) To test v = 1 against v > 1, describe in details the natural conditional test which
rejects when y is big, given z = x + y.

(c) Next consider independent Poisson pairs z;,y; for i = 1,...,m, where x; has mean 6;
and y; mean 6;y. The model hence has m + 1 parameters for the 2m observations, with
~ the common multiplicative factor. Show that the joint distribution may be written

1

331191! o xm'ynll

[ =exp [— Z(ez +0i7) + Z{(% + yi) log 0; + y; log 7}]
i=1 i=1

With z; = x; + y;, find the distribution of y; | z;, and also the distribution of S = >""" | y;

given 2, ..., 2m.

(d) Find the power optimal test for v = 1 against v > 1, among all those based on S
given z1,...,2m.

(e) (xx more, rounding off. something with limit. point to Ch7 optimal CD. also do Y ~
Pois(mofy) and Yy ~ Pois(mq6;), with mg and my exposure time. With interest being in
the ratio parameter v = 6, /6y, show that Y7 | (Z = z) is binomial (z, m17y/(mo + m17y)).
XX)

Ex. 4.30 Conditional tests: 2 x 2 tables. (xx various situations with distribution of
U|(V =), followed by natural conditional test. xx)

(a) Consider two binomials yg ~ binom(mg, pg) and y; ~ binom(mi,p;). The outcomes
in such situations are often presented as a two-by-two table,

Yo, ™Mo — Yo
Y1, mi1—Y
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Consider the so-called logistic parametrisation

exp(0)
1+ exp(6)

exp(0 +7)

P = HO= T+ exp(@ 1)

and pr=H(@+~)=

Show that 0 = log{po/(1 — po)} and 6 + v = log{p1/(1 — p1)} in terms of the so-called
log-odds. Show that the joint distribution can be written

= (mo> (m1) exp((yo +v1)) exp(yy1)
Yo {1+ exp(0)}m0 {1+ exp(f +7)}m

(b) (xx in view of ... check, calibrate. xx) This inspires reaching inference for 7 via the
conditional distribution of y; given z = yy + y1. Show that this distribution becomes

9y ] 2) = (Z TOyl> (T;f) exp(yun) / > (2 n_%% ) (ny?) exp(y1)

y1 <min(my,z)

for y; = 0,1,...,min(my, z). In particular, this so-called excentric hypergeometric dis-
tribution depends on v but not . We recognise the ordinary hypergeometric for v = 0;
see Ex. 1.62.

(¢) Show that the optimal 0.05 level conditional test for the null hypothesis of equality,
Ppo = p1, is to reject when yy > ¢(z), with ¢(2) the highest number with > 2o, <) 9o(y1]2) <
0.95.

(d) (xx the power. xx)

(e) (xx to k two-by-two tables, p;o = H(6;) and p;1 = H(0; + ), k + 1 parameters.
optimal conditional test for Zle Y1,; given zy,..., 2k, with z; = y;0 + y;,1. point to
Story 1.10. xx)

Ex. 4.31 The t test as an optimal conditional test. Let Yi,...,Y, be ii.d. from the
normal (§,0?), where we wish to test £ = 0 against £ > 0. The canonical classical
test, of level say 0.05, is based on t = \/nY /o, rejecting if t > ¢,_1 .95, the upper 0.05
point of the t,_1 distribution; see also Ex. 3.7 and (3.4). We cannot use the Neyman—
Pearson lemma directly to demonstrate optimality of the t test, however. One of several
optimality properties may be derived via conditioning.

(a) Write U = \/nY and V = Y | Y}, so that in particular W = Y7 | (V; —Y)? =
V — U?. Show that the joint density of the data can be written

F= WO‘” {;gi }

1 £
= Ty o P xof vt v - 15}

Note that the testing problem is equivalent to testing A = 0 against A > 0, with A = £/02,
the mathematics indicating that this is a parameter easier to work with than &.
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(b) Find the distribution of U | (V = v), and show in particular that it depends on the
parameters only via A = £/02. It is convenient here to work with

U U

U V=

_ (TL _ 1)1/2
(¢) Show that the power optimal test, among all tests based on U | (V = v), is to reject
when U is big, say U > c(v), with Pro{U > ¢(v) |V = v} = 0.05. Then show that this is
actually the same as the t test.

(d) Show via arguments used in Ex. 4.27 and in other places above that the t test is not
merely optimal among all conditional tests, for given level «, i.e. given V', but among all
tests with level a.

Ex. 4.32 Conditional tests: multiparameter exponential models. In the rather simple
situation of Ex. 4.27, with the exponential pair X ~ Expo(a) and Y ~ Expo(a + 4),
with sum Z = X 4+ Y, we learned that (i) there is a clear level a conditional test for
d=0vs. 0 >0,in terms of Y | Z; (ii) that test is uniformly most powerful against all
4 > 0, among all conditional tests; and (iii) all other level o competitors are in fact also
Z-conditional. Hence the winning test, reject if Y < a7, is the uniformly most powerful
level a test. — We shall see now that the same arguments essentially go through for
the wide class of all exponential families. Consider data Y from a density of the form
f(y,a,b) = exp{aU(y) + b*'V (y) — k(a,b)}h(y), as in Ex. 4.19, with one-dimensional U
and p-dimensional V. Suppose we need to test a = ag against a > ag, for some given
null hypothesis value ay.

(a) We have seen in the exercise pointed to that U |(V = v) has a density depending
on a but not b, and that it has an exponential form. Assume for simplicity that the
distribution of U is continuous; mild formalistic additional arguments are required if the
distribution is discrete. Deduce that there is a most powerful conditional level a test,
say T*(y) = I{U > ¢(V)}, with ¢(v) determined from Pr, (U > ¢(v) |V = v) = a, and
with consequent power function 7 (a,b) = Pry, {U > ¢(V)}.

(b) Then consider any competing test T'(U, V') with level a. From E,, , T(U(Y),V(Y)) =
a, for all b, use completeness in b of V(Y') for fixed ag to prove that

Eo o {T(U(Y), V(Y))[V(y) = v)} = a

for all v (except perhaps in a region of probability zero), and for all b. Thus the T
competitor is also a level a V-conditional test, and we have proved that the conditional
test is uniformly most powerful among all level « tests.

(¢) The theory extends fruitfully to the case of testing Hy: a < ag against a > ag. Show
that the test T* = I{U > ¢(V')} above, with ¢(v) determined from Pr,, (U > c(v) |V =
v) = « at the boundary, is still of level a. Then show that this test is uniformly most
powerful against all competing tests with constant level « at the boundary a = ag; one
says that such tests are unbiased. This latter very mild limitation is in order for the
completeness argument to go through.
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(d) (xx briefly about two-sided tests. still based on U | (V = v). xx)

(e) When U | (V =) has a discrete distribution, the arguments still go through, but one
cannot expect to find ¢(v) with e.g. Pro,{U > ¢(v) |V = v} = 0.05. There are two ways
out of this mild quandary. The first is to be satisfied with level 0.042, say, if that is how
close one comes to 0.050, by appropriate choice of ¢(v). The other, if one pedantically
insists on 0.05, is to finetune ¢(v) such that Pr, {U > ¢(v) |V = v} is just below 0.05,
and then identify the probability r such that

Pro {U > c(v) |V = v} + rPry ,{U = c(v) |V = v} = 0.05,
So one rejects if U > ¢(V), or, but then with probability r, if U = v(C).

(f) (xx go through the previous exercises about conditional tests, once more, make sure
that the tests found there are really uniformly most powerful among all unbiased tests.
XX)

Ex. 4.33 Optimal t testing in linear regression. Consider the classic linear regression
setup with Y; ~ N(a + bx;,0?) for i = 1,...,n, see Ex. 3.30, and for simplicity of
presentation here we assume the z; have been centred, so £ = 0. The three estimators
are then @ = Y, b = Yiy 4iYi /My, with M, = 370, 27, and 6% = Qo/(n — 2), with
Qo =22, (Y —a@ — bxy)*.

(a) With V' =" | Y2, show that Qo =V — na® — M,,b%, and that the likelihood may
be written

1 1 «
L = 7‘”@{‘%; Z:(YZ —a—bxi)Q}
i=1
1 \% b~ na®+ M,b?
= Texp{—§7+7n + 2Mnb—é 5 },

which is in the exponential family form, with natural parameters 1/02, a/o?, b/o?.

(b) Explain from the general exponential family testing theory that the uniformly most
powerful test for b = 0 against b > 0, among all level « tests is to reject when b is large
enough, in its conditional distribution given (V,a@). We need to find ¢(V,a) such that

~

Proo(b>c¢(V,a)|V,a) =«

under b = 0. But this may be transformed to

W b B b B b/Qy” o(V,a)
(V=n@)!2 Qo+ Mb2)Y2 (14 M, B2/Qo)1/2 ~ (V= na?)l/2

But W is a smooth increasing function of ¢ = 3/ (c/M,,), the classic t ratio, which has
the t¢,_o distribution under b = 0. Argue that W is therefore independent of (V,a), and
that the optimal test is to reject when ¢ > tg, the upper a in the ¢,,_o distribtion. You
have now shown that the traditional t test is optimal.
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(¢) Generalise the above to general linear multiple regression models, giving the result
that the traditional t tests, for each of the j3; coefficients, are optimal.

Ex. 4.34 A generalised Poisson distribution. For a count variable Y, consider the model
with point probabilities

Fly, N y) = k() "IN/ (y)Y fory=0,1,2,...,

where k(\,7) is the normalisation constant ZZO:O AV/(y!)Y. For v = 1 we’re back to
ordinary Pois(A), with k(A, 1) = exp(A). This two-parameter generalised Poisson model
is from Schweder and Hjort (2016, Examples 4.18, 8.16). A regression version model of
this type is used in Story iv.6, to assess potential overdispersion in Poisson counts.

(a) Pick some A, and compute and display curves of the mean £()\,v) and the variance-
to-mean ratio p(\, ), for an interval of v around 1. Show that this ratio is decreasing
in v; hence 7 < 1 indicates overdispersion and v > 1 underdispersion, relative to the
Poisson. Also show that the mean of log(Y!) is decreasing in .

(b) Show that the distribution is of the exponential family form, and that the suffi-
cient statistics, after having observed a sample Yi,...,Y,, is T = Z?:l Y; and U =
S log(Y;!). Show also that the joint distribution of these two must take the form

gn(t,u) = exp{tlog A — uy — (A, 7)o (Y1, - - -, Yn),
for appropriate functions 7, and h,.

(c) For an observed sample Y7,...,Y,, to test the Poisson assumption, against overdis-
persion, show that the optimal test is to reject when U is sufficiently small, given T = t.
In other words, with level the classic 0.05, for example, we reject when U < ug(t), where
up(t) is the 0.95 quantile of the distribution of U given T = t, computed at v = 1,
i.e. under Poisson conditions. (xx this needs more care; distribution of U | (T' = t) needs
a formula or two, so we see that U significantly small indicates v < 1. xx)

(d) There is no table or simple formula for the distribution of U | (T = t), but show that it
depends on «, but not A. Show that under v =1, (Y1,...,Y,) | (T =t) is a multinomial
with count ¢ and probabilities (1/n,...,1/n). Explain then how the distribution of
U | (T =t) may be simulated under Poisson conditions.

(e) (xx give them a dataset. nils checks the football matches dataset. decide later if this
is a Story or an exercise. xx)

Ex. 4.35 Testing for correlation. Consider binormal i.i.d. pairs (X, Y;), with parameters
&1,&,01,09,p, as in Ex. 1.51. Suppose we need to test p =0 vs. p > 0.

(a) Argue as in the exercise pointed to that the binormal distribution is inside the
exponential family class, with natural parameters
& 1 3 1 P
=)o (= et (=3 (L= )3 (= pDeros
associated with data functions X;, Xig, Y, Yf, X,;Y;. Explain that the testing problem is
equivalent to testing A = 0 vs. A > 0, where A = p/{(1 — p*)o102}.
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(b) Then argue from the general testing theory for the exponential class that there for
given testing level « is a uniformly most powerful test, consisting in rejecting the null
provided A4, = n~* Y | X,Y; is big enough, in its conditional null distribution given
(X,n7'>0 X2V, n~t 3" | V). Formally, the rejection threshold ¢, which depends
on these variables, is determined by

Pro{A, >c|(X,n"! ZX,»Q,?,nfl ZYZQ)} = q,
i=1 i=1

with the footscript 0 indicating probability under p = 0.

(c) Write 52 =n 23" | X2 — X? and 55 = n~ 1 Y1 | V> — Y2 for the empirical vari-
ances. Explain that in the conditional situation, given values for X,Y, 5,55, the re-
quirement above can be transformed to Pro{R, > d|(X,Y,5,02)} = «, with R,, the
empirical correlation coefficient, see (2.11).

(d) Then explain that R, is actually independent of X,Y 51,59, under the null, so that
the optimal test becomes the simpler one, of rejecting if R,, > d, where Pro(R,, > d) = «.

(e) For this optimal test regime to be specified fully, it remains to find the null distribu-
tion of R,. Explain that this null distribution does not depend on the actual values of
(&1,&2,01,02), which we therefore may take to be (0,0,1,1). For practical purposes one
may simulate a high number of R, and then read off the d quantile; explain also that
ViR, =4 N(0,1), from Ex. 2.48, so that z1_,/+/n is an approximation to the upper «
point. We show however in the following point that T}, = m'/?R,, /(1 — R2)'/? has a t,,
distribution, under the null, with m = n — 2 degrees of freedom. With e.g. n = 25, find
the 0.95 quantile of the R,, distribution.

(f) So let us find the null distribution for R,. Write s2 = >" (X; — X)?, 52 =
S (Vi —Y)2, s =30 (Xs — X)(Y; —Y), so that R, = s4,/(558,). We may now
use results from linear regression of the Y; with respect to the X;. Study in particular
the least squares estimators @, b, minimising Q(a,b) = S Y —a—b(X; — X)}?, as
with Ex. 3.30. Using results from that exercise, show (i) that @ = ¥ and b = Say/s2; (ii)
that Qo = Q(@,b) = s2 — s2b% and (iii) that T = b/{(Qo/m)/?/s,} = m'/%s,b/Qq/"
has the t,,, distribution, with m = n — 2 degrees of freedom. Show that this implies

Syb T/m!/?

AS(I)
n:b—: =

sy (Qo+s2b2)1/2  (1+T2/m)l/2

Solve for T to get the T = m!'/?R,, /(1 — R?)'/2, pointed to and used in the previous
point. Go on to work out the density of R,,, via the density g,, for the t,,; show that it
becomes

1/2

hn(r)ng( o )( m!/? _F(%(m'i'l))(l_rz)(mﬁ)m

(1= 2)72) (T =232 = T(km)/x

for r € (—1,1). As a curiosum, check that it is U-shaped for n = 3, uniform for n = 4,
and then bell-shaped for n > 5.
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Ex. 4.36 Inference for linear multiple regression. [xx to be done. point back to Ex. 3.31,
3.32, 3.33, and point to one or two stories. xx] in this exercise we show typical and not so
typical inference methods for the linear multiple regression model, using the key results
reached in the previous exercise. confidence intervals, tests, also for o, for a p quantile
F~Y(q|zo) = 2§ 8+2z,0, and delta method for things like Pr(Y < yo | z¢). and prediction.
XX]

(a) (xx typical things first. show that B\j ~ N(B;,kjo?/n), where k? = o7 the diagonal
elements of ¥, 1. from this show ¢; = (Bj —B;)/(kjo/\/n) is a t,_,. then ci for each ;.
and test of 8; = 0. also ok for 5; — B etc. xx)

(b) (xx inference for o. xx)

(c) For a given individual, with covariate vector xg, the outcome Y; has the distribution
N(z§,0?). Consider the inference task for a quantile in this distribution. Show that
the g-quantile becomes v, = x§3 + z,0, with ®(z,) = ¢q. With estimator 7, = xf)g—l- 240,
show that

50— _ (B B) + 206 =) _ NO,whS w0/n) + 2q{(G/m)2 ~ 1}

W, =

N o (O /m)1/2
(xx round off. the point is that W, can be simulated. also approximated with a normal.
give data example. xx)

(d) (xx prediction, what will Yy be, at position xg. also Pr(Y < yo|zg). xx)

Ex. 4.37 How much of the variance is explained? (xx the below to be polished and
illustrated, and with a clearer link to R2. exact cc(p) to come in Ch. 7. point to
illustration in Story i.6. xx) In the linear regression model, the extent to which the
covariates influence the outcomes may be assessed in several ways, one of which is to
decompose the variance of the outcomes into a covariate part and a ‘remaining variability’
part. Such assessments relate also to ‘signal plus noise’ viewpoints; how strong is the
signal?

(a) We start out writing the regression model as
Yi=Bo+Biwin+ -+ Bprip+ei=Po+aft+e fori=1,....n,

again with the &; seen as i.i.d. N(0, ¢?), and further assume that the covariates have been
centred, having their means subtracted, so that Y. z;; = 0 for j = 1,...,p. This
gives By the interpretation as the overall mean of the Y;. With ¥, = (1/n) > 1" | @}
the empirical p X p variance matrix for the x;, show that the least squares estimators
become

Bo=Y ~N(Bo,0%/n), B=3.1(1/n)Y 2:¥; ~ Ny(B, (0% /n)5;1),
=1

and that these two are independent.
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(b) Write f; = BO + 33§ B for the model based estimate of the outcome at z;. For the sum
of squared residuals, show that Qo = Y1 | (Vi — ;)> = i, (Y; = V)2 —nB'S, 8. In
other words,
Vo= (Vi =Y)2 = (Y — i) + 'S5,
i=1 i=1
a neat decomposition of the full variability of outcomes as a sum of squared residuals
and the covariate part n3'%,, 3.

(c) (xx place a little caveat below, regarding interpretation; we need to think about the
population being sampled from. xx) Standard themes for the linear regression model are
developed with analyses carried out conditional on the covariates. Allow now a change
in this narrative, where the x; are seen as having their own covariate distribution, with
mean zero and variance matrix >,,. Show that a randomly selected outcome Y; then has
variance 3'%,, 3 + o2. Show that the covariate part of the full variability becomes
5t2n6 )\ . t 2
= = , with A =8"%,8/0°.
P B, B+0> A+l 8B/

With 62 = Qg/n (rather than the unbiased 62 = Qo/(n — p — 1)), show that this leads
to

ﬁ: B\tEnB _ Vn - Z:L:l()/z - ﬁ1)2 =1 &a=11 "t Y
BYE, B+ o2 Va S (Yi=Y)?

This is often called the coefficient of determination, or R2.

> i (Vi — fig)?

(d) To carry out precise inference for p, show first that nBts, 3 /o? ~ x2(nX); check with
Ex. 1.48. Then show that with A = BtETLB/EQ, we have

F=n)/p=nB"S0B/(05°) ~ F(p,m,n)),
the noncentral F, see Ex. ??, with m =n — (p+ 1) the degrees of freedom for 2.

(e) Explain how this may be used to set confidence intervals for A and hence for p. You
may check with Ex. 7.15 how this may be used to construct full confidence distributions
for the fraction p of variation explained by the covariates; for an illustration, see Story
i.6.

Ex. 4.38 Inference for ratios of standard deviations. Suppose two independent samples,
of sizes nq and no, come from two populations, with standard deviations o1 and 5. From

the empirical standard deviations o1 and &, form the ratio R = 71 /02, to be used for
inference about the underlying ratio p = o1/05.

(a) Suppose first that the two distributions are normal. We then saw in Ex. 1.49 that
R? = p?F, where F' ~ F,,, m,, an F distribution with degrees of freedom (mq,ms) =
(n1 —1,n2 —1). Construct a 95 percent confidence interval for p based on this. Also give
a 0.05 level test for the equality hypothesis o1 = o5. this gives c.i. for p, and tests for
p = 1. (xx answer: with Pr(a < F < b) = 0.95, with (a,b) found from quantiles of the
F, we find [R/b'/2, R/a'/?]. test: accept if a < R? < b. xx)
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(b) Then consider inference for the ratio p outside the assumption of normally distributed
data. From Ex. 3.12, find the representation

o1 2 o L () 2+ da) 2N,

R:A =
oy o214+ (1/ng)/2( + 742)1/2Nn2

in terms of the kurtoses 74, and 742, where IV,, and N,, are independent variables
tending to standard normals as sample bizeb increase. Use the delta method to deduce
that R/p ~g N(1,72), with 72 = (1/n1)(3 + 2y4,1) + (1/n2) (3 + 374,2). For normal data,
show that this matches the distributional approximation Fl/2 R N(l, 1/(2n1)+1/(2n2)).

(¢) Construct an approximate 95 percent confidence interval for o1 /04, valid also outside
normal data. For an application, see the Bach and Reger Story ii.12.

(d) (xx one more point. xx)

Ex. 4.39 Testing equality across groups. (xx mention below that k = 2 is simple, with

pairwise comparisons, t type things. xx) Suppose a parameter has the same interpretation

across groups, say ¢; for groups j = 1,...,k. associated with estimators, perhaps of

different precision. How can we test the null hypothesis of no difference, i.e. Hy: 01 =
c =07

(a) Suppose first that Y; ~ N(6;,0?), with independence, and the same known precision,
i.e. 0. Explain from classic results of Ex. 1.44-1.45, that Z = Zle(Y] -Y)2/o? ~X3_,,
with Y = (1/k) Z?Zl Y; the natural estimator for the common parameter under Hy.
Explain that in the case of o not being known, we still have Z* = Z§=1(YJ ~Y)?2/5% =4
Xﬁ_l, as long as ¢ is consistent, with growing information for each group.

(b) A useful generalisation of the basic results for i.i.d. normal data is as follows. Suppose

Y; ~N(0,1/a;), with the a; positive and a = Zf 1 @j. Define Y* = Ek 1(aj/a)Y; and
then Z = E?Zl a;j(Y;—Y*)?. Show that Z = Z 1 a;Y7 —a(Y™)?, that it is independent
of Y*, and that its distribution is a x?_;. The clasacal case, leading to the distribution

of the empirical variance and then to the t test, corresponds to all a; = 1.

(¢) A natural variation of the previous point is as follows. Assume in general terms
that Y; ~ N(6, 02), with independence for 7 = 1,...,k. Show that the minimiser of

E k 2
QO) = X5, (Y; — 0)2/02 is 0 = (X, V;/02)/ (X}, 1/0%), and that Quin = Q(0)
is x7_,, independent of 0. Demonstrate also that of all unbiased estimators §* =
ZI?, c;Yj of 0, 5, with weights proportionao to inverse variances, has the smallest vari-

=1
ance. Again, if the o; are consistently estimated, as opposed to known, explain that

with 0% = (35, ¥;/62)/(X5_; 1/52), we still have Q* = Y-F_, (¥; —6%)2 /62 tending to
Xi_1-

(d) Consider correlations p1,...,px for k groups of binormal data, with sample sizes
ni,...,Ng, summing to the total n. Via Ex. 2.48, explain that n;/Q(Zj — ;) —a N(0,1),
where E] = Llog{(1 + p;)/(1 — p;)} is Fisher’s zeta transform. Deduce that @ =
Z?Zl nJ(ZJ —(*)? =4 X3, with ¢* = Z;ﬁ:l(nj/n)@ This is accordingly a natural
test statistic for p; = --- = py.
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(e) Situations similar to that of the previous point abound in applied statistics, when
needing to compare more groups than two. Suppose p; = Y;/n; is estimating a binomial
pj, for independent experiments, for j = 1,...,k. Then form p = Z?Zl(nj/n)ﬁj, and
show that under p; = - - - = p;, conditions, Q = Zle n;j(p; —p)* —a p(L—p)x3_,, using
p to denote the common value of the p;. Construct a test for equality of the p;.

(f) (xx one more. could test equality of medians in k groups. xx)

Ex. 4.40 Testing equality across groups, vector parameter case. In Ex. 4.39 we developed
a recipe for testing equality across groups for any one-dimensional parameter. Here we
lift those methods to the case where the 64, ..., 60 in question have dimension p > 2. We
wish again to test equality of these. (xx to be used in Story iii.7. xx)

(a) Assume Y; ~ Np(6;,%;) for j = 1,...,k, with known positive definite variance
matrices. Under Hy of §; = --- = 6, show that Q(0) = Zle(Yj - G)tE]fl(Yj —0)is
a Xi,» and that it is minimised by § = A~" Zf 1 »_1 Y;, with A = Zk Efl. Show

further (i) that 6 ~ N, (6, A=1); (ii) that the full ensemble of Y; — 0 is 1ndependent of
0; and (iii) that the natural test statistic Qo = Q(G) = Zle(Y - Q)tE Yy; - 0) isa

X%kfl)p'

(b) This Qo may be used as a test statistic for 6, = --- = 6, with an exact chi-
square null distribution, provided the »; matrices are known. In various applications
these are estlmated from data, with E using data for group j. This leads to 0 =

12] 1 1Y with A = Z E 1. Show that if these E are consistent, then

~

Q= Q*(e) = Zf L (Y; = 0)*S51(Y; = 0) tends to the x%_, , under the null.

(c) Suppose we have normal datasets with sample sizes n;, y1e1d1ng the usual parameter
estimates (§J70'j) for groups j = 1,...,k, From these compute § Z (nj/n)ﬁj, the

overall mean, and & = Hf 1057 /™ Show that

Q= Z{nj 2 2n;(loga; — log )%}

tends to X%( k1) under the hypothesis of common (£, ). Write also down the Wilks test,
based on attainde log-likelihood maxima. (xx do both, for the mothers and babies story,
for the three ethnic groups. xx)

(d) Consider a probability distribution b = (by,...,bs) for suitable outcomes 1,...,s,

and suppose we have multinomial estimators b; = (bj1,... 7gj,s) for each of groups
j =1,...,r, resulting from sample sizes nq,...,nk, with total sum n. In other words,

b = (Nj1,...,Njs)/n;, for the multinomial experiment for group j. The hypothe-
sis to be tested is that of equal probability distribution across groups. Explain that
Bj ~q Ns(b,X/n;), where ¥, has b;(1 — b;) on the diagonal and —b;b, outside. As in
Story vii.1, write X for the (s — 1) x (s — 1) submatrix of ¥, needed since ¥ does not
have full rank, with by and @70 similarly being the shorter (s — 1)-length vectors, so that
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the general method above can be applied. Then show that the test statistic Qg from the
general recipe above can be written
k - =R . k ’\ _ ’b\ )2

an(bj,o _bO)tZ ]0 —bo ZTLJZ J’ e ZZ ,

j=1 br j=1r=1
which then tends to X(k—l)(s—l) under the null. Show that this is actually precisely
identical to the Pearson statistic from Story iii.7, for testing independence between the
two factors ‘group’ and ‘bin’.

Ex. 4.41 One-way layout. (xx a point about k¥ = 2 at the end, where F' i suppose
becomes simply #2, with usual t test. xx) The most prominent special case of the setup
from Ex. 4.39 is that with an i.i.d. normal sample for each of the groups in question, with
the same variance for all data. Consider therefore Yj 1,...,Y},; i.i.d. from N(&j, o?), for
group j, and with overall sample size n = Z§:1 n;. This is the so-called normal one-way
layout, with the chief hypothesis to be tested is Hy: & = -+ - = .

(a) Let Y; = (1/n;) Y12, Y, be the group averages. Explain that we for the over-
all average have Y = (1/n) 25:1 S Y = Z?Zl(nj/n)f’ Show then that Q =
S (Y = ¥)? has EQ = (k — 1)o® + Y5 (& — &2, with € = 325 1(nj/n)gj
Explain that Q ~ o?x7_,, under equality of means, so that the test statistic W = Q /52
approximately has the x7_, distribution under Hy, as long as o is consistent. This is
already a satisfactory answer to the one-way layout testing problem, without further
fine-tuning.

(b) In this setup further fine-tuning is available, however. Show that Qo = Zle >l (Y
Y;)? ~ o2x%_,, making 5% = Qo/(n — k) the natural unbiased estimator of o2. Explain
also that Qg is independent of Q). Under the null of equal means, then, deduce that

Q/k—1) _Q/k—1) _ 3iyn(V;-Y)/(k-1)
Qo/(n —F) o i r (Ve = )2/ (n — k)
has the F distribution Fj,_1 ;. Checking whether an observed F' is too big, compared

to this null distribution, is then a way to assess the hypothesis & = -+ = £;. For an
illustration, see Story i.6.

F =

(¢) (xx a short thing estimating contrasts. xx)

Ex. 4.42 Testing equality of multinormal means. (xx a brief thing, used in Story ii.7,
can point to ML theory too. establish the following, then apply in two-three settings. xx)
Suppose A ~ N,(a,%1) and B ~ N, (b, ¥2) are independent multinormal data vectors,
with known variance matrices. How can we test a = b? Show that W = (B — A)"(2; +
¥2) (A — B) ~ xZ under the null.

Notes and pointers

(xx confidence intervals. testing. connections. power. Neyman—Pearson. point to
Lehmann. and to later chapters, Ch. 7 for CDs. point to interplay between modelling,
probability calculus, thinking, a bit of philosophy, and practice. xx)
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(xx one-way layout: primarily to test equality of means, so ‘anova’ is arguably a
slight misnomer. xx)

Basu’s lemma: from Basu (1955), see also Ghosh (2002).

ToDo notes, as of 12-August-2024:

Lots, though the chapter is shaping up. There are lots of ‘test § = 0y against 6 > 6
prose in exercises, since it’s easiest and cleanest, with NP etc. But we need to say a
couple of times that all of this generalises to 6 # 6, etc.

the Lindqvist and Taraldsen things, for simulating from U(x) | {V(z) = v}. do the
handball model from CLP.

Do the bioequivalence: test the Hy that 0 is outside [—¢,¢] against the alternative
that it is inside. Diffent type of tests, and different looking power function.

Do sample size things, and efficiency; 7, (0) = ®(v/n(0—6y)/0—2p), with informative
derivative ¢(0)y/n/o at 6y. Efficiency things.

Make an example or two, perhaps with Cauchy again, to see that the confidence
region might not be an interval.

Point to Cox (1958) and also interviews with him regarding conditional stuff.






I.5

Minimum divergence and maximum likelihood

Consider the joint density of a dataset Y from a parametric model, say fru(y,0).
The likelihood function, a fundamental concept in parametric inference, is just this
density, but seen as a function of 8, with y fixed at the observed dataset yobs. In this
chapter we go through the fundamental likelihood inference methods, in particular
with results for the maximum likelihood estimator, the maximiser of the likelihood,
and for the attained maximum value itself. It is useful to see this general likelihood
theory as a special case of the more flexible machinery of minimum divergence meth-
ods. Here statistical divergences, often seen as a distance from one fixed model to
a collection of approximation models, lead to empirical divergence functions, then
to be minimised to find the best approximation. In fact we develop general theory
for minimum divergences first, below, after which likelihod theory is a relatively
easy consequence, in that maximum likelihood corresponds to one particular diver-
gence, namely the Kullback-Leibler. The divergence and likelihood methods are
practical and versatile, as is demonstrated in several exercises and stories, also for
say non-standard regression models. With models outside the most familiar ones,
inference analysis essentially flows from being able to programme the log-likelihood
function or divergence function. Further material connected to likelihood theory
are Cramér—Rao information inequalities, Wilks theorems, influence functions, and
certain flexible robustification methods. Crucially, the theory developed does not
in general presuppose that the parametric model worked with is correct, as results
are established both under and outside the precise model conditions. (xx perhaps
there is room for empirical likelihood. xx)

Key words: BHHJ, Cramér—Rao lower bounds, Fisher information matrix, influ-
ence function, Kullback—Leibler, least false parameters, log-likelihood, maximum
likelihood, minimum divergence, regression models, score function, Wilks tests

In earlier chapters we have met and worked with several methods for estimation param-
eters in different settings. Sometimes one estimates population parameters directly from
data, like the mean, the median, the standard deviation, the skewness, the correlation,
the median difference between groups, etc., without necessarily using parametric models.
Very frequently, however, the most fruitful data analyses involve fitting some parametric
model to the data, as in regression models, where regression coefficients are estimated
and assessed to learn how covariates influence the main outcomes. In Chs. 3-4 we have

165



166 Minimum divergence and maximum likelihood

already worked with methods associated with moment fitting, quantile fitting, and least
squares for regression models, but the present chapter has a wider aim and applicability,
specifically developing methodology for minimum divergence function estimators, and its
primary special case, maximum likelihood estimators.

In general terms, suppose data y have been modelled via a parametric model, leading
to a joint probability density fra(y, ), with 6 in some relevant parameter region ©. Then
the likelihood function is L(0) = faun(Yobs, ), studied as a function of the parameters,
with y held fixed at the observed yops. The maximum likelihood (ML) estimator is
the value 6 maximising the likelihood, or equivalently the log-likelihood function £(0) =
log frun (Yobs, 8). The simplest setup is that of i.i.d. observations Y3, ...,Y,, to be fitted to
some parametric f(y,6), with 6 a parameter vector inside its relevant parameter region.
The log-likelihood function is then

0n(0) = Zlog f(3,0). (5.1)

The apparatus of minimum divergence function and likelihood estimation carries over to
regression models too, where the density of Y; given a covariate vector x; is modelled via
some f(y; |x;,0).

Generally speaking there are two valid viewpoints when developing the required
theory. The first takes the model to be correct, so there is a true parameter 6, to be
estimated, with associated inference. The second takes the parametric model to be
a sensible approximation to the real and unknown data-generating mechanism. With
i.i.d. data, the model density f(y, @) is consequently seen as an approximation to the real
underlying density g(y). Estimation and inference then involves the least false parameter
o, in a suitable sense making f(y,6y) coming as close to the real g(y) as possible.

A generic and powerful statistical idea is to estimate parameters by minimising
a relevant distance or divergence from the true mechanism to the data. Our chapter
starts with general ways in which to construct relevant distance functions, often tied to
divergence ideas about the distance from one density to another, which in various settings
define the best parameter 6y to be minimiser of such functions. This is then followed up
by constructing the parameter estimator f as the minimiser of an empirical version of the
same distance function. The arguably most important estimation method, the mazimum
likelihood method, is the special case associated with the Kullback—Leibler divergence
KL(g, fp). Apart from clarifying the concepts, defining parameters and estimators, in
such ways, developing the theory amounts to establishing clear results for the behaviour
and performance of these estimators and related data-driven tests, confidence methods,
etc. This again involves limiting normality, assessing and estimating variability, and so
on. All of this leads to a fruitful and indeed practical general theory, which also in new
situations, with models constructed for new purposes, allows the statistician to estimate,
to reach relevant confidence statements, test and compare, predict, etc.

In brief, this chapter has these connected parts, with associated groups of exercises.

(i) Motivating and building an apparatus for defining parameters and their estima-
tors via minimum divergence functions, initially for i.i.d. setups. The most important
method, the maximum likelihood (ML) method, briefly described above, is a special case,

the ML
estimator

log-likelihood
function
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associated with the KL divergence.

(ii) Analysing ML methods involves studying score functions, information functions,
and the Fisher information matrix, for general parametric models. This again relates to
‘information inequalities’, specifically of the Cramér—Rao type, establishing lower bounds
for how small variances can be, with a given model and a given sample size n. The ML
methods achieve these lower bounds, under model conditions, for growing n.

(iii) Methods are developed for deriving the basic properties, concerning limiting
normality of estimators, chi-squared type results for profiled versions for focus parame-
ters, and quadratic forms for classes of test criteria, via the mechanics of minimisers of
random functions.

(iv) Importantly, the i.i.d. setup is then lifted to classes of regression models. In-
trigruingly, with attention to certain crucial details, these extensions turn out to be
not too strenuous, partly with Lindeberg theorem arguments replacing CLT details for
the simpler case. The general likelihood theory in particular then makes it relatively
straightforward to define and work with not only multiple linear regression, but logistic
regression, Poisson regression, gamma type regressions, and more.

Carrying out data analyses using tools from this chapter is often even surprisingly
straightforward, even in new situations with new models. This is partly due the general
well-working theory, but also to the modern conveniences of software packages for nu-
merical optimisation, easy calculation of derivatives and second derivatives, and so on,
after having programmed the basic empirical distance function to be used. For maximum
likelihood methodology, in particular, this is showcased in Story i.6, with a logistic full-
data model for how covariates influences birthweights, Story vii.4, concerning models for
time-to-failure of machine components, and in Story iv.6, with regression models for the
number of bird species on islands outside Ecuador. These applications are also meant
to inspire the invention of new parametric models in new situations, perhaps along with
context relevant distance functions.

(xx can briefly point to extensive use of likelihood theory in Ch. 7, 10, 11, 12. to
be clearer, also using Notes: M-estimators, Z-estimators. the general wondrous recipes
around 6 ~ N, (6o, joﬁs) make robustness aspects clearer. xx)

Divergences, Kullback—Leibler, likelihoods

Ex. 5.1 Maximising the log-likelihood. (xx check that we don’t repeat too similar things
later on. xx) Here we work through some examples of setting up the log-likelihood
function and finding the ML estimator.

(a) Suppose Y ~ binom(100, #) and that you observe yops = 22. Set up the log-likelihood
function ¢(#) and plot it. Show that its maximiser is § = 0.22.

(b) Simulate ten values of Y from the binomial (100, 0.25), and plot the resulting ten log-
likelihood functions. Note how they vary, giving different ML estimates of the underlying
true 6y = 0.25. With your code, experiment a bit with different sizes of the binomial n.
For bigger n, the peak is sharper; show this mathematically.

(¢) With i.i.d. observations Y7, ...,Y, from some parametric f(y,6), show that the log-
likelihood function becomes £, (0) = >, log f(¥;,6). With such data points from the
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two-parameter normal N(&, 02) model, give a clear formula for the log-likelihood function
£,(&,0). Show that the ML estimators are £=Y and 5% = Qo/n, with Qo = >0 (Vi —
Y)2. Compared to the classical empirical variance Qo/(n— 1), see Ex. 1.45, we learn that
the ML estimator has a small negative bias, but that the difference is small for moderate
to large n.

(d) With data yi,...,y100 from the exponential density 6exp(—0y), set up the log-
likelihood function and find a formula for its maximiser 6.

(e) Simulate 50 points from the uniform [0, 6], with true value §y = 1. Find and plot the
log-likelihood function, and read off the ML estimate 6.

(f) Simulate 100 values y; from the Gam(ag, 1) distribution (see Ex. 1.9), with e.g. ag =
3.33. Set up and plot the log-likelihood function. Set up a little experiment where you
keep track of the ML estimators @ in repeated experiments from the samme Gam(ag, 1).

Ex. 5.2 The likelihood and log-likelihood functions. Consider the one-parameter model
with density f(y,6) = exp(—0y/2)0/(2y'/?) for y > 0, and assume n = 12 data points
have been observed:

0.233 0.334 0.067 0.148 0.007 0.639 0.017 0.298 0.030 0.120 0.061 0.063

(a) Show that f(y,6) indeed is a density, write down the log-likelihood function ¢, (6),
and show that it is maximised at § = 1/W,,, with W, = n=2 3" 4>  Find also a

formula for the Hessian at the maximum position, Jobs = —07(9).

(b) Find the limit distribution of v/n(W,, — 1/6), using the CLT of Ch. 2, and use the
delta method to find that the limit distribution of \/75(5— 6) is N(0,6%). You may
verify already that this is what comes out of the general ML theory developed below, see
e.g. Ex. 5.17.

(c) Anticipating general ML theory to come, check again with Ex. 5.17, it will be seen
that 6 ~y N(8, 1/f)7 under model conditions. Explain that this leads to approximate
confidence intervals of the type 0+ 7;0/:]\1/2 = (/9\(1 + z0/+/n), with zg the appropriate
normal quantile. We’ve actually simulated these few data points above from the model,
with true parameter 6y = 3.33. Construct a version of Figure 5.1, left panel.

(d) In general the ML estimator might have a complicated distribution (though it is
approximately normal, as we have seen here). In this particular model its precise distri-
bution may be worked out, however; show that 6 ~ 6 (2n)/x3,,- Use this to find a precise
90 confidence interval for 6, and compare to the approximation given above.

(e) To simulate data from this model, show that Y; is equal in distribution to (V;/6y)?,
with the V; i.i.d. from the unit exponential. Make a computer programme to simulate
n points from the f(y,6p) model, and which then finds the log-likelihood function, the
ML estimator, and the approximate 90 percent confidence interval, as above. Run such a
programme for say 88 more points, forming a bigger dataset with n = 100 datapoints, and
comment on what you find. Produce a version of Figure 5.1, right panel. Comment on
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log-likelihood
2
log-likelihood

Figure 5.1: Left panel: The log-likelihood function ¢,,(0) for the simple n = 12 dataset of
Ex. 5.2. The maximum is attained at @ = 2.803. The blue bars indicate the 90 percent
confidence interval coming from standard ML estimation theory, see Ex. 5.17, and is
[1.472,4.134]. The true value behind the data, 6y = 3.33, is indicated as the red bar.
Right panel: as for the left, but now with the bigger data set of n = 100 datapoints, from
the same distribution, where the first 12 are as above. The minus second derivative J
at the ML position has increased from 1.527 to 11.103, causing the ML based confidence
interval to become considerably tighter, and is [2.507, 3.494].

the main features here, including that J becomes bigger with more data, yielding sharper
confidence intervals. We would usually plot the log-likelihood and related aspects, as the
confidence curves of Ch. 7 for a shorter range of parameter values than in this right panel,
but we here choose to plot using the same range for both n = 12 and n = 100.

Ex. 5.3 Minimising Lo distance. Suppose i.i.d. data Y7,...,Y, come from some data
generating density g which we wish to approximate with some parametrically modelled
fo. The Lo distance between g and fy is

Dl fo) = [(o- 5P dy= [ 2y =2 [ afady+alo).
where a(g) does not depend on 6.

(a) Use this to motivate what we may call the minimum Lo estimator 6, the minimiser
of D,,(0) = [ fidy —2n~'>"" | f(Vi,0). Operationally, this is easiest when there is a
closed-form formula for f f(,2 dy, but numerical minimisation might be carried out even
without this. Simulate 100 detapoints from a Gam(a,b), where you choose (a,b) as you
wish, and estimate these using this method.

(b) Carry out a similar simple experiment with 100 datapoints drawn from a normal,
i.e. estimate the mean and standard deviation using the minimum Lo method. Then do
the following variation: push one of the 100 datapoints far away from the others, which
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will cause the traditional estimates of u and ¢ to be off; show however that the minimum
Lo estimates are far less affected. — The minimum Lo method is a special case of the
BHHJ method, see Ex. 5.9.

Ex. 5.4 Estimating means via minimum divergence. Suppose again i.i.d. data Y7,...,Y,
stem from some data generating density g. The point to convey here is that key param-
eters can be seen as minimisers of natural distance functions, or divergences, leading to
recipes for estimating them.

(a) For any distribution G, let £(G) be the minimiser of H(§) = Eg (Y — £)?, with
estimator the minimiser gof the empirical version H,(§) =n~* Y7, (Y; —€)?. Show, for
this simple illustration of minimum divergence function methods, that £(G) is the mean
EqY and that 5: Y, the sample mean.

(b) For characterising and then estimating both mean and standard deviation, consider
h(y,&,0) = (y — €2 + {y? — (€2 +0?)}?, and let (£, 0) be the minimiser of the distance
function H(&,0) = Eg h(Y,&,0). Show that £(G), o(G) are the mean and standard
deviation, and work out expressions for EA, 0, the minimisers of the empirical distance
function H, (&, 0) =n"t > h(Y;, & 0).

(c) For positive Y; data, to be fitted to the Gam(a,b), consider the function h(y,a,b) =
(y — a/b)? + (y*> — (a/b®> + a®/b?))?, constructed in view of a/b and a/b* being the
formulae for the mean and variance for a Gamma. Explain that the empirical version of
the distance function H(a,b) = Eg h(Y, a,b) becomes H,(a,b) =n"'>" {(Yi—a/b)*+
(Y2 = (a/b? + a2/b?)}2. Show that the minimum divergence function estimators (a, b)
are equivalent to the moment estimators, worked with in Ex. 3.25, i.e. the solution to
the two equations Y = a/b and 2 = a/b°.

Ex. 5.5 Minimum divergence function estimators: general setup. We learn from Ex. 5.3—
5.4 that classes of estimators may be formed via minimisation of suitable empirical
distance functions; these estimate the corresponding minimisers of distance functions
operating on the underlying distributions. We call these minimum divergence function
estimators or minimum distance estimators. In general terms, for observations Y7,...,Y},
from some distribution G, consider a parameter 6y = 6(G) defined as the minimiser of
the function H(0) = Eg h(Y, 0), for a suitable h(y,0). It is assumed that 6y thus defined,
which may also be multidimensional, is the unique minimiser. The empirical version of
H(0) is Hy(0) = n=2 37, h(Y;,6), so a natural estimator for 6 is 6 = argmin(H,,). In
fact many important estimators are of this or related types, perhaps minimising some-
what more complicated random functions, as we shall see in this chapter. In exercises
below we shall develop clear results for how the minimum divergence function estimators
behave, under sets of natural assumptions, but the present exercise is meant to illustrate
the basic construction via different types of examples.

(a) Explain that H, () can be written [ h(y,6)dG,(y), with G,, the empirical distri-
bution, having mass 1/n at each datapoint; see Ex. 3.9. Explain why H, (0) —,. H(6)
for each 6, and find the limit distribution of v/n{H,(0) — H(#)}. What we need, tended

to in several exercises to follow, are conditions under which § = argmin(H,,) tends to
0o = argmin(H), along with a limit distribution.

minimum
divergence
function
estimators
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(b) For one-dimensional Y;, work through the details of h(y,6) = (y—6)2. Then consider
h(y,0) = [exp{c(y—0)}—1—c(y—0)]/c?, with c a balance parameter. Draw 100 datapoints
from a normal N(6, 1), with € of your choice, and estimate € in this minimum H,, fashion,
for a few values of the balance parameter c. Show that ¢ close to zero corresponds to the
mean.

(c) Let generally h(y,0) = {r(y) — 0}'V{r(y) — 6}, for some r(y) = (r1(y),...,rp(v))

N

and a symmetric positive definite matrix V. Show that 6y = Egr(Y) and that § =
nt i (Vi)

(d) Consider h(y,&,7) = p(7)+ 2 (y —&)?/72, where p(7) is a smooth increasing function

of 7 > 0. Find a recipe for computing the estimates (£,7) associated with the distance
function n=! 3" | h(Y;, &, 7). Check in particular the case of p(1) = log .

(e) Consider ho(z) = warctanz — 3log(1l + 2?), and define 6y as the minimiser of
E¢ ho(Y — 6). Show that 6, the minimiser of H,(6) = n~! S ho(Y; —0), is also the
unique solution to Y. ; arctan(Y; —6) = 0. (xx so connection from minimum divergence

estimator to M estimator. round off. xx)

(f) There are connections here to the moment matching estimation method, as worked
with in Ex. 3.24. For a one-parameter model first, with EY = m(0), consider h(y, ) =
{y—m(6)}2. Show that the implied best parameter is for m(6y) = EY, orp = m~}(EY),
and that the minimum divergence function method leads to solving m(#) = Y. Generalise
to the case of there being two parameters in the model, and then to the general vector
parameter case.

Ex. 5.6 The Kullback—-Leibler divergence and the maximum likelihood method. With
ii.d. data Yi,...,Y, from a density g, to be approximated with a parametric fy, the
particularly important mazximum likelihood estimation method is worked with here, seen
as the natural cousin to the Kullback—Leibler divergence as a measure of distance from
the true density to the parametric approximation. Development in exercises below give
a precise description of how the method actually behaves.

(a) For two densities g and f, defined on a common support, the Kullback—Leibler
distance, interpreted to be ‘from the first density to the second’, is

KL(g, f) = /glog§dy~ (5.2)
It is an important concept and tool for communication and information theory, as for
probability theory and statistics. The log(g/f) term will be both positive and negative,
in different parts of the domain. Show nevertheless that indeed KL(g, f) > 0, perhaps
via the Jensen inequality, and that KL(g, f) = 0 only when the two densities are equal
a.e. In Ex. 5.7 we learn more details about the KL distance, and look into illustrations,
but here the main point is to see its close connection to ML estimation.

(b) We now apply the general minimum divergence machinery of Ex. 5.5, with basic
function h(y,0) = —log f(y,0). Show that this defines 8y = 6(G) as the minimiser of
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KL(g, fo), and that minimising the implied distance function H,(#) is the same as max-
imising the function ¢,,(8) = >, log f(¥;,6), as in (5.1). This function is sufficiently
famous and pervasive to have earned its own name, the log-likelihood function (here for
i.i.d. observations). As explained above, the ML estimation method, seen here to be
equivalent to minimum divergence with the underlying divergence being the Kullback—
Leibler, from true density to parametric approximation.

(¢) As a simple illustration (to be returned to in Ex. 5.9), generate say n = 100 points
from the uniform distribution, and use the parametric density f(y,0) = 0y°~! on the
unit interval. Write down and plot the log-likelihood function, and find the ML estimate.
Also show that the implied best parameter value, if the data stem from some g, rather

than from the model, is 8y = 1/E, log(1/Y).

Ex. 5.7 The Kullback—Leibler distance: details and illustrations. (xx repair here. xx) In
Ex. 5.6 and other exercises above we have seen that the machinery of maximum likelihood
is intimately related to the KL distance KL(g, f) = [ glog(g/f)dy. Here we work on
illustrations to learn more.

(a) For two normal densities, N(a,1) and N(b, 1), show that the KL distance becomes
%(b —a)?. Prove also the somewhat more general result, that with g ~ N(&;,02) and
f ~N(&,0?), the KL distance is £ (& — &1)%/02.

(b) Find the KL distance from one Poisson to another.

(c) The KL distance is also perfectly well-defined and meaningful in higher dimension.

Show that the KL distance from N, (&1, %) to N,(&2,X) can be expressed as 342, where

§ = {(& — &)'2 (& — &1)}Y/? is the so-called Mahalanobis distance between the two
populations.

(d) For several of these examples we find KL distances being symmetric, between the
two densities in question, but this is not true in general. Compute the KL distance from
N(&,02) to N(&,03), and compare to the reciprocal case.

(e) (xx may consider a little reshuffle of exercises. xx) Consider a parametric den-
sity f(y,0), with score function u(y,6) = dlog f(y,0) and information matrix J(0) =
Varg u(Y, 0); see Ex. 5.14 for more on these. Show here that

KL(f(-0), f(-,0 +¢)) = 2" J(0)e + O(<%).

(f) Start from d(g, f) = — [ glog{1+ (f/g — 1)} dy, for densities which are not far from
each other, and use Taylor expansion to find

KL )~} [ o(/g =12 dy=3( [ #/9dy 1),
(xx some words indicating that the root-KL might have an easier interpretation. xx)

(g) (xx a bit of text, more than a question. xx) As noted the KL distance is not
symmetric, so ‘distance’ has a direction. In various statistical setups it makes sens to

maximum

likelihood

the
Mahalanobis
distance
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interpret d(g, f) as the the distance from ‘home density ¢’ to ‘approximation candidate
f’. As also becoming clear from examples above, it’s somehow quadratic in nature, so
when numbers are involved, measuring the KL distances, it would typically make more
sense to give their square roots, as with {d(g, fo)}'/?, the degree of closeness of the
parametric approximant fy to the ground truth g.

Ex. 5.8 KL approzimation. (xx to be edited. xx) For the following cases the point
is to set up a data generating density g, and then check how well a certain parametric
family f(y,0) does the approximation job. For each case, this tells us how well the ML
can do its job, with enough data. For the various cases, find the minimiser, i.e. the best
approximation; find the minimum square-root distance d(g, f(-,0y))*/? (since this gives a
better picture than on the KL scale itself); and plot the true g alongside the parametric
approximant.

(a) Let g = 0.33N(—1,1) + 0.67N(1,1). Find the best normal approximation.

(b) Let g be a Gamma with parameters (2.22,3.33). Find the best Weibull approximant,
and also the best log-normal approximant. Similarly, start with a Weibull distribution,
with parameters say (3.33,2.22), and find the best Gamma distribution approximation.

(¢) Let g = 0.95Expo(1)+0.05 Expo(0.01), which roughly means that about five percent
of the data come from a distribution which much higher mean than the mainstream
exponential data. Find the best exponential model approximation, and also the best
Gamma and Weibull approximations. Display the true g and these three best parametric
approximations in the same diagram.

(d) Suppose data really come from N(0.333, 07), with o = 1.111, where a statistician fits
the simpler N(0, 0%?) model. First, find out what happens to the ML estimator. Secondly,
illustrate ‘what goes on’ by drawing e.g. ten samples of size n = 50 from the true density,
and then display the ten versions of n=14,(c), along with its limit C'(¢). Comment on
your findings.

BHHJ, the minimum divergence process, and its limit

Ex. 5.9 The BHHJ density power divergence method. Here we set up the basics for
the so-called density power divergence method. It involves raising the density function
f(y,0) to some power a, as one of its ingredients. In the literature it is sometimes called
the BHHJ divergence method, from its inventors Basu, Harris, Hjort, Jones (Basu et al.
(1998), Jones et al. (2001)). We shall see in later exercises that it amounts to a robust
modification of the ML method.

(a) For a density g, in what follows to be seen as the true underlying data-generating
model, consider measuring the distance to an approximate fy(y) = f(y,0) density as

da(yg, fo) = /{ PR (1 + é)gfé’ + 29”"} dy, (5.3)

with a a positive tuning parameter. Show that d,(g, fs) > 0, and that the distance is
zero only when g = fy a.e. Note that this for a = 1 is the same as the Lo distance of
Ex. 5.3.
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(b) Use Taylor expansion for f§ and g for small a, to demonstrate that the integrand
in (5.3) may be written

fo—g+glog(g/fo) — alg — fo)log fo + 2ag{(log g)*> — (log f5)*} + O(a?).

Hence show that for a small, we have d,(g, fo) = KL(g, fg) + O(a), with the Kullback—
Leibler distance [ glog(g/fo) dy, assuming that the functions glog fg, fo log fo, g(log fo)?,
g(log g)? have finite integrals.

(c¢) Suppose Y1,...,Y, are i.i.d. from some unknown g, and that we wish to estimate
by making the distance d,(g, fg) small. The point is now that the third term of d, does
not depend on 6, and that we may accurately estimate the two first, using

n

Hya(6) = / Fl,0) e dy — (1 +1/a)n 'S £y, 0)°. (5.4)

i=1

Show that this is also coming out of the general minimum divergence function apparatus
of Ex. 5.5, with h(y,0) = [ f;7dy — (1 + 1/a)f(y,0)%. Show indeed that H,(6) is
an unbiased estimator of the two first terms of d,(g, fs), and give an expression for its

variance. We call the minimiser 8 of H,(6) the BHHJ estimator. the BHHJ
estimator

(d) Return to the ML estimator illustration of Ex. 5.6, with n = 100 points drawn from
the uniform, fitted to the Ay?~! density. For some values of a, compute and plot the
H,, o, function, finding also the BHHJ estimate @l, After having computed this for a grid
of a, plot the resulting §a as a function of a, and comment.

Ex. 5.10 Integrals for BHHJ estimation. Using the BHHJ method of Ex. 5.9 for
estimating the parameters of models f(y, ), we are very much helped, algorithmically
and numerically, by having formulae for the term A(a) = [ f91+a dy.

(a) For the normal N(&, 02), show that
Ala) = [ .00 dy = ) (14 @) 2o,
Generalise to the multinormal case of N, (&, ), with
Ala) = [ Flu& Sy dy = (2m) P21+ 0) 7S]
(b) For the gamma model, with Y ~ Gam(a, b), show that
/{Flzl;)ya_l eXp(_by)}Ha dy = F(al“—i(_a?i; g 1+ of;zmaa :

(c) For the log-normal model, where Y is such that log Y ~ N(£,0?): Show that

/OO [y, & o)t dy = (277)7(1/207‘1(1 + a)71/2 exp{—a& + %a202/(1 +a)}.
0
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(d) For the Weibull, with c.d.f. 1 — exp{—(y/a)®} for y > 0, show that

o o, _ (b\oT(1+a—a/b)
/0 f(yaaab)1+ dy = (a) W'

(e) For robust estimation of the three-parameter t distribution, consider the density
fy, & o,v)=9,((y—&)/o)(1/o) for Y = £ + ot,, with g, the ¢ density with v degrees
of freedom. Find

1
[y = o [aeas
g

_ iI‘(((l+a)u+a)/2){I‘((1/+1)/2)}1+a 1
o T(I+aw+ 12\ T2 ()

Ex. 5.11 Mazimum weighted likelihood estimation. Another fruitful generalisation of
the ML method of Ex. 5.6, in addition to the BHHJ method of Ex. 5.9, starts from
adding a weight function to the Kullback—Leibler KL(g, f) divergence.

(a) Show that KL(g, f) may be written [{glog(g/f)— (¢ — f)}dy, that the integrand is
nonnegative, and is zero only if ¢ = f a.e. With any nonnegative weight function w(y)
on the sample space, deduce that

9\y
KLo(.) = [ 0 [stn)loe 55 ~ {g(0) - 10)}] a
is a divergence, i.e. nonnegative, and is zero only if ¢ = f on the support set of w. In
particular, for g fixed and parametric f(-,8), show that KL, (g, fo) can be expressed as
Jw(—glog fo + fo) plus other terms not depending on 6.

(b) For data Y7,...,Y, from a generating density g, to be approximated with a para-
metric f(y,0), explain that the general minimum divergence function method leads to
maximisation of

n

lnw(0) =D w(y:) log f(Y;,0) — nB(0),

i=1

with B(6) = [wfsdy. We call the maximiser @U the maximum weighted likelihood esti-
mator, associated with weight function w(y). The classic ML estimator then corresponds
to constant weight function w(y) = 1. Properties of 8, are derived in Ex. 5.20.

(¢) For an illustration, access the birthweight dataset for Oslo children, reported on in
Story i.5. For the boys and the girls, fit normal distributions, using maximum weighted
likelihood, with weight function w(y) being one on [2.5,4.5] kg and zero outside. Plot the
estimated densities in a diagram, This requires programming a function for optimisation.
Compare with curves estimated via full ML.

Ex. 5.12 Minimum divergence function estimators: a limit process and main heuris-
tics. After having motivated and worked through particular instances of the minimum
divergence function estimators, we now return to the general case, aiming to demonstrate
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both limiting normality and other associated results, finding recipes for large-sample ap-
proximations in the process. The aim of the present exercise is to go through the basic
ideas, involving also two main heuristics. These then apply to large classes of estimators
and associatead minimum divergence function minima. To make these heuristics precise
we need more conditions and details, to which we return in further exercises below. In
particular, results derived here and in a few of the following exercises will apply imme-
diately to ML estimators, BHHJ estimators, MWL estimators, via their definitions in
Ex. 5.6, 5.9, 5.11.

So 0y = 6y(G) is the minimiser of H(0) = Eg h(y, 0), and 0 is its estimator, the min-
imiser of H,,(0) = [ h(y,0)dG,(y), with G,, the empirical distribution for an observed
ii.d. sample Y7,...,Y, from G. To present the basic ideas and main heuristics we shall
start with these regularity conditions: (i) The true 6y = 0y(G) is an inner point in its
parameter space inside RP. (ii) The h(y,#) is smooth in 6, in a neighbourhood around
6o, with at least two derivatives, say h'(y,6) (a vector, with components h,,), h”(y,0) (a
matrix, with components Ay ;). (iii) The matrix J = Eg h”(Y,6p) is finite and positive
definite. (iv) The first derivative h'(Y,6y) has finite variance matrix K.

(a) A key idea is to work with the following random function. Write
n{Hn(GO + 5/\/5) - Hn(QO)}

> {n(Yi, 00 + s/v/n) = h(Y:,00)} = Ubs + 35" Jns + 1 (s),
i=1

An(s)

with U,, = (1/v/n) > ' (Yi, 00), J, = n~ 13" B (Y;,00). Show that A, (s) is prop-
erly defined for all large enough n, that U,, has mean zero and tends to U ~ N, (0, K),
and that J, —p, J.

(b) It is also clear from the Taylor expansion argument that with moderate further
regularity, the remainder term r,(s) will go to zero in probability, for each s. There
is then convergence A,(s) —q A(s) = U's + s'Js, for each s. Heuristic One is then
to go from A, —4 A to argmin(4,,) —4 argmin(A4). Explain that this then leads to
Vi@ — 8y) =4 —J~'U, which is a N, (0, J71KJ=1). We call this limit distribution
variance matrix J 'K J~! the sandwich matrix.

(c) Similarly, Heuristic Two is to go from A,, —4 A to min(4,) —4 min(A). Argue that
this entails W, = 2n{H,,(6p) — H,(0)} —4 W = U*J~U. Show for this quadratic form
that its mean and variance are Tr(J 'K) and 2 Tr(J ' KJ1K).

(d) (xx give an easy example, to identify J and K. xx)

Ex. 5.13 Minimum divergence function estimators: from heuristics to proofs. (xx nils
and emil check details carefully. repair and edit. xx) The general setup is as with the
previous Ex. 5.12, with minimum divergence function estimator ) minimising H,(6) =
n~t Y " h(Y;,0), with observations coming from G. In addition to regulatity conditions
(i)—(iv) given there, we postulate (v), that also third derivatives of h(y,6) exist, say
", (y,0), and that these have finite means in a neighbourhood around 6. We use the

a,b,c

process A, (s) = n{H, (0o + s//n) — H,(0y)} from the previous exercise.

the sandwich
matrix
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(a) Explain first that the minimiser of A, is a,, = /n(f — ), where we shall also
study the overall minimum A, min = An(ay) below. Let By(s) = Uls + 3s'J,s be
the quadratic approximation to A,,, with minimiser §,, and overall minimum By, min =
min{B,(s): all s}. Show that

Bn = —Jy ' Up —a —J U ~ N, (0, J T KJ ),
Bpmin = —3ULJ Uy —q —3U T UL

So things are simple and clear for the quadratic approximation B,,; we need to show that
the same results obtain for the real thing, the A,,.

(b) Supposing |r,(s)| < 6 for all s in a subset S, show from A, = B,, 4+ r,, that

i — mi <.
| min A, (s) — min By(s)| <6

We next establish that c,, cannot be far away. Show that when ||s|| > en!/®, B,(s) >
D,n'/*, with D,, positive and bounded in probability; and that when ||s| < cn'/$,
then |r,(s)| < E,/n'/8, with E, also bounded in probability. Show from this that

oy = Opr(nl/g)7 and that Ay, min — Bp,min —pr 0.

(¢) Then consider B, a certain distance away from the minimum. For given small &,
show that for v with ||v|| > €, we have

Bn(ﬁn + U) = Bn,min + %Ut*]nv Z Bn,min + %jngza

where j, is the smallest eigenvalue of J,,. Show then that the event Q,,, where A, (5, +
v) > Bpmin + %jng for all v with ||v]] > &, must have Pr(£2,,) — 1. Prove from these
established statements that a,, — 3, must tend to zero in probability. Conclude that

V(0 = 0) =4 =7V ~ Ny (0,J KT, (5.5)
2n{H,(00) — H,(0)} —q¢ W =U"J'U. '

Score function, Fisher information matrix, Cramér—Rao lower bounds

Ex. 5.14 Score functions and the Fisher information matriz. Consider a parametric
model with density f(y,6) with respect to some measure y, where 6 = (64,...,0,)", the
parameter of the model is contained in some open parameter space ©. Introduce

u(y,0) = dlog f(y,0)/06 and i(y,0) = 9°log f(y,6)/06 96",

called the score function, with p components, and the information function, a pXp matrix.
These partial derivatives are assumed to exist and, for the maximum likelihood theory
below, they must be continuous; [xx check this with Nils xx| note that this concerns
smoothness in the parameter 6, not necessarily smoothness in y. We also assume that
the support for the distribution, the smallest closed set for which the density is positive,
does not depend on 6. Cases falling outside such assumptions are, e.g., the uniform on
an unknown interval [0,6]. Finally, we assume that [ f(y,6)du(y) can be differentiated
under the integral sign with respect to each coordinate of 6.
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(a) The score function has mean zero: show that Eg u(Y,0) = [ f(y,0)u(y,8) du(y) = 0.
Let next

K(0) =Vargu(Y,0) and J(0)=—Eyi(Y,0),

and show that indeed J(0) = K (), the so-called Bartlett identity. This matrix is often
called the Fisher information matriz for the model. It provides a measure of how much
information about a parameter a dataset provides. Note that the calculation of both
J(0) and K () is taking place under the assumption that the model is actually correct.

(b) For the exponential model, with density 6exp(—0y), find the score function, and
compute the Fisher information function in two ways. The second (derivative) way of
computing the Fisher information here was quite simple.

(¢) Consider the general exponential family, with its natural parametrisation f(y,0) =
exp{0*'T(y) — k(0)}h(y), see Ex. 1.50. Explain that the score function becomes T'(y) —
k' (9), with Fisher matrix J(0) = k" (#), that of the second order derivatives of k(0).

(d) For the normal N(&,02) model, show that the score function can be expressed as

u(y,§,0) = (;{(y‘l’iygy%/;— 1}) B % <z2z— 1> ’

writing z = (y — §)/o, which is a standard normal when y comes from the model.
Demonstrate that the Fisher information matrix becomes

2

(e) (xx Check with a few more of your favourite parametric models, where you find the
score function and the information function, and where then formulae for both J(6) and
the variance matrix K () of the score function, verifying that they are the same. ask for
poisson, for binomial with parametrisation p = exp(6)/{1 + exp(6)}, geometric. xx)

(f) (xx more care here, since we do CR a bit later. xx) If Y has the uniform distribution
on [0, 6], which of the regularity conditions listed above fail? In this situation, one might
try to define the Fisher information to be 1/6%. Assuming that this is indeed the Fisher
information, use the Cramér—Rao lower bound to derive a contradiction.

Ex. 5.15 Cramér—Rao lower bounds for estimators. A certain basic and classic in-
equality provides a lower bound for the variance of any unbiased estimator of a given
parameter. There are various versions and generalisations, some of which we go through
here. Inequalities of the type encountered here are sometimes called ‘information inequal-
ities’, as they may be used to define and analyse how much information there can be in
a finite set of data. We also discover clear links to log-likelihoods and ML estimation;
the behaviour of ML estimators for growing sample size, described in Ex. 5.17, exactly
matches the Cramér—Rao lower bound for variances.

the Bartlett
identity
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(a) To begin simply, suppose Y is an observation from the density f(y,6), assumed
smooth in its one-dimensional parameter. Let u(y,f) = 9dlog f(y,0)/06 be the score
function, with finite variance, by definition equal to the Fisher information, J(0) =
[ f(y,0)u(y,0)?dy. Let T = T(Y) be any estimator unbiased for ¢, and assume that
f(y,0) satisfies the conditions of Ex. A.12(g). From EoT = [T(y)f(y,0)dy = 6, use
the conditions on f(y, ) to deduce that (d/df) [ T(y)f(y,0)u(y,f)dy = 1. Show that
covyp (T,u(Y,0)) = 1, and, consequently 1 < Vary T Varu(Y,0), from which the we get
one-dimensional classic Cramér—Rao inequality

Varg T > 1/.J(6).

(b) It is easy to generalise the above to the more interesting case of having more obser-
vation than one. Suppose Y7,...,Y,, are i.i.d. from the parametric model f(y,#). Show
that the arguments above still hold, essentially since Y = (Y1,...,Y,) can be consid-
ered a single datum from the model with joint density f(y1,0)--- f(yn,8). Show that
the score function now becomes w(y1,...,Yn,0) = > i uo(y;, 0), writing for emphasis
uo(y,0) = dlog f(y,0)/00 for the score function for a single observation. Deduce that
the combined Fisher information for the full sample is J, = Vargu(Y1,...,Y,) = nJy,
with Jo = Varg uo(Y;, ) the information in a single observation.

(¢) Show from this that if 7= T(Y7,...,Y},) is an unbiased estimator for 6, then

1 1/

T >
Varg T’ 2 nJo(0) n

This says that there is a clear limit to how well one might estimate a parameter in a
model, with n observations. If you're not entirely satisfied with VargT = 0.10, say,
and wish for variance 0.05 instead, then shell out more money to get twice as many
observations.

(d) Show more generally that if T = T(Y3,...,Y},) is an estimator for §, with mean
E¢T =0+ b(0), i.e. with a certain bias b(#), then

1{14+V(0)}?
Vary T > 5T@0)

In particular, show that there’s a lower bound on the mean squared error for any estimator
(i.e. not merely the unbiased ones):

mse(d) = E{T(Y1,...,Y,) —0}> > n"H14+6(0)}*/Jo(0) + b(6)>.

(e) Go through the following examples, in each case finding the score function, the infor-
mation Jy(6), and the lower bound for any unbiased estimator of the model parameter.
(i) y is binomial (n, ). (ii) y is Poisson . (iii) y is normal (6, 0?), with o known. (iv) y
is normal (0, 02), with 6 known, and o to be estimated. Comment on the implications
of your findings.

Ex. 5.16 Cramér—Rao bounds for the multidimensional case. In generalisation of the
above situation to the case of multiparameter models, assume first that y is a single
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observation from the model f(y,#), with = (61, ...,6,) of dimension p. Let uy(y,0) =
0log f(y,0)/06 be the score function, for such a single y, with the px p Fisher information
matrix Jo(0) = Varg ug(Y, 0) assumed positive definite.

(a) For a symmetric p X p matrix A we write A > 0 provided it is nonnegative definite,
i.e. that c*Ac > 0 for all ¢. Show that the covariance matrix of a random vector is neces-
sarily nonnegative, and that A > 0 is is equivalent to its eigenvalues being nonnegative.
Explain that a;; > 0, for the diagonal elements, but that we may still have a; ; < 0 for
some off-diagonal elements. With two symmetric matrices, we write A > Bif A—B > 0,
which is the ordering of variance matrices we use below.

(b) Assume that T = T(Y) is an unbiased estimator of 6, which also means that
E¢T;(Y) = 6, for each component j. With I, the identity matrix of size p X p, de-
duce from E¢g T = [T (y)f(y,0)dy that

(©/06)EaT = [ T(0)1(0.0)uo(v.6)" dy = I,
(¢) Then work out that
Varg {T — Jo(0)  uo(Y,0)} = Eg {T — 0 — Jo(0) Luo(Y,0){T — 6 — Jo(0) Tup(Y,0)}*
can be expressed as Varg T — Jo(#)~!. We have then shown a multidimensional version
of the Cramér-Rao inequality, that Vary T > Jo(0) L.

(d) Generalise the above to the case of n i.i.d. observations Y7,...,Y, from the model.
Show that the information matrix for the full data set becomes

Olog{f(Y1,0)--- f(Yn,0)}
0 a0

and that for any unbiased estimator T = T'(Y7,...,Y},,) of 8, we must have

Jn(0) = Var = nJp(0),

Varg T > {nJo(0)} ' =n"1Jp(0) .

More generally, if independent observations Y3, ...,Y,, come from densities fi(y,¥0),...,
fn(y,0), with Fisher information matrices Jy (), ..., J,(0), show that any unbiased esti-
mator T of 6 has Varg T > {J1(0) + -+ + J,(0)} L.

(e) Suppose now that ¢ = ¢(61,...,0,) is a one-dimensional parameter in focus, and
that T'=T(Y') is an unbiased estimator. With ¢(6) = 0¢(6)/00 the p x 1 gradient, show
that

Varg {T — ¢(0)'J(0) " ug(Y)} = Vary T — ¢(0)°J(0) ' ¢(),

and conclude the lower bound Varg T > \(0) = ¢(6)'J(0)1c(#). Generalise to the case
of Y1,...,Y, being i.i.d. from f(y,0): if T,, = T'(Y1,...,Y,) is unbiased for ¢, show that
Varg T > A\(0)/n. We learn also a bit more from these arguments. Show that

Varg {Tn —n! En: ()17 (0) g (Y;, 9)} = Varg T), — A(6)/n,

so T;, having a variance coming close to the lower bound means T,, — ¢ being equal to or
close to the random variable n=! 3" ¢(6)*.J(0)  uo(Y;, 0).

Cramér—Rao
lower bound,
matrix case
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(f) (xx something here, tying these matters to ML. consider T;; = 0+n~1J(0) 71 37 | uo(Y;,0).
show that this 77 is unbiased and achieves the Cramér-Rao lower bound. this happens

in exponential families, give pointer. the point is then that ML in the general case is
close to this with growing n. xx)

(g) Also other estimators for 6 deserve to be studied, even when they are not exactly
unbiased. We start with a single observation Y from f(y, 6), with score function u(y, 6)
as above, and then generalise to n observations afterwards. Assume therefore that T =
T(Y) is such that

01 + by (0)
BT = [Twfwod =000 |,
Op +bp(0)
for suitable bias functions b1(6),...,b,(8), perhaps not far from zero. Show that
1+ 0b1(0)/06
(0/00) o T = : — [ 700 0)uo(s.0)" .

1+ 8b,;(0)/80
Then work with Varg [T — {I, + b'(0) }Jo(0) "tuo(Y, 0)] to demonstrate that
Varg T > {I, + b (0)}Jo(0) " {I + ¥/ (0)}".
(h) Generalise to the case of n i.i.d. observations, to reach
Varg T > n~ I, + b (0)}Jo(0) "I +V'(0)}".

(i) xx a bit more to round it off. an example or two. CR lower bound not always
attained, in some models only for growing n, but that’s ok. i make a separate point that
the arguments also lead to bounds of type

Varg T > {J1(0) +--- + Jn(e)}—l’

in cases with different situations or types of information sources, for the same 6. tie it
all to the large-sample ML results. xx

Ex. 5.17 Maximum likelihood estimators. Thanks to the general efforts in exercises
above, in particular 5.12-5.13, we may already learn the basic properties of the most
important of all estimation methods, namely the ML method, introduced in Ex. 5.6. We
do return to further details, extensions, results, illustrations, applications in exercises
to come. The basic setup, to be generalised later, is that of observations Y7,...,Y,
being i.i.d. from some g(y), to be fitted to a parametric fo(y) = f(y,0), and with 9 the
maximiser of £,(0) = Y7, log f(Y;,0). The log-density derivatives u(y, 8) and i(y, #) are
those studied in Ex. 5.14. There is a short list of regularity conditions to secure results
reached below, inherited from those called (i)-(v) in Ex. 5.13.
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(a) Arguably the first natural question, for any estimation method, is what it aims for.
Show that 6 —pr 0o, the minimiser of KL(g, fy), assumed here to be unique and an inner
point in the parameter space. So we’ve uncovered what goes on in the mindset of the
ML operator; it aims for this least false parameter, the 6y minimising the KL distance
from the truth to the model approximation.

(b) With p the dimension of 6, show that the two crucial p x p matrices J and K, from
the general treatment of Ex. 5.13, become

J=-Egi(Y,6y) and K = Vargu(Y,H0).

We have seen in Ex. 5.14 that these are equal under model conditions, i.e. that g(y) =
f(y,0p) for all y.

(c) Via efforts in previous exercises, show (i) that U, = n=/23"" u(Yi,0p) =4 U ~
N, (0, K); (ii) that J, = —n~t >0 | i(Y;,60) —pr J; and the basic log-likelihood process

convergence result

An(s) = en(GO + S/\/ﬁ) - ETL(QO)

= Uls— 35" Jus 4 1ry(s) —q A(s) = U's — 35" Js, (5.6)

for each s. This drives much of the largs-sample results for likelihood inference, including
the important Wilks theorems we return to in Ex. 5.28, along with further generalisations
for e.g. regression models. Show also that

Bu(5) = £u(0 + 5/v/n) — £,(8) = L5 Tps + 11, (s) —a B(s) = —Ls'Js,

for each s, i.e. 7], (s) —pr 0, where Ty = fnflc'??ﬁn(é\)/@@ 06" is the normalised observed
Fisher information matrix.

-~

(d) Let £y max = £n(0) be the maximised log-likelihood. From (5.5), deduce that

V(0 —00) =4 JU ~ N, (0, J T KT,
2{gn,max - fn(go)} —d W = UtjilU,

in which U ~ N, (0, K). Remarkably, we have been able to reach these general results for
ML estimators without going into special cases, and without caring about there being
explicit formulae for these or not.

(e) As simple corollaries, we are also reaching the important and very frequently used
consequences for ML estimation in general smooth parametric models, under model con-
ditions: with J = J(6p) the Fisher information matrix, at the underlying true parameter
value, show that

V(@ —00) =4 Np(0,J(6) ™) and  2{lymax — £u(60)} —a X2 (5.7)

Ex. 5.18 The J, K, and sandwich matrices for the BHHJ method. (xx place inside prose
here that we also need estimation of these matrices, to which we return in Ex. 5.27. xx)
When fitting a parametric family f(y,6) to observations, we have seen in Ex. 5.12-5.13

the least false
parameter value
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that the behaviour of minimum divergence function estimators is characteriserd by (i)
the implied least false parameter 6y = 6y(G) and then (ii) the crucial matrices J and K,
leading to the sandwich matrix ¥ = J"'KJ~!. As above G, with density ¢, is the data
generating mechanism. Here we consider the BHHJ estimation method Ex. 5.9, with the
estimator aminimising H, .(0) of (5.4). Again, a is a positive finetuning parameter, and
for small a the method is close to ML estimation. For the following points, we assume
regularity conditions (i)-(v) are in place, from Ex. 5.12-5.13, and in particular that there
is a unique minimiser 8y = 6y , = 0y, o(G) of the d,(g, fo) of (5.3).

(a) Explain that the theory developed in these earlier exercises implies that 0 —pr Bo.
In the following points, write for simplicity fo(y) = f(y,600), uo(y) = u(y,00), io(y) =
i(y, 0p). Show also that 6, is characterised as the solution to [ f, 1+‘LU9 dy = [ gf§uedy.
For this vector, evaluated at 8y, we write

§a = /gfouody—/ fo T uo dy.

(b) As seen in Ex. 5.9, the BHHJ method corresponds to using h(y,0) = [ f,7*d
(14+1/a)f(y,0)" in the general minimum divergence function setup. Fmd the derlvatlve
R (y,0) and deduce that

Ko = (14 0 { [ offuont - 6.},
(xx find K,. with simplified at model. xx)

(¢) (xx check this carefully. also: when estimating .J,, we don’t need such a formula, as
we get it as the Hessian of the minimisation. xx) Find then an expression for the second
derivative h''(y, 6), and derive a formula for the J matrix:

/ {F¥ gl + (F1 — gf8)(io + auoul)} d.

Ex. 5.19 BHHJ precision under model conditions. The BHHJ method is designed to
do well when the parametric model used is not perfect. We may however also study
its precision when the model actually holds. For matrices studied in Ex. 5.18 there are
simplified expressions under model conditions, i.e. when g(y) = f(y, 0y) for all y.

(a) Under such model conditions, and with fy,uo notation from Ex. 5.18, show that

- 1+a)/f&+auouf)dy, K, = (1+a)2</f&+2“u0u5dy—§a§fl>,

with a consequent simplified sandwich matrix ¥, = J,;'K,J;!. Show that for a — 0,
Yo — Jy' b, with Jo = J(6) the Fisher information matrix for the model.

(b) We may now check the loss of efficiency of the BHHJ method, with tuning parameter
a, compared to the ML method, under model conditions, by comparing J,; ! K,J; ! to the
inverse Fisher information matrix. Carry out the relevant computations for estimation
6 in the exponential § exp(—6y) model. For the case of the N(&,02) model, check with
Story vii.5. For small a, there is significant gain in robustness at a low cost in efficiency.
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(¢) For the following, assume

A=/fologfouou8dy7 B:/fo(logfo)%ouédy, c:/fologfouody

are finite; A and B are p X p matrices and ¢ a p X 1 vector. Below we carry out Taylor
expansions to order a?, and use = to indicate the consequent approximations for small
a. Show that to this order

Jo = (1+a)(Jo +ad+ 3a°B), K= (1+a)*{Jo +2aA+a*(2B — cc')}.

As a useful interlude, consider p x p symmetric matrices M and e, where M is positive
definite and ¢ is smaller, in the technical sense that the eigenvalues of M ~!e are smaller
than 1 in absolute value. Show that

(M+e)yt=M"'-MteM P+ M teMeM™t 4.
Use this to reach
(Jo+aA+Lia®B) ' = Ji' —ady AT + aP(Jy T ATy ATy = S0 BIG.

It is then a matter of bureaucratic algebra to reach an informative approximation to the
sandwich matrix

Yo = (Jo+aA+ 2a®B) ' {Jo + 2aA + a*(2B — cc")}(Jo + aA + 2a®B) .

Show that this leads to ¥, = J; ' 4+ a?D, with D = J; (B — et — AJy " A)J; ', This
indicates indeed that for small a, the efficiency loss is small.

Ex. 5.20 The J, K, and sandwich matrices for the mazimum weighted likelihood method.
(xx check all this. xx) Just as we for the BHHJ estimation method worked out the basics
for J,, K, Ja_lKaJa_1 in Ex. 5.18, we here tend to their parallels for the maximum
weighted likelihood method of Ex. 5.11. For a parametric model f(y,0), and with a
given weight function w(y), it consists in maximising the weighted log-likelihood function
Cnw(0) =30 w(ys)log f(Y;,0) —nB(0), with B(A) = [w(y)f(y,0)dy. We assume the
regularity conditions of Ex. 5.13 are in force.

(a) When observations Y7,...,Y, stem from G, with density g, show that the MWL es-
timator 6 tends to 6y = 6 (GQ), the minimiser of the weighted KL divergence KL, (g, fo).
When ¢ is not inside the parametric family, this least false parameter value depends
also on the weight function. Show also that 6y is characterised as the solution to
Jw(y){gy)—f(y,00)}uly,bo) dy = 0. As for Ex. 5.18 we write fo, ug, io for the functions

f(ya 90)7u(ya eo)ai(y790)a and 50 = fngO dy = fwfouo dil/
(b) Explain that maximising ¢, ,,(6) is the same as minimising n=* """ | h(Y;,6), with
hw.6) = w(y)log f(5.6) — B(9). or solving n-2 S, W(Y,.6) = 0. with h'(y.0) —
w(y)uly, 0) — €(6), where £(6) = DB(9)/0 = [ w(y) ] (3, O)u(y, 6) dy. Show that

Ky, = /UJQQUOUB dy — &o&o-

Under model conditions, we have & = 0, and the above simplies to K, = [ w? fougul dy.



Score function, Fisher information matrix, Cramér—Rao lower bounds 185

(c) Then show that J,, = — [wgio dy + 9*B(6y)/00 96*. Under model conditions, .J,, =
— fwfoio dy

(d) (xx find sandwich, and compare with J~! under model. xx)

Ex. 5.21 Mazimum weighted likelihood for multinomial models. The weighted likelihood
ideas of Ex. 5.11, 5.20 can also be used to estimate parameters in models for multinomial
probabilities, allowing different weights of importance for different outcomes. (xx pointer
to Story ii.8. xx)

(a) Show first that plogp/q— (p—q) is always nonnegative, for p, ¢ in (0,1). Now consider
(Y1,...,Y;) being multinomial with count n and probability vector p = (p1,...,pk), as
with Ex. 1.5. Then

k
dw(p,po) = Y _ wi{p;log(p;/pie) — (p; — pie)},
j=1
is a proper nonnegative divergence, from p to some py, as long as the weights wy, ..., wg

are nonnegative. With equal weights, show that this is the Kullback—Leibler divergence
KL(p,po). If po = (p1(0),...,pr(0)) is some postulated model, with € of dimension r,
say, show that the minimum divergence method amounts to maximising the weighted
and modified log-likelihood

k k k
() =1y wi{P;logp;(0) —p;(0)} = > w;Y;logp;(0) —n Y w;p;(0),
j=1

Jj=1 Jj=1

with p; = Y;/n. This generalises the usual ML method, which corresponds to equal
weights.

(b) Let p = (p1,-..,pr) denote the true probability vector. Explain that the weighted
likelihood estimator §w, maximising ¢, ., (), tends in probability to the least false param-
eter maximising Z§=1 w;{p;logp;(8) —p;(0)}, i.e. to the minimiser of the weighted KL
distance d.,(p, pe). Writing u;(6) = 0logp;(0)/06, show that the least false parameter
is also the solution to Z§:1 wi{p; — p;j(0)}u;(#) = 0, assumed here to be unique. Show
furthermore that

L 0w(0) _ :
Un=mn UQ# =Y wivn{p; — p;j(00)}u;(00) —a U =Y w;Zju;(6o),

j=1 j=1
using results and notation from the multinomial CLT worked with in Ex. 2.44. Deduce
that U ~ N,.(0, K,,), with

b k
Koy =Y _wipju(0o)u;(60)" — &o&f,  with & =Y w;pju;(fo).

j=1 j=1

(¢) Next demonstrate that the normalised Hessian matrix jn’w = —n_182€n,w(§)/6969t
tends in probability to a well-defined .J,. In fact, writing i;(0) = 92 logp,(6)/0006",
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show that J,, = Jy,(6p), where

P &
~ 5000t w;{p;jlogp;(0) —p;(0)}
j=1

Juw(0)

k
ij [ (0)u;(0)u;(0)" — {p; — p;(6)}i;(0)],

with the expression simplifying under model conditions. Use this in conjunction with the
general minimum divergence theory to establish that /n (0, —6g) —a J5 U ~ N,.(0,%,,),
with the sandwich matrix ¥, = J 1K, J,!.

(d) (xx a simple example here, with pointer to Story ii.8. xx)

Ex. 5.22 Completing increasingly simpler tasks. In a certain game of learning a player
needs to complete tasks 1,2, ..., n, which become increasingly simpler with each passing
of a new level. Assume that the time needed to complete these tasks are Vi, ..., V,, with
these being independent with V; ~ Expo(i/#), where 6 is an unknown parameter. — For
the following questions, you may encounter the partial sums

an=14+1/24+1/3+ - +1/n, by =1+1/22+1/3> 4. +1/n>

Here the first is slowly divergent, with a,, = logn+ 0.5772, and the second is convergent,
with b,, — 72/6, as shown by Euler in 1734, bringing him instant world fame.

(a) Find expressions for the mean and variance of T,, = V; + --- + V,,, the time it takes
the player to complete all tasks. In particular, show that 7, has mean a,0. Put up the
unbiased estimator based on T, say 9. Find its variance, and show that the estimator
is consistent.

(b) Then work out a formula for the log-likelihood function, based on having observed
not merely the total time T,,, but the individual waiting times V;,...,V,. Find the
maximum likelihood estimator, say 6*. Show that also this estimator §* is unbiased, and
compare its variance to that of 9. Find also the Cramér-Rao lower bound for variances
of unbiased estimators for 6§, and comment.

(c) Assume the game goes on, up to level 2n, and consider the time a player needs to
pass the last half of these levels, i.e. T)¥ = Ty, — T),. Show that T tends in probability
to a certain limit as n grows.

Ex. 5.23 Profiling quadratic functions. Consider some quadratic function A(s) = %st Js,
with J symmetric and positive definite of dimension p x p. It is useful to sort out minima
of A under different types of side constraints.

(a) We start out examining the minimum of A(s) over all s with c's = z, for some
given vector ¢ and level x. The Lagrange multiplier way of solving such a problem is to
minimise the function %stJ s — M(c*s — ), with no constraint on s, and in the process
find the \ agreeing with the constraint. Taking derivatives, show that minimum occurs
for so = AJ'¢, leading to ctsy = ActJ ~'c, which should then equal . Explain that this
leads to minimiser so = #/(c'J'¢) and attained minimum Ay, = 322/(c'J1c).
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(b) Generalising the above, from a scalar to a vector, consider a pg x p matrix C' and an
x of dimension pg, where it is assumed that CJ~'C* has full rank. The task is to work
out the minimiser and minimum of %st.] s over all s with Cs = . Work out that the
minimiser is

so=J'C'A=J7'CYHCITCY) e with Ay, = 2 (CTICY) e,
(xx we should find the following from this; round off. xx) with ¢ = k(8) = (¢1,..., dp,),
n(Hn,min,narr - Hn,min,wide) —d %UtJ_lC(CtJ_lc)_lctJ_lU.

Ex. 5.24 Profiling a minimum divergence function, I. For data Y7,...,Y, from some
distribution G, we have in Ex. 5.5 considered estimating a parameter 6y = argmin(H),
for H(0) = Eg h(Y,0), by minimising the distance function H,(0) = n=1 3" | h(Y;,0).
For a focus parameter ¢ = k(6), a smooth function of § = (61,...,6,), it is useful to
work with the associated profile function

H,, prot(¢) = min{H,,(8): k(8) = ¢}.

(a) As an introductory illustration, consider estimating the parameters (a,b) of a Gamma
distribution via minimum Lo, as in Ex. 5.3. Simulate 100 datapoints from a gamma;

compute (a,b); and compute and display also the profile function H,, pror(pt) for the
mean parameter u = a/b.

(b) From the full model, with ensuing minimum divergence function estimator 8, show
that the consequent ¢ = k(é\) becomes normal. With setup and notation as in Ex. 5.13,
prove indeed that \/ﬁ(af $0) —a c*J U, with ¢ = 9k(6p)/00, and that the limit is a
zero-mean normal with variance c'.J"'K.J'c. Show also that this (;AS is identical to the
minimiser of the profile function.

(¢) In other words we already know the basic story for any focus parameter estimator
a, thanks to the delta method. It is however fruiful to work with representations and
approximations stemming from examining the associated profile function. With methods
from Ex. 5.13, show that

n{H, (0 + 5/v/n) — Ho(0)} = 38" Jus +1a(s),  with 7,,(s) = Opu(|Is]1/v/n).

For the profiling, therefore, we must minimise this expression over all s such that k(0) =
k(6 + s/vn) = ¢. With k(0) = ¢ + ¢ s/v/n + Ope(||s]|2/n), here writing ¢, = 9k(8)/00,
the essence is to minimise %stjns under c¢ts = /n(¢ — gg) = x,, say. Appealing to
Ex. 5.23, show that this minimum becomes 122 /¢t J 'e, = (¢ — ¢)2/ct, J; *e,. Fill in
more details to prove that with ¢g = k(6p) the true parameter in question,

(¢ — po)?

20{ Hy prot ($0) — Hy prot(9)} = T e + opr(1) —d

(ctJ—lU)2

2
~ ,‘{;X
ctJ1lc b

with k = " J K J e/t T e
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(d) (xx explain that this often leads to better approximations than the direct limiting
normality thing. then an illustration of this. and pointer to Wilks. and pointer to
regression versions of these methods and results; the Y; need not at all be i.i.d. xx)

Ex. 5.25 Profiling a distance function, II. In Ex. 5.5, 5.13, 5.24 we have considered
parameters defined as minimisers of functions H(«) = Eg h(Y, a), and developed the
basic theory for the associated minimum divergence function estimators. We now consider
situations where some of the components of the argmin(H) parameter are specified. Such
occur when one tests for lower-dimensional structure, etc. This invites setting up the
following framework, with a wide model having o = (8,7) of length p + ¢, and the
narrow model considered has (6,79), with  unknown but v = 7, fixed. Estimators (5, )
in the wide model minimise H,(6,v) = [h(y,0,7)dG,(y) whereas 6 for the narrow
model minimises H,(0,70) = [ H(y,0,7) dGy(y). The theory developed in the previous
exercises mentioned holds for the wide and the narrow models, separately, and below we
postulate that the regularity conditions (i)—(v) put up in Ex. 5.13 are in force. Efforts of
linear and matrix algebra are required in order to handle these models jointly, however.
Define therefore

8> H (Y, 6, 70) (Joo, Jo1

Jwi e =Eg——F—F——"=
d ¢ JlOa Jll

. . -1
adat > with inverse J = (

wide

J007 JOl
JlO, Jll)’

where Jyg = Jnarr is of size p X p, etc. There is similarly a (p + ¢) x (p + ¢) matrix
Kyide, with submatrices Koo, Ko1, K10, K11, the variance matrix of U = (U}, UT)Y, the
first derivative 0H (Y, 6o, v0)/0c.

(a) The following developements are under the v = 7o constraint, so ag = (6p,70) is the
true parameter, determined by the distribution G. Argue that

V(8 — 6o) o (U 5 -
(ﬁﬁ - 72)> =ik () VA0 2

Show also, again using results reached earlier, that

n{Hp widze — Hn(00,70)} —a —3U"J 4 U

wide ™~

n{Hn,narr - Hn(e()a’YO)} —d _%UOt'](i)lU(%
with H,, wide = Hn(g, 7) and Hy, narr = Hn(g, 7). Deduce that
Wy = 2n(Hp nare — Hnwide) —a W = U I LU — UbJsg Uo. (5.8)

wide

Show that this limit variable has mean Tr(J_.

WiileKWide) - Tr(J(i)lKOO)~

(b) (xx clean and simplify this. xx) We tend to a few matrix and submatrix identities
here, as they come in handy for some of the technical arguments below. The ¢ x ¢ matrix
J' has an important role, here and on later occasions (as with the FIC in Ch. 11). Show

that
Q=J" = (Ji1 — JioJog Jo1) "t (5.9)

Similarly, we have J% = Jyo' + J5o' Jo1QJ10Jgg - Show also that JO — Jyot = JOVJ10J50",
JO = —QJi0J5y
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(¢) We now use the structure of Kyige to transform (Up,Uy) to (Up, V), with V =
Ui — KloKo_Ol Up, the point being that Uy and V' become independent. Work through the
details of

(%) = (00— sorgn) =50 (8 s~ i)
14 Uy — K10K ' Ug P 0 K1 — KoKy ' Koi )

Show also that the variance of V is the same as (K'')~! (xx check with care xx).

(d) With this transformation, work out the following formula for W, in terms of the
independent Uy and V' (xx check all this xx):

W = US(J — I )Uo + (V 4+ KiK' Up) ' Q(V + K10 Ky Uo)
+2U8JN(V + K10K ' Uo)
= V'QV + US(J® — Joy' + Koyt Knn QK 10K oy + 2 JO K10 K o) U

+USJ" + K KnQ)V + V(I + QK10 Ky ) Us.

(e) There are additional informative and insightful representations of the W above. Start
by showing v/n(y — o) =4 —Z, where

Z = JU, + J'1U,
= JOU + Q(V + KiK' Up) = QV + (J'° + QK 10Ky ) Uo,

Show that Z ~ N,(0,%11), with ¥ = J7'KJ~! the sandwich matrix. The point is now
to demonstrate that W above is identical to W’ = Z*Q~'Z. Verify first that its mean
Tr(Q~1%11) is identical to the formula found above for EW. Work out that

W' = [QV + (J' + QK 10Ky )Uo)'QHQV + (J' + QK 10Ky ) Uo)
= V'QV + US(J" + Koo' Kn Q) Q1 (J'° + QK10K i ) U
HUS(T + Ko K1 Q)V + V(' + QK 10Ky ) Us.

Prove W = W’ by by checking the separate terms. One needs to verify that A = A’, in

A= J% — Joot + Kot Kn QK10K g + J KoKy + Koo Kot J',
A = (J" + Ky KonQ)Q (I + QK10 Kyy).

(xx nils cleans and checks all of this. xx)

(f) For the special case J = K, which we meet for ML estimation under model conditions,
show that W ~ X3~ For the case K = ¢J, which turns up in certain overdispersion setups,
show that W ~ cxi.

(g) (xx give an example. can simulate from limit distribution. clarify connections to the
case of narrow model p — 1, wide model p, i.e. profiling over a 1-dimensional ¢ = k(0).
XX)
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Ex. 5.26 ML and minimum divergence function estimators in practice. In previous ex-
ercises we have learned that 6, the minimiser of H,(#) =n~" Yo, h(Y3,0), is a natural
estimator for 0y, the minimiser of Eg h(Y, ), and that its distribution approaches normal-
ity. In order to use such results in practice, for testing, setting confidence intervals, etc.,
we need to estimate the two crucal matrices J = Eg h”(Y,6y) and K = Varg b/ (Y, 09).
These comments apply in particular to ML estimation, with J = —Egi(Y,6) and
K = Varg u(Y, 6p), see Ex. 5.17.

(a) Consider first, in general terms, some function p(y, #) with finite mean in a neighbour-
hood of the true 6, with § an estimator of . Explain first that p,, = n~! S p(Yi.00)
tends to po = Egp(Y,00). The best we may do for estimating po in practice is p, =
ntY p(Y;,8). Show that if [p(y, 8 + ) — p(y, 00)| < M(y)|e|, for all small ||]|, for
some function M (y) with finite mean, then indeed p,, —pr Po-

(b) Give conditions under which the natural estimators

n n
J=n""3"K(Y;,0) and K=n"'Y K(Y,0) (Y, 0)"
i=1
are consistent for J and K. Deduce that when such hold, the empirical sandwich matrix
S = J 'K J ' is consistent for © = J'KJ~1. Note also that J = H{{(@) is the Hessian
matrix of the criterion function H,,, often computed directly when using numerical min-
imisation methods for finding 8 in the first place. (xx nils emil small note: where do we
say that A, —p A and B,, —p, B for matrices implies A, B,, —pr AB, etc.? xx)

(¢) Explain how confidence intervals for the components of § may be read off from this.
More generally, for any focus parameter ¢ = k(#), with estimator g’g = k(@), show that
qASj: 1.96%/4/n is an approximate 95 percent interval for ¢, where &2 = Etj—ll?f_la and
¢ = 0k()/00.

(d) The case of ML estimation is a special case of the setup above, see Ex. 5.17. Show
that the estimated matrices become

N 9% log f(Y; 9) - -
— 71 & o1 ~
J = E 000" and K=n é wuy,
where u; = u(Y;, 5) Note also that J = fnflﬂ’,{(a), the normalised Hessian matrix of

the log-likelihood function computed at the ML position.

(e) To illustrate how the above machinery works in practice, simulate 100 points from

the standard normal, and then estimate the two normal parameters (£, 0) via minimum

Lo, as in Ex. 5.5. Explain that this means minimising the empirical distance function
1/2

g)=/f(y,£,0)2dy—Zif(ymf,d) &—*Z 025,

Carry out this minimisation using e.g. nlm in R, a non-linear minimisation algorithm,
which finds both (¢,7) and the Hessian J. Compute also K, and find confidence intervals
for &, for o, and for p(yo) = Pr(Y > yo), with say yo = 1.00.
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(f) Change one or two of your simulated datapoints to somewhat far-off values, e.g. ygg =
d and y190 = d, with d = 5.00 (which indeed is really far off for the standard normal).
Observe what then happens to the ordinary ML estimators, and compare with what
happens with the minimum Lo estimators. The point is the the minimum L, method is
much more robust than the ML method.

(¢) For the ML method, we know from the Bartlett identity that the two matrices J
and K are equal under model conditions. For various models we would then have two
different estimators, with the same aim, and perhaps different precision; this does not
matter for the first-order large-sample theory, since consistency is what matter for J and
K , and specifically for the estimated sandwich matrix $ =J1KJ"!. For illustration,
consider Y; from the Pois(d) model. Show that J = 1/6y and K = 7¢ /6%, in terms of
the true mean and variance p and 73 of the underlying distribution. The recipes above
lead to J = 1 /Y and K=V, /Y2, in terms of sample mean and sample variance. Under
model conditions, both aim for 1/6y. Show also that the consequent estimated sandwich
becomes 3 = V,. The general recipes hence lead to two somewhat different confidence
intervals for 0, namely 0 + zR/+/n, with either 7 = Y1/2 of & = V;1/%. Argue that both
are valid, with both aiming for the same quantity under Poisson conditions, whereas the
second option might be preferred if there might be overdispersion.

(h) (xx profiling too, to illustrate, for p(yo). again handled by the general theory. inter-
vals need k = c'J 1K J lc/ct T e, xx)

Ex. 5.27 BHHJ analysis in practice. We have seen how the behaviour of the model
robust BHHJ estimators, defined in Ex. 5.9, is described via the two crucial matrices J,
and K, worked with in Ex. 5.18. Here we go into the details of their estimation. The
setting is having i.i.d. data Y7,...,Y,, from some density g, fitted to a parametric f(y, )
by minimising H,, ,(0) of (5.4). We let 0 be this BHHJ estimator, computed for the given
balance parameter a. Below, we write u; = u(Y;, 5) and ﬁ = f(V3, é\)

(a) Show that & = n~! Dy fi“ﬁi is equal to ff(y,g)lﬂlu(y,g) dy, and that it is
consistent for the £, defined in Ex. 5.18.

(b) Show next that J, = H;;a(é), the Hessian matrix associated with minimisation of
the criterion function, is consistent for the J, matrix.

(¢) Show that

n

Ro=(1+a) {—121?5%@5— *} (1+ a)? 1Zfa &)t — &)
is consistent for K.

Ex. 5.28 Wilks theorems. (xx repair and round off. log-likelihood profiling, deviance
functions, Wilks theorems. setup as in Ex. 5.17. we harvest from earlier profiling efforts.
XX)
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(a) Consider a one-dimensional focus parameter ¢ = k(), and the consequent profile
log-likelihood function

Uy prot(¢) = max{l,(8): k(0) = ¢}.

Show first that its maximum is reached for a = k:(@\), so this (g is also maximising the
profile function, and is rightly the ML estimator of ¢. With ¢y = k(f), the least false
parameter value for ¢, write also ¢ = 9k(6y)/00 for the gradient vector. Show from
Ex. 5.24 that

Dy(¢o) = 2{£n,max - gn,prof(ﬁbO)} —d (CtJ_lU)Q/CtJ_lc ~ K‘X%a

with k = c¢*J 1 KJ~1/c*J~tc. This D, (¢), when computed for a range of ¢ values, is
called the deviance function for that parameter. Under model conditions, D,,(¢g) —a X3,
which is one of several so-called Wilks theorems.

(b) Explain that this Wilks theorem may be used rather directly, without the need to
estimate the J matrix, to construct confidence intervals for the focus parameter ¢ = ¢(0),
assuming that the f(y,#) model holds. With Cy,(«) = {¢: T'1(Dn(¢)) < a}, writing T';(+)
for the c.d.f. of the x?, show in fact that Prg{¢ € C,,(a)} — «, for any desired confidence
level a. This is a key method for constructing full confidence distributions, the core topic
of Ch. 7.

(¢) To formulate and prove a Wilks theorem for testing a submodel within a bigger
model, via ML estimation, consider Y7,...,Y, i.i.d. from a parametric model of the form
fly,a), with a = (6,~). We call this the wide model, of dimension p+ ¢, with p and ¢ the
dimensions of § and ~y, and then study the narrow model, of dimension p, corresponding
to v = 7o for some fixed 9. Let £y, max,wide a0d £y, max narr e the log-likelihood maxima
for the wide and the narrow models. Show now via Ex. 5.25 that if the narrow model
holds, with data arising from f(y, 6o, o) for some 6, that

Wn = z(zn,max,wide - g",max,narr) _>d W — ZtQ_lZ.

Here Z ~ N,(0,Q), with Q = J'! the lower right ¢ x ¢ submatrix of J~!, as in (5.9).
Under the narrow model conditions, then, W,, —4 Xﬁ, another Wilks theorem.

(d) (xx choose a simple illustration, one covered in score function exercise above. may
point to a couple of stories. xx)

Ex. 5.29 log-likelihood and ML for the binomial, trinomial, multinomial. Working
through the likelihood mechanics of the binomial, trinomial, multinomial models provide
good illustrations of the developed methodology. We already know the basic large-sample
behaviour for the natural estimators in these models, via Ex. 2.44, but here we connect
such results to the general likelihood theory. See also Story vii.l.

(a) For X ~ binom(n,p), a sum of independent Bernoulli variables, show that its log-
likelihood function is ¢,(p) = Xlogp + (n — X)log(1l — p), with maximiser p = X/n.
Show that nJ = n/{p(1 —p)}, here with J defined relative to a single Bernoulli variable.

the deviance
function
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Explain that we may hence read off the limit distribution of v/n(p—p) being N(0, p(1—p)),
without necessarily even knowing the X /n formula, or about the CLT for binomials. One
may even argue the other way, starting with the X/n formula: since we know the limit is
N(0,p(1 —p)), via the CLT, we must have J~! = p(1 —p), hence J must be 1/{p(1—p)}.

(b) For further illustration of the binomial likelihood mechanics, draw the log-likelihood
function £, (p), computing both its maximiser, its maximum, and its second derivative at
the maximum, for cases (i) n = 20,y = 4, (ii) n = 40,y = 8, (iii) n = 200,y = 40. Note
how Jobs = —£//(p) becomes bigger and the implied estimated standard deviance 1/ ij{sQ
becomes smaller.

(¢) Let (X,Y) be trinomial (n,p,q), and user =1—p—gand Z=n— X —Y. Show
that the log-likelihood function becomes X logp + Y log ¢+ Zlog(1 — p — ¢q), and for the
Fisher information matrix that

= (1/1?14/;’1/7“, 1/6114/:1/7“) with 7= (p(l—z:q},?% q(l—zqu)> '

Conclude, even before finding or perhaps without caring that there are clear formulae
p=X/n and ¢ = Y/n for the ML estimators, that (v/n(p — p), vn(q— ¢)) tends to the
binormal zero-mean distribution with the J~! covariance matrix. This may of course
also be shown, for (X/n,Y/n), without knowing that these are ML estimators.

(d) Generalise the above to the full multinomial model, with data (X1, ..., Xx) with sum

n and probabilities p1, . .., pr summing to 1 over k boxes. The model has k—1 parameters,
since py, is known when (p1,...,pr_1) is known. Find the J and J~! matrices, of size
(k—1)x (k—1).

Ex. 5.30 The mazimum likelihood estimator: examples. Here we work through some
examples, where the task is to set up the log-likelihood function and if feasible also
explicit formulae for the ML estimators.

(a) With Y7,...,Y,, from the normal model N(u,o?), write down the log-likelihood func-
tion. Find the ML estimator for ¢ when p is a known value, and find also the ML
estimators (i1, ) in the case where both parameters are unknown.

(b) Suppose Y; ~ Pois(w;#), with known exposure times w;, and that the observations
are independent, for ¢ = 1,...,n. Write down the log-likelihood function, find the ML
estimator, and find its mean and variance.

(¢) (xx one or two more, with explicit formulae for ML. xx)

(d) Let Yq,...,Y, beiid. from the uniform model on [0, §], with 6 the unknown endpoint.
Set up the likelihood function and find the ML estimator.

Ex. 5.31 Mazimum likelihood for the Beta and Gamma models. Consider the Beta and
Gamma two-parameter models, with densities

Lla+b) b—1 b a1
b b) = ————=y* (1 - d b) = —y* —b
e(y, a,b) T aT()” (1—y)""" and g(y,a,b) )Y exp(—by),
for y € (0,1) and y > 0, respectively. The task is in each case to estimate the parameters
based on an i.i.d. sample Y7,...,Y,.
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(a) We start with the Beta distribution, see Ex. 1.18, where we in particular have found
formulae for the mean and variance in terms of (a,b). With empirical mean and variance
2 show how (a,b) can be fitted by solving the two equations § = EY and
%2 = VarY. With solutions (fim,gm) for these moment estimators, and assuming the
Beta model is correct, explain how you can find limit distributions of v/n(a,, — a, by — b).

i and o

(b) Write down the log-likelihood function, say ¢, (a,b). Show that the ML estimators

-~

(@,b) are the solutions to the two equations
n'y logVi =1h(a) —(a+b), n'> log(l—Y;) =(b) —(a+b),
i=1 i=1

where ¢ (z) = dlogI'(z)/0x is the so-called digamma function. There are no explicit
formulae here, but the two equations may be easily solved numerically. Explain how
the limit distribution for v/71(a@ — a,b — b) may be found, via the two-dimensional central
limit theorem. — Here it turns out (i) that the ML estimators are more precise than the
moment estimators, and (ii) that finding the limit distribution is rather easier via the
general results about ML behaviour, already sorted out in Ex. 5.17.

(¢) Then turn attention to the two-parameter Gamma model, where arguments and
results will be similar. Show that the mean and variance are a/b and a/b?, and find
moment estimators 6m,3m based on this. Find the limit distribution of \/n(ay, —a,/b\m—b)
using Ex. ?77.

(d) Then write down the log-likelihood function, take derivatives, and show that the ML
estimators (a,b) are the solutions to the two equations

Y =a/b, n! ZlogYi = 1(a) — logb.
i=1

Explain how the limit distribution of v/n(a — a,gf b) may be obtained. Again, this is
rather easier via the general recipes worked out in Ex. 5.17; also, we shall again find that
ML estimators under model conditions are more precise than the moment estimators.

Ex. 5.32 Log-linear mixing of densities. How far have we moved, from A to B? Suppose
i.i.d. data Y7, ...,Y}, come from a density which is percieved of as being ‘betweeen’ given
densities f4 and fg. There are various ways of creating probabilistic bridges from A
to B, via which one then can estimate the position of the current density, e.g. to assess
whether it is close to A or to B. One such model takes f(y, \) = fa(y)' = f5(y)*/R(\),
with R(A) the normalisation constant [ f}f)‘ fg dy. This creates such a bridge, with
A €]0,1], and with A and B corresponding to A =0 and A = 1.

(a) Explain that R(0) = R(1) = 1, and that the derivative of R(}\), at the endpoints 0
and 1, can be written

R'(0) = —KL(fa, fp), R'(1) =XKL(fB, fa)-

in terms of the Kullback—Leibler distances discussed in Ex. 5.7 and later on. In particular,
the R(\) has negative derivative at the start and positive derivative at the end.
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(b) For a concrete illustration, suppose f4 is N(0,1) and fp is N(e, 1), with ¢ positive.
Show that R(\) = exp{—3c?A(1 — A\)}. From this explain that the score function is
u(y, \) = cy — Ac? and that the Fisher information becomes the constant ¢2. Show indeed
that f(y,A) is N(Ac¢, 1), that the ML estimator becomes X = Y /e, truncated to [0, 1].
From general ML theory, explain that if the real A is inside (0,1), then \/ﬁ(X —A) =4
N(0,1/¢?). For ¢ small the variance will be very big, signifying that it is a hard task to
estimate the balance parameter when f4 and fp are close.

(c) Returning to the general setup, write S(y) = log f5(y) — log fa(y). Show that the
log-likelihood function becomes

ln(\) = n{\S,, —log R(\)}, with S, =n"" Zn: S(y:).-

=1

Explain that the ML estimator A hence is the solution to S, = R'(X\)/R(N). (xx a bit
more. and example. limiting normality. evaluate for A =0 and A = 1. xx)

(d) Bayes posterior: w(A)exp[n{AS, —log R(\)}].

() (xx there is perhaps hope for the semiparametric construction f(y) = fo(y)'=>
fn(y) /Ry ()), resembling the Hjort-Glad estimator, see Hjort and Glad (1995). xx)

Convex processes, log-concave likelihoods

Ex. 5.33 Minimisers of convex processes, I. We have seen useful constructions, methods,
and results for minimum divergence function estimators in Ex. 5.5 and 5.24, in particular
when applied to ML estimators, as with the general apparatus of Ex. 5.17. There are
issues worth refining and generalising, however. The regularity conditions required for the
Taylor expansion based arguments to go fully through are a bit cumbersome, and there
are important constructions where the distance function h(y, ) in H(8) = Eg h(Y,0) is
not smooth. Here we give the basics for how matters simplify, with weaker conditions, if
the distance function is convex.

(a) From pointwise to uniform: Suppose A, (s) is a sequence of convex random functions
defined on an open convex set S of RP, which convergences in probability to some A(s),
for each s € S. Show that the convergence is automatically uniform; maxses |An(s) —
A(s)] —pe 0.

(b) Nearness of argmins: Suppose A, (s) is convex and is approximated by B, (s). Let
a, and 3, be the argmins of A,, and B,,. Then there is a probabilistic bound on how far
these minimisers can be from each other: show that

Pr(|lay, — Ba|l = 0) < Pr{A(5) > %hn(fs)})

Ap(0)= sup |A,(s) — Bn(s)] and h,(6) = inf B,(s)— B,(6n)-
Hs_ﬁnHS(s HS_Bn”:‘;
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(¢) Basic corollary: Suppose A, (s) is convex and can be represented as %sth +Uls+
Cpn+rn(s), where J is symmetric and positive definite, U, is stochastically bounded, C,, is
arbitrary, and r,,(s) —p, 0 for each s. For the approximation B, (s) = 3s'Js+ULs+Cy,
show that 8, = —J~'U, is its argmin. Then demonstrate that their minimisers as
well as their minima are close. Specifically, show (i) that a,, — 8, —pr 0; and (ii) that
An,min — Bn,min —7pr 0.

(d) Show that if in addition U,, —4 U, then a,, —q —J'U, and that By, min — Cy, as
well as Ay, min — Cy, tend to f%U tJ=1U. These two statements are what we worked hard

for in Ex. 5.13, 5.25 see (5.5)—(5.8), now obtained in a simpler fashion and with weaker
smoothness assumptions, though bought with the extra convexity condition.

(e) Prove the following modest but useful generalisation of the above: the statements
continue to hold if a random matrix J, replaces V, provided J,, —pr J.

Ex. 5.34 Minimisers of convex processes, II. The framework worked with now is as in
Ex. 5.5 and 5.24, with Y7,...,Y,, being i.i.d. from some G, a possibly multidimensional
parameter 6y defined as the minimiser of H(6) = [ h(y,0)dG(y), with estimator 6 the
minimiser of the distance function H,(0) = [ h(y,0)dG,(y) = n~' > I h(Y;,0). Here
we put in one more condition, however, that h(y,0) is convex in §. The point is that
this both simplifies various technical arguments, via methods of Ex. 5.33, and allows for
nonsmooth distance functions.
(a) With h(y,p) = |y — ul, show that po = med(G), the median, with @ = M, the
sample median. More generally, for some ¢ € (0, 1), consider
q(y — ) if y > p,
ha(y, ) = qly =)+ + A —a)(p—y)+ = .
(1=q)(u-y) ify<p
Show that uy = G~1(q), the ¢ quantile.

(b) For an a > 1, consider the parameter 6y being the minimiser of Eg |Y — 6|*. Show
that the distance function indeed is convex, and that the special cases @ = 1 and o = 2
correspond to the median and the mean, respectively.

(¢) We now work through regularity conditions ensuring control over the behaviour of
such estimators. Part of the point is that we avoid needing smooth derivatives in 6.
Suppose that

h(ya 90 + 5) - h(yv 90) = D(y)tg + R(yv 6)7
for a D(y) with mean zero under G, and that
E{n(Y,00+¢) — h(Y,0))} =ER(Y,e) = 2" Je + o(|le||*) ase—0

for a positive definite J. Assume furthermore that the variance matrix K = Varg D(Y') is
finite and that Var R(Y, ) = o(||e||?). Show that v/n(0—6y) = —J ' (1/v/n) 31—, D(Yi)+
opr(1). In particular, it tends to N, (0, J7'K.J~1). Show also that

W (0o) = 2n{H,(60) — Ha(0)} —4 U U,

and explain how this may be used to find a confidence region for 6.
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(d) The median: Suppose Yi,...,Y;, are i.i.d. from a distribution G with a density ¢
positive at the median p. For the median distance function |y — u|, show that

ly = (u+e)| =y — pul = D(y)e + R(y,e),
with D(y) = I(y < p) — I(y > p) and

He—(y—wil(p<y<p+e) ife>0,
2{(y —p) —e}l(p+e<y<p) ife<0,

R(?/v 5) = {

with R(y,0) = 0. Verify from this that ER(Y,e) = g(n)e? + o(?) and E R(Y,¢)? =
(4/3)g(u)[e® + o(lel*). Deduce that v/n(My, — p1) —a N(0,1/{4g(1)*}).

(e) Generalise to the case of u; = G7!(q), with Q,,, = G, (¢) the empirical ¢ quantile.
Show in fact that

Zn(q) = V(Qn.g — tg) = —9(1tq) " Vn{Gn(1g) — a} + £n(q),

where €,,(q) —pr 0 for each ¢. Derive from this that the limit is a N(0,q(1 — q)/g(pq)?).
We saw this in Ex. 3.18, but here the technique is distinctly different, and we find an
interesting representation in terms of the empirical Gy, (pq)-

(f) Let &, be the minimiser of E |Y; —£|*, with estimator M, , minimising Y .-, [Y; —&|*.
Show that

E |Y _ §a|2(a—1)
(e DEY &7

V(M o — &) —a N(0,72)  with 72 =

Explain that if the distribution is symmetric, then the £, is the same for each a. Compute
and display 7, for a € [1,2], i.e. the range from median to mean, for the normal and for
the Laplace,

Ex. 5.35 Mazimum likelihood asymptotics with log-concave likelihood. (xx edit with
care. regularity condition on R. point to expofamily in later exercise. xx) Suppose
Yy,...,Y, are i.i.d. from a density g, modelled as f(y, ), where log f(y,6) is concave in
0 for each y; the 8 = (61,...,6,) is allowed to be multidimensional. Let £, (6) be the
log-likelihood, with ML estimator 8. From efforts of Ex. 5.17 we know @ is consistent for
the least false parameter 6, the KL minimiser, assumed here to be an inner point in the
parameter space.

(a) Show first that ¢, is concave. To start with mild conditions, assume merely that

log f(y, 00 +¢) —log f(y,00) = D(y)'e + R(y,e), (5.10)

for a D(y) with mean zero, and that E R(Y, ) = 1e*Je +o(||¢||*) as e — 0 for some posi-
tive definite J, along with Var R(Y,e) = o(||¢]|?). Show via the convexity driven methods
of Ex. 5.33 and 5.34 that \/n(0—6p) = J U, +0p:(1), where U, = (1/v/n) 321, u(Y;, 6o).
Here U,, -4 U ~ N, (0, K), with K = Var, u(Y, 6p) assumed finite. Deduce the two fun-
damental results

Zy = /n(0 — 6y) —a N, (0, 'KJ ),

5.11
Wn 2{€n,max - én(QO)} —d [Jtc]_llj7 ( )
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with simplifications under model conditions. Show also that consistency of the ML
estimator for 6y is a simple consequence of the first statement. We have seen such results
before, see Ex. 5.17 and in particular (5.7); the point is that they have now been derived
more simply and under weaker conditions, as long as there is log-density concavity.

(b) Work through the details for the case of the Laplace distribution with f(y,6) =
3 exp(—|y — 6]). The point is that with log-concavity, we reach the required results of
(5.11) even without needing full smoothness in the parameter; here the score function is
not defined for all values, etc. Usually, though, the D(y) is the score function u(y, 8y) =
0log f(y,00)/00 and J = J(6y) is the variance matrix of this score function, i.e. the
Fisher information matrix, evaluated at the true position in the parameter space.

(¢) (xx a couple of illustrations. for each, find the limit distribution of \/n(6 — ).
the poisson. gamma. beta. normal. also something like Y; ~ Pois(e;0), with different
exposures w;, the point is non-i.i.d. nils does this after mild extra editing for Ex. 5.33
and 5.34, with a bit of Lindeberg too. xx)

(d) (xx to polish. xx) something nontrivial. can do

F(y,0) = (1/k) exp{(y — 0) arctan(y — 0)}/{1 + (y — 0)*}'/2,

which has log-density (y — 6) arctan(y — 6) — 3 log{1 + (y — 6)?} and nice score function
arctan(y — 6). something nontrivial II. and f = (1/k) exp(—|y — 0]*%).

Ex. 5.36 Differentiability in quadratic mean. The key to proving asymptotic normality
of the ML estimator for the log-concave densities in Ex. 5.35 was the assumption that
log f(y,00 + €) — log f(y,600) = D(y)*e + R(y,e), where D(y) and R(y,e) satisfy the
conditions specified in (a) of that exercise. This raises the question of what conditions
are needed for such an expansion of the log-likelihood ratio to hold.

(a) Suppose that 6 — log f(#,y) is three times continuously differentiable for every
y. Assume that u(6,y) is square integrable, that J(6y) exists and is nonsingular, and
that the third derivative of log f(6,y) is bounded by some integrable function k(y) (not
depending on ). Provided that 0, is consistent for 6, you may now Taylor expand
0 = U,(8,) around 6 to show that \/n(8, — 6o) = J(66) " *n=/2U,,(6) + 0p:(1). Do it.

(b) Retain the classical assumptions from (a), except the consistency assumption (as it
plays no role here). Show that the expansion in (5.10) of Ex. 5.35(a) holds.

()

Ex. 5.37 The exponential family class and ML. The ML and log-likelihood machinery
works particularly well for the exponential family class of models, see Ex. 1.50, 4.19,
4.20. This is due the log-linear structure for parameters and sufficient statistics, and
also to the consequent log-concavity of densities. Consider i.i.d. data Y7,...,Y, from a
density g, modelled with the generic parametric f(y,0) = exp{0*T(y) — k(0)}h(y), with
0°T (y) = 01Ty (y) + - - - + 0,T,(y) involving basic data functions T1,...,T).

(a) Show that the score function is u(y, 8) = T'(y) — £(9), with £(0) = 0k(0)/06. Also,
the information function becomes i(y, ) = —J (), with J(0) = 9*k(6)/00 96°.

Classical

maximum
likelihood
conditions
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(b) Under model conditions, show that Eg T'(Y) = £(#) and Vary T(Y) = J(#). Outside
model conditions, with g not belonging to the fp, assume merely that T'(Y") has true mean
&o and true variance K. Show that the least false parameter 6y minimising KL(g, f(-,0))
is characterised by £, = £(6p). This may also be written 8y = M (&), with M the inverse
map. Write also J = J(6p), the Fisher information matrix computed at the least false
parameter position.

(c) Show that the log-likelihood function becomes ¢,,(0) = n{0'T — k(#)}, in terms of
sample averages T = (T, ... ,Tp)t, and that it is concave. Deduce that the ML estimator
has £(0) =T, of § = M(T).

(d) We have U,, = v/n(T—&) —4 U ~ N,(0, K), by the CLT. For the basic log-likelihood
function process, show that

An(s) = €,(00 + 5/v/n) — €,(00) = VnT"s — n{k(6p + s/v/n) — k(o) }
= Uys— 3s'J(00)s + o(||s|*/v/n) =4 A(s) = U's — }s'Js.

This is as with (5.6), but now established rather simply and directly, with a minimum of
regularity conditions. By appealing to Ex. 5.12, 5.13, deduce also that

V(0 = 00) —=a N0, J'KJ ™Y, 2{lpmax — ln(60)} —a W = U 'U.

Under model conditions, the sandwich matrix is J(6p)~! and W ~ X;Q)' Also, the Wilks
theorems of Ex. 5.28 hold, for focus parameters and for testing submodels.

(e) (xx a bit more. xx) From @\j = M;(T), for components My, ..., M, of the mapping
0o = M (&), write

0; = M;(%0) + Mj(&)"(T — &) + 3(T — &) M (&)(T — &) + Ope(1/0%/?),
Show that this implies Eé\] =00 + 3¢j/n+o(1/n), with ¢; = Tr(M] (§0) K).
(f) (xx a simple example here. xx)

Ex. 5.38 ML asymptotics under model conditions: applications. (xx cleaning required,
and more of the directly useful up front; we estimate parameters and have confidence,
almost automatically, via normality and delta method. xx) Results reached in Ex. 5.17
are central in applied statistics. The versatile ML machinery allows the statistician to
construct good estimators for even complicated functions of parameters in new models,
and to supplement these estimators with confidence intervals, tests, etc. We will also see
that the general ML asymptotics results may be used to verify what we already knew,
so to speak, regarding estimators in the more familiar models. (xx check all this to make
sure that we don’t become repetitive. xx)

(a) Let Y be binomial (n,p). Even before you find a formula for the ML estimator for
p, show that \/n(p — p) — N(0,p(1 — p)). By all means, show also that p=Y/n.

(b) In a similar vein, study the classic case of Yi,...,Y, being i.i.d. from the normal
(€,0?). Using the Fisher information matrix found in Ex. 5.14, show that the ML es-

~

timators £ and ¢ must be independent, in the limit, with approximate distributions
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N(¢, 0% /n) and N(o, 202). Remarkably, these results follow from the ML apparatus even
without or before knowing any formulae for the estimators, and without or before know-
ing any finite-sample theory for these. As we know (xx crossref here xx) there is ezact
independence here, and the distribution for SA is exactly correct, for each n.

(¢) (xx something with Gam(a,b), and approximate distribution for fi, estimator for the
median p = p(a,b). illustrate also Wilks. which can be used without explicit formulae.
XX)

(d) (xx the Weibull F(t) = 1 — exp{—(t/a)’}. perhaps an earlier exercise where we find
J(a,b). xx)

(e) Consider random i.i.d. pairs (X;,Y;) from the standardised binormal distribution
with zero means, unit variances, and correlation p. Set up the log-likelihood function
2,(p), show that the Fisher information becomes J(p) = (1 + p?)/(1 — p?)?, and find
the limiting distribution of the ML estimator. How much better is the ML estimator
compared to the usual empirical correlation coefficient R,,? (xx kladd to be pushed to
solutions follows. xx)

log f(x,y,p) = =3 log(1 — p?) — §(2* + v — 2pay) /(1 — p*),

score function

1
1—p?)
where we may check that the mean is zero. We find Var XY = 1+ p?, Var (X2 +Y?) =
4(1 + p?), cov(XY, X% 4+ Y?) = 4p, and this leads to Fisher information J(p) = (1 +

p*)/(1 = p*)2.
Ex. 5.39 Ezamples of agnostic ML operations. It is useful to go through a list of special

cases, to see how the agnostic ML theory pans out in practice. Note that convergence
to the normal N, (0, J “1KJ~1) takes place in general, model after model after model

u(z,y, p) = ( s{0— 0>+ (14 pPay — p(a® +47)},

(including those you might invent next week), without any need for working with explicit
formulae for the ML estimators etc.

(a) For the exponential model 6exp(—6y), show that the score function is u(y,8) =
1/6 — y, that its least false parameter value is 8y = 1/&p, in termas of the true mean
& = EY. Show that \/n(8 — 6) has limit distribution N(0,5264), where o2 is the true
variance. Show that this generalises the ‘usual result’ derived under model conditions.

(b) Then do the normal: assume data follow some density g, and the normal N(¢, o?)
model is used. We already know that the least false parameters are &, and og, the
true mean and standard deviation (i.e. even if g is far from the normal). Assume that
the fourth moment is finite, so that skew = E Z3 and kurt = E Z* — 3 are finite, with
Z=Y—-EY)/sd(Y) = (Y —&)/0oo. Working with the score function, and the second
order derivatives, show that

1 1
J:2(1’0> and K:z(l’ 78 )
) 0,2 ) 7372+74
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(¢) For the ML estimators ¢ and &, show from this that

(289) o) (2, )

Note that this is a ‘rediscovery’ of what we found in Ex. 7?7 and 2.46, but here we
managed to find the limit distribution fully without knowing (or caring) about the exact
expressions for the ML estimators.

(d) (xx one more case to come here. xx)

Ex. 5.40 An average power optimality property. (xx we shall see how this pans out, and
how it can be best told. make connection to BIC of Ch. 11. xx) Suppose Y7,...,Y,, are
i.i.d. from a smooth parametric model f(y, 8), where we need to test 8 = 6y, a given value,
against 6 # 0y. In general there is no uniformly most powerful test. We have seen in
Ex. 4.11, however, that there is a well-defined test maximising the weighted average power
Tn = [ 7,(0) dw(8), with 7, (6) the power at position § and dw(d) a given probability
measure on the alternative region, here 6 # 3. This optimal strategy is to use the
Neyman-Pearson Lemma for the marginal density f(y1,...,vn) = [ [1i=; f (v, 0) dw(6).

(a) Let £,(0) be the log-likelihood function, with 9 the ML estimator, and write also fo
for the model at the null value 8y. Show that the Neyman—Pearson ratio can be expressed
as

R, = f(ylavyn)

B folyrs- - yn) - /GXp{én(H)_fn(go)}dww)

exp{tn(8) — £a(00)} / exp{lu(6) — £0(8)} duw(6).

(b) For 6 close to ’0\, use Taylor expansion to get

~ ~ ~

0a(0) — £(8) = —Ln(0 — 0)'7 (6 — 0),

2
with J,, = —n =102, (6)/06 86" the normalised Hessian matrix at the max point.

(¢) The optimal test consists in rejecting when R, is above its null distribution threshold.
Show that the above leads to

R, = exp(1D,)(2m)P/?|nJ, [V 2w (),
2log R,

~

D,, — plogn + log|J,| + plog(27) + 2log w(h).

Here D,, = 2{/;, max — ¢n(00)} is the Wilks or log-likelihood-ratio test statistic, with its
X; limiting null distribution.

(d) Conclude that the D,, test is an approximation to the maximum averaged power
test, almost regardless of the weighting measure.

(e) (xx round this off. example. xx)
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Divergences and likelihoods in regression models

Ex. 5.41 Eztending theory and methods to regression setups, 1. Above we have dealt
with likelihood methods, involving ML estimation, limit distributions under and outside
model conditions, the Wilks theorem for profiled log-likelihoods, broadly valid for all
smooth parametric models, etc. — but after all under simple i.i.d. conditions. Crucially,
most of these concepts, methods, and results extend to classes of general regression
models. Here we go through the various steps to see how the scene broadens and to learn
the appropriate extensions for concepts, techniques, and results.

Consider in general terms regression data of the form (z;,Y;), with z; a covariate
vector, of length say p, thought to influence the main outcome Y;. We assume here that
the Y; are independent given the covariates. Let f(y;|z;,0) be a suitable density for y;
given x;, with score function u(y; | z;,0) = dlog f(yi | x;,0)/00 and information function
i(yi | 2i,0) = 0% log f(y; | x4,0)/00 06*. The 6 could comprise both regression coefficients
and parameters describing the shape of the distributions. In this exercise we assume that
the model holds, with 6, denoting the true parameter, an inner point in the parameter
spoace. We also postulate the ergodic condition, that averages over covariates stabilise,
with increasing sample size; formally, for each bounded h(x), there is a well-defined limit

= [h(z ) for n=t 3" | h(z;), for an appropriate distribution R on the covariate
space. For theory and applications, we do not need to model this R, or take it explicitly
into account, beyond postulating its existence.

(a) First of all, there is a log-likelihood function, also in these regression setups, £, (6) =
S log f(yi | xi,6). The ML estimator f is its maximiser, satisfying also U, (0) =0,
with Uy, (8) = >°1"; u(y; | z;,0). Secondly, to extend theory and results for the i.i.d. case,
see Ex. 5.17, we need to understand U, = n~'2U, () = n~ /23" w(Yi|zi,00).
Show that it has mean zero and variance matrix J, = n=' Y1 | J(z;), where J(z;) =
Varg,u(Y; | z;,00). Under ergodic assumptions, there is convergence J, — J, say. Give
Lindeberg type conditions under which U,, =4 U ~ N, (0, J).

(b) Extend techniques from Ex. 5.17 to deduce the natural parallel to (5.6), in this
general regression setting, that

An(s) = (00 + s/vn) — £, (6) = USs — 5Jps + r(s) =g A(s) = U's — s Js,

Set up clear but mild regularity conditions, as in Ex. 5.13, to secure the required
rn(8) —pr O for each s. Explain as in Ex. 5.17 that this leads to the two fundamen-
tal results

Vi@ —60) =4 N0, and  2{ly max — ln(00)} —a X2,

under these Lindeberg type conditions. Show also that the observed Fisher information
matrix

Tnunl = —0%,(0) /00 06", (5.12)

i.e. the Hessian mastrix associated with the maximisation of the log-likelihood, satisfies
Jn =n" Jtan —pr J. Deduce from this that 6 a4 N, (6o, Jf;ﬁ). (xx need to point to Ch2
thing with weak LLN for averages of non-i.i.d. xx)

ergodic
conditions

observed Fisher
information
matrix
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(c) (xx rounding this off. also log-likelihood profiling and deviance and x? limit and
CDs. the point is that i.i.d. results all extend to the broad regression cases. point also
to exercise below with outside the model. xx)

Ex. 5.42 Linear regression revisited. (xx edit and clean. xx) Consider the linear
regression model of Ex. 3.31, with Y;|z; ~ N(2!3,0?), for which exact finite-sample
theory has been well developed. We now take another look at this classical model, with
the general likelihood tools.

(a) For the log-likelihood, show that £,(83,0) = —nlogo — 2Q(B)/0? — inlog(27), with
Q(»B) =>"" (y; —x!B)? Show that the ML estimator for 3 is the least squares estimator
B=3,1n"1 Z?Zl x;Y;, with 3, = n~! 2?21 z;xt, see the exercise mentioned, and that
o

= (Qo/n)"/?, with Qo = Q(f) the minimum of Q(f).

(b) Show that the score function becomes

_ (1/0%)(yi — 2§ B) [ (1/o)eix;
u(y; |l‘i;6,0) = (—1/0—!— (1/0.3)(% _ 1726)2) = ((1/0)(8? _ 1))

in terms of ¢; = (y; —x!) /o, which are independent standard normals under the model.
With (8p, 09) the true parameters, deduce that the (p 4+ 1) x (p + 1) Fisher information
matrix becomes

Jo=n"" ZVargo’gou(Y; | 4, Bo, 00) = (1/02) diag(,, 2),
i=1
with ¥, = n~ !> | 252t = n~'X*X. Show also that the observed Fisher information

matrix becomes jn’full = (n/o?) diag(Z,, 2).

(¢) (xx then on to what likelihood theory implies for B and . the J, and J,. a tup
vs. approximate normality. we reproduce the 3 distribution, and come close for 2. xx)

Ex. 5.43 Logistic regression. Consider binary outcome data, where the values 0-1 for
Y; are influenced by a covariate vector x;, of dimension say p. The logistic regression
model takes the probabilities to be

exp(zi3)
1 + exp(atf)
with H(u) = exp(u)/{1 + exp(u)} the logistic transform, studied in Ex. 1.57. One
may interpret the model via underlying or latent i.i.d. variables Z;, having the logistic
distribution, with the individuals having different thresholds; p; = Pr(Z; < z!f3) says
that outcomes are ‘1’ for those individuals whose Z; fall to the left of the threshold.

pi =Pr(Y; =1|2;) = H(x!p) = fori=1,...,n, (5.13)

(a) Show that H(u) = p means u = H 1(p) = log{p/(1 — p)}, so that the model can be
represented as log{p;/(1 — p;)} = x!p.

(b) Show that Pr(Y; = y|x;) = pY(1 — p;)'7Y, for the two outcomes, and deduce that
the log-likelihood function can be written

n

0n(B) =Y {yilogpi + (1 —yi)log(1 — pi)} = Y _ szl — log{1 + exp(x}f)}].
i=1

i=1
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Show from this that the estimation equation, giving rise to the ML estimator B, is
> i1 (yi — pi)zi = 0, and that

I s (B) = 8(‘3;7(‘;5‘: Z —pi)wiwy =Y H(xiB){1 — H(x}B)}wa
= i=1

This matrix is assumed here to be positive definite, which in particular requires n > p.
Explain that the log-likelihood function is concave, with S the unique maximiser.

(¢) Show that, under model conditions, 3 ~F Np(ﬁ,jg%un), where jn)fun = Jn,fuu(ﬁ)
is the observed Fisher information matrix (the Hessian matrix of minus the normalised
log-likelihood function, at the ML position).

(d) Consider an individual, perhaps outside the dataset, with covariate vector xy. Show
that xOB is approximately a normal (z{3, z§J fullavo) and use this to construct a confi-
dence interval for p(z¢) = Pr(Yy = 1] x0).

(e) (xx repair a bit here. xx) Consider the important special case of a single x; recorded
for Y;, where we write the model equation as p;, = H(a + bz;), corresponding to 2-size
vectors (1,2;)" in the more general notation used above. Show that (a, b) are the solutions

to > (yi—pi) =0and > | (y; — pi)z; = 0, and that

exp(a + bx;) 1, =
b) )
(@ Z {1+ exp(a + bz;)}? (x :c2>

?

(f) The logistic regression model uses the H transform, which is symmetric around
zero. A more flexible model takes p; = H(x!()", allowing skewness in the underlying
distribution for the latent variables. Write down the log-likelihood function, explain that
standard theory applies for the ML estimator (B\, k). (xx point perhaps to illustration,
Polish girls story, where & is significantly larger than 1. xx)

Ex. 5.44 Probit regression. Consider again data (z;,Y;), with covariates x; and 0-1
outcomes Y;. For the logistic regression of Ex. 5.43 we modelled the 1-probabilities as
pi = Pr(Z; < 2tB) = H(x!B), with H the logistic c.d.f. Clearly there are alternatives,
and the more famous one among these is probit regression, which takes the Z; to be
standard normal, i.e. p; = ®(x!f).

(a) Explain that the log-likelihood becomes £, (8) = > ., [y; log pi(8) + (1 — y;) log{1 —
p:(8)}]- The ML estimator 3 is its maximiser.

(b) Explain also that standard regression likelihood theory applies, with B~y N, (8, jn_ b,
and give a recipe for computing the variance matrix.

(¢) To compare analyses from logistic and probit regressions, we may scale the normal
above to have the same variance 72 = 72/3 as the logistic. Explain that this leads
to an equivalent model, though with scaled parameters, namely p; = Pr(Z] < z'3) =

O(z;B/7).

probit
regression, from
probability of
unit
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(d) Simulate a simple dataset of size n = 1000 pairs, with z; taken N(0, x?) with x = 2
and true probabilities p; = H(ag + box;) with ag = —0.33 and by = 0.77. The litt point
with k = 2 is to secure a fair range for the x;, in view of the probabilities. (i) Estimate
(a,b) in the logistic regression model p; = H(a + bx;); and then (ii) estimate (a,b) in
the probit model p; = ®((a + bz;)/7). Draw the two estimated regression curves, say
H(a+ bz) and ®((@ + bx)/7). Comment on what you find.

Ex. 5.45 Poisson regression. Consider independent count data vy, . .., y,, influenced by
covariate vectors 1,...,x,. The Poisson regression model, in its standard form, takes
Y; ~ Pois(u;), with p1; = exp(z;B).

(a) Show that the log-likelihood function becomes
0n(8) =Y {—pi +yilog(mi)} = > {yswiB — exp(aip)},
i=1 i=1

and that the equations Y., {y; — pi(8)}z; = 0 define the ML estimators.

(b) Show that —92¢,,(3)/08 08" = Y i, piw;xt, leading to the observed Fisher informa-

tion matrix J, fan = oy Lz, where fi; = exp(xgg).
(c) For a case with covariate vector xg, estimate the associated expected count pug =
exp(z{ ), and construct a confidence interval.

(d) Sometimes there is overdispersion, compared to how the counts y; should behave
under Poisson conditions. Such overdispersion could e.g. reflect ‘hidden covariates’ not
taken on board in the model. A method handling overdispersion is to take Y;|u ~
Pois(y;), but modelling potential extra randomness via u; ~ Gam(exp(z3)/7,1/7T).
This is an application of Poisson-gamma mixtures from Ex. 1.26. Show that u; has
mean exp(zt/3) and variance T exp(x!3); T small means getting back to ordinary Poisson
regression. Show altso that Y; has mean exp(x}3) variance (1+7) exp(zt3). Furthermore,
work out that an expression for the log-likelihood function £, (8, 7) is

n

Z{(ai/r)log(l/r) —logT'(a;/7) +1logT(a;/T + yi) — (ai/T + y;) log(1/7 + 1)},

i=1
in which a; = exp(z!3). In applications it is often fruitful to profile out the 3, and

studying £y, prof(T) = maxan g €n (5, 7). (xx pointer to Story iv.6. xx)

Ex. 5.46 GLM regression. (xx to be polished. xx) basic expofamily model f(y,0, k) =
exp{0T (y) + kU (y) — k(0, k) } h(y), here with one-dimensional 6, k. now regression with

n

Cn(B,k) =Y {xiBT (i) + kU (y;) — k(}B, )}

i=1
then ML B, K, and more.

(a)



206 Minimum divergence and maximum likelihood

(b) (xx example. xx)

Ex. 5.47 Wald tests. (xx something here, re Wald tests, used e.g. in regression models.
p-value. more on power for the two variations with two nevnere. point back to Ex. 4.5,
and to a couple of stories where we use this tool. xx)

Ex. 5.48 A heteroscedastic linear regression model. (xx edit and clean. xx) In various
linear regression type applications for (z;,y;) data the linear mean assumption can be
reasonable, whereas the variance might not be taken constant across covariates. Consider
therefore the model with independent Y; | (x;, w;) ~ N(atB,0?), for i = 1,...,n, with
covariate vectors z; of length p and variance related covariates w; of length ¢, influencing
o; = oexp(y'w;). These w; could be a subset of the z; or functions thereof. Tt is
convenient to normalise these such that @ =n=1Y"" | w; = 0, which also means that
is the standard deviation for an average individual, with w; equal to w.

(a) (xx log-likelihood. score function. J, and J,. approximations. pointers. xx) Show
that the log-likelihood function can be written
—~ (yi — 21B)°

bn(B,7) = — o—1(1/0? ),  wi ,Y) = .
(8,7) = —nlogo — 5(1/0*)Q(B,7), with Q(B,7) ;exp@wm

Show that minimising Q(8,~) over §, for fixed ~, takes place for

n et -1 s
> o TiT; } TiYi
Bl = {2 exp(2ytw;) ; exp(2ytw;)’
an,
where 7(7)? = Qo(7y)/n, with Qo(v) = Q(B(Y),7) the minimum sum of squares. Deduce
from this that a recipe for finding the ML estimators consists in (i) minimising Qo (7)

over +, yielding 7; (ii) reading off B = B\(ﬁ) and 0 =5 (¥).

Demonstrate that this leads to the profiled log-likelihood £, prof(y) = —nloga(y) —

(b) (xx calibrate this with Wilks things. xx) Is it worthwhile, turning from classic linear
regression, to include the extra layer of variance heterogeneity sophistication? Show that
the log-likelihood-ratio test becomes that of comparing D,, = 2nlog{c(0)/5(7)} to the

X2, in which 7(0)® = Qo(0)/n is the standard estimator for 0 under variance constancy.

(¢) For the p + g + l-parameter model, with parameters j,~, o0, show that the score
function becomes

(1/0®)(yi — i B)w:/ exp(2y'w;) (1/o)eii/ exp(y'w;)
w(yi |zi) = | —wi + (1/0%)(y; — 2i8)*wi/ exp(2y'w;) | = | (1/o)(ef = Dwi |,
—1/o+ (1/0%)(yi — 21B)?/ exp(2y"w;) (1/o)(ef - 1)
in terms of ¢; = (y; — 2t8)/{oexp(y*w;)}. Show from this that the normalised Fisher
information matrix becomes J, = (1/0)diag(X,(70), Mn,2), at the true parameters

(Bo,Y0,00), in terms of X, (y) =n~t 3" | zxl/exp(2ytw;) and M, =n~' 3" ww!.

(d) (xx check if jn,fun has these off-diagonal zeroes, or if it only holds for the information
calculus. spell out nice behaviour for ML estimators. 7 a4 Ny(v, (62/n)M;1). xx)
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(e) (xx round off. confidence for u(zo, w), z48+1.96 5 exp(Ftwp). pointer to Story iv.3.
XX)

Ex. 5.49 Nonlinear regression. (xx calibrate this with both classic linear regression
and what we’ve said with genereal regression models. xx) Consider in general terms
the model with independent y; ~ N(m;(3),0?) for i = 1,...,n, wherethe means m;(3)
are perhaps nonlinear functions of an appropriate vector prarameter 3, involving also
covariates.

(a) Show that the log-likelihood function becomes —nlogo — $Q,,(8)/0?, with Q,(83) =
S {yi —mi(B)}2. Show that the ML estimator for 3 is the minimiser of Q,,, and that

%2 = Qn(B)/n.
(b) Show that the normalised Fisher information matrix becomes

n

Jn(B,0) = L (Zn O) , with X, =n~! me(ﬁ)mf(ﬁ)t,

o2\ 0 2 P
in which m}(8) = 0m;(8)/08.

(c) Deduce that \/ﬁ(é— B) —a N(0,0%2X71), under Lindeberg type conditions, where %
is the limit of X,,. (xx more here. also the case with different normalisation, for the time
series cyclic thing. xx)

Ex. 5.50 We can do things. The spirit of this exercise is to see that the log-likelihood
machinery is useful, versatile, flexible, and not too hard to use in new situations, outside
ordinary textbook terrain.

(a) One records the number of a certain event, say per week, over a time period. Suppose
most of these counts are Poisson-like, with some parameter 6, but that a fraction come
from another Poisson with a higher parameter. A model for such data is that Y; stems
from the mixture distribution (1 — p)Pois(#) + pPois(cf), with ¢ > 1. (i) Find the
mean and variance for this distribution. (ii) Generate such a dataset, say y1, ..., y, with
n = 250, 0 = 10, ¢ = 20. Taking first ¢ = 2 known, estimate the parameters (p, 9), along
with confidence intervals. (iii) Using the same data, now with ¢ unknown, estimate all
three parameters, with confidence intervals. Briefly investigate how much is earned in
precision for estimating (p, ) when ¢ is known compared to it being unknown.

(b) Suppose data Y are generated according to some normal (¢, 0?), but that we are
only able to see those falling inside some observation window [a, b]. Write down the log-
likelihood function, for the observed data Y;. To see how it works, generate say ng = 1000
points from the standard normal, keep the n amongst these that fall inside [1.0, 3.0], and
estimate the two parameters from these. Find also approximate confidence intervals for

the two parameters.

(¢) For two distributions with densities fi, fo and c.d.f.s Fy, Fy, consider the bivariate
density

f(@,y,0) = fi(@) f2(y)[1 + a{Fi(2) — sHF(y) — 5})-
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What is the range of the dependence parameter a? Show that the marginal distributions
are f1, fo. Generate first binormal data with N(0,1) marginals, and estimate a, with
confidence interval for a. Then generate another binormal dataset, and estimate the five
parameters (£1,&2,01, 09, a), along with confidence intervals.

(d) Tired of normality? Then generalise it. With Be, () the c.d.f. for the Beta(a, b)
distribution, consider the four-parameter model with c.d.f. F(y) = Beqs(2((y — £)/0)).
Write up an expression for the log-likelihood function. Generate first n = 500 datapoints
from the standard normal, and check if the MLL metod succceeds in coming close to the
true parameters (0,1,1,1). Argue that you here have a test for normality, and spell out
the ingredients. Then simulate another dataset, from (a,b) = (1.23,2.34), compute ML
estimates and their estimated standard deviations.

Ex. 5.51 FEuxtending theory and methods to regression setups, II. (xx smooth and polish.
regression outside model conditions. careful with notion, point to previous for u, 7. then
00,n, Jn, Ky, sandwich. xx) For ii.d. setups we have seen how the behaviour of ML
estimators can be accurately described also when the data-generating density g is not
inside the parametric model fy, via a clearly defined least false parameter 6y and the
two matrices J and K, see Ex. 5.17. Under model conditions, the two are equal. Here
we extend these notions and results to regression models. The setting is partly as in
Ex. 5.41, with a parametric model f(y; | z;,0) for Y;|z;, but notions and results need to
be lifted to the agnostic state of affairs when the real density g(y; | z;) is not necessarily
inside the model.

(a) For given x, there is a KL distance

KL (g(:|). /(- |2.6) = [ g(u]2) logmdy

Consider the overall KL distance, weighted over the covariate vectors in the sample,

n
_ 9(y|x)
KL=n""! KLi://g(y|m)10g7dydR (z),

2 KL, F(yle,0) Y
with R, the empirical distribution over these covariate vectors. Show that this is a
divergence, i.e. nonnegative and equal to zero only if g(y|z) = f(y|z,6) for all y and
all z1,...,z,. Let 6p, be the least false parameter, minimising this KL, for the given
covariate vectors, and show that this is the same as the maximiser of

Mu(6) =07 S [ gty i) log £y :,6) dy.

Explain also that M, (#) — M(f), under ergodic conditions, with this limit involving
the distribution R over covariate space, using [hdR, — [hdR. Letting 6y be the
maximiser of this limit M (6), show also that 6, , — 6o, under weak conditions.

(b) The following arguments support the notion that the ML estimator 0 aims at this
least false 6y ,. With £,,(8) = Y. log f(yi| i, 0) the log-likelihood function, explain
that n=14,(0) has mean M, (6). the mean of n=1¢,(6) is M, (0), and that its variance
goes to zero. Now show that 9 — 00,n —pr 0.
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(¢) As in the earlier and simpler case of (5.6), it is fruitful to work with the log-likelihood
function process. Show that

An(s) = n(80, + s/v/n) = ln(Oo.n) = Ups — 25" Jns + (),

now with U, = n~1/2 S u(Y |z, 60,) and J, = —n~ '3 i(Yi|2,60,,). Let
K(z;) = Varu(Y;|x;,00.,). Under Lindeberg type conditions, show that U, —4 U ~
N, (0, K), with K the limit of n=* " | K(z;). Explain that A,(s) —q A(s) = U's —
1.t

55" Js.

(d) (xx then read off limits. proof of pudding lies in eating, i.e. applications, below.
estimates J and K. xx) J = —n~19%(,,(0)/00 00", for estimating K, use the estimated
scores U; = u(Y;|x;,0), noting that these sum to zero. then use K = n~'>""  uul.

~

sandwich ¥ = J 1K J L

Ex. 5.52 Linear regression: agnostic analysis. (xx to be repaired and cleaned and
calibrated with next. xx) When a regression model is used, without being fully correct,
the general theory of Ex. 5.51 explains (i) how the ML estimators implicitly aim for the
best parametric approximation, defined via Kullback—Leibler divergences weighted over
the available covariate vectors, and (ii) how the approximate distributions are affected.
Here we consider such consequences for the classic linear normal regression model. For a
dataset of pairs (z;,Y;), assume merely that EY; = m(z;), for some smooth m(x) func-
tion, with i.i.d. errors g; with mean zero and variance o2. The linear model approximates
this via the standard Y; | z; ~ N(a!8,0?), for which we have found the ML estimators B
and ¢ in Ex. 5.42.

(a) Explain that minimising the KL distance, as per Ex. 5.51, is the same as maximising

n

n~! Z{— log o — %%E (Y; — 2!8)*} = —logo — l%n_l Z[{m(wl) —ziBY? + ad).
i=1

2 o %
=1

Argue from this that the least false parameter By, is the one minimising Q,(5) =
n=t 3" {m(x;) —xfB}?, and show that this means By, = £, 'n~' > m(z;)x;, where
Y, =n"' 3" @zl If the model is perfect, there is a true Byye for which E (Y; | z;) =
2t Birue, in which case By, = Brrue. Show next that the least false oq ,, is determined by
O’%ﬁn = Qo.n + 08, where Qo5 is the minimum of @, (8). If the linear mean is a good
model, the Qg ,, is small and the o, aimed at by the ML estimator & is not much bigger
than og. If the linear mean is not a good approximation to the real m(z), then the &
implicitly picks up both data variability and the difference between x!3 and the real
m(x;).

(b) For the two matrices J and K determining the behaviour of the ML estimators
we have found in Ex. 5.42 that J = (1/52)diag(3,,2), and that the score vectors,
computed at the least false values, can be written u(y; | z;,00) = (1/00.n)(wi2:, 22 — 1)%,
in which 2; = (y; — 2t 80,n)/00.n. Note that we for the estimated standardised residuals
% = (yi —a!B)/7 have 3.7 Ziz; = 0 and n=2 37, 32 = 1. For the K matrix, and with
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notation from Ex. 5.51, show that

_ n _ n ]. Zi X5
n 1ZK(:E¢) =n 12?\/% (2-2 3 1) .
i=1 i=1 90n i

(xx round this off. two substories, depending on what is assumed for z;. with y; =
m(z;) + ooe;, the z; are not ii.d., but we may cope with that too, via the right K.
simplification if we postulate m(z;) = 8y, then involving only 75 and 4 for the Z;. xx)
a somewhat messy model-robust approach would use

/22, .t 53
7 1 - 2T, 2T
= =2 Pt 24 _ 1)
) — Z5xy, 7

K2

()

Ex. 5.53 Logistic regression, Poisson regression: agnostic analysis. (xx to be repaired
and cleaned. xx) When the regression model used does not necessarily hold up, ML
estimators aim for the relevant least false parameters, the general theory of Ex. 5.51
shows that 5%,1 N(6o, 1, ) /n), for the relevant least false parameter and with estimated
sandwich matrix &, = J 1K J~!. Under model conditions, matters simplify, the under-
lying J,, and K,, matrices are equal, and we have the standard result 0~y N(6y, jﬁl/n),
used extensively in statistical software packages for a range of regression models. Here
we check what the model agnostic setup leads to, for securing model robust inference, for
standard logistic and Poission regression models; see also the agnostic analysis for the
linear regression model in Ex. 5.52.

(a) Consider logistic regression (xx point back xx), with p; = H(z!8): show that
u(y; | zi, 8) = (y; — pi)x;, and that

~

n n
I =n"" Zﬁi(l — Py, Knp=n"" Z(yz — i) wizs.
i=1 i=1

(b) Then look at Poisson regression (xx point back xx), with u; = exp(z!3): show that
u(yi |z, 8) = (yi — ps)zs, with

n n

To =0y iy, Ko=n"'Y (g — i) .

i=1 i=1
If there is overdispersion, with (y; — fi;)? tending to be bigger than ji;, this is picked up
here, with sandwich matrix bigger than J~1. The potential error of applying straight-
forward Poisson regression, perhaps via standard packages, is that variability is underes-
timated, with confidence intervals becoming too narrow. For an illustration of this, see
Story iv.6.

(c) With the Poisson-gamma overdispersion regression model studied in Ex. 5.45, where
Y; | z; has mean exp(z!3) and variance (1 + 7)exp(z!3), show that K, —p: (1+7)J,
in terms of the limit J of jn Deduce that if B is the ML estimator computed for the
standard Poisson regression model, then \/ﬁ(E — Bon) —+a Np(0, (1 +7)J71).
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Influence functions

Ex. 5.54 Influence functions. For a distribution function F', consider some associated
parameter, say § = T(F), with T the appropriate functional mapping the distribution
to the parameter value in question. Examples include the mean, the standard deviation,
the skewness, the interquartiale range, a threshold probability. The influence function
for 6 = T(F) is a very useful quantity, as we shall see. It is defined as

IF(F,y) = lim (1/2){T((1 - &) F +¢8(y)) — T(F)}. (5.14)

Here 6(y) is the measure putting full mass 1 at the point y, and (1 — ¢)F + €d(y) the
consequent mixture distribution. A variable Y. drawn from this mixture is from F' with
probability 1 — ¢ and is equal to y with probability e.

(a) Consider 0(F) = E¢ h(Y) = [ h(y) dF(y), the mean of h(Y). Show that IF(F,y) =
h(y) — O(F). In particular, the influence is bounded when A is, but unbounded e.g. in
the case of the plain mean h(y) = y, which signifies a potential lack of robustness of this
mean parameter functional 6 = E¢ Y.

(b) Then consider the class of smooth functions of means. For mean type parame-
ters v1 = Eghi(Y),...;7 = Eghe(Y), let 0 = T(F) = A(m(F),...,w(F)), where
A(uq, ..., ux) is smooth in a neighbourhood of (1 (F),...,v(F)). Show that this pa-
rameter has influence function

IF(Fvy) = cl(F) IF’Yl(F>y) +"'+Ck(F)IF’Yk(F7y)
et (F){hi(y) = ()} + - + eu(F){he(y) — v (F)}

with ¢;(F') is the partial derivative 0A(uq, ..., ux)/0u;, evaluated at (y1(F), ..., v (F)).

(c) Writing ur = Eg Y for the mean, show for the variance parameter 0% = Eg Y? — u%
that its influence function becomes

IF(F,y) = —2pr(y —pr) +y> —EcY? = (y — up)* — of.

Then for the standard deviation parameter o(F) itself, show that its influence function
becomes

IFo(F,y) = 5(1/or){(y — ur)® — 0%}

(d) For a given parametric family f(y,0), consider the ML functional T'(F'), mapping
a given F with density f to the least parameter value 6y = 6y(F'), the minimiser of
the information distance KL(f, f(-,0)), or the maximiser of [log f(y,6)dF(y). With
F,, the empirical distribution of the data, placing probability 1/n on each data point,
cf. Ex. 3.9, Show that T'(F},) is the ML estimator, and that its influence function becomes
IF(F,y) = J~ u(y, 0o).

Ex. 5.55 Influence for quantiles. Assume the c.d.f. F' has a smooth density f.
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(a) Consider = F~!(3), the median. Show that the influence function IF(F, y) becomes
—3/f(p) for y < pand 1/ f(u) for y > p. Verify that the influence function has mean
zero and variance 1/f(u)2.

(b) More generally, let p, = F~1(g), for some quantile level ¢ € (0,1). Show that
IF(F,y)is —(1—q)/f(uq) for y < ug and q/f(ug) for y > u,. Comment on the fact that
these are bounded.

(¢) Then consider a smooth function of quantiles, say v(F) = A(Q1(F),...,Qr(F)),
where Q;(F) = F~!(g;). Show that its influence function is IF(F,y) = ¢1 (F) IF1(F,y) +
- +cp(F)IFg(F,y), in terms of IF;(F,y) the influence function of F~1(¢;) calculated as
above, and where ¢;(F) = 0A(Q1, ..., Qk)/0Q; computed at (F~*(q1),...,F*(q)). As
an illustration, find and graph the influence function for y(F) = F~1(0.90) — F~1(0.10).

Ex. 5.56 An estimator represented wvia its influence function. Consider an i.i.d. se-
quence Y71,Ys,... from F, with § = T'(F') a parameter of interest. It may be estimated
nonparametrically using = T(F,), with F,, the empirical distribution. Here we work
towards a representation of § — 0 = T(F,) — T(F) in terms of the influence function.

(a) Consider the case of § = A(y(F)), where v(F) = Egh(Y) = [hdF. Show that
0 = T(F,) is equal to A(h), with h = [hdF, = n= 'Y h(y;). Assuming A(u)
smooth, with two derivatives, show that

0 = A(70) + A" (70)(h — o) + A" (3) (h — 70)? + 0pe(1/n),

with 7o = v(F). Deduce that E§ = 0+3 A" (0)7%/n+0(1/n), in terms of 72 = Var h(Y;),
and that § — 0 = n~1 S IF(F, y:) 4+ b/n+ o (1/4/n), where b= 1 A" (yo)72.

(b) Generalise to the case of T(F') = A(y1(F),...,vp(F)) being a smooth function of sev-
eral means, as studied also in Ex. 5.54, with v;(F) = [ h; dF. Show that Ef=0+b/n+
o(1/n), with b = 3Tr(A”(y)K), with K the variance matrix of (hi(Y;),...,hy(¥7))",
and A" (v9) the second order derivative matrix of A, computed at vy. Show that

0—60=T(F,) —T(F) :n—lzn:IF(F,n) +b/n+ e, (5.15)

i=1
with €, = 0p,(1/4/n), i.e. small enough to have \/ne, —p 0. Show

(¢) The powerful representation (5.15) actually holds quite generally, as long as T'(F') is
a moderately smooth functional (xx find refs, Shao (1991), Jullum and Hjort (2017) xx),
though with no easy general formula for the bias component b/n. Deduce that \/ﬁ(ﬁ —0)
has the limit distribution N(0, x?), with x? the variance of IF(Y;,6), and with the bias

part b/n disappearing in this normal limit.

(d) Use the above to find the limit distribution of v/n(c — o). This gives a new and
partly simpler proof of things proved in Ex. 2.43.

Ex. 5.57 Influence functions for BHHJ and for weighted likelihood estimators. For
some smooth parametric model fy(y) = f(y,0), consider the BHHJ estimation method
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of Ex. 5.9 and 5.18. The setup involves the data-generating density g, and for the given
tuning parameter a, the defining parameter is 6y = 6 4, the minimiser of [ f, firedy —
(1+1/a) [ gfg dy, also the solution to [(f,™* — gf$)ug dy = 0. Here ug(y) = u(y, 0) is
the score function, and we will also need the information function ig(y) = i(y, 8) below.
As in Ex. 5.18 we use fo, ug, ig for these functions at 6.

influence function for bhhj xi
0
L
influence function for bhhj sigma
6
L

Figure 5.2: Influence functions for the BHH.J estimator, for the normal (¢, %) model, for
values a = 0,0.05,0.10,0.15,0.20; the full black curves are for the ML case a = 0. Left
panel: for &,; right panel: for 7.

(a) Explain that to find the influence function IF,(G,y), we need for a small € to assess
the solution 6. = 0y + § to the equation

/felﬁ%u(ma dy=(1-¢) /gfé”ﬁawﬁa dy +ef(y,00 + 9)*u(y, O + 0).

The programme is now for the given small € to carry out first order Taylor expansion for
6 small and then solve for §. Some details are as follows: show first

fgo+5 = f(()l(l + a&tuo), fel(;:f% 1+a{1 + (1 + a)5 UO} UPo+5 = ug + ig0.

Again with &, = [ fo T ugdu = [ gf¢uody, use this to write the left and right hand
sides of the equation as

L =&+ / fo M uguf dy+/ fat%ig dy
Rzt / 0§ (ot + o) dy }6 -+ £ (5, 00) “u(y 60) — &},
Conclude that IF,(G,y) = M { fo(y)*uo(y) — €4}, with the matrix

(1+a) /f1+“uOuO dy+/f1+%o dy — /ng(uou8+io)dy-
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Check with the J, matrix of Ex. 5.18 that in fact M, = J,/(1 4 a), so that

IFa(Ga y) = (1 + a)'](;l{f(y7 OO)GU(ya 00) - ga}-

Explain that as a — 0, the limit is Jj u Yu(y, 0y), the influence function for the ML esti-
mation method. Show also that under conditions, M, simplifies to [ f, 1+“u0u3 dy.

(b) Consider the case of the normal N(£,0?). Under model conditions, find formulae
for and graph the influence functions IF; ,(y) and IF3 4(y), for the £ and the o, at the
standard position (£,0) = (0,1), for a equal to 0, 0.05, 0.10, 0.15, 0.20. Construct
a version of Figure 5.2. Note that the BHHJ influence functions mimic those for the
ML (i.e. for a = 0) for the main expected data range, but that they sensibly redescend
down to zero for values far away, via density downweighting. Show in particular that
the influence functions are bounded, for each a > 0. For illustration of how the BHHJ
successfully deals with outliers (without needing to identify them), and for seeing that
very little efficiency is lost for small a, see Story vii.5. Formulae needed here include
these, which you should prove, in addition to &;,, = 0:

o0 = —0 2(2m) "2/ (1 + a)®/?,
o = (1/0%) o™ (2m) "% /(1 + a)*/?,
Mg o = (1/02)0~%(21)"2{3/(1 4+ a)® = 2/(1 + a) + 1}.

=
o
s}
I

(¢) Carry out similar analysis for the Gamma (a, §) model.

(d) Consider then the MWL method of Ex. 5.11 and 5.20. For a given weight function
w(y), the parameter aimed at for the MWL estimator is the maximiser 6y = 6g,, of
Jw(glog fo— fo). Weneed J,, = [wfououh dy+ [ w(fo—g)iody and &, = [wfouody =
[ wgug dy, computed at 6y. Show that the influence function becomes

IF(G,y) = J, {w(y)u(y, 6o) — &w}

Notes and pointers

(xx some pointers to more, including Empirical Likelihood, Hjort et al. (2009, 2018). xx)

(xx make sure we have something on board with BHHJ for regression models, placed
after ML for regression. xx)

[xx CR bound: In its simplest form, the inequality goes back to Cramér (1946) and
Rao (1945). xx]

(xx M-estimators, Z-estimators, Huber, minimum divergence, point to Basu et al.
(2011), more on minimum divergence. two-stage estimators, WalkerHjort24. xx)

[xx least false: a term invented by Hjort, Hjort believes, see Hjort (1986b, 1992),
and now used somewhat frequently in the literature. xx]

Read more about risk functions in DeGroot (1970).

For Ex. 5.11, point to Hjort and Jones (1996), Schweder and Hjort (2016), and
WalkerHjort24.

[xx check and calibrate what’s here and what’s in Ch. 7, regarding CD things. xx]
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(xx we see that ML matches CR, bounds, under model conditions. point to Hajek
convolution theorem, and other characterisations. perhaps Hodges superefficient thing
t00. xx)

(xx point to Hjort (2008), re ML and least false etc. xx)






1.6

Bayesian inference and computation

In frequentist parametric inference, there is a fixed underlying true parameter value,
say 0o, and methods aim at estimating this value, perhaps along with confidence
regions or testing. Bayesian inference is radically different, conceptually and opera-
tionally. It starts with a prior distribution for the model parameter 6, and proceeds
via Bayes theorems to produce the posterior distribution, of the full 6 or of relevant
focus parameters. Thus ‘not knowing 6 well’ is expressed in terms of probability
distributions. This chapter goes through these concepts and operations, including
also computational schemes to simulate outcomes from the posterior distributions.
One prominent class of such schemes amounts to setting up a Markov Chain Monte
Carlo algorithm to the given problem, where the stationary distribution for the
chain is precisely the required posterior. This makes Bayesian inference possible
in a host of compicated setups, without needing to rely on mathematically feasible
formulae.

Key words: Bayes solutions, Bernshtein—von Mises theorems, conjugate priors, Jef-
freys prior, loss functions, MCMC, prior to posterior distributions

The Bayesian paradigm is to formulate uncertainty about model parameters through
probability distributions. If the pre-data uncertainty is a prior density m(#), this is
updated to the post-data posterior density (8 |data), via the Bayes theorems.
Consider for illustration and clarification the classical coin flipping experiment, with
6 the probability of ‘head up’. With n independent flips we have Y ~ binom(n, #). The
frequentlst postulates that there is an underlymg true 90, uses perhapb the estimator
b = Y/n, reaches the 95 percent interval I, = 6+ 1.96 {9(1 - 0)}/\/71 etc. The key
property here us Prg,(6y € I,,) = 0.95; so I,, is a random interval, covering the true 6,
in 95 percent of actual cases. The Bayesian viewpoint is strikingly different, starting
with a prior density 7(0) to reflect what might be considered understanding of 6 before
the first flip. Post flipping, the Bayesian has reached (8 |y) o 7(0)f(y,n,0), with the
binomial likelihood. This may e.g. be used to construct a 95 percent posterior interval
Jp, for 8, with Pr(é € J, |y) = 0.95. The Bayesian is then not interested in ‘independent
repeated experiments’, but just in the data at hand. She is also allowed the statistical
luxury of putting prior knowledge into the analysis; if it can be considered known that 6

217
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must be close to 0.50, with values outside [0.40, 0.60] less likely than 2 percent, that can
effectively be utilised in Bayesian analysis, but not so easily in frequentist analysis.

In this chapter we go through the basics of such constructions and methods, con-
ceptually and operationally. We also uncover conditions under which the frequentist and
Bayesian might actually (approximately) agree, in their final inference statements. The
two 95 percent intervals I,, and J, in the previous paragraph will e.g. tend to be very
similar, at least with increasing n.

An attractive feature of Bayesian analysis is that the answer, to a sufficiently well-
posed inference question, is crystal clear, without having to study competing meth-
ods, carrying out performance and comparison analyses, etc. Essentially, if you give a
Bayesian (i) a model, (ii) data, (iii) a list of possible actions, and (iv) a loss function,
there is a Master Recipe for the very best action.

Modern Bayesian statistics has flourished since around 1980, partly through com-
puter power and algorithms, making calculations possible that would have been too hard
for previous generations. The operational goal is often to be able to generate samples
from the posterior distribution, and we give methods for accomplishing this, including
Markov Chain Monte Carlo (MCMC).

The Bayesian Master Recipe, with examples and applications

Ex. 6.1 Poisson data with gamma priors. This exercise illustrates the basic prior
to posterior updating mechanism in a simple Poisson setting. Suppose Yi1,Ys,... are
i.i.d. Poisson with unknown mean 6.
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Figure 6.1: Seven curves are displayed, corresponding to the Gam(0.1,0.1) intial prior
for the Poisson parameter 0, along with the six first updates following each of the obser-
vations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3. The distributions become tighter as more data come
in. The smooth black curve is after six data points, the most tight distribution so far.
Left panel: the densities; right panel: the c.d.f.s.
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(a) Recall definition and properties of the Gamma distribution from Ex. 1.9. In the
present Bayesian context, let § ~ Gam(a, b). The prior mean and variance are a/b = 6,
and a/b? = 0y /b. In particular, low and high values of b signify high and low variability,
respectively. Explain how (a,b) may be set from values of prior mean and prior variance.
To exemplify, if these are (5.5,7.7), find (a,b).

(b) With a single observation Y which is Pois() given 6, show that 6|y ~ Gam(a +
y,b+1).

(¢) Then suppose there are repeated observations yi,...,yn, being i.i.d. ~ Pois(6) for
given 6. Use the above result repeatedly, e.g. interpreting p(f|y;) as the new prior
before observing yo, etc., to show that 6|y1,...,y, ~ Gam(a + y1 + -+ + yn,b + n).
Also derive this result directly, i.e. without necessarily thinking about the data having
emerged sequentially.

(d) Suppose the prior used is a rather flat Gam(0.1,0.1) and that the Poisson data are 6,
8,7,6,7,4,11,8, 6, 3. Reconstruct a version of Figure 6.1 in your computer, plotting the
six first posterior densities p(6 | data;) (left panel), where data; is y1,...,y;, along with
the prior density; in the right panel we have the corresponding posterior cumulatives.
Complement with another figure also including updated densities 7, 8, 9, 10, for the four
last observations, and comment. Also compute the ten Bayes estimates 5] = E(0| data;)
and the posterior standard deviations, for j =1,...,10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since
the Gamma continuous density matches the Poisson discrete density so nicely. Suppose
instead that the initial prior for 6 is a uniform over [0.5,50]. Try to compute posterior
distributions, Bayes estimates and posterior standard deviations also in this case, and
compare with what you found above. Note also that we in this exercise cared about and
managed to reach answers for the posterior distributions @ | y1, . .., yn, without needing to
deal with the also implied marginal distribution for (y1,...,¥m). These are not Poisson
any longer, with the variability in € is taken into account; see Ex. 6.20.

Ex. 6.2 The Bayesian Master Recipe. The general setup is as follows. We have data
Yobs, Seen as the outcome of a random Y over the sample space ), generated from a model
fo(y) = f(y,0), with € having a prior distribution 7(0) df over its parameter space ©.
There is a decision a to be reached, with a belonging to an appropriate action space A,
along with a loss function L(6, a), a measure of the consequences of decision a if the truth
is 0. Whereas the frequentist can attempt different methods for deciding a = a(Y'), then
compare risk functions, etc., there is a unique optimal strategy for the Bayesian.

(a) Show that the posterior density of 8, that is, the distribution of the parameter given
the data, takes the form

m(01y) = fo(y)m(0)/m(y),

where m(y) is the required integration constant [ fo(y)m(0)df. This is Bayes’ theorem,
and we typically write m(0 | y) < 7(6) fo(y), which reads ‘posterior is proportional to prior
times likelihood’. Show also that the marginal distribution of the data y is m(y).
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(b) A decision a = a(y) needs to be reached, as a function of the data. The Bayes risk
for such a decision is the associated expected loss, BR(a,7) = E L(,a(Y)), involving
randomness on two levels; 6 has a prior, and a(Y)|# is random. Show that it may be
expressed in two informative ways:

E{EL(6,a(Y))|0} = [ R(@,0)r(6)do,
E{EL(0,a(Y))|Y} = [,{[o L(@(y),0)m (0 |y) dO} m(y) dy.

The first expression involves the frequentist risk function R(a,0) = Eg L(a(Y),0), then
averaged with respect to the prior. The ‘inner expectation’ of the second expression is
E.{L(0,a(y))|Y =y}, that is, the expected loss given data.

(c) Show then that the optimal Bayes strategy, the one minimising the Bayes risk, is
achieved by using

@ = argmin g = the value minimising g,

where g = g(a) = Eg{L(0,a) | yobs} is the expected posterior loss. The function g is
evaluated and minimised over all a, for the given data y = yons. This is the Bayes recipe.
Note that using the recipe in practice only concerns the observed data y.ps, and that one
does not need to evaluate its risk function.

(d) Above results have been presented and reached in terms of prior and posterior den-
sities, 7(#) and 7 (6 |y, partly for notational convenience. Show that the arguments go
through also for more general priors; these may in particular be mixtures over continuous
and discrete measures.

Ex. 6.3 Some loss functions and their associated Bayes rules. The Master Recipe of
Ex. 6.2 is completely general, and can be applied in new and complicated situations,
as long as we have data, a model, a prior for the unknowns, and a loss function. In
the Bayesian setup finding or evaluation the posterior distribution of the parameters is
always important, carrying separate weight, but if clear decisions are needed one needs
also the loss function, say L(6,a). Here we go through a short list of commonly used loss
functions.

(a) For estimating a one-dimensional 6, with squared error loss L(,a) = (a — 6)?, show
that the Bayes estimator is 05 = E (6 | y), the posterior mean.
(b) If the loss function is L(0,a) = w(f)(a — §)?, show that the Bayes estimator is
o E{w(6)6|data}
BT E{w(9)]data} -

In particular, when estimating a positive § using loss (a — #)?/6, show that the Bayes
estimator is 1/E {(1/6) | data}.

(c) Consider the natural absolute loss function, L(f,a) = |a — 0|. Show that the Bayes
solution becomes the posterior median, i.e. 65 = G~'(1 | data), where G(0 | data) is the
posterior cumulative distribution function.
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(d) Suppose one needs the joint estimation of several parameters, say all of 6 = (61,...,0,),
via the loss function L(#,a) = (a — 0)*M(a — 6), for an appropriate full-rank symmetric
matrix M. Show that the Bayes solution again is the posterior mean, but now for the
full vector, i.e. E (6 |data). In particular, the Bayes solution does not depend on the M
matrix, though the actual posterior expected loss, and the Bayes risk, do.

(e) In the previous subquestions the framework has been that of estimating a one-
dimensional 6. Check that you understand how these results and insights, for the Bayes
solutions, change when the situation is changed to that of estimating a focus parameter,
say ¢ = g(61,...,0p), a function of the full model parameter.

Ex. 6.4 How many streetcars in San Francisco? The streetcars in this city are numbered
1,...,N. You observe Y = 203 and wonder what N is.

(a) Supposing Y has the uniform distribution on 1,..., N, set up the likelihood, and
identify the ML estimate. With the prior 7(IN) proportional to 1/N, say for N =
1,2,..., Nmax for a suitably high Np.x, find the posterior distribution, along with its
mean and median.

(b) Suppose you after having seen no. 203 also see nos. 157, 222. Update your posterior,
and again find the mean and median, qua updated estimates.

(¢) The Bayesian setup allows any choice for the prior, so think for a minute and construct
your own myeu(N). Do the updating, for the data 203, 157, 222, and compare with the
posterior found above. What is your best estimate of N, if your loss function is of 0-1
type, with L(N, N) being 0 if N = N and 1 if N # N?

Ex. 6.5 The linex loss function. When estimating a one-dimensional § with a 5, the
most traditional loss function is that of squared error, (5 — 0)%, which in particular is
symmetric, treating over- and underestimation as equally important. A more flexible
loss function is the so-called linex loss, with

L(6,0) = exp{c(6 — 6)} — 1 — (6 — 0).

The c is fine-tuning loss parameter, for the statistician to set, balancing over- against
underestimation. Note that both positive and negative values of ¢ are allowed here.

(a) Show that the L. is always nonnegative. Show that ¢ > 0 means penalising overes-
timation more than underestimation, and vice versa for ¢ < 0. For small |¢|, show that
Lc(0,0) = 3c*(6—0)?, getting back to squared error loss. The constant in front is immate-

Lo(0,0)/(5¢)

rial for evaluating and comparing loss and risk, and one may use L% (0, 5) =
to have a smoother transition to the ¢ = 0 case of squared error loss.

(b) Show that the expected loss given data can be expressed as

E{L.(0,t)|data}

E [exp{c(t — 0)} — 1 — c(t — 0) | data]

= exp(ct)M(—c) — 1 — c(t — £),
where ¢ is the posterior mean and M (—c) = E {exp(—cf) | data}, the moment-generating
function of # given data, computed at —c.
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(¢) Show that this is minimised for the ¢, where exp(ctg) M (—c) = 1, or cto+log M (—c) =
0, so that the Bayes estimator becomes O = —(1/¢)log M(—c). This may be computed
numerically, perhaps by simulation, in cases where no clear formula exists for M(—c).
Show also that the expected posterior loss, using the Bayes solution, is

minE{L.(0,t)|data} = —c(to — fA) =log M(—c) + c€.

(d) Using approximations for m.g.f.s close to zero to show that M (—c) iAl —cE+3c? (? +

o), with gand &2 the posterior mean and variance. Deduce that 0p = £— %082.

(e) In situations where the posterior is based on a sample of size n, the posterior mean
En stays stable wheras the posterior variance 52 goes down with speed 1/n, i.e. as 53 /n,
for the relevant 53. In such cases, En - %c&\g /n becomes the approximation to the Bayes
linex estimator é\B. Find in fact the exact Bayes linex estimator, for the case of Y7,...,Y,,
being i.i.d. N(#, 1), with a N(0,72) prior for #; use the updating result from Ex. 6.13(b).

(f) (xx rounding off for now; point to Ex. 6.24, 6.25. xx)

Ex. 6.6 A Bayesian take on hypothesis testing. Assume the model parameter 6 is either
in £y, which we may call the null hypothesis, or not, i.e. in its complement F. Suppose
also that the statistician needs to make a decision, either to reject the null, or to accept
it. This is the basic framework of hypothesis testing, see Ch. 4, but we now consider the
problem from a Bayesian viewpoint.

(a) The decision space is {accept, reject}. For the loss function, take L(6,accept) equal
to 0 or Ly, if 0 is inside or outside €, and L(6, reject) equal to 0 or Ly, if § is outside or
inside . Show that

E{L(6,accept) |data} = Lo p(data), E{L(0,reject)|data} = L; {1 — p(data)},

where p(data) = Pr(6 € Qf|data), the probability that the null is wrong, as measured
by the Bayesian posterior distribution.

(b) Deduce that one should reject the null when the probability p(data) for its falseness
is sufficiently overwhelming, namely when p(data) > L,/(Lo + L1). — If this threshold
is 0.95, for example, show that this corresponds to L;/Lo = 19. Briefly discuss ways of
assigning losses Ly and L.

(¢) (xx complete this: decision space {accept, reject,doubt}, with a certain fixed cost
L, for the doubt option, associated with further efforts for getting more data. expected
losses given data are Lop, L1(1 — p), Lg. which is smallest? xx)

Ex. 6.7 Which subset does the model parameter belong to? Consider a setup with data
from a model with model parameter 6 inside its region {2. Suppose you need to take
one of five different possible decisions, D1,..., D5, and that these are related to where
the underlying parameter 6 is positioned; if 6 € €; the best decision would be D, for
j=1,...,5. Here the €); are disjoint and their union is the full parameter region.
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(a) Suppose the loss function L(#,D;) is 0 if § € Q; and 100 if § ¢ ;. Show that
E{L(6,D;)|data} = 100{1 — p;(data)}, where p;(data) = Pr(6 € Q;|data). Hence
show that the optimal Bayes strategy is to take the decision associated with the highest
posterior probability p;(data).

(b) Assume there in addition is a ‘doubt option’, associated with a doubt cost Ly = 10;
this could e.g. mean planning for getting further data. With decision space { Dy, ..., D5, doubt},
what is now the Bayesian strategy?

(c¢) Generalise the previous setup, and results, to the case where the costs associated
with reaching the wrong decision are not equally balanced, say L(6,D;) = ¢; ;, if § € ;,
fori=1,...,5, with ¢; ; = 0 but the other ¢; ; positive.

Binomial and beta, multinomial and Dirichlet

Ex. 6.8 The binomial-beta setup. Let Y given 6 be a binomial (n,0), and for 6 take a
Beta(a, b) prior, see Ex. 1.21. There we worked with the marginal distribution of Y, and
looked at certain properties, but here our aims are Bayesian.

(a) Show that 6|y ~ Beta(a + y,b+ n —y). — This is the main and always crucial
updating step, getting from the prior to the posterior. In the present case the step is an
easy one, since there is only one unknown parameter, and since the product of the prior
and the likelihood takes an easy form. Give a description of the posterior also for the
not quite so standard case where the prior for € is uniform on [0.30,0.70].

(b) Going back to the Beta(a,b) prior again, show that the Bayes estimator, under
squared error loss, is

~ a+y
0p = ———— = (1—w,)o ny/m,
B= han (1 —wn)bo +wny/n

where 0y = a/(a + b) is the prior mean and w, = n/(a + b+ n). For the case of a
uniform prior, show that this leads to (y + 1)/(n + 2). Compute the risk functions
r(6) = Eg (6 — 0)2, for the classic frequentist Y/n and for the this (Y + 1)/(n + 2), and
find the interval where the latter is better than the former.

(c) Show that the posterior variance becomes

(1 —0p)
n+a+b+1
(d) If Y is from the binomial (n,frue) model, show that Y/n and the Bayes estimator
85 are large-sample equivalent, with vn(Y/n — 03) —pr 0. Deduce that they have the
same limit distribution.

Var (0 |y) =

Ex. 6.9 The multinomial-Dirichlet setup. Here we extend the setup and result of

binomial-Beta, to the case of three or more categories. We start with Y = (Y1,...,Y%)
which for given p = (p1,...,pr) is a multinomial (n,p1,...,pr). For p we take the
Dir(ay,...,ax) prior. For details regarding the multinomial and the Dirichlet, see Ex. 1.5

and 1.19.
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(a) Show the important and useful result that (p1,...,pr)|(y1,...,y%x) ~ Dir(a; +
yla"'aak+yk)-
(b) Show that the Bayes estimator under squared error loss becomes

a; + Yi
a+n

pi. = E (p: | data) = = (1 = wa)po,i + wn(yi/n)

for ¢ =

1,...,k, with prior means po; = a;/a, with @ = a1 + --- + ag, and weight
wy, = n/(a+ n). Find also the posterior variance and posterior correlation between p;

(¢) (xx just a bit more. xx)

Ex. 6.10 Gott wiirfelt nicht. For the multinomial-Dirichlet setup of Ex. 6.9, we reached

the posterior characterisation p|data ~ Dir(ay + y1,...,ax + yx). The importance of
this lies in the easy usefulness of simulations, where the posterior distribution of any
functions of (py,...,pr) may be read off.

(a) Explain how you may simulate e.g. 10° vectors p = (p1,...,px) from the posterior

distribution, using the characterisation from Ex. 1.19. Concretely, show that one may use
=G1/G,...,pr = G /G, with independent G1 ~ Gam(ay + 1), . .., Gx ~ Gam(ay, +
yk), and sum G = Gy + - - + G.

(b) Suppose you throw a certain and perhaps not entirely standard die 30 times and
have counts (2,5,3,7,5,8) of outcomes 1, 2, 3, 4, 5, 6. Use either of the priors (i) ‘flat’,
Dir(1,1,1,1,1,1); (ii) ‘symmetric and more confident’, Dir(3, 3, 3,3, 3, 3); (iii) ‘unwilling
to guess’, Dir(0.1,0.1,0.1,0.1,0.1,0.1), for the probabilities (p1,...,ps), to assess the
posterior distribution of each of the following quantities:

6

o = pafon. 5= (/6 by — /6 1= (1L/0)S oy — 1/6], 6 = 2ipsP0) "

i=1 =1 (p1p2ps)t/?

For each of a, 3,7, 6, and for each of the priors, give the 0.05, 0.50, 0.95 quantile points,
from 10° simulations from the posterior distributions. You should also plot the posterior
densities, for each of the four quantities noting the extent to which the prior influences
the results.

(¢) For the case of o = pg/p1, exact numerical simulation is possible, without simulation.
Do this, and compare with the answers reached via simulation.

(d) The above priors are slightly artificial in this context, since they do not allow the
explicit possibility that the die in question is plain boring utterly simply a correct one,
i.e. that p = pg = (1/6,...,1/6). The priors used hence do not give us the possibility to
admit that perhaps p =1, a =0, 8 =0, v = 1, after all. This motivates using a mixture
prior which allows a positive chance for p = pg. Redo therefore the Bayesian analysis
above, with the same (2,5,3,7,5,8) data, for the prior 75(p0) + 3 D1r(1 1,1,1,1,1).
Here 6(pg) is the ‘degenerate prior’ that puts unit point mass at p0s1t10n po. Compute in
particular the posterior probability that p = pg, and display the posterior distributions

of p,a, B,7.
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Sampling from the posterior via Markov Chain Monte Carlo

Ex. 6.11 MCMC, I: simulating from a given distribution. (xx the MCMC basics.
Metropolis algorithm. simulating from a couple of distributions. xx) basics: suppose we
need to simulat realisations from a given and possibly complicated density 7(z) on some
domain. The Metropolis algorithm works as follows. The task is to form a long chain
Z1, T2, ...1n your computer, where its limiting distribution is precisely the given 7. After
having generated zo1q, decide on Znew by (i) deciding on a proposal, Tprop, drawn from
a suitable distribution symmetric in (2o1d, Zprop), and then (ii) accepting this proposal
with probability paccept = min(1, 7(zprop)/m(zo1a)). In algorithmic terms,

Znew = (1 — 0k) Tolq + 0k Zpew, where ok = I(accept).

Markov chain theory (xx point to Ch. 12 xx) secures that this scheme works, in the sense
that the chain converges in distribution to that of 7; Pr(z, € A) — [, 7(z)dz for all
continuity sets A.

(a) Set up such a scheme to generate outcomes from the standard normal (ignoring the
existence of simpler direct algorithms). Start at any zo, then draw proposals Zprop ~
unif[zeq — a, Zold + a], with acceptance probabilities set up via the general scheme above.
Run the chain for a suitably long time and check with a fine histogram that the distri-
bution matches the normal. Keep track of the acceptance probabilities and the overall
acceptance rate. The theory works and says that the chain will converge to the standard
normal, for any positive fine-turning parameter a; explain however in which ways too
small or too large values of a will be ineffective.

(b) Consider a somewhat harder challenge, simulating realisations from the density = =
0.05N(—2,1) +0.90N(0,1) 4+ 0.05N(2,1) via MCMC. Set up a chain that converges to
this f in distribution; check that the output produces a fine histogram matches this 7.

(¢) The algorithm works also in higher dimension. Set up a chain that produces outcomes

(z,y, ) from the model on the unit cube with density 7(z,y, z) = 1+60(z—3)(y—3)(2—3),
with § = 3.45. From the output, read off the correlations, and the probability that

Z > (XY)V2.

Ex. 6.12 MCMC, II: simulating from the posterior. (xx do this. using the strategy
above for the prototypical Bayesian task, sampling from (6 | data).

(a) In the Poisson-gamma setup of Ex. 6.1 we could find the posterior distribution di-
rectly. Suppose however that the prior is outside the gammas, say uniform on [4.0, 8.0].
Set up an MCMC to sample from the posterior, given data 6, 8, 7, 6, 7, 4, 11. Compute
also the mean, median, standard deviation.

(b) (xx one more, a bit more complex, and then minimising posterior expected loss in
the end. xx)
Bayesian analysis for normal models

Ex. 6.13 The normal prior and posterior with normal data. Here we go through the
basic steps and results for situations with normal data and normal priors for unknown
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mean parameters. More elaborate constructions and technical issues are needed when
there in addition are unknown parameters in the variance and covariance structure, to
be pursued in Ex. 6.14, 6.21.

(a) There are things to think through and to learn from, by working through this very
simple setup first. (i) For a single observation Y assume it comes from the N(&,02),
and take o as known; (ii) for the unknown mean & assume it comes from the prior
N(&o, 7¢), with specified prior parameters &, 9. Show that this leads to a binormal joint
distribution for parameter and observation,

5 60 T2> T2
() ~ne) (o)

(b) Use general conditioning results from Ex. 1.41 to infer that
¢ly ~N(& +wly —&),wo?),  withw=7?/(7"+0%).

So w and 1 — w are the weights given to the data-based estimate y and the prior guess
&o, respectively. Also, w is the reduction factor with which the variance of the prior-free
estimator Y, from o2 to wo?.

(¢) An easy but important extension is to the case of a full sample Y7,...,Y,, from the
N(¢, 0?) distribution, independent given the &, again with o taken known and the normal
prior N(&,72) for the unknown mean. Show that Y = (1/n) Y1, Y; is sufficient (xx

xref here xx), and that
f 50 T027 Tg
(7)~3(&) (% o)

7'2 TLT2

2+ 02/n  nr?+o2

Show from this that

f ‘ data ~ N(fO + wn(g - §0)a wnUZ/n)v with Wy =

Again, w, is both the weight given to the data-based estimate and the factor with which
the neutral estimator’s variance is reduced, from o2/n to w,o0?/n. Note that w, — 1;
discuss how this may be seen as ‘the data wash out the prior’.

(d) Discuss the case of a ‘flat prior’, where 7 is taken large, for & ~ N(&, 72).

(e) In addition to having a coherent updating machine, changing the prior to the poste-
rior, for each new data point, the Bayesian structure implies positive dependence among
the observations. From E (Y; [£) =&, Var (V; |€) = 02, E(Y;Y; |€) = &2, show that

i

EY; =&, VarYi=o>+75, cov(Y;,Y;) =13, corr(Yi,Yj):m,

Show also that VarY,, = 0%/n + 72, and discuss what this means for large n.
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(f) Prove first the convenient formula
V(€ = &)* + (€ —9) = (v n)(€ = &) +dnly — &),

where

M and d’I’L = wn = (U_l + n_l)_17

€ - v+n v+n

which also may be written and interpreted via 1/d,, = 1/v + 1/n.

(g) Show that with any prior p(§) for &, the marginal density of (Yi,...,Y,) can be
written

fi, - ym) = /(QW)‘"/QU‘” exp{—%é Zn:(y — 5)2}17(5) de.

For the case of N(&, 73) worked with above, let first Qo = Y., (y; —¥)?, and verify that
S (yi — €2 = Qo +n(€ — §)®. Writing for mathematical convenience 1/7% = v/0?,
and 1/d, = 1/n+ 1/v, show that

f(yla"'ayn): -

v+n

71 1 1 2 1/2 1 = 2/ 2
(QW)H/QEQXP(_iQO/U )( ) eXp{—idn(y—&)) /0’ }

(h) With the marginal density seen as a function of the two fine-tuning parameters
(€0, 72), find the maximum marginal likelihood estimators &, and &.
(

i) We record two matrix identities here, as they will come in handy both here and on
later occasions. For a square and invertible A, show that

(A+za")y P =A""—cA et A7, withe=1/(1+2'A '2);
also, that |A + zz*| = |A|(1 + 2 A~ 12).

(j) Argue directly that Y = (Yi,...,Y,)" must be multinormal, with ¥ ~ N, (&1,
o%I, + 7811%), with 1 the vector (1,...,1)% the variance matrix has o2 + 7¢ on the
diagonal and 7¢ outside. Show that this agrees with the marginal density formula reached
above.

Ex. 6.14 The gamma-normal prior and posterior. Let data yi,...,y, for given param-
eters € and o be i.i.d. N(£,02). We have seen in Ex. 6.13 that when o may be taken as
a known quantity, then the canonical class of priors for £ is the normal one. When both
parameters are unknown, however, as in most practical encounters, a more elaborate
analysis is called for.

(a) Show that the likelihood function may be written as being proportional to
1 _
La(§:0) = exp|—nlogo — §={Qu +n(¢ )%},

where § = (1/n) > 1, y; and Qo = Y i (i — 9)*



228 Bayesian inference and computation

(b) With any given prior p(, o), explain how you may set up a Metropolis type MCMC
to draw samples from the posterior distribution. Try this out in practice, using the prior
that takes £ and log o independent and uniform on say [—5,5] and [—10, 10], with data
that you simulate for the occasion from a N(2.345,1.234%), with n = 25. Note that this
approach does not need more mathematical algebra as such, apart from the likelihood
function above.

(c¢) There is however a popular and convenient conjugate class of priors for which poste-
rior distributions become particularly clear, with the appropriate algebraic efforts. These
in particular involve placing a Gamma prior on the inverse variance A = 1/02. Say that
(A, &) has the gamma-normal distribution with parameters (a, b, &y, v), and write this as
(N, €) ~ GN(a,b,&,v), provided A = 1/0? ~ Gam(a,b) and &|o ~ N(&),o?/v). Show
that the prior can be expressed as

(X, €) o AT IN 2 exp[=M{b + 3u(€ — €)%}
What is the unconditional prior variance of £7

(d) Using the identity from Ex. 6.13(f), show that if the prior is (A, £) ~ GN(a, b, &y, v),
then

()‘76) ‘ data ~ GN(a + %n7 b+ %QO + %dn(g - 50)2’5*7,{) + n)

(e) The special case of a ‘flat prior’ for &, corresponding to letting v — 0 above, is
particularly easy to deal with. Show that then

(A,¢)| data ~ GN(a + 31,0+ 5Qo,7,n).
Find the posterior mean of o2 under this prior.

(f) For an illustration, consider the cigarette consumption data z1,...,x,, from 2.B,
for n = 44 US states (actually, 43 states plus the District of Columbia), from the early
1960ies, taken here to form a sample from N(¢,02). The z; is the consumption in
state i, in hundreds per year, ranging then from 14.0 to 42.4 (which translates to from
3.84 per day to 11.61 per day, in the adult population). Fix the prior that takes (i)
A = 1/0% ~ Gam(a,b), with (a,b) taken to correspond to 0.10 and 0.90 prior quantiles
for o being 1.0 and 10.0; (i) given o, £ is a N(20.0, 02 /v) with v = 0.50. Find the precise
posterior distribution for (A, £). Give posterior means and 90 percent credibility intervals
for &, o, and for the probability p = Pr(X > 40).

(g) For the same data and setup as in the previous point, carry out a second Bayesian
analysis, with the simpler prior that corresponds to v — 0. Comment briefly on the
differences in results.

Ex. 6.15 The gamma-multinormal prior for linear regression models. The aim of the
present exercise is to generalise the Gamma-Normal conjugate prior class above to the
linear-normal regression model. The model is the very classical one of Ex. 3.31, where

Y=z +wiBetei=aiB+e fori=1,...,n,
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with the ¢; taken i.i.d. N(0,0?). Write X for the n x k matrix of covariates (explanatory
variables), with z; = (x;1,...,%; k) as its ith row, and use y and ¢ to indicate the vectors
of y; and ;. Then y = X +¢ ~ N, (X3,02I,) is a concise way to write the full model.

(a) Show that the likelihood function may be written as being proportional to

La(B,0) = 0" exp~4 5 {Qo + n(B — B Ma(5 ~ A1},

in which

M, =(1/n)X'X =n"" Zl"zl’: and B = (X' X)Xty = M, ! szyz

=1 i=1

Also,
Q(B) = ly — X8> = Qo +n(B — B) My, (8 — B),

with Qo = >0, (yi —x53)2 the minimum value of Q over all 3. Note that B is the classical
least squares estimator (and the ML estimator), which in the frequentist framework is
unbiased with variance matrix equal to 0?(X*X)™! = (¢%/n)M, 1. This is the basis of

all classical methods related to the widely popular linear regression model.

(b) Let p(B8,0) be any prior for the (k4 1)-dimensional parameter of the model. Set up
formulae for a Metropolis type MCMC algorithm for drawing samples from the posterior
distribution of (5, 0).

(c) In spite of the possibility of solving problems via MCMC (or perhaps acceptance-
rejection sampling), as with the previous exercise it is very much worthwhile setting
up explicit formulae for the case of a certain canonical prior class. Write (X, 3) ~
GNy(a,b, By, My) to indicate the gamma-normal prior where

A =1/0? ~ Gam(a,b) and B|o ~ Ny(Bo,0?My").
Show that this prior may be expressed as

PN, B) o X TINF 2 exp [~ A {b+ L(8 — Bo) Mo (B — Bo)}]-

(d) When multiplying the prior with the likelihood it is convenient to use the following
linear algebra identity about quadratic forms, which you should prove first. For sym-
metric and invertible matrices A and B, and for any vectors a, b, x of the appropriate
dimension,

(z—a)'A(z—a) + (z = b)'B(z —b) = (¢ = §)"(A+ B)(z — ) + (b—a)' D(b — a),

where ¢ = (A + B)"!(Aa + Bb) (a weighted average of @ and b) and D is a matrix for
which several equivalent formulae may be used:

D=AA+B)'B=B(A+B) !4
= A—A(A+B) '"A=B-B(A+B)"'B=(A"'+B )L
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(e) Prove that if (A, 8) has the GNg/(a, b, B9, My) prior, then
(A, B) | data ~ GN(a+ 3n, b+ $Qo + 3(B — Bo) Dn(B — Bo), B, Mo + nM,),
where
B* = (Mo +nM,) " (Mofo +nM,B) and D, = My(Mo +nM,) *nM,.

This characterisation makes it easy to simulate a large number of (3, o) from the posterior
distribution and hence to carry out Bayesian inference for any parameter of quantity of
interest.

(f) Note the algebraic simplifications that result when the My in the prior is chosen as
being proportional to the covariate sample variance matrix, i.e. My = coM,,. Show that
then

«_ CoPo+np

p co+n an " co+n

Ccon

In this connection ¢y has a natural interpretation as ‘prior sample size’.

(g) A special case of the above, leading to simpler results, is that where 8 has a flat,
non-informative prior, corresponding to very large prior variances, i.e. to My — 0. Show
that with such a prior,

(Avﬁ) ‘da’ta ~ GNk(a’ + %nvb—’_ %QO?B? nMn)

The prior is improper (infinite integral), but the posterior is proper as long as B\ exists,
which requires X*X to have full rank, which again means at least k linearly independent
covariate vectors, and, in particular, n > k.

(h) (xx repair this. do bladder cancer rates, since linear is ok, whereas lung cancer is
more quadratic, done in Story i.15. xx) Go again to the dataset 2.B, for illustration and
for flexing your operational muscles. For y use the bladder cancer column of deaths per
100,000 inhabitants and for x use the number of cigarettes sold per capita. Your task is
to carry out Bayesian analysis within the linear regression model y; = 8o+ 51 (z; —Z) +¢;
for i =1,...,44, with ¢; taken i.i.d. N(0,0?). Specifically, we wish point estimates along
with 95 percent credibility intervals for (i) each of the three parameters S8y, 81, 0; (ii) the
probability that y > 25.0, for a country with cigarette consumption x = 35.0; (iii) the
bladder cancer death rates y45 and y46, per 100,000 inhabitants, for states with cigarette
consumption rates x45 = 10.0 (low) and 246 = 50.0 (high). You are to carry out such
inference with two priors (xx nils repairs this xx): (1) First, the informative one which
takes 1/02 a gamma with 0.10 and 0.90 quantiles for o equal to 1.0 and 5.0, and 3y and
31 as independent normals (5.0,0.502) and (0.0, (2.0 0)?), given o. (2) Then, the simpler
and partly non-informative one that takes a flat prior for (8p, 51) and the less informative
one for o that uses 0.10 and 0.90 prior quantiles 0.5 and 10.0. Finally, compare your
results from those arrived at using classical frequentist methods.

Ex. 6.16 Mizture priors. Suppose data Y come from a model f(y, #), where different pri-
ors m1(0), ..., m(0) can be used, each leading to posterior distributions 71 (6 |y), ..., 7(0]y).
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(a) For each of these possible priors (and hence possible posteriors), show that there is

a representation f;(y,8) = m;(0)f(y,0) = m;(0 | y)f](y)7 where fj(y) = [ f(y,0);(0)do
is the marginal density of Y, associated with the 7;(6) prior.

(b) Suppose now that a full mixture prior is assigned to 6, of the type m(6) = p1m1(6) +
-+« + ppm(0), with probabilities pq,...,pr summing to 1. Show that this can be in-
terpreted as 6 is drawn from prior j with probability p;. Show also that the marginal
distribution of Y can be expressed as f(y) = Z?:l pifi(y).

(¢) Then show that the posterior distribution for 6 becomes
m(0]y) =pim(0y) + -+ prme(0]y),

with revised prior probabilities p = p; f;(y)/ Z?,zl pj' fir(y) for the different types of
priors.

(d) Suppose Y ~ binom(n,#), and that the prior used for 6 is 0.15Beta(2,10) + 0.70
Beta(15, 15) 4+ 0.15 Beta(10,2). Draw this prior in a plot. With n = 100, compute the
posterior probabilities py, p3, p3, and draw the posterior distribution for 6, along with the
prior, for each of the cases y = 12, y = 48, y = 91.

(e) (xxrevisit the Gott wiirfelt nicht, Ex. 6.10. do a mixture prior, perhaps 0.50 Dir(1,1,1,1,1,1)+
0.50Dir(s, s, s, s, s, s), where s is quite big, reflecting the possibility that the die is per-
fectly fair with probabilities equal to or very close to (1/6,1/6,1/6,1/6,1/6,1/6). xx)

(f) Generalise the above to the situation where m(6) = [ 7,(0) dG(«) is a mixture of
7o (0) priors, with dG(«) a fully general probability measure over the space of hyper-
parameter . The « coud be a parameter belonging to a finite set, matching the setup
above, or a full continuous mixture. Show that the posterior can be represented as
(0 |y) = [7a(0]y) dG(«|data), where dG(«|data) is the posterior for the hyperpa-
rameter, and 7, (6 |y) is the posterior for 6 in the setup where « is fixed and known.

(8) xx

The Jeffreys prior

Ex. 6.17 The Jeffreys prior: the basics. (xx here we spell out the invariance arguments
leading to m(6) o |.J(#)|*/2. often improper, but with proper posteriors. xx)

Ex. 6.18 The Jeffreys prior in certain models. (xx to come, examples, illustrations,
some models. xx)

%, %) Compare

this with the geometric, with f(y,p) = (1 —p)?"!p. (xx different priors, even though the
likelihoods are proportional. xx)

(a) For binomial (n,p) model, show that the Jeffreys prior is the Beta(

(b) Then consider the trinomial (X,Y, Z), with probabilities proportional to p*q¥(1 —
p—q)%, with © + y + z = n. Find the 2 x 2 Fisher information matrix, its determinant,
and show that the Jeffreys prior is proportional to pil/zqfl/z(l —p— q)*l/z, which is the
Dirichlet (3,1, %) for (p,q,r). Generalise to the multinomial (n,p1,...,ps) case, with
e



232 Bayesian inference and computation

(¢) For the normal ...
(d) For the Poisson with parameter 6, show that the Jeffreys prior is 1/6'/2.

(e) For the Gamma (a, b), show that the Jeffreys prior takes the form 7w (a, b) = m1(a)m2(b),
with 71 (a) o« {ay’(a) — 1}*/? and 72(b) o< 1/b.

Ex. 6.19 A simple model for deviations from uniformity. This exercise illustrates how
we can carry out Bayesian analysis for almost any given one-parameter model, via simple
numerical techniques; bigger models need bigger tools, as we come back to (xx where
xx). Consider the model f(y,0) =1+ 60(y — %) for y € [0,1].

(a) Show that this indeed defines a bona fide model, for 6 € [—2, 2], and with c.d.f. F(y,0) =
y+ 30(y*> — y). Show that the Fisher information is

1/2 72
J(0) = dx.
0=, it

(xx perhaps more, a formula. xx) Compute and display the Jeffreys prior.

(b) Take 6irye = 0.333, simulate say n = 100 points from the model, and give a graph
for the log-likelihood function. Compute the ML and an approximate 90 percent interval
for 6 via the methods of Chapter 5.

(¢) Then, with a uniform prior on [—2, 2], compute and display the posterior distribution
for 6.

(d) Using a fine grid, e.g. with grid length 0.0001, sample say 10° points from the
posterior distribution. From these, provide 0.05,0.50,0.95 quantiles. (xx just a bit more;
round off; point away. xx)

Marginal distributions and Bernshtein—von Mises theorems

Ex. 6.20 The marginal distribution. Suppose we have data yi,...,y, from a model
f(y,0), with a prior w(f). Most of the time Bayesians care about the posterior distri-
bution, but on occasion, also in connection with bigger setups, one needs the marginal
distribution, which is f(y1,...,yn) = [ Ln(0)7(6) 6, in terms of the likelihood function
L,(0). In various setups there will be a clear formula for this f, se seen below; see
Ex. 6.22 for a very useful approximation method for more complex cases.

(a) Let y1,...,yn be independent Bernoulli variables with Pr(y; = 1|6) = 6, and let
6 ~ Beta(a, b). Writing z = >, y; for the number of 1s, show that

- _ T(a+b) T(a+2)T(b+n—2)

(b) Let then yi,...,y, be independent Pois(f), with a Gam(a,b) prior, as with Ex. 6.1.
Show that

- b T(a+ny) 1

f(yl,-.-;yn) - F(a) (b—}—n)a‘HlZU yll...yn!.
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(c) Consider i.i.d. data y; ~ N(£,0?), with known ¢ and a normal prior ¢ ~ N(&,03)
for £. Find the marginal distribution (xx give a formula here xx).

(d) (xx do also N(zt8,0?%) with 8 ~ N(Bo,X). find the marginal. check with other

exercises. Xx)
(e) (xx then also for the gamma-normal; give a formula for f(yi,...,yn). xx)

(f) (xx something to point to empirical Bayes. calibrate carefully with loss-risk Ch. ?7?.
can already point to Stein things. and to mixtures, where these f(y) turn up as ingredi-
ents. xx)

Ex. 6.21 The gamma-normal induced marginal model. (xx edit intro sentences. Y1,...,Y,
are ii.d. from the N(&,02), given these two parameters. xx) For the direct Bayesian
use one only needs the prior to posterior computation, in this case from the initial
GN(a,b,&p,v) to the updated GN given in Ex. 6.14, and one somehow bypasses the
marginal density f(y1,...,yn) of the data, the likelihood with the parameters (¢, o) in-
tegrated out according to the prior. On occasion this marginal distribution is important,
however, and also finds use as a model in its own right, for positively dependent data.

(a) (xx first things with & ~ N(&,73), known o. two ways of computing and seeing

f(y1,...,yn). do marginal moments and correlations. xx)
(b) xx

(¢) Then the GN(a,b, &y, v) gamma-normal prior for (A, ), as with Ex. 6.14. Show first
that the likelihood times the prior, L, (A, &)p()\, ), can be expressed as

n/2 @
<2A7r>n/2 exp[~3A{Qo + n(€ ~7)*)] r?) X TH )Y exp[=A{b + Ju(€ — €0)*}].

Then integrate out the £ to get

1 ba adn/2— v 1/2 -
ok " 1(T+n) exp{=A(b + 5Qo + 5dn (¥ — &)*},

with d,, = (1/v+ 1/n)~! as per Ex. 6.14. Show then that this leads to the marginal
density being

v )1/2 b® I'la+n/2)

Tl sn) = 2072 T(@) {0+ 2Qo + 2du(y — &0)2y /2

v+n
Ex. 6.22 Approximating the marginal distribution. In the setup of Ex. 6.20, we go
through a useful type of Laplace approximation for the marginal.

-~

(a) Writing as usual £,,(0) for the log-likelihood, with maximum value ¢,, max = 5 (), in
terms of the ML estimator, show that

— ~

f(y17 s ayn) = eXp(gn,max) /eXp{Kn(G) — €n(9)}7r(9) dé.
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With J, = —(1/n)02(,,(8)/8606" the normalised observed information matrix, of dimen-
sion say p X p, show that the marginal can be approximated with

F = exp(l.max) / exp{—1n(0 — 6)',(0 — 6)}x(0) A6

exp(ln, max) /exp(f%stJns)w(é\Jr s/v/n)ds/nP/?
= exp(L max )T () (27)P/2| T, | 7Y/2 J/2,

(b) (xx a couple of things here. check how successful the approximation is in two setups.
the formula

log f =l max — %plogn + logﬂ'(é\) — %log || + %plog(27r),
with its two leading terms, lead to the BIC in Ch. 11. xx)

Ex. 6.23 Bernshtein—von Mises approrimations. Suppose observations Yi,...,Y, are
ii.d. from a density f(y,d), with w(f) a prior for the model parameter, of dimension
say p. The posterior density can of course be quite complicated, perhaps necessitating
numerical efforts, or simulation, for its evaluation. Remarkably, there are generic and
simple normal approximations, however.

(a) Show that the posterior density 7, (6) = 7 (6 | data) is proportional to 7(8) exp{¢,,(6)},
with £,(0) = >0 log f(y;,0) the log-likelihood function.

(b) Let 8 be the ML estimator, and .J,, = f(l/n)a%n(é)/aoaet the normalised observed

information, as per likelihood theory of Ch. 5. Show that the density of Z,, = /n(0 —0)
is gn(2) = (0 + 2//n)(1/nP/?), and that it can be approximated as

gn(2) o< (0 + 2/v/n) exp{ln(8 + 2/v/n) — £,(8)} = (0 + z//n) exp(—128J,2).

(¢) Suppose then that the data really are i.i.d. from the model, with an underlying 6, e.
In particular, then gﬁpr Oirue and J,, —pr J = J(Otrue), by (xx point to Ch 4 exercises
xx). If w(0) is continuous in a neighbourhood around 6y, show that g, (z) tends to the
density of a N, (0, J —1), in probability. In concrete terms, show

D, = / |gn(2) — ¢p(2,0, J*1)| dz —pr 0.

This is one of several versions of Bernshtein—von Mises theorems. These are Bayesian
mirror versions of the classical maximum likelihood asymptotics results in the frequentist
camp:

V(0 = Oirue) —a N(0,J71),
V(0 — 8) | data —4 N(0,J~1), in probability.

(d) Check two clear situations in detail, comparing the exact posterior density 7 (¢ | data)
with the normal approximation: (i) where Y |6 ~ binom(n, #), and 6 ~ Beta(ag, by); (ii)
where Y7,...,Y, |0 are i.i.d. Pois(f), and 8 ~ Gam(ag,by). Choose n and (ag, bg), and
also the true 6;;ye, for your brief investigations.
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(e) (xx just a bit more. lazy Bayesian. prior disappears. different Bayesians agree with
each other, and also with the frequentist. xx)

Ex. 6.24 Bayes and minimaz normal estimation with the linex loss. (xx perhaps to
be moved to Ch 8. xx) We worked out some basic properties of the linex loss function
exp{c(t —0)} — 1 — c(t — 0) in Ex. 6.5. Here we use the Bayesian machinery to find a
minimax estimator for the normal mean.

(a) Consider the simple prototype setup where a single X has the N(6,1) distribution.
Show that the estimator X + d has risk function

re(0) = Eg [exp{c(X +d—0)} =1 — (X +d — 0)] = exp(cd + 3c*) — 1 — cd,

constant in @, and that the best estimator of this sort is 6* = X — %c. Show also that

the risk achieved, by this estimator, is 2c2.

(b) Now consider Bayes estimation, with the prior § ~ N(0,72). Show via Ex. 6.13
that (6|z) ~ N(wz,w), with w = 72/(7% 4+ 1). Show, perhaps via expressing 6 |z as
wz + w'/2N with N a standard normal, that the posterior expected loss is

E{Lc(0,t) |z} = exp{c(t — wz) + twc®} — 1 — c(t — w).

Deduce that the Bayes estimator is 53 = wx — %wq and that the posterior expected loss
is E{L.(0,0p) |2} = 2wc?, independent of z.

(¢) Show that * = X — %c is minimax. Show also, via Blyth’s method, that it is in fact

admissible.

(d) Generalise the above to the case of a full sample X;,..., X, from N(6,1). Find the
Bayes estimator and associated minimum Bayes risk, for the N(0,72) prior, and prove
that 6* = X — %c/n is minimax. What is its minimax risk?

(e) Find the distribution of Z, = /n(6* — 0), and comment on its limit, (i) when the
loss-skewness parameter c is fixed, (ii) when ¢ = y/n.

(f) (xx perhaps another example with linex loss. and something where we see certain
arguments lead to a choice of ¢. xx)

Ex. 6.25 More on the linex loss. For the linex loss, studied initially in Ex. 6.5 and then
in Ex. 6.24 for the normal case, we now find out more.

(a) Suppose Y1,...,Y, are iid. from the Pois(#), with prior 8 ~ Gam(a,b), as with
Ex. 6.1. Show that the Bayes estimator with the linex loss is O = (1/¢)(a + ng) log{1 +
¢/(b+n)}. Verify that when ¢ — 0, we retrieve the posterior means of Ex. 6.1.

(b) (xx one more case with a clear formula. perhaps ¢ in normal. xx)

(¢) Aswe know from Ex. 6.23, an approximation to the posterior distribution is 8 | data ~
N(éml, 62 /n), in terms of the maximum likelihood estimate and estimated inverse Fisher
information. Deduce that M, (—c) = exp(—caml + 2¢?6? /n), in the notation above, and
that this leads to the approximation 53 = §m — %032 /n for the Bayes estimator under
linex loss. Show also that the posterior expected loss is approximately 58232 /n.
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(d) (xx an example where we can check the approximation with the exact Bayes estima-
tor, e.g. with Poisson and gamma. xx)

Ex. 6.26 Multiparameter inference. (xx something here. joint estimation of (61, ..., 0%),
say for normal or Poisson or binomial, with Bayes and empirical Bayes. calibrate with
Ch8. xx) Consider a setup with Y7,..., Y} being independent Poisson counts with pa-

rameters 61,...,0;, and where the object is to estimate all of the parameters, jointly,
with loss function L(6,a) = Z?Zl(aj —0;)?/0;. If the parameters somehow are related,

as in not too different, this might be built into a Bayesian scheme.

(a) The default estimator would be é\] =Y;, for j =1,..., k. Show that its risk function
is constant, equal to k.

(b) Consider then the prior which takes 61, ...,0; independent from a Gamma (a,b).
Show that 0, | data is a Gam(a;+y;, b+1), find the Bayes estimator, and its risk function.
(xx jotting down details here. xx)

~ —~ a+y; —1
0; =0;(a,b) =1/(E(1/0;)|y;) = Hijl

empirical Bayes: E (Y;|6;) = 6;, Var(Y;|6;)) = 0;, leading to EY; = a/b, VarY; =

a/b+ a/b?; can then use moment matching to find @,b. this leads to empirical Bayes

estimators

hyab) = Ll
b+1
also:

Fluga0) = [ exp(-00% [yt 0 exp(-bo) s = oo L)

F@) B+ 1 )

Full Bayes, a prior for (a,b):
k k B
H 9]7ab y]7 —Woab H 9J7a+yj7b+l)f(yjaa7b)
which leads to m(a,b|data) o my(a,b) Hf:l f(y;,a,b). then meme for sampling from

(a,b,01,...,0;) given data.

(¢) (xx then empirical Bayes. Clevenson—Zidek, Stoltenberg—Hjort. xx)

Notes and pointers

(xx mention Varian (1975); Zellner (1986); Claeskens and Hjort (2008a) for the linex loss;
but this should perhaps be in Ch. 8. mention Stigler (1983), who uses Bayes’s Theorem to
help him spot a candidate for an earlier discoverer of Bayes’ Theorem. mention MCMC
revolution since the 1990ies. point to Story ii.5. xx)
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Confidence distributions, confidence curves,
combining information sources

With ¢ a focus parameter, a function of the full parameter vector 6, the Bayesian
setup gives a posterior distribution. This requires the conceptually and practically
difficult task of defining a prior for the full 8, however. Confidence distributions
(CDs) are a frequentist parallel, yielding post-data distributions for such focus pa-
rameters, without any prior. In this chapter we develop theory for CDs and con-
fidence curves, and also find ways of combining CDs across different information
sources. Computing CDs is not an easy or automatic task, but we develop and
illustrate several recipes. For the exponential family class, we derive optimal CDs,
with their own clear recipes.

Key words: boundary constraints, combining CDs, confidence curves, confidence
distributions, exponential family, meta-analysis, t-bootstrapping

Confidence distributions and confidence curves are fruitful statistical inference sum-
maries. Suppose in general terms that data y stem from a model f(y,6), with model
parameter 6 = (01,...,6,), and that ¢ = ¢(6,,...,0,) is a parameter of particular inter-
est. A confidence distribution for ¢, a CD, for short, is a function C(¢,y), such that (i)
it is a c.d.f. in ¢, for each dataset y, and (ii) the distribution of U = C(¢g,Y) is uniform
at the true value ¢g = ¢(6p). In other words,

Pro,{a < C(¢y,Y) <b} =b—a foreacha,bc [0,1].
Assuming this random c.d.f. has a unique inverse, then, we have
Prog{C~(0.05,Y) < ¢ < C'(0.95,Y)} = 0.90, (7.1)

and of course similarly for other choices of quantiles. This is by definition making
[C71(0.05, Yobs ), C~1(0.95, Yobs)] @ 90 percent confidence interval for the focus parameter
¢. The CD concept is hence related to and an extension of the confidence intervals, see
Ch. 4. The confidence curve is a related summary graph, most often computed from the
CD via cc(¢,y) = |1 —2C(¢,y)|. It has the practical property that {¢: cc(¢,y) < 0.90}
give the 90 percent interval directly; similarly, all intervals at any desired confidence

237
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level can be read off from the confidence curve. We sometimes write simply C(¢) and
cc(¢), omitting the data argument, when clear from the context what the data are, in
C(¢) = C(¢,data).

Construction a CD is not always an easy or automatic task, but we develop several
practical recipes, some of which are based on approximate normality, or on more general
methods of likelihood theory. Just as tests have detection power, also CDs have power,
and theory is developed below to find optimal CDs in classes of situations. This is partly
parallelling the optimal testing methodology of Ch. 4. All in all we develop and illustrate
the following recipes: (i) Via the c.d.f. of an estimator; (ii) normal approximation; (iii)
based on a pivot; (iv) deviance and Wilks theorem; (v) t-bootstrapping; (vi) the optimal
CD via conditional distributions, if inside the exponential family.

The CDs are post-data graphical summaries of the level of uncertainty for any focus
parameter, and can be seen as frequentist parallels to the Bayesian posterior distributions;
here there is no prior, however. We illustrate this ‘clear data-only based posteriors
without priors’ aspect of the CDs through theory and applications (xx perhaps point to
a few Stories xx).

Combining different information sources is a broad statistical theme, going back to
the first meta-analysis concepts and methods of Karl Pearson just after 1900 (Simpson
and Pearson, 1904). The more familiar meta-analysis methods aim at combining indepen-
dent estimators for the same quantity, or for providing a broader population assessment
of similar but not identical parameters. CDs are useful for such endeavours, and we
provide methods for combining sources more general than the traditional ones.

Recipes for constructing CDs

Ex. 7.1 The probability transform. Some of the following facts are related to various
operations for confidence distributions and confidence curves

(a) Suppose X has a continuous and increasing cumulative distribution function F,
ie. F(z) = Pr(X < z). Show that U = F(X) is uniform on the unit interval. Any
continuously distributed random variable can hence be transformed to uniformity, via
this probability transform.

(b) Show that also U =1 — F(X) and Us = |1 — 2 F(X)| have uniform distributions.

(c) Simulate a million copies of z; ~ N(0, 1), and check the histogram of 'y (z?), where
T, is the cumulative distribution function of a y2. Comment on what you find.

Ex. 7.2 Recipe One: via the c.d.f. of an estimator. Suppose 6 is a one-dimensional
parameter, for which we need a CD, after having observed data y,ps. If there is an
estimator 6, with a distribution depending only on this 6, there is a clear recipe.

(a) Assume therefore that 6 has a continuous distribution function K, o(z) = Pry (§ < z);
its distribution is here required to depend only on #, not on other aspects of the underlying
model employed. Consider Recipe One, the construction

C(0,Yobs) = Pr9(§2 Bobs) = 1 — Ko(Bons),
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a curve that can be computed and plotted post-data, where §Obs = a(yobs) is the observed
estimate. Show that it has the property that the random C(6,Y") is uniformly distributed,
for each fixed 6.

(b) To illustrate, go through the details for the case of using o= 1/Y, with i.i.d. ob-
servations Yp,...,Y, from the exponential § exp(—6y). Show first that 20Y; ~ x3, and
derive Ky(z) = 1 — 'y, (2n0/x), with Ty, the c.d.f. of the x3,. Simulate data and plot
the CD C(0, yobs) = an(2n9/5obs). From the CD, find a 95 percent interval for 6.

(¢) Assume X3,...,X,, are i.i.d. Expo(#;) and that Y7,...,Y,, are i.i.d. Expo(62). Find
the distribution of the estimator p = 6;/6s for the ratio p = 6;/6,, and derive the
associated CD.

(d) Generate n = 25 datapoints from the double exponential density f(y, 6) = 1 exp(—|y—
), using your favourite true 6y. Compute and display the CD for 6 based on the median
M.

(e) For a simpler and more fundamental illustration, suppose f has a normal distribution
centred at @, with a known variance, say 6 ~ N(#,x2). Show that Recipe One gives

C(0) = ®((6 — 0)/k). Check that the famous 95 percent interval 6 + 1.96 k agrees with
this.

Ex. 7.3 Confidence distribution and confidence curve for the normal standard deviation.
The confidence distribution C' and the confidence curve cc are close cousins, and they
do not need to be both displayed for each new statistical application. Here is a simple
illustration. You observe the n = 6 data points 4.09, 6.37, 6.87, 7.86, 8.28, 13.13 from
a normal distribution and wish to assess the underlying spread parameter, the standard
deviation o.

(a) For the empirical variance, use 6> ~ o2x2, /m, with m = n — 1, to build the CD

C(0,Yobs) = Pro(G > Gobs) = 1 — Dy (moy,. /o°).

Here yo1s represents the observed data, and 1, the observed point estimate. Show that
C(0,Y) ~ unif, where Y represents a random data set Y7,...,Y,,, from the o in question.
In particular, the distribution of C(0,Y’) does not depend on o. Make a graph, also of
the associated confidence curve

cc(0, Yobs) = [1 = 2C(0, yobs)| = [1 = 2T (mgpe/0?)].

Compute the median confidence estimate G50 = C~1(0.50,yops) and the natural 90
percent confidence interval [C~1(0.05, Yobs ), C~1(0.95, yons)]. Find and display also the
confidence density c(o, Yobs), the derivative of the CD.

(b) Compute also the confidence density c(o,yobs) associated with the CD. Compute
furthermore its mode, say ¢*, and briefly assess its properties as an estimator of o.

(c) A Bayesian approach to the same problem, i.e. finding a posterior distribution for o,
is to start with a prior 7(o) and then compute 7 (o | yons) x w(c)g(T,0), where ¢(7,0)
is the likelihood, here the density function for o as a function of 0. When does such a
Bayesian approach agree with the confidence density?
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(d) Suppose there are two independent normal samples, with standard deviations oy
and o9. Construct a CD for p = o01/02. Invent a second simple small dataset, to
complement the first dataset given above, and then compute and display the confidence
curve cc(p, data).

Ex. 7.4 Computing a CD with simulation and isotonic repair. (xx to be polished. we
use this is Story iii.10 and perhaps in other places, where simulations are expensive.
xx) Suppose one observes y1,...,y, from the one-parameter Weibull distribution with
c.df. F(y,b) = 1 — exp(—y®), with sample size n = 25, and computes the data mean
Yobs = 1.313.

(a) Though we do not actually need this in the CD computations here, find an estimate
of b based on EY; = I'(1 4+ 1/b); see Ex. 1.54. Show that C(b) = Pry(Y < Fons) is a CD
for b.

(b) The practical obstacle here is that Y does not have a simple distribution. But we’re
saved by simulation. Show that the simulation recipe Y;* = Vil/ b produces outcomes from
the weibull F(y,b), where the V; are unit exponential. For a grid of b values, e.g. from
0.20 to 1.20, compute the simulation based C*(b), the proportion of B cases where the
simulated Y* is below @obs. Compute also the confidence curve cc*(b) = |1 — 2C*(b)|.
For this simple example it is easy to accomplish this with a high B, say 10°, to make
C*(b) and cc*(b) smooth and very close to the real C'(b) and cc(b); for this illustration,
however, make the simulation size as relatively small as B = 100, and plot the curves,

as in Figure 7.1.

0.4 0.6 0.8 1.0
I

CD, with isotonic repair

0.2
confidence curve, with isotonic repair

0.0

Figure 7.1: Simulation based confidence distribution C*(b) and confidence curve cc*(b)
for the Weibull parameter b, based on the observed sample mean yons = 1.313 for n = 25
data points, along with isotonic repairs. The simulation size here is the low B = 100.

(c) We learn that with a low or moderate simulation size B, the C*(b) and cc*(b) will
be wiggly. We can do better, using the prior knowledge that C(b) is increasing. There
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are several repair mechanisms, which from the potentially wiggly C*(b) create a mono-
tonically increasing curve. A simple scheme is so-called isotonic regression, the details
of which we do need to get into here. Supposing you have first created bval and Cval in
your R session, you may use Cvaliso=isoreg(bval,Cval)$yf, which repairs your C*(b)
and cc*(b) to ensure monotonicity. Produce versions of Figure 7.1, left and right panels.

(d) (xx round off. explain salient points about generalisability. we need reduction to
one-parameter situation. xx)

Ex. 7.5 An extension of Recipe One. In Ex. 7.2 we saw that the simple construction
C(0,y) = Pry (0 > 90bs) gives a CD, in the case of one-dimensional setups with a well-
defined estimator 6.

(a) When working with estimators, finetuning efforts are often exuded to trim away
biases, getting the scaling right, etc. In a sense this is not needed here, when constructing
the CD. Show that if & = g(g)7 with any smooth increasing g, the recipe C*(0) = Pry(a >
Qlobs) gives precisely the same CD as without the g transformation.

(b) So this CD recipe relies merely on having an informative statistic, say Z, with a
distribution stochastically increasing in 8; it does not really have to be an estimator for
that parameter. Show that C(6,y) = Pro(Z > zons) is a bona fide CD.

(¢) Show also that the construction works, if there are other parameters at play too, as
long as the distribution of the chosen Z only depends on 8. Go through the details for the
case of the Y; being N(p, 0?), with Z = """ | (V; —Y)? and also for Z/ = Y"1, |Yi— M,
where M, is the empirical median. Compute, display, compare both CDs, based on Z
and on Z', for the simple dataset of Ex. 7.3 (with n = 6). For the Z case, there is a
formula, but for the Z’ case you would need simulation, for a grid of o values; see Ex. 7.4.

(d) (xx one more example, where there is a Z carrying information, but not qua estima-
tor. xx)

Ex. 7.6 Recipe Two: the normal approzimation CD. Applying Recipe One of Ex. 7.2
to the case of the estimator having a normal distribution leads as we saw there to a clear
CD, provided the variance is known. But this is at least approximately so, for large
classes of situations, as we’ve seen in Chs. 2 and 5.

(a) Suppose in general terms that § estimates 0, and that its distribution is approximately
a N(0,x?). Explain that C(6) = ®((0 — 5)/&) then is an approximate CD for §. More
formally, if (é\— 60)/k —a N(0,1), at the true parameter g, show that C(0,Y) = ®((6 —
5) /R) has the property that it converges in distribution to the uniform, at 6. In typical
applications of these arguments, there is a y/n scaling in terms of an underlying sample
size, with \/n(6 — 6) —4 N(0,72), say, and & = 7/+/n, with 7 —pr 7. So this is Recipe
Two, the normal approximation CD, most typically of this type ®(y/n(6 — 5) /7).

(b) Simulate a moderate or small dataset from a normal distribution. Compute and
display two (approximate) CDs for the mean parameter &, (i) using the data mean, (ii)
using the data median.
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(¢) We have seen in Chs. 2 and 5 that approximate normality is highly common, for
large classes of estimators, typically along with consistent estimators for the variances.
In particular, the delta method implies approximate normality of smooth functions of
background estimators (see Ex. 2.47, 7?), making in its turn approximate normality CDs
easily available. For a simple illustration, suppose you throw your nearest die, which has
probability p of giving a ‘6’, until you get your first ‘6’. You carry out this geometric
experiment n = 10 times, giving you the counts Y7,...,Y, equal to 1, 2, 17, 18, 20, 4,
3, 1, 15, 3. Use the normal approximation for Y to give an approximate CD for p. You
may also compare this to what one achieves working with the exact distribution of Y.

(d) (xx point to logistic and poisson regression, with delta method. estimate 8 and also
p= H(z58). xx)

Ex. 7.7 Recipe Three: from a pivot to a CD. (xx check that we're not repetitive
regarding pivot. xx) Suppose in general terms that ¢ is some parameter of interest, in a
model for observations Y, and that a function A = piv(¢,Y’) of the parameter and the
data has the property that its distribution does not depend on the model parameters
(in particular, therefore, not on ¢, which might itself be a function of other model
parameters). We call A a pivot, in more pedantic detail a pivot for the parameter

o.

(a) With Y3,...,Y,, independent from the normal (y,0?), let R,, = > | |V; — Y| with
the sample mean Y. Show that (Y —u)/R,, is a pivot. Invent yet another pivot involving
w, with a different denominator.

(b) With two normal samples, say Xi,...,X,, from N(ui,0?) and Yi,...,Y, from
N(u2,03), suppose p = 01/02 is in focus. Show that (V4 /V2)/p is a pivot for p, where V;
and V5 are the interquartile ranges for the two datasets.

(c) Consider Y7, ...,Y, from the Cauchy model with density (1/7)/{1+ (y —0)?}. Show
that R, — 0 is a pivot, where R,, = %(Qn,O.lO + Qn,0.90) is the average of the 0.10 and
0.90 quantiles.

(d) Back to the generalities, consider a pivot A = piv(¢,Y) for ¢ in some model, increas-
ing in ¢. Assume the situation is continuous, not discrete, so that the pivot’s distribution
function K is continuous. Show that C'(¢,yobs) = 1 — K (piv(e, Yobs)) is a proper CD
for ¢.

(e) In clean cases we may derive the precise distribution for the pivot in question, but
the CD recipe given above may be used also in more complicated setups, as long as
A = piv(¢,Y) may be simulated. Make an illustration of this, with the ratio of standard
deviations above. Suppose two normal datasets, both of size n = 100, lead to interquartile
ranges Vi obs = 4.44 and V3 obs = 3.33. Construct and display C(p) and cc(p).

(f) (xx make the point that various constructions, involving large-sample approximations
to the normal and to chisquares, lead to approximate pivots, and then again to approx-
imate CDs and ccs. in particular, Method One, with ®((¢ — a)/ﬁ) and Method Two,
with T'1(D(¢)), can be seen via approximate pivots. also Method Three, construction of

a t type ratio and then bootstrapping. xx)



Recipes for constructing CDs 243

Ex. 7.8 CDs from the t pivot. In Ex. 7.2 we saw that the simple construction C'(6,y) =
Prg(6 > Oops) gives a CD, in the case of one-dimensional setups with a well-defined
estimator 6.

(a) For a normal sample from N(u,0?), we see that several Pr;, ,(Z > 2zbs) schemes
work, in that the Z in question has a distribution depending on o, but not p. Attempt
to work with C* (11, y) = Pry.o(Y > Jobs) — and explain that it will not really work (unless
o is known).

(b) But of course there are natural CD constructions for p here. What is needed is a
pivot, say A = piv(y,y), a function binding the focus parameter and data together in a
way which makes its distribution not depend on the parameters. Study indeed

tn = tn(1,Y) = (Y = p)/(6//n),

with 2 = (n — 1)71 31" (Vi — Y)? the classical empirical variance. Pretend that you
in all your cleverness have not seen this ¢,, before, and are unaware of its relation to a t
distribution — but show that the distribution of ¢,,, call it K,,, does not depend on (u, o).

(¢) Then show that C(u, Yobs) = Kn(tn (i, Yobs)) is a CD for p. Even if you do not see the
connection to the classic t of Student (1908), see Ex. 1.46, you may still carry through
this, by simulating B = 10° realisations of ¢,,, and use

B
. 1
O(Nzyobs) = Kn(tn(:uvyobs)) = E Zl{tn,j < tn(ﬂyyobs)}-
j=1

Show however that by all means K, is a t,,, with m = n — 1, so the canonical CD for p
is and remains C'(p, Yobs) = Gm(v/1(lt — Yobs)/Tobs), With Gy, the c.d.f. for the t,,.

Ex. 7.9 Recipe Four: confidence curves via Wilks theorems. Consider data from a
parametric model, leading to the log-likelihood function ¢,,(0), and that there is a focus
parameter ¢ = g(#). We have seen likelihood profiling and Wilks theorems in Ch. 5, and
know that the deviance Dy, (¢) = 2{lmax — lprof(¢)} has the property that D,,(¢o) —a X3
at the true value ¢ = g(6p); see Ex. 5.28.

(a) Recipe Four, utilising the Wilks theorems, is to form cc(¢,y) = I'1 (D, (¢)), with T'y
the c.d.f. for the 7. Show that Pry,(cc(¢o,Y) < a) — « for each «a, and explain that
this makes cc(¢, y) and approximate confidence curve.

(b) For an illustration, consider the model F(y,#) = y? for observations on [0, 1], where
f is an unknown positive parameter. Write down the log-likelihood function and find a
formula for the maximum likelihood (ML) estimator 8. Use also theory of Ch. 5 to write
down a normal approximation to the distribution of 0.

(¢) Consider the data set

0.013 0.054 0.234 0.286 0.332 0.507 0.703 0.763 0.772 0.920
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Figure 7.2: For the simple data example of Ex. 7.9: Left panel: confidence distribution
C(0), via simulations (black and wiggly curve) and via exact calculations (red and smooth
curve); right panel: the two versions of the associated confidence curve cc(f). From these
we read off the median confidence estimate 50_50 = 0.76, and the 90 percent confidence
interval [0.43,1.24].

Estimate 6 and compute the CD C(6) = Pry (5 > HAObS), along with the confidence curve
ce(f) =1-2C(0)], (i) using simulations, (ii) using exact probability calculus. Reproduce
a version of Figure 7.2.

(d) Supplement these two curves with approximations based (i) on the normal approxi-
mation for  and (ii) on the chi-squared approximation for the deviance.

(e) (xx somewhere, if not here, then separately: from CD to cc, and from cc to CD, with
C(¢) = 2 — Lee(o) for ¢ < do.50 and 1 + Lec() for ¢ > do.s50. particularly useful with
these deviance based ccs. xx)

Ex. 7.10 Median age for men and women in Roman Era Egypt. In Story ii.1l we
work with a rare dataset of lifetimes for 82 men and 59 women in Roman Era Egypt,
a century B.C. For the present illustration of constructing confidence curves via log-
likelihood profiling, take these lifetimes T; to have arisen from Weibull distributions,
with c.d.f.s Fy,(t) = 1 — exp{—(t/am,)’"} for men and F,(t) = 1 — exp{—(t/a,, )} for
women.

(a) For a Weibull, with parameters (a, b), show that the ¢ level quantile becomes p(q) =
F~Y(q) = ac(q)'/?, with ¢(q) = —log(1 — ¢). In particular, the median is a(log2)/.

(b) For the men and women separately, write down the log-likelihood functions ¢,, (am,, b, )
and £, (ay,by), and then carry out profiling to compute the deviance functions, for the
medians p,, and . Use Recipe Four, from Ex. 7.9, to construct the confidence curves,
and make a version of Figure 7.3, left panel; also, read off 90 percent confidence intervals.
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Figure 7.3: Lifetimes in Roman Era Egypt, a century B.C.: Left panel: confidence curves
for the median age p,, and p,,, for women and men, via log-likelihood-profiling from
fitting separate Weibull distributions, with 90 percent confidence intervals [19.95, 26.506]
and [23.95,32.84]. Right panel: confidence curve for the median age difference d =
lm — [, via log-likelihood profiling, and 90 percent confidence interval [—0.21,11.34].

(c¢) It appears indeed that men had longer lives than women, in Egypt 2100 years ago;
see Story ii.11 for more discussion and details. For this exercise, carry out log-likelihood
profiling, for the median difference d = i, — 4y, from the four-parameter model with
the two Weibulls. Compute the deviance function and then the confidence curve cc(),
leading to Figure 7.3, right panel. Read off a 90 percent interval for d. .

(d) Constructing the confidence curves above involved the somewhat laborious computa-
tion of log-likelihood profiles. Compare these curves with the easier ones, computationally
speaking, based on normal approximations.

Ex. 7.11 Recipe Five: CDs wvia approzimate pivots and t-bootstrapping. Consider a
parametric model f(y, ) for data, with a model parameter of length say p. Suppose
there is a focus parameter ¢ = g(), estimated as ¢ = ¢g(#), for which we need a CD.

(a) Suppose first that (;AS — ¢ has some distribution, say G, not depending on . Under
this simple pivotal assumption for ‘estimator minus estimand’, show that

C(¢) = PI‘9($ > aobs) =1- GO((}Eobs - ¢>

As indicated in e.g. Ex. 7.4, this can be computed even without knowing the form of
Gy, through simulation of many realisations of (;AS* — gg, where the ¢7* is computed from
a dataset drawn from the estimated distribution at . Explain that this recipe works,
even if Gy is nonsymmetric and not centred well at zero. Simulating the distribution of
q/? — ¢ at different points in the 6 parameter space may also be helpful for checking the
assumption needed for the C'(¢) constructed here to be a clear CD.
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(b) For a special and simpler case, if b~ N(¢, k?), to a good approximation, with known
or well estimated k, show that the general recipe above leads to

C(¢) = Pro(¢ + kN > dons) = Pr(N > (¢ — ¢)/r) = ®((¢ — 6)/k),

and argue that this is really a CD. Note that this requires Z = ((Z — ¢)/k having distri-
bution equal to or close to a standard normal, regardless of where 6 is in its parameter
space.

(c) Often the standard deviation in the normal approximation is not that sharply es-
timated from the available data. Consider a Student type ratio t = ($ — ¢)/R, with
some appropriate scale estimator k. Assume first that ¢ really is a pivot, i.e. that its
distribution G is independent or nearly independent of where 6 is in its parameter space.
Show that

C(¢) = Pro((¢ — §) /R > (Pobs — ) /Robs) = 1 — G((dobs — ®)/Robs)

is a CD. If G is not known, or too difficult to derive, use simulations, of t* = (a* —
®obs)/R*, via datasets simulated at position Oops. We call this a CD computed from
t-bootstrapping.

(d) The previous recipe works well if ¢ = (¢ — ¢)/% is close to pivotal, i.e. its distri-
bution is nearly constant over the parameter region. In other cases we may take the
t-bootstrapping argument one step further. Write for emphasis 6 = (¢,~), perhaps in a
reparametrisation, where ¢ is in focus and + is of length p—1. The ¢ has some distribution,
depending on 6, and we write Prg(t < u) = G(u, ¢,7). Show that

H(¢7’Y) = Pr¢,7(($— Qb)/k\ 2 (;Zgobs - ¢)/Eobs) =1- G(((gobs - ¢)/Eobsa d),’}/)'

This is not necessarily a CD, in the strict sense, as this probability may depend not only
on ¢ but also on aspects of 7. Often the distribution of ¢ is approximately the same,
though, in a neighbourhood around the true value. Argue that this leads to

C*(¢) = 1 — G((dobs — D) /Fobs; @) where G(u, ¢) = G(u, $,7).

Such an estimated distribution can be computed via bootstrapping, i.e. simulated datasets
at position 6 in the parameter space. With B such simulated datasets, leading to simu-
lated values 6%, ¢*, *, and hence t* = (¢* — dobs)/K*.

Ex. 7.12 Recipe Sixz: CDs in exponential families. We have worked with the general
exponential family in previous chapters, see Ex. 1.50. In particular we learned in Ex. 4.32
that there are uniformly optimal tests, for individual parameters in such models. The
same holds in the present framework of CDs. Suppose data stem from a model of the
form f(y,a,b) = exp{aU(y) + b'V (y)}h(y), with U one-dimensional and V' of dimension
say p. The optimal recipe for a is

C*(a) = Pro{U(Y) > tobs | V(Y) = Vobs }-

This construction is actually optimal, in a power risk function sense we come back to in
Ex. 7.29, but we can already start working with this definition and see how it applies in
various situations.
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(a) Verify from arguments in Ex. 4.32 that C*(a) indeed depends only on a, not on b.

(b) For an illustration, consider the pair of exponentials of Ex. 4.27. To avoid confusion
with the parametrisation, use now X ~ Expo(0), Y ~ Expo(8+/9), withsum Z = X +Y.
Show that the joint density is indeed of exponential form, and that the recipe leads to

) 1—eXp_(5oS
C (5):Pr5 (ngobslzzzobs)zlexpgdg:z;.

Find the positive confidence pointmass at 6 = 0.

(¢) Suppose there are m independent pairs of such exponentials, with X; ~ Expo(6;),
Y; ~ Expo(6; + ¢), and sums Z; = X; +Y;. We need a CD for the difference parameter
0. Show that the joint density of the 2m variables is on the exponential form, and that
the resulting CD must be of the form

c* (5) = PTJ(U < Uobs | Zy = Z1,0bsy > Zm,obs)a

with U = 31", Y;. There is no clear formula for this conditional distribution, but show
that Y; | z; has density 6 exp(—dy;)/{1 —exp(—0dz;)} for y; € [0, z;]. To show how the CD
can be computed, via simulations, suppose as in Ex. 4.27 that the data are the three pairs
(0.927,0.819), (1.479,0.408), (3.780, 1.311). In that exercise we worked with the optimal
test for 6 = 0 vs. 6 > 0, and needed only the null distribution of U given the three sums
21, 22, 23, i.e. where 6 = 0. Now we need to tabulate this conditional distribution also for
each § > 0, however.

(d)

Ex. 7.13 Optimal CD for a bivariate model. (xx spell out. we do get the natural answer

-~

C(a) = Pry(@ > Gops | b). then multivariate. xx)

Ex. 7.14 Bayesian posteriors as approzimate CDs. (xx to come here: Consider a setup
with data y from a model with parameter 6 = (01,...,6,), and with ¢ = ¢(61,...,0,) a
focus parameter. A CD for ¢ has the property Prg{C~1(0.05,Y) < ¢ < C71(0.95,Y)} =
0.90, etc., as with (7.1), thus delivering confidence intervals with the right coverage. This
is also akin to how Bayesian posterior distributions are used. If a Bayesian prior for 6
leads to a posterior for 8, and hence for a cumulative B(¢ |yobs), then the Bayesian can
read off [B=1(0.05, yons) < ¢ < B71(0.95,y0ps)]. A question of interest and relevance
also in Bayesian contexts is whether such intervals make sense also in the frequentist
sense. point to Bernshtein—von Mises things in Ex. 6.23. the answer is ‘ok’ under such
conditions, but not outside. xx)

(a) For a simple start example, consider Yi,...,Y,, which given 6 are i.i.d. from the
Pois(f), and with a prior § ~ Gam(a,b); see Ex. (xx suitable exercise Ch 6 xx). Show
that the posterior cumulative for 6 becomes B, (0 | data) = G(0, a+ngobs, b+n), in terms
for the cumulative Gamma, and with g, the observed data average. Let 0, g and 7T be
the posterior mean and standard deviation. Assume now that data Y7,Y5,... come from
the Pois(fp), for a certain §y. Show that

Bn(00|Y17"'7Yn) = PT(QSHO‘YhaYn) :G(607a+ng7b+n)
= &((0o — Op)/75) —a ®(N(0,1)) ~ unif,
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with probability 1.

(b) For a similar adventure, start with the Beta(a, b) prior for a binomial probability 6.
Show that the posterior cumulative for § becomes B, (0| data) = Be(f,a +y,b+n —y),
in terms of the Beta cumulative. Assuming that Y,, is really from a binomial with some
true 6y, show that

B,(00|Y,) = Pr(0 <6y|Y,) =Be(bp,a+ Yy, b+n—Y,)
®((60 — 05)/75) —a ®(N(0,1)) ~ unif,

with probability 1.

(¢) Consider then the general parametric situation, supposing Y7, . ..,Y,, being i.i.d. from
the density f(y,0), with ¢ = ¢(0) a one-dimensional focus parameter. Let 6y and ¢¢ =
@(0y) denote the true parameters. As with Recipe Two, see Ex. 7.6, there is convergence
to the standard normal of the standardised \/ﬁ($m1 — ¢0)/R, say, with the ML estimator
for ¢ and %2 consistently estimating k2 = c*J ¢ (point back to delta method things
in Ch2 xx). Now use the Bernshtein—von Mises theorem setup of Ex. 6.23 to explain
that v/n(¢ — aml) | data tends in distribution to N(0, x%). The Bayesian posterior has a
c.d.f. B,(¢|data). Show that at the true value,

By (¢ | data) = Pr(v/n(¢ — dm) /R < V(o — dm1)/7 | data)
‘b(\/ﬁ(% - {b\ml)/k\) + En,

with €, —pr 0. Deduce that B, (¢) is a CD in the large-sample sense. In this sense we
may think of any sensible Bayesian posterior distribution, in regular parametric models,
as Recipe Seven for creating a CD. (xx a little more here. xx)

Ex. 7.15 Confidence distribution for the ratio of explained variation. (xx to be pol-
ished. used in Story i.6. xx) For the classic linear regression model Y; = z!8 + ¢;, with
i.i.d. N(0,0?) noise terms, theory was developed in Ex. 4.37 to estimate the fraction of
the variance explained via the covariates. The statistic R? given there can be seen as an
estimator of the explained variation ratio p = £'%,,8/(8'3,8 + 02), with notation from
that exercise. Here we construct full CDs for such parameters.

(a) (xx one covariate at a time. note that o changes value and interpretaion, depending
on whichi covariates are used in the linear regression equation. xx) p = M,,3%/(M, 3% +
0?), with M,, = (1/n) Y1, (x; — 7)?. then F = nM,3?/5? ~ F(1,m,np/(1 — p)).

(b) (xx then general. xx) Explain that
C(p) - Prp(/): Z /):obs) - Prp(F Z n/):obs/p) =1- F(n/):obs/pvpamanp/(l - p))
becomes a CD for p.

(¢) (xx one more thing. xx)
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CDs for quantiles

Ex. 7.16 CDs for quantiles. Let Y1, ...,Y, be independent observations from a smooth
density f, with c.d.f. F'. How can we construct CDs for its quantiles, the ug, = F~1(q)?
We wish such a CD to be nonparametric, without further assumptions on the f. We
go through the main ideas for the case of the median y = F _1(%), before extending
methods and results to a general quantile ¢ € (0,1). (xx a bit more prose here; several
methods; some better than others in terms of precision and coverage; we draw but briefly
on density estimators from Ch. 13. nils needs to check Price and Bonett (2001, 2002).
XX

)
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Figure 7.4: Left panel: For Ex. 7.16, confidence curves cc(f9.90), for the 0.90 quantiles
of the birthweight distributions for girls (to the left) and boys (to the right). The black
curves use the Beta method cc (i, data), with linear interpolation, whereas the slanted
curves use the large-sample approximation. The former yields more accurate coverage
than the latter. 95 percent intervals for the two 0.90 quaniles are indicated via the blue
horizontal line. Right panel: For Ex. 7.17, for the case of f being standard normal,
n = 100, ¢ = 0.50: histograms of V,, and V,* based on sim = 10° simulations. Also in
other cases the V¥ is much closer to uniformity than is V,,.

(a) It is not difficult to construct a first-order correct CD via large-sample results reached
in Chapter 3, see in particular Ex. 3.18. With M,, the sample median, we have /n(M,, —
) —a N(0, 3/f(1)?). Show that as long as 7 is a consistent estimator for f(yx), then
Vn(M, — p1)/(3/7) =4 N(0,1), and that this leads to the approximate CD

Colp,y) = @ (vl — M)/ (3/7)).

One of several choices is to take 7 = f(M,), with f(y) =n ' " A K(h " (y; —y)) a

kernel density estimator, with some kernel function K and bandwidth h. The best size

/5 as seen in Chapter 13, and a

1/2
)

for this fine-tuning parameter is of the type h = ¢/n
classic rule of thumb which we typically might resort to here is to take h = 1.0595/n
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with & the empirical standard deviation. Show that the confidence intervals from this
CD take the form M, + zy(3/7)/v/n, with zo the relevant normal quantile, like 1.96 for
intended 95 percent intervals.

(b) A different idea starts out as follows. For the ordered observations Y1) < --- < Yy,
show that

Prp(pn<Yy) =Pr(3 <Uu)=1-Be(3,i,n—i+1) fori=1,...,n.

Here Uy = F(Y(;)); these form an ordered sample from the standard uniform, and
we saw in Ex. 3.18 that they have Beta distributions. The Be(z,a,b) is the c.d.f. of
a Beta(a,b). Define a full CD for u, say C}(u,data), via linear interpolation between
the C}(y(i),data) = 1 — Be(3,4,n — i + 1) points. This also yields a confidence curve
cck (p, data) = |1 — 2C (u, data)).

(¢) Extend the two methods above, constructed there to deal with the median, to a
general quantile p, = F~1(g). For the first CD, use v/n(Qnq — tg) —a N(0,q(1 —
q)/f(1q)?), with Q.4 = F;'(q) the empirical ¢ quantile, and estimate 7, = f(u,) via

<

f(F;(q)). For the second CD, show first that Pry(ug < Y{;) =1 —Be(q,i,n —i+1),

n
and use linear interpolation:

Cr (pq, data) = interpolation with 1 — Be(q,i,n — i+ 1) at y, (7.2)

for i = 1,...,n. For g, inside (yu),y@+1)), therefore, the CD value is interpolation
between 1 — Be(q,4,n —i+ 1) and 1 — Be(u1,i+ 1,n — ). We call this the Beta method
CD for quantiles.

(d) (xx a bit more. for birthweights oslo boys and girls, compute, display, and interpret
the confidence curves for the 0.90 quantile, using both of the CD methods. Reproduce a
version of Figure 7.4. point to Story i.5. xx)

Ex. 7.17 CDs for quantiles: how well do they work? In Ex. 7.16 we found two non-
parametric CD recipes, for any quantile pq = F ~1(g). Here we investigate how well they

work, in terms of actual coverage probabilities for confidence intervals. For the methods
Ch(pq, data) and C7(u,, data), define

Vn - Cn(ﬂq,truc; Yl, C) Yn) and Vrf - C:;(,qu,truca Yla ey Yn)a

with Y7,...,Y,, drawn from the density in question. Accurate coverage, at all levels,
means that the distribution of these two random CDs, at the true value, should be close
to the uniform.

(a) To check the precision of these two CDs, carry out a simple simulation experiment.
Take f equal to the standard normal, with 1, = ®7*(g) to be estimated with uncertainty;
use T = j?(Qnyq) as above, with K the standard normal kernel and bandwidth h =
1.059 /n'/5 (which is optimal for the normal case), using the ordinary standard deviation
from the data; and then simulate say sim = 10° values of V,, = Cr (g trues Y1, -, Yy)
and V¥ = C}(lg true; Y1,- - ., Yy). Check, perhaps for n = 50,100,500, 1000, how close

the Beta
method CD for
quantiles
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the distributions of V,, and V" are to the uniform. — For computing the C7, and hence for
executing that part of the simulation experiment, the approx algorithm of R is handy,
carrying out linear approximation between the two values 1 — Be(%,i,n — i+ 1) and
1-— Be(%,i +1,n — i), for any p inside the [Y(;), Y{;41)] interval.

(b) Conduct a few similar simulation experiments, to see how close V;, and V,,n* are to
uniformity, with different density f, quantile p,, sample size n.

(c¢) To assess ‘closeness to uniformity’ more accurately, use the monitoring processes of
Ex. 3.9. For each of your simulation experiments, in addition to displaying histograms
of V,, and V;*, compute and display the functions Zgu,(t) = (sim)'/?{Gym(t) — t} and
Z%a(t) = (sim)Y/2{G?,, (t) —t}, where Gy and G, are the empirical distribution func-

tions of the V,, and V,*. Compute also Dgjpy = maxy | Zgim(t)| and D

sim — MaXy ‘Z:un(t)l
It will transpire (i) that V,, often is not particularly close to uniformity, unless n is rather
large; (ii) that V,* is often so close to uniformity, even for moderate n and ¢ near 0 or 1,

that we cannot see that the distribution is not uniform, even with 10° simulated values.
(d) xx

Ex. 7.18 Large-sample equivalence for two CDs for quantiles. (xx to come. details for
why the two CDs are large-sample equivalent. harder to show clearly that the 2nd is
better than the 1st. nils thinks that it is, though, as of 12-August-2024. xx)

CDs in some nonregular setups (change title in a while)

Ex. 7.19 Aboriginals and invaders in Watership Down. Suppose a population of
rabbits has been living for a long time on an island, in Hardy—Weinberg equilibrium
(p%,2p0qo, ¢3), which means that pairs of alleles aa, Aa, AA occur with these frequencies,
with gg = 1 — pg. Suppose next that there’s an invading population of new rabbits, with
their separate Hardy—Weinberg equilibrium (p, 2pq, ¢?), with ¢ = 1 — p. We assume that
the two populations do not mix, but live on, on the same island, and that rabbitologists
don’t see the difference. One is interested in learning the fraction A of newcomers (so the
fraction of aboriginals is 1 — \).

(a) Explain that when one samples n rabbits independently, and find their allele pairs
aa, Aa, AA, then these numbers (XY, Z) have a trinomial distribution with parameters

pry = (1= N)pg +Ap?,  pry = (1= A)2pogo + A2pg, prs = (1 - N)gg + Ag*.
Note that pr; + pry + prg = 1.

(b) For the case of (X,Y, Z) = (118,438, 444), and assuming not only (pg, go) = (0.25,0.75)
known, but also (p, ¢) = (0.40,0.60) known, find an estimate and construct a confidence
curve ccy(A), as with the black smooth Figure 7.5, left panel. Assume next, with the
same counts (X,Y, Z), that the home population parameters (pg,qo) = (0.25,0.75) are
known, but that the HW parameters (p,q) = (p,1 — q) for the new population are un-
known. Again, estimate A and find a confidence curves cca(A), as for the red slanted
curve of Figure 7.5, left panel. Comment on your findings. For your computer script,
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Figure 7.5: Left panel: For Ex. 7.19, confidence curves for the unknown fraction A of
newcomers, after having counted (X,Y,Z) = (118,438,444) of allele pairs aa, Aa, AA.
The start population has HW parameters (po, qo) = (0.25,0.75). (i) The black smooth
ccy(A) is computed using the knowledge that the new population has HW parameters
(p,q) = (0.40,0.60). (ii) The red slanted cco () is computed using only knowledge about
(po, qo), i.e. both p, ¢ = 1—p, and X are unknown. Right panel: For Ex. 7.20, as a function
of the true p, for dimension p = 3, the figure shows the actual coverage probability of
the Bayesian 90 percent credibility interval, based on the posterior stemming from a flat
prior for the 6.

play a bit with different sample sizes, and with different degrees of difference between
(Po, o) and (p, q).

(¢) Explain why it is not possible to estimate all (pg, p, A) from (X,Y, Z).

Ex. 7.20 The length problem. (xx might make a Satellite Collision Story, based on
Cunen et al. (2020b). contrasting CD with Bayes. xx) There are several situations, of
varying degrees of complexity, where the heart of the matter is, or can be transformed to,
the following: with Y having the N, (6, %) distribution, with unknown mean vector and
known or partly known variance matrix, reach inference for the length p = ||0|| = (6% +
cee 4 9127)1/2. See e.g. Cunen et al. (2020b) for an application involving the computation
and real-time monitoring of the probability that two satellites will collide.

(a) Take first ¥ = I, so y ~ Np(6,I,), which means independent Y; ~ N(§;,1) for
i=1,...,p. Show that the ML estimator of p is p = [|Y]|. Show also that p* ~ x2(p?),
the noncentral chi-squared.

(b) Deduce that p? is overshooting its target p?, with mean and variance p + p? and
2p + 4p%. Find also an expression for E p, and show that it overshoots p.

(c) Show that the natural CD becomes C(p,y) = 1 — I'p(p?, p?).
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(d) A typical Bayesian analysis would start with a flat prior for 61, ...,60, (xx calibrate
and xref Ch 5 for this detail xx). Show that 6|y ~ N,(y,I), and that this entails

P* 1y ~ X3 (P%).
(e) For p=>5 and p = 7.77, compute and draw both the CD and the Bayesian posterior
distribution,

Clp,y) =1-Tp(p% p*) and B(p,y) = T,p(p°, ).
Comment on what you find.

(f) (xx simulate to illustrate that the CD by construction works, producing confidence
intervals with the correct coverage; Uc = C(pp,Y) ~ unif when data stem from the
model, at position pg. show however that the Bayesian posterior distribution here risks
being very far from producing intervals with the right coverage; Ug = B(po,Y) is very
far from being uniform. point to Figure 7.5, right panel, for the too low coverage proba-
bility of the Bayesian 90 percent credibility interval. the CD based intervals have exact
coverage. link to Bernshtein—von Mises things in Ch. 6; here we're outside BvM terrain.
more on why and how. xx)

(g) Generalise the above to the case where Y ~ N,,(0,02%I,).

(h) More generally, with Y7,...,Y, being ii.d. from the N,(0,0%I,), with o known,
show first that Y ~ N, (6, (0?/n)I,). Then show that p = ||y|| is the ML estimator,
with distribution given by np®/o? ~ x2(np?/c?). On the Bayesian side, show that a flat
prior for @ leads to @ |data ~ N,(y, (c2/n)I,). Show that these statements lead to these
generalisations of the above

Culp,y) = 1 =Tp(np* /0, np*/o?),
Bn(ply) = Tp(np?/o®, (n/o?)p?).

(i) (xx a bit more, regarding BvM, which holds for fixed p and p, with growing n. but
misleading picture for finite n. do something to see interplay with n and p. xx)

(j) (xx also, briefly, to the case of Y ~ N, (6,021,), with o estimated via an independent

2

o2 ~ 02x2,/m. xx)

Ex. 7.21 Ratio of normal means. (xx edit and clean. about two exercises here on

this. mention Fieller name. start with g = —a/b, the point at which a regression type
equation a 4+ bz = 0. then application to bioassay or similar. xx)

(a) Consider the prototype setup for such questions, where @ ~ N(a,1) and b~ N(b,1)
are independent. Show first that the log-likelihood is a simple £(a,b) = —3Q(a,b), with
Q(a,b) = (a — @)%+ (b—b)2, and find a formula for Cprot (20) = —3Qprof (o), Where
Qprof(x0) = min{Q(a,d): g = —a/b}.

(b) Show that (@ + bxo)/(1 + x3) ~ X3, at the true z(, and hence that
ce(wo) = T ((@+ bao) /(1 + 7))

is a clear confidence curve for zy. (xx illustrate, with the mildly peculiar confidence
regions. find max confidence level. more. xx)
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~

(¢) (xx with & on top. with dependence. things fine as long as (@, b) is binormal. xx)
(d) (xx bioassay. xx)

Ex. 7.22 CDs and posterior distributions with boundary constraints. Here we learn
about construction of CDs when there is a boundary condition on the focus parameter.
This is sometimes an easy task, involving a natural positive post-data probability on the
boundary point. We also compare with Bayesian procedures. Matters may of course be
extended and generalised in several directions here, but for simplicity and conciseness we
study a very simple prototype situation: y is N(0,1), and 6 > 0 a priori.

0.4 0.6 0.8 1.0

0.2
CD, and two cumulative posteriors

CD, and two cumulative posteriors

0.0
L

Figure 7.6: Left panel: For Ex. 7.22, with yons = 0.66 for the N(6,1) model, the black
curve is the natural CD, with positive point mass 0.255 at zero. The red and the blue
curves are Bayesian posterior distributions, for the flat prior on the halfline, and for the
mixture prior with % at zero and % flat on the halfline, respectively. Right panel: For
Ex. 7.23, (xx to come xx).

(a) Before we come to the parameter constraint, we deal with the more normal situation
where there is no a priori constraint. The classical CD is then C(6,y) = ®(0 — y).
Show that the Bayesian starting with a flat prior for 6 finds the posterior distribution
0]y~ N(y, 1), with cumulative B(¢ |y) = ®(0 — y), i.e. identical to the canonical CD. —
The point below will partly be that this is not the same for the constrained problem.

(b) For the remaining points here, assume indeed that § > 0 a priori. Argue that the
canonical CD should be C(8,y) = ®(0 — y) for 6 > 0. Its point mass at zero is (—y).
Graph the CD, for the three cases yops equal to —0.22,0.66, 1.99.

(c) Ome Bayesian approach in this situation, where # > 0 a priori, is to let € be flat on
[0,00). Show that then

L 00—y 90—y
o0 —y)do  2(y)

0y for 6 > 0,
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and that the cumulative posterior distribution becomes

Bw“ﬁzéw—w—@«yxzéw—w—@«w for 6> 0.

1—(—y) P(y)
For the three cases of yobs given above, graph the CD along with the Bayesian B(6 | yobs),
and comment on what you find.

(d) In general terms, for the case of y|6 ~ N(6,1), let § have the mixture prior dis-
tribution pomg + pymw1, with the sub-priors my and 7 having their individual posteriors
mo(0 | y) and 71 (0 |y). Show that the posterior has a natural mixture form,

01y ~ po(y)mo(0]y) + pi(y)mi(0|y),
where

— pOfO(y) and pl(y) — plfl(y) ,

pofo(y) + p1fi(y) pofo(y) +p1fi(y)
and with fo(y) = [ ¢(y—0)m0(0) df and f1(y) = [ ¢(y—6)m1(0) df the marginal densities
following from the two priors. (This structure generalises to general mixture priors in
general models, though that does not concern us just now.)

Po(y)

(e) For the prior pomg + p171, with 7y a unit pointmass at zero and 7, a flat prior on the
halfline, show that fo(y) = ¢(y) and fi(y) = ®(y). With a 50-50 mixture, show hence
that

P(y) o(y)
o(y) + @(y) o(y) +2(y)

Draw curves of these two posterior probabilities, one for the zero-point and the other for
the halfline-based part, as y goes from say —5 to 5. Show that the posterior cumulative
distribution becomes B*(0|y) = po(y) + p1(y)B(0 |y) for 8 > 0. In particular, there is a
pointmass po(y) at zero. Construct a version of Figure 7.6.

po(y) = and p;(y) =

(f) Show that there is no choice of (pg, p1) which makes the Bayesian cumulative posterior
B*(6|y) agree with the CD C(6,y). Devise a method for selection (pg, p1) such that the
distance between B*(f|y) and C(0,y) is small, for a relevant range of 6 and possible
observed Yobs-

(g) Generalise the formulae above to the case of yi, ..., y, i.i.d. N(0,02), with known o.

Ex. 7.23 CDs for regression parameters with boundary constraints. (xx to come here:
more on boundary parameters, now in simple regression models. pointer to Story iii.10.
xx) (xx the point we wish to convey is that the Tore-Sims phenomenon is a general one,
easier to understand and analyse in simpler models, separately. so we can have separate
points for a model like y; = By + B17i,1 + P2xi2 + €5, where one has prior knowledge
B2 > 0. There is a clear and exact CD for S, of the type C(82) = Gas((B2 — 32)/22)
for S > 0, with a pointmass Gdf(*EQ/EQ) at zero. the Bayesian with flat priors on
Bo, P1,1log o and a flat prior on (0,00) for B2, a la Sims, will not be able to detect that
B2 = 0; there’s a clear discrepancy between the CD and the Bayesian posterior for that
parameter. xx)
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Ex. 7.24 CDs in the truncated exponential model. Here we consider a model sometimes
called the truncated exponential model. We start with its simplest form, with data
Yi1,...,Y, iid. from the density exp{—(y — a)} for y > a. The a is the unknown start
point for the distribution.

(a) Show that the ML estimator is equal to U,, = min;<,, Y;, the smallest data point.
Show that n(U,, — a) has a unit exponential distribution. Build from this a natural CD
for a.

(b) Counstruct a predictive CD for the next sample point ¥;,11. Illustrate by computing
and displaying the confidence curve for the text sample point, after having observed the
six data points 3.735, 3.338, 10.634, 3.839, 5.667, 5.808.

(¢) Then consider the more realistic two-parameter version of the model, with density

f(yi,a,b) = (1/b) exp{—(y: — a)/b} for y; > a,

with a being the unknown start-point and b a scale parameter. Show that the ML
estimators become @ = U, and b = (1/n) > ,(Y; — U,), again with U,, being the
smallest observation.

(d) Construct accurate CDs and confidence curves for a, for b, and for the next datapoint
Y, +1. If some of your formulae cannot be given very explicit mathematical forms, this is
ok, as long as numerical solutions can be found via numerical integration or simulation.
Give approximations for these CDs for large sample sizes n.

(e) Ignoring these large-sample approximations, compute and display confidence curves
for a, b, Y,,11 with the simple n = 6 dataset above.

Ex. 7.25 CD inference for the exponential rate, with censored data. The lifelength
distribution for a certain type of technical components is considered exponential, i.e. with
density §exp(—60t) for t > 0, on a priori grounds. To arrive at a point estimate and a
confidence curve for €, the firm producing these components sets in motion the simple
experiment where n such items are set to work, under controlled natural conditions. One
cannot wait until all components have died out, however, and the firm needs to report
what can be said about the lifelength distribution, via 6, a certain time ¢, after project
start.

(a) With data of the form observed ¢; for the N of the items which have died within ¢g,
and the information t; > tg for the n — N which are still alive and well, show that the
combined likelihood function may be expressed as

o exp [—9{ S tit(n- N)tOH .
ti<to
(b) Show that the ML estimator is
§=N/R= N/{ 3 tit(n— N)to}.
t;<to

With increasing sample size, and fixed tg, find expressions for the probability limits of
N/n and R/n, and show that 6 is consistent.



CDs in some nonregular setups (change title in a while) 257

(c) Show in fact that there is a limiting normal distribution here, with \/7(6 — 6) —4
N(0, 7(to,6)?), and attempt to find an explicit (though not necessarily quick and simple)
formula for the limit variance.

(d) Explain why the construction C,(6) = Prg(g > tz)\obs) yields a CD, and also how it
can be computed in practice.

(e) Suppose the experiment described involves n = 20 such items, and that the lifelengths
for the NV = 11 of these that conk out before the deadline of ¢ty = 2.00 years are

0.528 0.743 0.869 1.180 0.602 0.133 0.327 1.115 0.117 0.208 1.808

Compute and display perhaps as many as three (exact or approximate) confidence curves
for 0, for this little experiment: the one described in (c); one based on the normal
approximation to the distribution of the ML estimator; and a t-bootstrap based version.
Comment on your findings.

Ex. 7.26 Estimating n based on observing the first r. Suppose Y7, ...,Y, arei.i.d., from
some known distribution with density f and cumulative F', but that one only observes the
first r order statistics, Y(1) < --- < Y{;). Can we estimate n? Such nonstandard problems
turn up in various context, from estimating the size of a vocabulary to the number of
unseen species. In this exercise we consider the special case of the unit exponential
distribution, where the Y; can be seen as waiting times, so the question may be phrased
as how long time do we need to wait, until we’ve seen all items, when we have used a
certain time to observe the first 7.

(a) Let then Y7,...,Y, be i.i.d. from the unit exponential, and assume Yoy <. <Y
are observed, with unknown n. Observing these r first data points is equivalent to
observing the spacings D1 = Y(y), D2 = Y(3) — Y1), up to D, = Y, — Y,_1). Use
Ex. 1.13 to show that the joint distribution of these f first spacings may be written
gr(di,....;d) =nn—=1)---(n—r+1)
exp[—{n(di+---+d,) —dy — 2d3 — -+ (r — 1)d, }],

and deduce from this that Y, is sufficient for n.

(b) With F(z) = 1—exp(—x), show that F'(Y(,)) has a Beta distribution with parameters
(r,n—r+1).

(¢) Show that the optimal CD for n, based on having observed the smallest r datapoints,
is

Cr(n) = Pro(Yy) < Yooy ab) = Be(F (Vi) ). rum — 7+ 1).

(d) (xx an example or two. suppose Y{;) obs = 0.348 with r = 33. estimate n. see nils
com87a or thereabouts. give normal approximation. but these are not good for r/n close
to zero or one. can we characterise ML estimator. xx)

Ex. 7.27 (zx another discrete model thing. xx) (xx to come. Xx)
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Risk functions for CDs

Ex. 7.28 Risk functions for CDs. This exercise looks into risk functions for and hence
comparisons between CDs, in simple prototype situations where calculations are easier
than for general cases. We start out with Y7,...,Y,, being i.i.d. from the N(6,1) model.
For a CD C,,(0,y), where y denotes the full dataset, the risk function used is

risk,, (Cp, 0) = Eg /(9’ —0)2dC,(0',Y) = Eg(0cq — 0)?,

where 6.q is the result of a two-stage random process: data Y lead to the CD C,(0,Y),
and then 6.4 is drawn from this distribution.
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Figure 7.7: Left panel: For Ex. 7.28, risk function for the CD, in the setup with Y7,...,Y,
being i.i.d. from N(6,1), with n = 10, but with the restriction § > 0. It starts out at
1/n and then grows to the 2/n risk of the unrestricted case as 6 grows. Right panel: For
Ex. 7.30, for the variance component model, with p = 4 and o = 1, risk functions r(C, 1)
for three CDs for 7. The one based on Z = _"_ Y2 is best, closely followed by the one
using A = Y""_ |Y;|, whereas the one using the range R = maxY; — minY; does worse.

(a) Show that the natural CD based on the observed sample mean %ops = n =" Z?:l Ui
is Cp(0, Yobs) = P(v/n(0 — Fons)). Prove that its risk function is risk, (Cy,0) = 2/n.

(b) More generally, assume 6* is some unbiased estimator of @, with finite variance 72

n’
with the property that 6* — 6 has a distribution H,, symmetric around zero. Show that
the associated CD becomes C; (8, Yobs) = Hp (0 — 07,,), and show that its risk function
becomes 272. The case of Y corresponds to 2/n. Find the risk function for the case of

the median based CD, with say n = 10, as for Figure 7.7, left panel.

(¢) (xx fix this: Relate the above results to the optimality theorem for CDs, in certain
situations, from CLP’s Chapter 5. xx)
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(d) Now we change gears a bit, by putting the a priori assumption § > 0 on the table.
Show that the ML estimator becomes § = max(0, g), i.e. the sample mean truncated, if
necessary, to zero. Argue that this leads to the natural CD

Cn(0,y) = ®(v/n(0 — Yobs)), for >0,
in particular having a positive point-mass at zero.

(e) With 0.4 drawn from this CD, for given data, show that it may be expressed as
max (0,7 + N/y/n), with N a standard normal. Show next that in the two-stage setup,
with random data followed by 6.q drawn from the én CD, we have 0.4 — 0 = max(0,0 +
(N +N')/y/n)— 6, with N" another and independent standard normal. Use this to show
that the risk, (C,,, ) can be expressed as

o = [ {max(0.0 + (2/n) /20)} - 6]%6(z) da
= 0°B(—(3n)"/%0) + (2/n){~(5n)"206((4n)/20) + 1 — & (~(4n)"/6))}.

Compute and display the risk functions for C, and C,, for say n = 10, constructing a
version of Figure 7.7, left panel. Comment on what we learn from this.

(f) (xx not fully sure about this one. xx) There are various other estimators and CDs
worth considering in this 8 > 0 setting. To simplify matters, take n = 1, and consider
the Bayes estimator 53, the conditional mean of 8 |y, with a flat prior on (0, 00). Show
in fact that 0 = y+ o(y)/®(y), and verify that this is positive even when y is negative.
Work out an expression for the naturally associated CD Cp(0) = Pry (53 > gB,ObS), and
comment.

Ex. 7.29 Optimal CDs in exponential family models. (xx relate to Ex. 7.12. spell out
NP things to demonstrate optimality. xx)

Ex. 7.30 Risk functions for three CDs in a variance components model. Consider the
simple variance component model with independent observations y; ~ N(0, 02 + 72) for
t=1,...,p, with 0 known and 7 the unknown parameter of interest; see Schweder and
Hjort (2016, Example 4.1 and Exercise 5.8). The aim here is first to construct CDs based
on (i) Z =", y2 (ii)) A=>"_ |y, and (iii) the range R = maxy; —min y;; and then
to compute and compare their risk functions. These are defined as

1isk(C, 7) = By |red — 7| = E, / red — 7] dC(7ea, Y),
with 7.q a random draw from the C(7,Y) distribution, and with Y itself denoting a

dataset drawn from the distribution indexed by 7.

(a) Show that the natural CDs, based on Z, A, R respectively, are
Cyz(r,data) = 1 — Fp(ZobS/(02 +7%),
Ca(r,data) = 1 — Gp(Aops/ (0 +72)1/?),
Cr(r,data) = 1 — Hp(Rops/ (0% + 2)1/2),
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Here I'j, is the cumulative distribution function of Zy = le Nf, with the N; being
i.i.d. and standard normal, which means Zy ~ X%. Similarly, G, and H,, are the cumula-
tive distribution functions of Ay = Y7_, |N;| and of Ry = max N; —min N;, respectively.

(b) Show that a random draw 7.q from the first of these, i.e. Cz, for a given dataset, can
be represented as Tcqg = (Zobs/ K — o? 1/ , where x is notation for the truncated-to-zero
quantity max(x,0), and where K ~ Xp' In the situation where data are random, from
the model at position 7, deduce that

7ed =7 ={(0” + T)Ko/K = 0*}* — 7 = o [{(1 4 p*) Ko/ K — 1}{/* = p],

where p = 7/0, and Ky, K are two independent draws from the X;Z)- In other words,
F =Ky/K ~ F,,, a F distribution with degrees of freedom (p, p). Use this to compute
the risk function risk(Cyz,7), for p = 4 and o = 1; this is the lowest of the three risk
functions of Figure 7.7, right panel.

(¢) Then consider the C4 option. Show that a random draw from an observed C 4 (7, data)
can be written 7.q = {(Aops/A)? — 02}1/2. Deduce that for random data behind the CD,
we have the representation

Tea —7 = {(06% +73)(Ao/A)? — 02}? — 7 = o [{(1 + pP)(A0/A)? — 1}1/* — p],

with A and Ag two independent draws from the G, distribution. Use this to compute
risk(Ca, 7). There is no simple expression for the density of Ay/A, so use simulation.

(d) Carry out similar analysis for the third CD, based on the range R. Construct a
version of Figure 7.7, right panel.

(e) Use your programme to explore the three risk functions for other values of p.

Meta-analysis, combining confidence distributions

(xx need more sorting and polish. xx)

Ex. 7.31 CD and cc for binomial probabilities. Suppose y is observed from a binomial
(n,0). The task is to construct a CD and a cc for 6.

(a) Show that the standard normal approximations for y (xx give pointer here to large-
sample chapter) lead to

V(0 - 0) )

nd —y
Oa(&y):‘l’(m) and Cb(e’y):q)(W7

nf(l —
with 6 = y/n the standard estimator for 6.

(b) The recipe of Ex. 7.5 does not quite work here since y has a discrete distribution.
This invites the half-correction method

C(8,y) = Pro(y > Yobs) + 5Pro(y = Yobs)-
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For say n = 20 and y = 12, compute and display this CD, along with (i) the same CD but
without the half-correction, (ii) the two simple normal approximations above. Try other
combinations of (n,y), and demonstrate that they are approximately equal for moderate
to large n.

(¢) To investigate the basic CD property, take n = 20 and 64 = 0.33. Simulate a
large number of C'(6y,y), Ca(bo,y), Cs(6o,y), to check for their approximate uniform
distribution. Try other values of (n, ), and summarise your findings.

Ex. 7.32 CD and cc for comparing binomials. In Ex. 7.31 we learn how to construct
CDs for separate binomial parameters. Consider now the 2 x 2 table setup with two
binomials, as with Ex. 4.30, say yo ~ binom(mq,pg) and y; ~ binom(mq,p;). How do
we reach precise inference for the extent to which pg and p; differ?

(a) We first use the logistic transform py = H(0y) and p; = H(0y + ), with H(u) =
exp(u)/{1 + exp(u)}. Show that

p1/(1—p1) 1 D1
1—m

Po
1—po’

~v = log — log
the log-odds difference. Write up the likelihood function for the observed (Yp, Y1) to
deduce (xx via the optimal CD exercise xx) that the optimal CD for v takes the form

C('Y) = Pr'y(Yi > Y1,0bs | Z = Zobs) + %Prv(Yi = Y1,0bs ‘ Z = Zobs)7

with Z = Yy + Y;. The conditional distribution in question is the eccentric hypergeo-
metric, found in Ex. 4.30. (xx do simple example here. this CD is used in both Stories
i.1 and i.10. we use Ex. 4.30. xx)

Ex. 7.33 Meta-analysis for Lidocain data. The following data table is from Normand
(1999), and pertains to prophylactic use of lidocaine after a heart attack. The aim is
to evaluate mortality from prophylactic use of lidocaine in acute myocardial infarction.
We view the data here as pairs of binomials, with y1; ~ binom(m;1,p1,;) and y19 ~
binom(m; 0,p1.,0)-

ml mO0 y1 yoO
39 43
44 44
107 110
103 100
110 106
1564 146 1

NN SN
B W oD

(a) Write the probabilities in logistic fashion, i.e. p; o = H(6;0) and p; 1 = H(0;.0 + Vi),
with H(u) = exp(u)/{1 + exp(u)}. Show that

Pi,1 Po,i

i =H '(p;i1) — H '(po,;) =1lo ;
7. (pis) (po,i) E p s —

the log-odds difference. Construct and display the optimal CD for the ~y;, and also for
the odds ratio p; = exp(;), for each of the six studies.
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(b) Assume then that the log-odds parameter + is the same, across studies, so that the
six binomial data pairs relate to seven parameters. Find the optimal CD for this ~y, and
for the common odds ratio p = exp(vy). Translate the CDs to confidence curves, and
display the six + one curves in a diagram. How would you conclude?

Ex. 7.34 Comparing Poisson parameters. (xx ranting on a bit, to be edited. point
to Story i.11, application to sucide attempts rates. xx) Suppose Yy ~ Pois(mgfy) and
Y7 ~ Pois(m161). In what precise way is 6; different from 6y? Writing v = 61/6,,
show that the likelihood is proportional to exp{—6g(mg + mw)}ﬁgﬁylfyyl. Explain that
the optimality recipe tells us inference should be made based on the distribution of
Y1 |(Z = z), where Z = Yy + Y;. Show that Y7 | (Z = 2) has the binomial distribution
(z,m17/(mo + m17y)). Show how this leads to the optimal CD

C(PY) = Pr’Y(Yl > yl,obs | Z) + %Prfy(yl - yl,obs | Z)
=1-B, (y1,0b57 ml’Y/(mO + ml’)/)) + %bz(yLObSv m17/(m0 + ml'y))'

(xx point to Story i.11, for yo = 1, y1 = 7, for the patient years mg, my, in Aursnes et al.
(2005). compare with their Bayes gamma priors, both informative and less informative.

XX)

Ex. 7.35 Basic meta-analysis. (xx to come, and calibrated with later stuff. xx) There
is a very wide literature on combining information, with different names and labels,
including meta-analysis, data fusion, etc. This exercise looks into some of the more basic
versions, and where CDs will be helpful in later extensions below.

(a) Suppose y; ~ N(¢,0 ]2) for j = 1,...,k independent sources, with the same focus
parameter ¢, and with varlances taken to be known or well estimated. Consider the linear
combination estimator ¢ = ok j=1a;y;. Show that it is unbiased, provided Z a5 =1,
and find its variance. Show that the best choice, yielding minimal variance among the
unbiased ones, is a; o ]./O'JQ», leading to

Show indeed that ¢ ~ N(¢, x2), with this minimal variance being r2? = (Z?Zl 1/o3)~*
Comment on what this leads to for the case where the o; are equal.

(b) In various settings there is a need to generalise the setting above to one where
yj |5 ~ N(o;, sz), with these individual mean parameters not being equal, but having
their own distribution, say ¢; ~ N(¢o,72). The task is then to reach inference for both
the overall mean ¢ and the spread 7 among the ¢;. Show that y; ~ N(¢o, 07 +77), and
that the log-likelihood function becomes

k 2
_ 1 (y; — do)
Upo,T) = 2;{logo +7%) + P }
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(¢) Considering the spread parameter 7 first, show that the profiled log-likelihood can

be written
& ~
{y; — do(7)}?
Lorot (T :f%Z[bgo + 72 +W, for 7 >0,
Jj=1 J
in which
k
50(7_) _ Zj:l yj/(o-? +7?)

Iz
Y1 1/(0F+ 1)
is the best linear combination estimator for ¢, for the fixed 7 under inspection.

(d) (xx fix this, needs to be clearer. xx) Consider this profiled log-likelihood as a function
of v = 72, rather than of 7, and show that its derivative at zero is

Eog R
DZ%Z?{(% U;f’o) _1}.

Here ¢~>O = ¢A>(O) A small D means that the y; data have a low spread, and vice versa.
Show that if D < 0, then 7, = 0, and if that D > 0, then 7, is positive.

(e) (xx fix this, needs to be clearer. xx) Show next that

{y; — 2
Z 07 +T2 ~ Xk-1-

(f) (xx work with £py0f(7). partly from CLP. derivative at zero. xx) By maximising over
¢p, for each given 7, show that

k > 2
iy {; = 3(0))
prof ) = [log + W :

Ex. 7.36 Combining CDs for the same parameter. (xx a few exercises here. first for the
same parameter, basic. then to CLP Ch 13 settings, then CDs to likelihood; then II-CC-
FF. xx) Suppose that C1(¢), ..., Ck(¢) are independent CDs for the same parameter ¢,
perhaps based on different sets of data. How can these be properly combined?

(a) Show that N; = ¢ 1(Cj(dtrue)) is standard normal, at the true position in the
parameter space underlying the C;. With w, ..., w, numbers such that Z?:l wjz =1,
show that

- @(i w;®(Cy(9)))

is a proper combination CD for ¢.

(b) (xx point back to Ex. 7.35. xx)
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()

Ex. 7.37 The problem of the Nile. (xx starting a rant and will see how it goes. xx)
Let X1,...,X, and Y7,...,Y,, be independent and exponential, the X; with parameter
0, the Y; with parameter 1/6.

(a) Show that the log-likelihoods, for the X; and for the Y; parts, become
01(0) =n(logh — 0X), Lla(0) =n(—logh —Y/0),

with separate ML estimators b, =1 /X and 52 =Y. Show further that we may represent
these as 01 ~ 0A, 03 ~ B, where A = 2n/K and B = L/(2n), with K and L being x3,,.

(b) Show that the canonical CDs for 8, based on the two parts, are
C1(0) = T'2,(2n60/8,), Co(6) =1 — Doy (2n6/0).
The combination recipe hence leads to
C(0) = 2((1/VD{2(C1(0) + 27 (C2(0))) ).

(c) The full log-likelihood becomes ¢(#) = —n(X + Y /6). Show that this is maximised
for

Ot = (V) X)V/2 = (0,0:)"/% ~ 0F/2,

where F = A/B = L/K ~ F, 2,. Show that the associated with this ML estimator is
Cora(0) = 1 = Fap 20 (02,/6%).

(d) Run some simple experiments, where you for a few values of n simulate data and then
plot the four CDs, and the four confidence curves (the two separate ones, the combination
one, and the ML based one).

(e) (xx a bit more. ML etc. work, even though the situation is slightly irregular. (X,Y")
is sufficient, but not complete. we need two informants for the single parameter. xx)

Ex. 7.38 From CD to likelihood. (xx to come. with illustrations. normal conversion.
U¢) = =311 (ce;(9))- xx)

Ex. 7.39 II-CC-FF: Independent Inspection, Confidence Conversion, Focused Fusion.
(xx to come. using Cunen and Hjort (2022). point to Bayesian updating being part of
this, but allows user keeping only prior for the focus parameter. aim to demonstrate
iiccff in Story i.11. xx)

Ex. 7.40 Private attributes. (xx to be checked with care. xx) The probability ¢ of
cheating at exams might be hard to estimate, but a bit of randomisation might grant
anonymity and yield valid estimates. Suppose there are three cards, two with the state-
ment ‘I did cheat’, and ‘I did not cheat’ on the third. Students are asked to draw one
of the three cards randomly and answer either true or false to the drawn statement,
without revealing it.
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(a) Show that the probability of true is (1 + )/3. Assume a binomial model for the
number of students answering true, and devise a CD for .

(b) Assume 1000 students go through the simple post-exam exercise above (anony-
mously). Find and display CDs for ¢ for the cases of respectively 300, 350, 400 out
of the 1000 answered true.

Notes and pointers

[xx A few remarks. xx|

we point to Schweder and Hjort (2016, Example 3.11), Fisher (1930), Xie and Singh
(2013), Hjort and Schweder (2018), Cunen and Hjort (2022), Singh et al. (2005), ...

(xx repair. we point to Story iii.10. xx) There’s a notable discrepancy between the
frequentist Schweder-Hjort CD and the Bayesian posterior distribution associated with
a flat prior on the [0, 00) interval, in cases where the yobs is close to, or perhaps even to
the left of, the boundary point.






Loss function

1.8

Loss, risk, performance, optimality

Statistics is a mathematical formalisation of how to make good decisions under
uncertainty. One source of uncertainty is that the future or the true state of nature,
say 6, is not known when we are to make our decisions, and since the utility or loss
of a decision depends on 6, we need to be clear about how bad it is when our decision
is off. This is the role of loss functions, of which the square error is the most well
known example. Decisions are based on data, and it is not anodyne how we use
the data: Some procedures for going from data to a decision are better than others.
Therefore, it makes sense to see how a certain procedure performs on average. This
is the role played by risk functions, of which the mean square error is the most
well known example. Risk functions average out the data, but they still depend
on 6, so the risk function of various decision procedures are often difficult to order.
Some might be preferable for certain values of 6, while others might be better for
other values of #. This chapter introduces criteria that let us, nevertheless, say
something about how good a decision procedure is. A decision procedure is said
to be admissible if there is no other that does better, in terms of the risk function,
whatever the truth or future may be. One says that a decision procedure is minimax
if it is the the best one in the most unfortunate situation. In proving that certain
decision procedures are admissible or minimax, Bayesian thinking is an essential
tool. This includes the concepte of Bayes risk, where not only the data is average
out, but also the various possible states of nature are averaged out.

Key words: admissibility, Rao—Blackwell, loss functions, minimaxity, multiparame-
ter estimation, UMVU estimators, risk functions

A statistical decision, as most decisions in life when you think about it, is a function of
what we observe to the space of all possible decisions we can make in a given setting:
I look out the window and see grey clouds, and choose to take my umbrella with me
when I go out. I see that you are smiling and I think that you are happy. Formally, an
action is a function a: X — A, where X is the space in which the data take its values,
the sample space; while A is the action space, that is the collection of all possible actions
we might take. How wise our choice of a € A is or turns out to be, depends on the true
state of nature 6. This 0 lives in a parameter space ©, and is an unknown parameter
governing the probability distribution Py from which the data X € X are generated. A

267
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loss function L(6,a) measures ‘how much’ we lose by choosing action a when the true
state of nature is . We assume that

L:0xA—[0,00),

so that the best possible loss is zero (in general, loss functions do not need to be
nonnegative, see e.g. Schervish (1995, Chapter 3.1) for a more general introduction).
To be concrete, consider the point estimation problem with data Xq,...,X, indepen-
dent N(6,1), where 0 is an unknown parameter to be estimated under the loss function
L(6,a) = (a — 0)%. Here, the amount lost is the squared distance between a and . If we
wish to test Hy: 6 < 0 versus Hy: 6 > 0, the action space is A = {keep Hy, reject Hy},
and a natural loss function can be described by

[0 <06>0
L(0,a) = keep Hy| O 1
reject Hp| 1 0

[xx see comment about 0-1 loss in Schervish (1995, p. 215) xx| With this loss function,
we lose the same amount when rejecting a true null hypothesis as when failing to reject a
null hypothesis that is false. In statistical jargon that you probably already know, failing
to reject a null hypothesis is called a Type I error, while when we fail to reject a null
hypothesis that is false, we commit a Type II error.

In the classical or frequentist setup, different decision procedures are compared by
the loss they incur for each value of 6, that is, by their risk function

R(6,a) = B, L(H,a(X))z/XL(G,a(x))dPg(x).

Notice that for each decision procedure a, the risk function R(6,a) is a function of 6,
so that for two estimators a; and as their respective risk functions may cross, that is
R(0,a1) < R(8,a2) for some 6, while R(6,a1) > R(0,az) for other values of §. Thus,
comparison of risk functions only provides a partial ordering of decision procedures, and
as such does not point clearly at a best decision procedure. What is clear, however, is
that if R(#,a1) < R(f,az) for all 8, with strict inequality for at least one value of 6,
then as should be discarded from the competition: We say that a; dominates as, and
as is said to be inadmissible. A decision procedure that is not dominated by any other
decision procedure is admissible. In and of itself admissibility does not tell us much
about an estimator. Consider for example the estimator a’'(X) = 6’ that returns the
value #’ whatever the data. Clearly, no estimator can perform better than a’ in €', but
that does not, for obvious reasons, make it an estimator we would like to use. One (not
very principled) fix to the problem of comparing estimators is to limit the search of a
best estimator to the class of estimators that are unbiased: An estimator 6 is unbiased
for the parameter 0 if Eqg = 0 for all 9. Another principle by which to compare decision
procedures is the the minimaz principle. According to this principle, the estimator with
the best performance in the worst possible scenario ought to be chosen. We say that a
decision rule a* is minimax if it minimises the maximum risk, that is if

inf sup R(a, ) = sup R(a*,6).
acAgeo 0€e

Admissibility

unbiased
estimator

Minimax
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If you are a Bayesian and venture into the business of constructing prior distributions
7(0) over the parameter space ©, then the problem of risk functions only being partially
ordered can be circumvented. What you are interested in then is the Bayes risk of the
decision procedures you are comparing, that is

BR(a, 7) = B, R(6,q) / R(6, a) =(0) do.
e
For a given a and prior m, the Bayes risk is a number, and under certain conditions that
we will explore in the exercises to come, there will be a unique decision procedure a that,
for a given prior 7, minimises BR(a, 7). This decision procedure is the Bayes solution.
As we will see, Bayes solutions are, despite the name, extremely important for Bayesians
and frequentists alike.

UMVU estimator, Rao—Blackwell, and Lehmann—Scheffé

Ex. 8.1 Coin tossing. To get a feeling for some of the basic challenges and concepts
concerning the comparison of various estimator, we start out with the emblematic prob-
lem of estimating the probability of heads in n = 10 independent tosses of a coin. Let
Y1,...,Y, be independent Bernoulli random variables with expectation 6.

(a) Sketch the risk function of the maximum likelihood estimator Y,, = n=! 3" |V,
under squared error loss L(4,6) = (6 — §)2. Recall that n = 10.

(b) Suppose we have some intuition about where on the unit interval the expectation 6
might be located, close to a value 0 < 0y < 1, say. One way in which such a prior hunch
might be employed is by taking as our estimate a convex combination of the maximum
likelihood estimator and 6y, that is

5a(Y1, .. ,Yn) = CLXn + (]. — a)@o,

for some 0 < a < 1. For a = 1/2 and 6y = 1/2, sketch the risk function of this estimator.
Suppose that your task, as was Pierre-Simon Laplace’s in 1781 or so, is to estimate the
probability of giving birth to a boy. Which of the two above estimators do you prefer,
the maximum likelihood estimator or §, with a = 1/2 and 6y = 1/2?

(c) Based on the risk functions you sketched in (a) and (b), we see that the two estimators
are difficult to compare. The maximum likelihood estimator has lower risk than d, for
certain values of 6, while §, performs better for other values of #. The risk functions
cross and none of the two is uniformly better than the other. An easy fix to this problem
of comparison, is to limit our search for an estimator to the class of estimators that are
unbiased for what we are estimating. Look back at Ex. 5.15 and explain why, when the
search is restricted to the class of unbiased estimators, the maximum likelihood estimator
is the clear winner.

(d) The risk of the estimators from (a) and (b) vary widely with what the true 6 is.
Choosing a best estimator, when the yardsstick is the squared error loss function, seems
therefore to require some prior hunch about where 6 really is. A criterion for risk function
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comparison that does not require such a prior hunch, is minimaxity: An estimator is
minimax if it minimises the maximum risk. Estimators whose risk functions are constant
are, as we will soon see, good candidates for being minimax. Consider the estimator from
Ex. (b) with fy = 1/2. Find a function a = a(n) such that the risk function R(0,d4(n))
is constant. For n = 10, sketch the risk function of your estimator (that is, draw a line).
Suppose you have absolutely no idea whatsoever about where in the unit interval § may
be located. Which of your three estimators of 6 do you prefer? In Ex. 8.9 we learn that
da(n) is indeed minimax.

Ex. 8.2 Uniformly minimum variance unbiased estimators. As the sketch in Ex. 8.1
(hopefully) illustrates, comparing risk functions is not always straightforward, and a
somewhat ad hoc way of making the problem of finding a best estimator tractable is
by limiting the search for a best estimator to the class of unbiased estimators. What
is variably called a best unbiased estimator, the uniformly minimum variance unbiased
estimator, the UMVU estimator, is defined as follows: An estimator 6*(Y") is the uni-
formly minimum variance unbiased estimator for g(6) if it is unbiased for g(6), and for
any other estimator §(Y") that is unbiased for g(6), it holds that Varg 6*(Y) < Varg 6(Y)
for all . When feasible (see Ex. 5.14 and 5.15-5.16), the easiest way of establishing that
an unbiased estimator is an uniformly minimum variance unbiased estimator, is to verify
that it achieves the Cramér-Rao lower bound.

(a) Let us look at a few examples of the Cramér-Rao approach: (i) Suppose X ~ N(0,1),
and show that X is uniformly minimum variance unbiased for #. (ii) Suppose Y has an
exponential distribution with mean #. Show that Y is uniformly minimum variance
unbiased for 0. (iii) Let Y; = By + Bix; + og; for i = 1,...,n, where the covariates
T1,...,T, are fixed numbers, and the €4, ..., €, are independent standard normal random
variables. Show that the least squares estimator for (8g, 51) is the uniformly minimum
variance unbiased estimator.

(b) Let Yi,...,Y, be iid. N(u,o?). It is immediate from (a) that ¥, =n=13>" | Y; is
uniformly minimum variance unbiased for y. Show that the estimator 52 = " (Y; —
Y,)?/(n —1) is not uniformly minimum variance unbiased for o2. In Exercise 8.3 we will

see that there is no unbiased estimator of o2 attaining the Cramér-Rao lower bound.

Ex. 8.3 Cramér—Rao and Cauchy—Schwarz. The proof of the Cramér-Rao inequality
that we met in Ex. 5.15-5.16, is a clever application of the Cauchy—Schwarz inequality.

(a) Let X and Y be two square integrable random variables with expectation zero.
Show that |E XY|= {Var(X)Var(Y)}'/2 if and only if X and Y are linearly related,
Y =a+ bX, for example.

(b) Explain why the Cramér-Rao inequality is an equality if and only if the estimator
0(y) and the score function are linearly related, that is

% log f(Y;0) = a(0) +b(0)0(Y), for all 0,

for some function a(#) and b(#). Solve the differential equation above for f(y;#), and state
what this entails for estimators and distributions when it comes to possible attainment
of the Cramér—Rao lower bound. You may have a look back at Ex. 4.19 and 4.20.

UMVU
estimator
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(c) In Ex. 8.2(b) we saw that with Y7,...,Y, iid. N(u,0?), the unbiased estimator
o2 =51 ,(Y; —Y)?/(n—1) for 02 does not attain the Cramér-Rao lower bound. Use
the result from (b) to argue that the Cramér-Rao lower bound may only be attained

when p is known.

Ex. 8.4 Sufficiency and Rao—Blackwell. Suppose that Y has a distribution from a
family {Py: 6 € ©} of distributions. Recall from Ex. 4.16 that T = T(Y) is a sufficient
statistic for this family distributions if the conditional distribution of Y given T does
not depend on #. The Rao—Blackwell theorem says that any estimator can be improved
upon by conditioning on a sufficient statistic. This is an important result, as it tells us
that in our search for a best estimator, we need only consider those estimators that are
functions of a sufficient statistic.

(a) Let ¢'(Y) be an unbiased estimator for g(#), and suppose that T(Y") is sufficient for 6.
Consider the estimator given by 6(Y) = Eg {6’'(Y) | T}. Then 6(Y") is better than ¢'(Y).
The proof proceeds in three steps. First, explain why 6(Y") is an estimator; second, show
that 6(Y") is unbiased, and third, show that Varg §(Y) < Varg ¢’(Y) for all 6. You have
now proven the Rao-Blackwell theorem for unbiased estimators. In Ex. 8.8 we look at
this theorem in a more general decision theoretic framework.

(b) Suppose that Y7,...,Y,, are i.i.d. uniforms on [0, 8], with # > 0 an unknown param-
eter. Show that the estimators

n+1
max Yj,
n i<n

9 n
(Sliﬁ;y%, and 52:

are both unbiased for 6. There are (at least) two ways of showing that ds is a better
estimator than 0;. Try them both. First, compute the variances of both estimators.
Second, appeal to the Rao—Blackwell theorem, that is, more concretely, use the results
from Ex. 3.17 to establish that E {; | max;<, Y;} = 02 almost surely.

(c¢) Let Y3,...,Y, beiid. Pois(A). We seek to estimate § = Pr(Y; = 0) = exp(—\). Find
the maximum likelihood estimator for 6, say 8, and show that E (@\) =v{1+0(1/n)},
meaning the the maximum likelihood estimator for 6 is biased. Next, find the Cramér—
Rao lower bound for unbiased estimators of . Look back at Ex. 8.3 and consider whether
this lower bound can be attained.

Another estimation strategy is to estimate § = Pr(Y; = 0) by the share of zero
counts, that is § = n~2 3" | I{Y; = 0}. This estimator is clearly unbiased for 6, why
is it not best unbiased? Finally, with the aid of the sufficient statistic T(Y) = Y1 | V;
we Rao-Blackwellise the estimator §. Derive an expression for this Rao—Blackwellised
estimator, grb, say. Does grb attain the Cramér—Rao lower bound?

Ex. 8.5 Best unbiased, completeness, and Lehmann—Scheffé. From the Rao—Blackwell
theorem we know that any candidate for being an uniformly minimum variance unbiased
estimator must be a function of a sufficient statistic. This limits our search. In this
exercise we establish that in our search for the UMVU estimator, we are only looking for
one estimator. Thereafter, it is shown that an estimator is best unbiased if and only if it
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is uncorrelated with all unbiased estimators of zero. This yields a characterisation of the
best unbiased estimators, albeit one of limited utility as it is, without further conditions,
hard to describe all unbiased estimators of zero. Finally, completeness — a condition on
the distribution of the data — is introduced, ensuring that the only unbiased estimator
of zero is zero itself.

(a) Suppose that ¢ is uniformly minimum variance unbiased for g(6), and that so is ¢’. Let
8" =46/24 6'/2, and use the Cauchy—Schwarz inequality to show that Varg 6" < Vargd.
But since ¢ is an UMVU estimator and §” is unbiased (check it), it must be the case that
Varg §"" = Varg §. Look back at the results in Ex. 8.3, and use this to establish that if §
and ¢’ are both uniformly minimum variance unbiased, then § = ¢’ almost surely, for all

6.

(b) [xx rewrite xx|Suppose that ¢ is an unbiased estimator for g(#) and a function of a
sufficient statistic. How may we improve on §7 Well, the family of estimators d, = 0 + ae
as a ranges of the real numbers, and ¢ is some mean zero random variable, constitute
a class of unbiased estimators. Show that if covg(d,e) # 0 for some 6, then a may be
chosen so that Varg(d,) < Varg(d) for some value(s) of 6, which entails that § is not best
unbiased. Prove the converse, namely that if ¢ is unbiased and covy(d, €) for all § and all
mean zero random variables €, then § is uniformly minimum variance unbiased.

(c) It is in general no easy task to show that an unbiased estimator, or more generally,
a statistic T = T(Y) say, is uncorrelated with all unbiased estimators of zero. Since the
correlation between any random variable and zero is zero, the task would be much easier
if we knew of the distribution of 7" that the only unbiased estimator of zero, is zero itself.
That is, if for any measurable function h, Eg h(T) = 0 implies Pro{h(T) = 0} = 1, for
all 8. We recall from Ex. 4.23 that a family of distributions with this property is called
complete. Alternatively, we just say that the statistic T(Y) is complete.

Suppose that T is sufficient and complete for 6. Let § = §(T") be unbiased for g(0).
Prove the Lehmann—Scheffé theorem, that is, show that the estimator § is the unique
uniformly minimum variance unbiased estimator for g().

(d) Look back at Ex. 8.4(b). Show that the estimator dy is the uniformly minimum
variance unbiased estimator.

(e) The completeness requirement in the Lehmann—Scheffé theorem was motivated by the
characterisation in (b), saying that an estimator is uniformly minimum variance unbiased
if and only if it is uncorrelated with all unbiased estimators of zero. A perhaps more
illuminating motivation comes from the fact, proven in Ex. 8.4(a), that a best estimator
must be based on a sufficient statistic. Intuitively, by getting rid of information irrelevant
to the estimation problem at hand, we reduce the variance of our estimation procedure.
Taking this intuition to its logical conclusion, we deduce that a best estimator must
be based on a statistic achieving the maximum amount of data compression, while still
retaining all the information in the data about the parameter we seek to estimate. In
other words, a best estimator must be based on a minimal sufficient statistic. Recall
from Ex. 4.21 that a statistic S is minimal sufficient if for any sufficient statistic T" there
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exists a measurable function g so that S = ¢g(7"). Show that if ¢ is an unbiased estimator,
we form the estimators ¢’ = E(6 | T) and ¢ = E(§ | S), where T is sufficient and
S is minimal sufficient, then Var(6”) < Var(¢’). Now, suppose that T is sufficient and
complete. Use the Lehmann-Scheffé theorem and (a) to conclude that ¢’ and ¢” must
be almost surely equal. In view of this equality, it may not come as a surprise that if T
is sufficient and complete, then 7" is minimal sufficient. A fact we will prove in (g).

(f) Here is a toy example illustrating some of the points made in (e). Let X; and X5 be
independent Bernoulli(f) random variables and consider the estimator § = (X7 + X3)/2
and the estimator § = 0(X;, X») given by

17 (.131,372) = (1’ 1))

_ 2/3’ (331,372) = (Lo)a
PR =Y s @) = 0.1),
0, (.rl,:EQ) = (0,0)

Explain why both 6 and § are sufficient for 6. Show that § is unbiased for 0, and show
that the variance of ¢ exceeds the variance of 6 for all values of 6 € (0, 1).

(g) The results quoted at the end of (e) is Bahadur’s theorem: If T is sufficient and
complete, then T is minimal sufficient.

To prove this, let W be another sufficient statistic, and assume, with out loss of
generality, that T and W are real valued. We must show that there is a function g
such that T = g(W). If T = Eg (T | W), then we have found a function g, it is
glw) = Eo(T | W = w), and ¢ does not depend on 6 since W is sufficient. Let us
therefore prove that T equals Ey (T' | W) almost surely for all §. To this end, assume
that T has finite variance, and define g(W) = Eq (T |W) and h(T) = E¢ {g(W)|T}.
Now, use the tower property of conditional expectation a couple of times and that T is
complete to show that T'= h(T') almost surely, for all §. Next, combine the above with
the variance decomposition formula to obtain

Vargg(W) = EgVarg(g(W) | T) + EgVarg(T | W) + Vargg(W),

from which we conclude that T' = Eo(T'| W) almost surely for all §. To get rid of the
finite variance assumption on T, replace T by f(T) = 1/{1 + exp(—T)} (which clearly
has finite variance) throughout the proof, to conclude that 7' = f~!(g(W)).

Ex. 8.6 A uniform mean. Let Yi,...,Y, be iid. unif(a,b). We are to estimate the
mean p = (a +b)/2.

(a) Show that (min;<,, Y;, max;<, ¥;) is sufficient and complete.
(b) Propose an unbiased estimator for p, and find its variance.

Ex. 8.7 A weird unbiased estimator. Limiting our search for a best estimator to the
class of unbiased estimators lacks the decision theoretic foundation that the principle
of minimising expected loss enjoys. More on this in the Notes and Pointers section.
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Sometimes, the search for unbiasedness might lead us astray. Let Y be a random variable

with density
0Y exp(—0)
) =———""———— fory=1,2,...,
0 = ey Y

with @ > 0. This is a Poisson distribution truncated at zero, and the probability of being
truncated is exp(—#0).

(a) Show that §,(Y) = (—1)¥*! is the unique unbiased estimator for exp(—6).
(b) Find an expression for the risk function of d;(Y").
(c) Propose an estimator with uniformly smaller risk than é;(Y").

Ex. 8.8 More Rao—Blackwellisation. Recall that a function is convex if g is a convex if
for all «,y in its domain, and all A € [0, 1],

gz + (1= N)y) < Ag(z) + (1= N)g(y).
Jensen’s inequality states that if g is convex, then
9(EX) < Eg(X),

with equality only if g(x) = a + bx. Jensen’s inequality also holds conditional expec-
tations, see Ex. A.24(g). In this exercise we will look at loss functions L(9,6) that are
convex in ¢ for all 8. Think of your favourite loss function, and you will realise that this
is a quite natural requirement.

(a) Let § = 6(X) be an estimator of 6. Suppose that T = T'(X) is sufficient for § and
define 6*(T) = E{d(X) | T}. Explain why 6*(T") is an estimator.

(b) Suppose L(6,0) is convex in ¢ for all §. Show that R(6*,0) < R(4,0) for all 6.
(¢) When will the inequality in (b) be strict for all 67

(d) Suppose that Eg 6*(T) = h(6), and that T is complete. Show that, in the class of
estimators {§: Egd = h(6)}, the estimator ¢* is the unique estimator minimising the
risk. [xx check this for the general case here presented xx].

(e) [xx Let L(4,0) = (§ — 0)? and specialise to UMVU estimator xx]

(f) Suppose L(4,6) is convex in ¢ for all #, and that J, is the unique Bayes solution
under the prior 7. Show that §, must be a function of a sufficient statistic.

Minimaxity

Ex. 8.9 Tools for minimazity. In Exercise. 8.1 we compared three different estimators,
which is fine, but what we ultimately want to say something about is the performance of
an estimator compared to all other estimators. To do so, we need some more tools. We
start out with convenient tools for establishing minimaxity, from which we will see that
the estimator in Exercise 8.1(d) is minimax.
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(a) Let &, be a Bayes solution with respect to the prior distribution 7, and suppose that

BR(65,m) = sup R(0, 6). (8.1)
0

Show that 6, is minimax.

(b) Show that if 0, satisfies (8.1) and is the unique Bayes solution with respect to m,
then d, is the unique minimax procedure.

(c) Show that if a Bayes solution has constant risk, then it is minimax.
(d) Show that if an estimator has constant risk and is admissible, it is minimax.
(e) Show that if an estimator is unique minimax, it is admissible.

Ex. 8.10 The minimaz estimator in Bernoulli problem. Let Y7,...,Y, be independent
Bernoulli with success probability 6.

(a) Give 0 a Beta(aby, a(1—6p)) prior distribution, and find an expression for the posterior
expectation.

(b) Find an expression for the risk function under squared error loss when a = n®/? and
0o = 1/2, and conclude. See Ex. 8.1(d).

Ex. 8.11 Minimaxity and sequences of priors. In Exercise 8.9(b) we assumed that
the equality in (8.1) is attained. A prior distribution that succeeds in attaining this
equality is, for natural reasons, called a least favourable prior distribution. If no such
prior distribution exists, we cannot use the conclusion of the exercise to prove minimaxity.
Consider independent Xi,..., X, | 6 from N(#,1). It seems reasonable that a least
favourable prior for € should spread its mass evenly out on the real line, that is

a+tc b+c
/ m(0)do = / () do, for all a,b € R and ¢ > 0.
a b

This distribution is Lebesgue measure on R, and is not a proper probability distribution.
This hints at the result above not being applicable. To fix this, the idea is to approximate
an improper distributions with proper ones. In the case of the normals, one may try
0 ~ 7 (0), where () is the density of a uniform distribution over [—k, k], then let k
grow.

(a) Suppose that ¢ is an estimator and (m)r>1 a sequence of prior distributions such
that
sup R(6,0) = lim BR(d,, k),
) k—o0

with 0., being the Bayes solution for 7. Show that J is minimax.

(b) Let Xi,...,X, be independent N(u,0?). We are to estimate o under the squared
error loss L(fi, ) = (fi — p)%. You may consider the sequence of priors p ~ N(0,74) for
k=1,2,... to show that the estimator i = X,, is minimax.

(c) Let X4,..., X, beindependent Poisson(#). We want to estimate 6 under the weighted
loss function L(6,0) = 6~1(0 — )2. Use Gamma priors to show that § = X,, is minimax.
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Admissibility and Bayes

Ex. 8.12 Some Bayes and some admissibility. If we have at hand an estimator §, the
most convenient way of showing that ¢ is admissible is to show that it is Bayes. In fact,
it is almost true that an estimator is admissible if and only if it is Bayes. We’ll get to
the cases where this implication fails, but as a rule of thumb it is pretty safe.

(a) Suppose that X ~ fy, where 6 € © = {01,...,0;} for some finite k¥ > 2. Consider
the estimator 0, that is Bayes for the prior 7 = {m1,...,m;}, where 7; is the prior mass
given to 0;. Show that if 7; > 0 for j =1,...,k, then ¢, is admissible.

(b) Why does the conclusion of Ex. 8.12(a) fail if 7; = 0 for one or more j?

(¢c) Show that if a Bayes solution is wnique, then it is admissible. Or, equivalently, if
every Bayes rule with respect to a prior m has the same risk function, then they are all
admissible.

(d) To clarify what the uniqueness of the Bayes solution refers to, let’s look at an example
where there are several Bayes solutions. Let X ~ unif(0,d) and suppose that we want
to estimate 6 under the squared error loss function L(8,0) = (§ — 0)2. Suppose @ is
given the prior distribution that is uniform on (0,¢). Find the posterior distribution
0 | (X = x) and derive at least two different Bayes solutions (there are uncountably
many). [xx comment on this exercise, more relevant in BNP, point to Nils’ 1976-proof and
the mistake made by Lehmann. Could also mention Lindley and his so-called Cromwell’s
rule xx]|.

(e) Recall that a parameter value 6 is in the support of 7 (a probability density in our
notation) if it is contained in the set {6 € ©: w(0) > 0}. Let {fy: 6 € O} be a model, and
suppose that (i) the support of the prior 7 is ©; and that (ii) the risk function R(8, ) is
continuous in # for all estimators §. Show that if §, is Bayes with respect to = and have
finite Bayes risk, then 4, is admissible.

Ex. 8.13 Generalised Bayes. Suppose that in some experiment involving data from a
normal distribution with expectation #, you have no idea whatsoever about where on
the real line # might be located. A natural ‘prior’ is therefore m(#) o 1 (or just take
it equal to one) that spreads the ‘probability’ mass uniformly over the real line. Now,
m(f) x 1 corresponds to Lebesgue measure on the real line, and is not a probability

/RW(Q) df = .

The fact that m(0) does not integrate to one does not, however, stop us from using it
to derive estimators using ‘Bayes’ theorem. Priors that are not probability distributions

measure because

are called improper priors.

(a) Suppose X1i,...,X, are independent N(6,02). Suppose # is given the improper
prior 7(f) = 1. Show that 7(6 | x1,...,2,) = N(X,,02/n). A generalised Bayes
estimator is the estimator 0 minimising the posterior expected loss E{L(d,0) | data}.
Let L(5,0) = (6 — 6)2, and find the generalised Bayes estimator for 6.

improper priors
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(b) The estimator you found in (a) is generalised Bayes, why is this not enough to
conclude that it is admissible?

(¢) (xxxx)

Ex. 8.14 Blyth’s method. We call § a limiting Bayes estimator if there is a sequence
{mk}r of possibly improper priors such that the corresponding Bayes estimators o,
converge almost surely to §. Blyth’s methods can be paraphrased as saying that limits
of Bayes’s estimators are admissible. We start, in (a) by proving Blyth’s method, as is
clear by now, when it comes to admissibility proofs by contradiction is the way to go.

(a) Let 6* be an estimator. Suppose © C RP is open, and that R(d,#) is continuous in
for all estimators §. Let (mx)r>1 be a sequence of (possibly improper) prior distributions
such that BR(d*, 7)) < oo for all &, and for any open set g C O,

BR((s*,Tk) - BR((SWM’]T]C)
f@)o Wk(e) dG

— 0, ask — o

Then §* is admissible.

(b) Let Xi,...,X, be iid. from a N(6,1), where 6 is an unknown parameter to be
Normal mean is estimated under under the squared error loss function L(§,6) = (§ — 6)?. Consider the
admissible sequence of prior distributions 7 (0) = N(0, 77), and show that the Bayes solution is
nX,

Oy (X) = -y

Take it from here and show that X, =n~1 Y"1 | X; is admissible.

Ex. 8.15 Bernoulli mean with weighted risk. Let Xq,..., X, beiid. Bernoulli(d). We
wish to estimate 6, and we are particularly interested in precise estimates of very small
and very large values of 6. Therefore, we’ll work with the loss function
(0-0)
L(,0) = ———.
(a) Compute the risk function of the maximum likelihood estimator. What’s noticeable
about this risk function?

(b) We now take a Bayesian point of view and give 6 a Beta(af’, a(1 — 6’)) prior distri-
bution. Compute the expectation and variance of this prior.

(¢) With the prior introduced in (b), find the posterior distribution 7 (0 | x1,...,x,).
Find also the Bayes solution dy, i.e., the minimiser of the Bayes risk BR(6,60) = [ R(4,0)m(6) df.
[xx introduce Bayes risk earlier xx].

(d) Tweak the parameters of the Beta prior distribution, so that the Bayes solution
you found above equals the maximum likelihood estimator from (a). What desirable
properties does the maximum likelihood estimator possess?
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Ex. 8.16 Estimating the standard deviation. Suppose X1, ..., X, arei.i.d. from N(0, o2).
We are to estimate ¢ under the loss function
5 — 2
Lo,0) = 0= (8.2)

g

(a) Find the maximum likelihood estimator, say 0,1, and show that its risk function is

~ 2 T'(n/2)
= —1 by + (by — 1)* h bn—\[.
R(0,5) = 0{(n—1)/n+ B + (b~ 1%}, where N aa
You may now use Stirling’s formula T'(z) = (27/2)'/%(z/e)* to show that b, — 1, and
R(0,0) — 20 as n — 00, as we already knew from ML-theory (see Ex. xx in Chapter 5).

(b) Consider the prior distribution o ~ w(c), whose density is
m(o) o (1/0)* exp(—b/o?).

with @ > 1 and b > 0. Find the prior expectation of ¢. Find also the prior expectation
of 1/0.

(¢) Find the posterior distribution o | x1,...,z,, and derive the Bayes solution under
the loss function given in (8.2).

(d) Show that the maximum likelihood estimator is inadmissible by exhibiting an esti-
mator, say 6*, with uniformly smaller risk. Hint: Consider 0, = a0y

(e) Is 6* admissible? Hint: Use Blyth’s method.

Stein’s phenomenon

Ex. 8.17 The James—Stein estimator. When estimating the price of apples in Oslo, the
height of women in Bergen, and the unemployment rate in Trondheim, it is sometimes
advantageous to use information about apples is Oslo and women in Bergen to say some-
thing about the unemployment rate in Trondheim. The point is that when estimating an
ensemble of unrelated things, we can sometimes do better in the estimation by borrowing
information across unrelated things. This phenomenon is known as Stein’s paradox or
the Stein effect. See Stein (1956); James and Stein (1961) for the original articles, and,
for example Efron and Morris (1977) and Stigler (1990) for lucid presentations. In the
present exercise we’ll look at Stein’s 1956-1961 result, a result that initiated a whole field
of statistical research known as shrinkage estimation.

Let Y; ~ N(6;,1) be independent for i = 1,...,p with p > 3. We are to estimate

01,...,0, under the combined loss function
P
L(5,0) = (6; — 0;)°.
i=1

The standard approach is to use Y; as an estimator of #;. The estimator Y; is the maxi-
mum likelihood estimator, it is admissible under (§; — ;)2 it is the uniformly minimum
variance unbiased estimator, etc.
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(a) For obvious reasons, we call Y = (Y71, ...,Y},) the standard or the natural estimator.
Compute its risk function.

(b) For a single Y ~ N(6,1), show that under very mild conditions on the function b(y),
one has

Ep (Y = 0)b(Y) = Egb/(Y),
where b’ is the derivative of b. Hint: Use integration by parts.
(c) Let now b(y) = (b1(y),...,bp(y)). Generalise what you found in (b) to
Eg (Yi = 0:)bi(Y) = Eg b; i(Y),
where b; ;(y) = 9b;(y)/Oy;.

(d) What you found in (b) and (c) is known as Stein’s lemma. We are now going to use
Stein’s lemma to construct an estimator that uniformly dominates Y. Consider a general
competitor to Y of the form §(Y) = (61(Y),...,6,(Y)), with

6:i(Y) =Y = bi(Y). (8.3)

Show that the difference in risk between Y and estimators of the form (8.3) can be
expressed as
R(5,0) — R(Y,0) =E¢ D(Y),

where

D(y) = Z{bi(y)2 —2b;.4(y)}

Then R(4,0) = p+ Eg D(Y'). The fabulous thing about such a simple lemma as Stein’s,
is that D(y) does not depend on the unknown 64, ...,6,. We can therefore try to find a
data dependent function b(y) such that D(y) < 0 for all y, and consequently an estimator
that uniformly dominates the standard estimator. It turns out to be impossible to find
such functions b(y) when p < 2, but it is possible for p > 3.

(e) Try bi(y) = ay;/||ly||*, with [ly||* being the squared Euclidian norm Y 7_, y?, corre-
sponding to

6(y) =y —bly) = (1- W)y-

With this choice of b(y), show that

1
Iyl

Show that this is negative for a range of a values provided p > 3. Demonstrate that the
optimal a is a = p — 2, corresponding to the estimator

D(y) = {a® = 2a(p - 2)}.

s(¥) = (1= Fo)Y. (3.0
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This estimator is known as the James—Stein estimator. Show that the risk function of
this estimator can be expressed as

1
R(635,0) =p— (p —2)°Ep 75
Y12
Show that the greatest reduction in risk from using ;5 instead of Y takes place when
61 =--- =0, =0, and compute the risk R(d;g,0) in this point.

(f) We’ll now make a connection to empirical Bayes procedures. Start with a prior
that takes 01, ...,0, independent from N(0,72). Show that the Bayes solution is 6% =
(0B,...,68), with

TP

2

(&B(Y):Ozyi, i=1,...,p, where a:m.

H (8.5)
(g) The empirical Bayes approach consists of estimating hyperparameters from data.
Hyperparameters are those parameters set by the statistician in a pure Bayesian ap-
proach. Show that the marginal distribution of yi,...,y, is a product of N(0,1 + 72)
distributions. Find the maximum likelihood estimator of . Use the maximum likelihood
estimator to find an unbiased estimator, say &, of a. The empirical Bayes estimator is
then dgp(Y) = &Y. What’s noticeable about this estimator?

Ex. 8.18 Resolving the paradoz. [xx make an exercise based on insights from Stigler
(1990), perhaps?]

Ex. 8.19 Poisson means and inadmissibility of ML-estimator. To show that an estima-
tor is inadmissible it suffices to showcase one estimator that dominates it. Let Y3,...,Y)
be independent Poisson with means 61, ...,6,. We are to estimate the 6 = (61,...,0,)
under the loss function )
(0; — 0;)?

where § = (01,...,0,). The maximum likelihood estimator d,, takes o ;(Y) = Y; for
i=1,...,p. Clevenson and Zidek (1975) showed that d, is inadmissible by constructing
an estimator, say dcz, such that R(0,0cz) < R(0, 6y1) for all 8. In this exercise we derive
this estimator [xx and try to show that it is admissible. xx]

(a) Let Z = Zle Y; be the sum of the p independent Poisson observations, write v =
>-P_, 6; for the sum of the p Poisson means, and define 7; = 6,/ for i = 1,...,p. Show

that
z

Yyl yp!
This establishes that E(Y; | Z) = Zn; and Var(Y; | Z) = Zmi(1 —«) fori = 1,...,p.

(Yi’_._7Yn)|(Z:Z>N

Yiqy
st A

(b) Prove the following little lemma. If X ~ Poisson(f) and g is a function such that
g(0) =0, then
Eg(X)/0 =Eg(X+1)/(X +1).
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(¢) Consider the estimator §* whose components are given by
FY)=(1-¢(2))Y;, fori=1,...,p.

The game to be played now (as with the James—Stein estimator of Exercise xx), is to
find an expression for the risk difference R(f,*) — R(6,0y) that is independent of the
unknown parameters. Using the results from (a) and (b) it is indeed the case that the
risk difference D(Z) = R(6,0*) — R(0, 6m1) can be expressed as

D(Z) =By {[8(Z +1)? = 26(Z + V)][(Z + 1) + (p — 1)] +26(2) Z}.
Derive this expression for D(Z).

(d) Suppose that the function ¢ is such that ¢(z)z is increasing. Under this assumption,
find a function ¢ that ensures that D(z) < 0 for all z € {0,1,2,...}. The estimator
0(Y) = (1 — ¢(Z))Y with this function ¢ inserted is the estimator dcz of Clevenson
and Zidek (1975) [xx fix, this is a class of estimators xx]. Conclude that the maximum
likelihood estimator is inadmissible.

(e) We have shown that dcz uniformly [xx nytt begrep xx] dominates the maximum like-
lihood estimator, however, we do not yet now whether or not there exists and estimator
that dominates dcz. Show that dcz is admissible.

Hypothesis testing

Ex. 8.20 Testing a simple hypothesis. Let X ~ fo(z) and consider the simple hypothesis
Hy: 6 = 0y versus the simple alternative § = 0;. The statistical tests ¢, with ¢(x) =1
meaning ‘reject Hy, and ¢(z) = 0 ‘keep Hy’, are to be evaluated under the loss function

_ 07 if ¢($) = 03 _ K27 if ¢($) = 07
Lig,60) = { Ky, if ¢(z) =1, Lig,61) = { 0, if ¢(z) = 1.

(a) Let 0 < myp < 1 be your prior probability of Hy being true. Derive an expression for
the posterior expected loss, and show that the Bayes solution ¢, is of the likelihood ratio

type

L | 6) >k fe | 6),
Prle) = {07 it (x| 61) < ko fla | 60).

Find k. and relate this quantity to the level of a test.

(b) Let now X | 6 be N(0,1). We want to test Hp: 8 = 0 versus §; = 1/2 using the
Bayes solution when the prior is mp = 1/2. Find K; and K such that Eg, ¢, (X) = 0.05.

(c) Show that any Bayesian test with a prior giving weight to both the null- and the
alternative hypothesis, is the most powerful test of its size. Hint: Use what you know
about Bayes solutions and admissibility.
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Density estimation

Ex. 8.21 Unbiased estimation of a parametric density. (xx earlier nils exercise from
Ch3, not pushed to this Ch8. needs to be connected to sufficiency and completeness,
perhaps to exponential family. xx) Suppose Y7,...,Y,, areii.d. from a parametric density
f(y,0), like the normal or the Gamma or the Beta. How can we construct an unbiased
estimator of the density function itself? Assume there is a sufficient statistic here, say
T=T(Y,...,Y,).

(a) A very simple estimator for the window probability

b
p(6) = Pr(Y € [a,b]) = / £(y.6)dy

is p = I(Y1 € [a,b]), using very simply a single data point. Show that it is unbiased.

(b) This also invites the somewhat more intelligent estimator p =n=* Y | I(Y; € [a, b]),
the binomial proportion of data points inside the [a, ] window. Show that it is unbiased
and find a formula for its variance.

(c) Typically this estimator can be beaten, however. Consider indeed
p" =E@IT) =Pr(Y1 € [a,b] [ T).

Explain why this is actually an estimator, i.e. that it does not depend on the parameter
0, and that it is unbiased. Show also that the construction E (p|T) leads to the very
same p*.

(d) Let f(y|T) be the density of a Y; given T. Explain why it does not depend on the

parameter, and that

b
p* = / fo(y|T)dy, for all windows [a, b].

(e) Show that f,(y|T) is unbiased, and also the minimum variance estimator among all
siuch unbiased estimators.

(f) For each of the following parametric densities, find a formula for this minimum
variance unbiased estimator for the density. (i) The N(u,1). (ii) The N(0,0?). (iii) The
two-parameter normal N(yu, 0?). (iv) The exponential 6 exp(—0y).

(g) (xx give them 25 data points from a normal, perhaps even a tiny real dataset. plot the
different estimates of both f(y) and of log f(y). convey the point that smallish differences
and nuances are better picked up and seen on the log scale. xx)

Notes and pointers

[xx some notes and pointers here xx]
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II1.A

Mini-primer on measure and integration theory

[xx Mini-primer on measures, probabilities on spaces, integration theory. Back-
ground for rest of the book. xx]

Chapter introduction

(xx mini intro to measure theory and integration, background for probability measures,
distributions, densities, models, etc. we also explain in one paragraph that yes, these
things matter, and without them we cannot work properly; on the other hand, for most
of the work we do, also in later chapters, we do not need to think too much about it.
it’s also a matter of becoming basically literate in the probability language underlying
theoretical and also applied statistics. xx)

Various aspects of probability theory, and hence statistics methodology, rest on the
general theory of measure and integration. If all random variables we meet have nice
distributions and densities, on regular domains, like an interval, the real line, or open
subsets of Euclidean spaces, we can get pretty far without this underlying measure and
integration theory. To formulate concepts in natural generality, and to develop tools
and demonstrate basic properties for these, however, one needs this more general theory.
In particular, the business of defining probabilities, for perhaps complicated events in
not-so-standard spaces, demands theory beyond ‘ordinary’ integration.

Essentials of measure, integration, and probability

Ex. A.1 Some set theory. Let Q2 be a set, and A, B, Ay, As, ... subsets thereof. The
union AU B consists of the points w €  that are in A or in B (or in both A and B).
So US2 1A, = {w € Q: w e A, for at least one n }. The intersection AN B consits of
the points w €  that are in A and in B, so N2, A, ={w € Q: w e A, for all n }. The
complement A° consists of all the points w € €2 that are not in A, A° = {w € Q: w ¢ A}
The set difference A\ B = AN B¢, and the symmetric difference of A and B is AAB =
(A\B)U(B\ A). We say that A is a subset of B if all the elements of A are also elements
of B, and denote this A C B. If AC B and B C A, then A = B. The collection of all
subsets of €, is called the power set and is denoted 2.

639
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(a) Prove the distributive laws
BN (Usl A,) =Us2(BNA,), and BU(N 4, =N, (BUA,),
and de Morgan’s laws,
(UnZiAn)® = M2y AL, and (N2, 4,)° = URZ, A7

(b) The empty set, denoted @, is the set with no element, think of it as ) = {}. Write
down a truth table with the columns P: w € 0, Q: w € A, and ‘if P then Q’, to prove
the vacuous truth that the empty set is a subset of any set.

(¢) To any function f: 2 — X, there is an associated inverse image. The inverse image,
denoted f~!, is a set mapping f~!: 2% — 29 defined by

FYB) ={weQ: f(w) € B}, for B€X.

Show that that for subsets B, By, Bo,... of X, the inverse image f~! preserves the set
operations complement, union, and intersection in the sense that f~1(B¢) = (f~*(B)),
FHU BR) = U2y fH(By), and f~H (N2 By) = Moy f~1(Bn).

n=1

(d) The sets Q or X will often be the real line or a subset thereof. For a < b, the open
interval is (a,b) = {x € R: a < x < b}, the closed interval is [a,b] = {z € R: a < z < b},
and so on. If @ = b, then (a,b) = 0 and [a,b] = a. Show that (a,b) = USZ,(a,b— 1/n],

[a,b] =N, (a —1/n,b], and that {a} =N (a — 1/n,a] =N (a —1/n,a + 1/n).

(e) A subset B of R is open if for any € B you can fit a little e-interval (z — e, x + ¢€)
around z. Show that any open set in R is a countable union of open intervals. To do
so, you may consider open intervals with rational endpoints, and recall that a countable
union of countable sets, is countable.

(f) The Cartesian product of two sets A and B is the set Ax B = {(a,b): a € A,b € B},
of three sets A, B and C' it is A x B x C = {(a,b,¢): a € A,;b € B,c € C}, and so on.
If A={1,2,3} and B = {4,5} what is A x B? Make small sketches of the Cartesian
products RZ =R x R, and also of R x N, and Z? = Z x Z.

Ex. A.2 Measurable spaces. Underlying all of statistics and probability is a mathemati-
cal model for randomness. This model consists of three things: a set €2, called the sample
space, containing all possible outcomes of the random phenomenon we are interested in;
a family A of subsets of €2, whose members are called events; and a function Pr having
A as its domain and the unit interval as its range, called a probability measure.

(a) We start with a measurable space, say (€,.A), consisting of a non-empty set Q and
a collection A of subsets of 2. The subsets in A are later to be given values, perhaps
probabilities, in terms of a measure. For A, we demand that

(i) if A€ A, then A°=Q\ Aec A
(ii) if A1, Ag,... are in A, then U2, A4; € A.
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A family of subsets A with these properties is called a o-algebra. Thus, a o-algebra is
family of subsets that is closed under complements and countable unions. Show that if
A is a o-algebra, then ) and the emptyset () are in .A. Show that the power set 2 is a o-
algebra. At the other extreme, show that the trivial o-algebra {0, Q} is a o-algebra. And
somewhat intermediately, show that if A C A is some nonempty set, then {0, A, A° Q}
is an o-algebra. For a different type of example, consider A, all subsets of R which are
either empty, finite, or countably infinite, or whose complements are either empty, finite,
or countably infinite. Show that A is a o-algebra.

(b) Show that if A is a o-algebra, with B, A1, Ag, ... € A, then also A1NAy, AjNA3NA3,
and even N2, A;, is in A. Show that sets like A1 N (A2 U A3 U A4)°NAs, BN(USZ, Ay),
and A\ B are in A.

(c) Show that an intersection of o-algebras must be a o-algebra. Hence we may start by
identifying a list of basis events, finite or infinite, say By, and then define B = o(By), as
the smallest o-algebra containing all sets in By. The o-algebra B is said to be generated
by By, and By is called a generating family. Working with basis events that generate a
o-algebra is much more convenient than trying to somehow list all types of subsets of
the g-algebra.

(d) A famous and important example of a generated o-algebra is the Borel-o-algebra
on the real line, denoted B(R), defined as the o-algebra generated by all open intervals
(a,b). Show that sets {a}, [a,b], [a,b), (a,b], (—00,b), (—00,b], (a,0), [a,c0), as well
as all countable unions and intersections of these, are then also in B(R). Show also
that any of the families {(a,00): a € R}, {[a,0): a € R}, {(—-00,a): a € R}, and
{(—00,a]: a € R} also generates B(R).

(e) Similarly to the real case, we define B(R*), the Borel-o-algebra on of R¥, as the
o-algebra generated by all rectangles (aj,b;) x --- x (ax,bg). Show that B¥ then also
must contain all closed rectangles [a1,b1] X - -+ X [ag, bk, all rectangles of half-open sets
(a1,b1] x --- x (ag, by], etc., and also all open sets of R¥.

(f) Let By be the collection of all intervals of the form (—oo,q], with ¢ € Q. Show
that o(By) = B(R). A o-algebra generated by a countable collection of sets is said to
be separable. Let (Q,d) be a separable metric space, i.e., {2 contains a countable and
dense subset. Show that the smallest o-algebra on {2 that contains all the open sets is a
separable g-algebra.

(g) If (1, F) and (9, G) are two measurable spaces, then we can construct the product
space (21 X Qo, F ® G), where the product o-algebra F ® G is the smallest o-algebra on
the Cartesian product 2; x €2 that contains all sets of the form F' x G, where F' € F
and G € G. Show that if Q; = Qs = R and F = G = B(R), then B(R) ® B(R) = B(R?).
Generalise to dimension k& > 2.

(h) Plus and minus infinity will occur naturally as limits of sequences of real functions.
Consider, for example, f,(z) = (y/n/27)exp(—3na?) for n = 1,2,..., i.e., the density
of the mean of n independent standard normals. Define the extended real numbers R =
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R U {—o0,00}. Similarly, Ry = RUoo. If we allow for functions taking values in R, then
fn(x) converges pointwise to f(z), where f(z) = 0 if z # 0, and f(x) = oo if z = 0.
Show that the Borel-o-algebra on R is B(R) = o(B(R), —00,c0); or, equivalently, the
o-algebra generated by By = {(a,b), [—00,b), (a,00]: a,b € R}. Show similarly, that the
Borel-o-algebra on R is o(B(R,), 00).

(i) In general, the Borel-o-algebra on a set X is defined as the o-algebra generated by
all the open sets in X', where open is defined in terms of a metric or a topology on
X. Cousider the space C[0, 1] = {all continuous functions f: [0,1] — R}, equipped with
d(f,9) = sup,eoq 1f(z) — g(x)|. The space (C[0, 1], d) is a separable metric space (as we
will see in Ex. 9.5). The open e-ball around g € C[0,1] is B:(g) = {f € C[0,1]: d(f,9) <
¢}, and the Borel-c-algebra on C[0,1] is the smallest o-algebra containing all the open
balls. Show that this o-algebra is generated by U.ecqn(0,00)1B<(91), B:(92), ...}, where
{91,92,...} is dense in C[0,1]; and also by the collection of sets of the form {f €
C10,1]: (f(z1),...,f(xn)) € By x --- By} where By,...,B, € B(R) and 0 < 21 <
To < - <x, <1

Ex. A.3 Measurable functions. Let (Q,.A) and (X, B) be two measurable spaces. A
function f: Q — X is A/B-measurable if f~1(B) € A for all B € B. When it is clear
what o-algebras are involved, we simply say that f is measurable. When X is R, R, or
C, B will always be the Borel-o-algebra.

(a) In view of the efforts in Ex. A.2, the following lemma, tells much of the story of
this exercise. Let (Q,.4) and (X,B) be two measurable spaces, and suppose that By
is a collection of subsets of X that generates 5. Then f is measurable if and only if
f~Y(By) € A for all By € By. Look back at Ex. A.1(c), and prove this lemma.

(b) On a measurable space (€2,.4), let f: @ — R be a measurable function. Show that
f~Y(a,b) € A for all open intervals (a,b), and that this might as well be taken as our
definition of measurability for real valued functions. In particular, show that the sets
f~Ya}, f~Ya,b), f~1(a,b], f~1(—o00,b) f~1(—00,b], f~1(a,), and f~1[a,oc0) are all
in A. Generalise to extended real valued measurable functions f: Q — R.

(¢) Suppose that (£2,d) is a a metric space equipped with its Borel-o-algebra, and let
f:Q = R be a continuous function. Show that f is measurable.

(d) We will frequently use the characteristic function, a function taking values in the
complex plane. An open subset of C can be identified with the open subsets of R?. For
example, and open box in C is {z +iy: a < x < b,¢ < y < d}. Therefore, any collection
of subsets of R? that generates B(R?) can, by making the appropriate identifications, be
used to generate B(C). Let f = g + ¢h be a complex valued function on the measurable
space (€, A), for measurable functions g, h: & — R. Show that f is measurable if and
only if g and h are measurable. In particular, use (c¢) to show that function exp(iz) =
cos(z) + isin(x) is measurable.

(e) Let f: 2 — X be a measurable function between (£2,.4) and (X, B). The o-algebra
generated by f is the smallest o-algebra on €2 such that f is measurable, i.e., the inter-
section of all o-algebras with respect to which f is measurable. We denote it o(f), and



Simple
functions

Approximation
by simple
functions

1.B. Essentials of measure, integration, and probability 643

clearly, o(f) C A. Show that o(f) = {f~!(B): B € B}, and that if ¥ = R and B = B(R),
then o(f) may be generated by the collection of sets 7(f) = {{w € Q: f(w) < z}: 2 € R}

(f) First, let f1,..., fn be finitely many measurable functions. Show that max(f1,..., f,)

and min(fy,..., f,) are measurable. Next, let fi, f2,... be a sequence of extended real
valued measurable functions. Show that sup,,»; f, and inf,>; f, are also measurable
functions. Show that if 0 < g3 < go < -+ is a sequence of functions where g,(w) is

nondecreasing (in n) for each w, then the limit function g, with g(w) = lim, s gn(w),
is also measurable. Next, show that limsup,,_,.. fn and liminf,,_, f, are measurable.
Finally, show that, if it exists, the limit function f(w) = lim, o fn(w) is a measurable
function.

(g) A simple function is a function taking on only finitely many values, meaning that
if g is a simple function it can be written g = 25:1 cjla; for sets Ay,..., Ay € A such
that U?ZlAj = Q and real constants cy, ..., c,. If the Ay, ..., A are disjoint we say that
g is a simple function on standard form. With f any nonnegative measurable function
on (2, A), show that the sequence of simple functions

nan

f@) =3 5 )+l (@),

2n
k=1

with App = {w € Q: (k—1)/2" < f(w) < m/2"} and A, = {w € Q: f(w) > n}, is
measurable, and is such that 0 < f; < fo <--- and f(w) = lim,, f,,(w) for each w.

(h) On (92, A4), let f,g: © — R be measurable functions, and let a, b be constants. Show
that af + bg, fg, and f/g if g # 0 are measurable.

(i) Let f: Q@ — X and g: X — R be measurable functions, on the measurable spaces
(9, A) and (X, C), respectively. Show that the composition g(f()): £ — R is measurable.

(j) In (i), it is important that g is C-measurable. Let C’' be a o-algebra on X, containing
at least one set, for example C’, that is not in C. Define g = I, and let h = g(f(-)),
with f the A/C-measurable function from (i). Show that i is not measurable. [xx can
make this more concrete, see, e.g. Romano and Siegel (1986, p. 36) xx]

Ex. A.4 Measure and measure spaces.. A measure p on a measurable space (2, 4) is a
function u: A — [0, 00], giving values to all sets A in A, with the following properties:

(i) (@) =0, for the empty set;
(i) p(U2 A;) =300 1(Ay), for Ay, As, ... disjoint sets in A, .

The resulting triple (€2, .4, ) is called a measure space. We say that p is a finite measure
if u(Q) is finite. Prime examples of finite measures are those with u(2) = 1, such
measures are probability measures, to be returned to in the rest of this book. If Q can be
represented as a countable union U, A; of measurable sets, with each u(A;) finite, we

o-finite measure say that p is a o-finite measure.
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(a) Show that countable additivity implies finite additivity, namely pu(A4; U---UA4,) =
w(A1) + - p(A,) for any finite sequence of disjoint measurable sets. Show also that if
A,B € Aand A C B, then u(A) < pu(B). Deduce that p(Us2; 4;) < 3% u(A;), for any
sequence of sets Ay, As, ... in A.

(b) Suppose that A; C Ay C --- is a nondecreasing sequence of sets in 4. Show that
(US4, A,) = limy, o0 ¥(Ay,). Suppose now that A; D Ay D -+ is a decreasing sequence
in A. Show that v(N$2 1 4,) = lim, o v(A,), provided v(A,,) is finite for some n.

(c) Let v be a finitely additive measure. That is, a function v: A4 — [0, 00], such that (i)
v(0) =0, and (ii) (AU B) = v(A) + v(B) for all disjoint sets A, B € A. Suppose that
for any nondecreasing sequence A; C Ay C --- in A it is the case that v(U32,A,) =
lim,, 00 ¥(Ay). Show that v is a measure. Suppose that for any nonincreasing sequence
By D By D -+ in A such that N A,, = 0, we have lim,,—, v(B,,) = 0. Show that v is a
measure, provided () is finite [xx check xx]. In other words, countably additivity is a

continuity property in disguise.

(d) Let (£2, .4, ) be a measure space with no atoms, that is, u({w}) = 0 for all w € Q.
Show that u(A) = 0 for any countable set A € A.

(e) Let p be a measure on (R, B(R)) such that u((a,b)) = b — a. Show that (R, B(R), i)
has no atoms, and that u([a,b]) = u((a,b]) = p(la,db)) = b — a. This measure, called
Lebesgue measure, is constructed in Ex. A.7.

(f) Consider the o-algebra A of those subsets of R which are empty, or finite, or countably
infinite, or complements of such sets. Let v(A) be the simple measure which counts the
number of elements in A. Show that it defines a measure, called the counting measure,
and that it is not finite nor o-finite.

(g) Consider the o-algebra 2V of all subsets of N = {1,2,...}. Let v be the counting
measure. Show that v is o-finite.

(h) Let (2, A,v) be a measure space, (X,B) a measurable space, and f: @ — X a
measurable function. Define the set function vf~'(B) = u(f~*(B)) for B € B. Show
that vf~! is a measure on B.

Ex. A.5 w-systems, d-systems, monotone classes. We often need to prove that a certain
property of a measure, an integral, or the like, holds for all sets in a o-algebra. Without
further tools this is a tall order, simply because it can be exceedingly hard to give
‘closed form’ characterisations of all the elements of a g-algebra. Think, for example,
of the Borel-o-algebra on the real line, how are you to describe all its elements without
recourse to the family of sets that generates it? This is the motivation for the definitions
and results we introduce in this exercise. We start with the definitions we need: Let C
be a collection of subsets of a set 2, then C is

- an algebra if it is closed under complements and finite unions;

- a mw-system if AN B € C for every A, B € C;

Continuity of
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- a d-system if (i) Q € C; (ii) A C B then B\ A € C for A,B € C; and (iii) if
A; C Ay C -+ arein C then U2, A, €C.

- a monotone class if (i) A1 C Ay C -+ are in C then U2, A, € C, and (ii) if
A1 D Ay D -+ arein C then N2, A, €C;

(a) Show that the collection of sets w(f) defined in A.3(e) is a m-system.

(b) Show that (i) an algebra is a m-system; (ii) a d-system is a monotone class; (iii) a
o-algebra is a m-system, a d-system, and a monotone class; (iv) a collection of sets that
is both an algebra and a monotone class is a o-algebra; (v) a collection of sets that is
both a 7-system and a d-system is a o-algebra.

(¢) If IT is a w-system, and D a d-system that contains II, then o(II) C D. In particular
o(IT) = d(II), where d(II) is the smallest d-system containing II. In (d) we will get a
glimpse of the power of this lemma. Here, we prove it, step by step. Step 1: Explain why
it is enough to prove that d(II) is a 7-system. Step 2: To prove that d(II) is a m-system,
form the set d(II) 4 = {B € d(II): ANB € d(II)}, and show that if A € d(II), then d(II) 4
is a d-system. Step 3: Show that if A € II, then d(II) C d(II)4. Step 4: Show that if
A € d(II), then we still have that d(IT) C d(IT) 4. Step 4: Conclude from the above that
d(IT) is a m-system.

(d) Let v and p be measures on (£2,.4) such that v(2) = p(£2) is finite, and suppose v
and u agree on a 7-system that generates A, i.e., A = o(II). Consider the collection of
sets given by

D={AecA:v(A) = pu(A))}.

Since IT C o(II) = A and v(A) = u(A) for all A € 11, it is clearly the case that II C D.
Show that D is a d-system and conclude from (c) that v = p.

(e) We now turn to a theorem that is quite similar to that proved in (c), the difference
being that our basis events form an algebra, and an algebra is a 7w-system, but the reverse
need not hold. Here is the theorem: Let  be a set, and Ag an algebra of subsets of
Q. Suppose that M is a monotone class of subsets of Q and that Ay C M. Then
o(Ag) € M. To prove this, we proceed in steps. Step 1: Let m(Ag) be the smallest
montone class containing Ag, and argue that it suffices to prove that m(A4g) is a o-
algebra. Step 2: Show that m(A4g) is closed under countable unions. Step 3: Form the
set M. = {B € m(Ap): B® € m(Ap)}, argue why it is now sufficient to prove that M.,
is a monotone class, and prove that M, is indeed a monotone class.

(f) If Ap is an algebra, a natural question is how much bigger than Ay the o-algebra
it generates is. A partial answer to this question can be given by an application of the
monotone class theorem from which we conclude that if Ay is an algebra, then every
set in the o-algebra generated by Ay can be approximated arbitrarily well by sets from
Ag. To make this precise, let (2, 4,v) be a finite measure space. Let Ay be an algebra
contained in A, and form the family of subsets

M ={A € A: for any € > 0 there is an Ay € Ay such that v(AAAj) < e}.
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Here, AAB = (A\ B) U (B\ A) is the symmetric difference of the sets A and B. Show
that v(U32, A;A U2, By) = v(N52 ASA N, Bf) < Z;il v(A;AB;), which you may
use to show that M is a monotone class, and appeal the monotone class theorem to
conclude that given A € o(Ap) and € > 0, we can find Ay € Ay so that v(AAAy) < €.

(g) Let v and p be two finite measures on (£2,.A) such that v = p on an algebra Ay
contained in A, and consider the collection of sets M = {A € A: pu(A) = v(A)}. Use a
monotone class argument to show that v = p on the o-algebra generated by Ag.

(h) The measures in (g) need not be finite. Suppose that Q = U2 ; A,, for sets Ay, As, ...
in the algebra Ag on which u and v agree, and that u(A,) and v(A,) are finite for
n=12,..., then p = v on o(Ap). To prove this, fix C,,, show that collection of sets

M, ={A e A: un(ANC,) =v(ANC,)} forms a monotone class, and take it from there.

Ex. A.6 Lifting good candidates to bona fide measures. An important and useful general
result from measure theory is Carathéodory’s Extension Theorem. The point of this
theorem is to lift a set function defined on simpler subsets of a set than those contained
in a o-algebra, to bona fide measures defined on the full o-algebra. We start out with a
set function vy: Ag — [0, 0o] working on subsets Ag of an algebra A, of subsets of a set
2. Suppose that vy has the properties (i) vo(0) = 0; and (ii) if A;, Ao, ... is a disjoint
sequence in 4y whose union happens to be in Ay, then po(USZ,A4,) = D071 po(Ay).
Under these conditions, Carathéodory’s Extension Theorem says that 1y on Ay can
be lifted to a full measure v on o(Ap), with v(A) = 1y(A) for all A € Ay. Also, if
Q=Ul_ A, for sets Ay, Ay, ... in Ay and po(A4,) < oo for all n, then this extension is
unique.

Notice that if Ay had been a o-algebra, and not merely an algebra, then vy would
have been a measure. This is what distinguishes the present theorem from the results
of Ex. A.5(d) and Ex. A.5(g), where v and p were assumed to be defined on o-algebras,
that is, they were assumed to be measures. In the extension theorem, by contrast, v
has measure-like properties, but is only defined on an algebra.

Let us also mention the variations of Carathéodory’s Extension Theorem where the
function pg, instead of being defined on an algebra, as here, is defined on a semialgebra
or on a semi-ring. A semialgebra, say S, is a collection of subsets of a set Q such
that (i) if A,B € S, then AN B € &; and (ii) if A € S, then A° = U}_;B; for
By,...,B, € S. A semi-ring, say R, is a collection of subsets of a set Q such that (i)
deR; (i) if A,B € R, then AN B € R; and (iii) if A,B € R, then A\ B = U, Cj for
Cq,...,C, € R. The advantage with these two variations of Carathéodory’s Extension
Theorem is that natural basis events often constitute a semialgebra or a semi-ring, but
not an algebra. For example, S = {all intervals on R} is a semialgebra, but not an
algebra; and R = {(a,b]: a,b € R} is a semi-ring, but not an algebra. An algebra, on the
other hand, is both a semialgebra and a semi-ring. The reader might verify these claims.
Assuming that the basis events constitute a semialgebra or a semi-ring, rather than an
algebra, therefore amounts to imposing weaker conditions than we do here, and, as a
consequence, the proof is more involved than with the algebra version of the extension
theorem. We now prove the extension theorem, as stated above, through a string of
exercises.

Carathéodory’s
Extension
Theorem
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(a) Let Ay be an algebra of subsets of a set €, and let A\: Ay — [0, 00] be such that
A(D) = 0. Consider the collection of elements of Ag that splits every element of Aj ‘as it
should’, namely

Ay ={B e Ay: \(BNA)+ A(B°NA) = \(A) for all 4 € Ap}.
Show that A7 is an algebra, and that ) is finitely additive on Aj.

(b) If A is a o-algebra of subsets of 2, the set function A: A — [0, o0] is called an outer
measure if

(i) A(0) = 0;
(ii) A,B € Awith A C B, then A(A) C A\(B);
(ifi) if Ay C Ag C -+ are sets in A, then A(U2,A4;) < 372, A(4;).

Carathéodory’s lemma (not the theorem yet) says that if A is an outer measure on the
measurable space (€,.4), then the collection of elements of the o-algebra A that splits
every element of A ‘as it should’; that is

AY={B e A: A(BNA) + A(B°NA) = \(A) for all A € A},

form a o-algebra, and \ is countably additive on .A*, meaning that (£2, A*, \) is a measure
space. Let By, Bo,... be a sequence of sets in A*, and set B = Us2,B;. To show that
AMA) = AMANB)+ AMAN B°) for any A € A, show that A\(A) < A(ANB) + A(AN B°)
and A(A) > A(ANB)+ (AN B°). For the latter inequality, consider sets C,, = 37, Bj,
and use that from (a), A is finitely additive.

(c) We are now ready for the extension theorem, as stated in the introduction to this
exercise, and prove this theorem in three steps. Step 1: For G € 2%, define

/\(G) = 1nf{z ILLO(F]‘): Fi,Fy, ... € Ap such that G C Uj21Fj},
Jj=1

and prove that ) is an outer measure. By (b), ) is a measure on (£, .A*), with A* defined
as in (b) (so A = 2%). This observation leads to the two final steps. Step 2: Show that
Ay C A*. Step 3: Show that A = py on A*. We can then define p to be the restriction
of A to A= 0(Ag) C A*, with the inclusion coming from the already proven fact that
A? is a o-algebra.

(d) Point to Ex. A.5(h) to argue that if Q = U2, A, for sets A, As,... € Ay with
w(A,) < oo form=1,2,..., then the extension is unique.

Ex. A.7 Lebesque measure. In this exercise we apply Carathéodory’s extension theorem
to the construction of Lebesgue measure on R. The basic property of Lebesgue measure,
say A, is that for any interval

Al(a, b)) = A(la, b)) = A((a, b)) = A([a, b)) = b —a,

the length of the interval in question. We want to have A as a measure on the Borel-
o-algebra B(R), but it is not at all obvious that such a measure exists. Recall from
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Ex. A.2 that the only way we mange to describe the elements of B(R) are via the various
generating classes (e.g. all open intervals), so how are we then to describe A(B) for some
arbitray set B in B(R)? The solution is to define A for a simpler class of subsets of R,
and then use Carathéodory’s theorem to extend the domain of A to all of B(R).

(a) Let S be the collection of all half-open intervals (a, b] on R (if a > b, then (a, b] = 0),
as well as all infinite intervals of the form (—o0,b] and (a,00). Let Ay be a collection of
sets consisting of all finite disjoint unions of elements of S. Show that Ag is an algebra,
and that B(R) = o(Ap).

(b) We define A: Ay — [0, 0] to be such that A((a,b]) = b — a when a,b are finite, and
to be oo when at least one of them are not. Thus, A gives what we think of as the length
of an interval. For disjoint intervals I1,..., I € S, define

MUTZ ) = M) + -+ M),

so, in particular, if I; = (aj;, b;] with a;,b; € R for j = 1,...,n, then A(U}_,(a;,b;]) =
Z?Zl(bj — a;). Show that this is unambiguous, meaning that if Uj_;1; = U2, I/, then

AU 1) = MU ).

(c) Show that A(0) = 0, and that X is finitely additive on Ap. In order to lift A from
the algebra Ag on which it is currently defined to the o-algebra B(R) that Ag generates,
we need to show that A is countably additive on Ag. This is the hard part. We start
by showing that if US2,(a;,b;] = (a,b] for disjoint intervals (a1, b1], (az,ba],. .., then
Aa, b] = 2?21 A(a, b]. To prove this equality, prove the inequality both ways. First, show
that if U7_, (a;,b;] C (a,], for disjoint (a1, b1],. .., (an, bp], then 377, Aaj, bj] < A(a,b].
Second, if (a1, b1], (az, ba], .. . are disjoint, and U2 (a;, b;] C (a,b], then 3772, May, b;] <
A(a,b]. Now we get to the reverse inequality. Third, show that if (a,b] C U}_;(ay, bj],
then A(a,b] < Z?Zl(aj,bj]. Fourth, if (a,b] C US4 (ay, b;], then A(a,b] < Z;’;l(aj,bj].
To prove this fourth claim, note that for any ¢ > 0 smaller than b — a,

[a+¢,b] C (a,b] CUFZ,(ay,b;] C U2, (aj,b; +¢/2%).

Thus, the closed and bounded set [a+¢, b] is covered by the open sets (a1, b1+¢/2), (az, ba+
e/4), (as,bs+¢/8), ..., so by the Heine-Borel theorem it must then have a finite subcover,
i.e., [a+ ¢,b] is compact. Take it from here.

(d) Show that A extends to a measure on Borel o-algebra B(R), and that this extension,
which is Lebesgue measure on the real line, is unique (see Ex. A.6(d)).

(e) Now that we have Lebesgue measure on the real line, we can construct Lebesgue
measure on any subinterval of the real line, for example ([0, 1], B[0, 1]) or (][0, cc), B0, 00).
Construct Lebesgue measure on these two measurable spaces.

(f) Establish similarly Lebesgue measure on (R?,B2), i.e. on the plane, with its Borel
sets, starting from the area of rectangles A((a1,b1) X (az,b2)) = (b1 — a1)(ba — az2). Via
the Carathéodory lifting, this gives rise to a well-defined way of measuring the area of
any Borel subset A on the plane.
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(g) Once the fundamental Lebesgue measure has been properly put on the map, it will
be easy to define classes of others, via cumulative distribution functions and densities;
see Ex. A.14 and A.20 below. It is nevertheless useful to go through direct arguments,
resembling those for the Lebesgue measure itself, for a few concrete instances. Do this for
the measures p and v on the positive halfline, starting with respectively u(a,b) = log(b/a)
and v(a,b) = b? — a?, for intervals (a,b).

Ex. A.8 Almost surely and infinitely often. Let (Q,.A,u) be a measure space. A
property is said to hold p almost surely, or u-a.s., or simply a.s. if there is no confusion
about the underlying measure, if it holds for for all w outside of a set of u-measure zero.

(a) Let (R,B(R),\) be a measure space with A Lebesgue measure. Look back at
Ex. A.4(e) to show that the indicator function Ip\g = 1 almost surely.

(b) From Ex. A.2(h), recall the sequence fn(z) = (\/27/n)~!exp(—3na?) for n =
1,2,..., defined on the measure space (R, B(R), \). Show that f,, — 0 almost surely.

(¢) Suppose that the sequence of measurable functions fi, fa,... converges to f almost
surely. Show that f is measurable. Compare this to what you showed in Ex. A.3(f).

(d) Let (2,.A, 1) be a measure space and Aj, As, ... a sequence of sets in A. Show that
limsup,, , ., A, = 0 if and only if lim,,—, o p(U_, Ap,) = 0.

(e) Let Ay, As,... be a sequence of sets, and I4,,I4,,... the corresponding sequence of
indicators functions. Show that liminf, . 14, (w) = 1if and only if w € Up>1Nym>n Am.
Show also that limsup,,_,. fa,(w) = 1 if and only if w € Ny>1 Up>n Am. These two
equivalences motivate the definitions

liminf A, = Up>1 Np>n Am,  and  limsup Ay, = Ni>1 Umsn Am.
n—oo - - n—oo - -

Show that these sets are measurable provided the sets Ay, Ao, ... are. In probability and
statistics one encounters the notion of something occurring infinitely often, or i.o. This
notion is defined by
Aio. =limsup A, = Np>1 Um>n Am
n—oo

= {w € Q: for every n there is an m = m(w) > n such that w € A,,}
={w € Q: w € A, for infinitely many n}.
(f) Let (£, A, 1) be a measure space and assume that A;, As,... € A are such that

Yoo (Ay) < co. Show that p(4;,) = 0. In Ex. A.19 we will study several illustration
of the use of this lemma, and also see that it has a partial converse.

(g) Let (92, A, 1) be a measure space, and let Ay, Ao, ... € A. Show that

p(liminf A,) < liminf u(A4,).

n—oo n—oo

This inequality, known as Fatou’s lemma, holds not only for sequences of indicator func-
tions, but, as we will see in Ex. A.11(b), for any sequence of nonnegative measurable
functions.
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Ex. A.9 Convergence in measure/probability. Let f, f1, fa,... be measurable functions
on a measurable space (2, 4, u). The sequence fi, fa,... converges to f in measure, if
for any € > 0,

lim pu({w € Q: [falw) — (@) 2 e}) =0,

If u(2) = 1, so that p is a probability measure, then convergence in measure is called
convergence in probability.

(a) If f,, — f almost surely, then f, — f in measure. To show this, consider the sets
A, ={w e Q:|fn(w) — f(w)| > €} for some € > 0, show that Nyp>1 Up>pn An C A, where
A is the set where f,(w) does not converge to f(w), and take it from there.

(b) Show that if f, — f in measure, then there is a subsequence f,,, such that f,, — f

almost surely. To construct such a subsequence, you may use the Borel-Cantelli lemma
from Ex. A.8(f).

(c¢) Let ([0,1], B, A) be the unit interval with the Borel-o-algebra and the Lebesgue mea-
sure. Divide the unit interval in 2,3, ... pieces: Ay = [0,1/2], A2 = (1/2,1], A5 =[0,1/3],
Ay =(1/3,2/3], As = (2/3,1], and so on. Define the function f,(z) = I(x € A,,). Show
that f,, — 0 in measure, but not almost surely.

Ex. A.10 The Lebesque integral. After having defined measures and measurable func-
tions, the next goal is to form a well-defined integral, say [ fdv = [ f(w)dp(w), with
(92, A, 1) a measure space, and with f: Q — R a measurable function.

(a) We start with f a nonnegative and simple function on standard form, that is, f is
on the form f = a1la, + -+ arla, for some n > 1, with disjoint sets Aq,..., A € A
such that U?:1Ak = (), and nonnegative real constants ai,...,a,. We then define the
integral of f as

[ Fan=autan +-+ autan) (A1)

If any of these sets have infinite measure and coefficient zero, we follow the measure
theoretical convention that 0 - co = 0. Show that (A.1) is unambiguous, giving the
same value for different representations of the same simple function, i.e., show that if
g ="0biIp, + -+ byIp, is another nonnegative simple function on standard form such
that g(w) = f(w) for all w € Q, then [gdu = [ fdpu.

(b) Show that [ fdpu, as defined in (A.1), is linear and nondecreasing. That is, for non-
negative and simple functions on standard form f and g, and nonnegative real constants

a,b, we have [(af +bg)dp=a [ fdu+0b[gdu; andif f <g, then [ fdu < [gdp.

(c) Next, we extend the integral to any nonnegative measurable function f: Q — R,.
To do so, pick a sequence of nonnegative simple functions 0 < f; < fa < --- such that
fn — f, the existence of which is guaranteed by Ex. A.3(g), and define

/fdu:nli_{r;o/fndu.

We need to prove that [ fdu is independent of the approximating sequence f,. To do
this, let 0 < g1 < g2 < --- be some other sequence of nonnegative simple functions on

convergence in
probability
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standard form converging to f, and show, first, that lim, o [ g, dp < [ fdp. Second,
consider the sets 4,, = {w € Q: g(w) > fr(w)}, argue that liminf,, o T4, fr = fi, and
use Fatou’s lemma (Ex. A.8(g)) to show the reverse inequality, lim, o0 [ gn dp > [ fdp.

(d) Let’s look at some of the properties of the integral defined in (d). Let f,g: Q — R,
be measurable, and show that the integral is (i) linear [(af+bg)dp =a [ fdu+b [ gdu;
and (ii) nondecreasing, if f < g almost surely, then [ fdu < [ gdp. Show also that (iii)
[ fdp = 0if and only if f = 0 almost surely; (iv) if f > 0 almost surely, then [ fdu > 0;
(v) if f = g almost surely, then [ fdu = [gdp; (vi)if [, fdu= [, gduforall Ae A
and p is o-finite, then f = g almost surely; and (vii) if [ fdu < oo, then f < co almost
surely.

(e) Now, we extend the integral to measurable functions f: Q — R taking on positive
and negative values. This requires some more care, for if a nonnegative function f equals
oo on a set of positive measure, then we can set [ fdu = oo, but this does not work
for functions taking on really large positive and really small negative values, as we may
end up in 0o — 0o type trouble. Therefore, the integral of functions taking values in R
is only defined for those functions that are integrable. For a fully general measurable f,
we may represent it as f = fi — f_, where f; = max(f,0) and f_ = max(—f,0) are
two nonnegative measurable functions (see Ex. A.3(f)). We say that f is integrable if
J | f|dp is finite. For integrable functions f, we then define

[tan=[tean- [ ran.

Show that f is integrable if and only if [ fi dp and [ f_ du are finite. Show also that if
w1 is a finite measure, and f is bounded, then f is integrable.

(f) If A is measurable and f is a measurable function, show that fI4 is measurable too.
We can hence define fA fdp = [Iafdp, where, in the case that f takes both positive
and negative values, we require that I4 f is integrable.

(g) Assume that f,g: Q — R are two integrable, measurable functions, and let a,b € R
be constants. Show that af + bf is measurable and integrable, and that

(i) f(af +bg)dp=a [ fdu+Db[gdu;
(ii) if f < g, then [ fdu < [gdy;
(itt) | [ fdpl < [1fldp;

(h) Some more properties of the integral defined in (e). Let f,g: Q — R be measurable
functions, and A, B € A. Show that (i) if A C B are measurable sets, then fA fdu <
[ £dp; (i) if u(A) = 0, then [, fdp = 0; (iii) if f is integrable and f = 0 almost surely,
then [ fdu =0; (iv) if f = g almost surely, then [ fdu = [gdy; and (v) if f and g are
integrable and [, fdu = [, gdu for all A € A, then f = g almost surely.

(i) Let f = g + ih be a measurable complex valued function defined on the measurable
space (2, A, 1), where g,h: Q@ — R are measurable functions (see Ex. A.3(d)). Since
If| < |g| + |h|, we see that f is integrable, i.e., [|f|dp < oo, if g and h are. For an
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integrable f: @ — C we define [ fdu = [gdp+ i [hdp. Show that linearity of the
integral, (g)(i), extends to the integral of complex valued functions, where now a,b € C;
and that the inequality | [ fdu| < [ |f]dp also holds for complex valued functions.

Ex. A.11 Convergence theorems. One of the main objectives of the integration theory
developed in the preceding exercises is to find general criteria for when lim,, o [ f,, dp =
f limy, oo frndu. The theorems that give various sets of conditions for when we can
pass the limit under the integral sign, are the convergence theorems of measure theory.
Remember that the measure p can be any measure on any measurable space, so the
theorems that follow are very general, they will, for example, apply to sums Z;’;l fn(9),
as well as to Riemann integrals [ f,(z)dz. All the functions below are defined on a
measure space (2, A, 1), and take values in R, R, or C. Note that these theorems are
often stated under the assumption that a sequence converges almost surely to some limit
function. Here, however, we state these theorems with the weaker and statistically and
probabilistically more applicable assumption, we think, that the convergence occurs in
measure (or in probability of u(€2) = 1). The reader is free, perhaps even advised, to
first prove the theorems under the an convergence a.s. assumption, and then extend the
results to its in measure version.

(a) Suppose that fi, fa,. .., is a sequence of measurable functions such that | f,, (w)| < M
for all w and n, that p is a finite measure, and that f,, — f in measure. Show that

lim, o0 [ frndp = [ fdpu.

(b) Suppose f1, fa,... is a sequence of nonnegative measurable functions. Show that

/lim inf f,, du < lim inf/fn dy.
—00

n—oo n

Assume in addition that f,, — f in measure. Show that [ fdu <liminf, . [ f, dp.

(¢) Suppose that fi, fa2,. .. is an nondecreasing sequence of nonnegative measurable func-
tions such that that f, — f in measure. Show that f, — f almost surely, and that

lim, o0 [ frndp = [ fdu.

(d) Let f1, fa,... be a sequence of measurable functions such that f,, — f in measure.
Suppose there is a nonnegative integrable function g so that | f,,(w)| < g(w) almost surely
for each n. Show that the limit function f is integrable, and lim, oo [ |fn — f]dp =0
and that lim, o [ f,dp = [ fdp.

(e) As a corollary to the Dominated convergence theorem, suppose that the dominating
function g, instead of being merely integrable, is so that g? is integrable for some p > 1.
Show that then f? is integrable, and lim, oo [ |fn — f|P dp = 0.

(f) We extend the Dominated convergence theorem to complex valued functions. That
is, suppose that the f1, fo,...in (d) is a sequence of measurable complex valued functions
(see Ex. A.10(i)), satisfying the conditions in (d). Show that the same conclusion holds.

(g) Suppose that f1, fo,..., is a sequence of measurable complex valued functions such
that |f,,(w)| < M for all w and n, that u is a finite measure, and that f,, — f in measure.
Show that lim,, e [ frndp = [ fdp.
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Ex. A.12 More properties of the integral/Applications of the convergence theorems. In
this exercise we apply the convergence theorems of Ex. A.11 to work out a few more
properties of the Lebesgue integral and touch on a proof strategy that appears again and
again when working with the Lebesgue integral, so often that the strategy sometimes
goes by the name of a bootstrapping argument (not to be confused with bootstrapping in
statistics). All the functions in this exercise are defined on a measurable space (€, A, p).

(a) First, let Ay C Ay C --- be sets in A, and let f:  — R be integrable over Us2,4;.
Show that lim,, oo fA" fdu=[, f_du where A = U2, A;. Second, let By D By D -+ be
sets in A, and assume that f: 2 — R is integrable over B;. Show that lim,,_, o, an fdu=
J fdu, where B =72, B,,.

(b) Let f1, fa,... be a sequence of extended real valued measurable functions. They
are nonnegative only if explicitly mentioned. (i) If f, > 0 for each n, show that
S22 fidw = 3552, [ fydu. Here, both sides are either finite or infinite. (i) If
E?‘;l fi < oo almost surely, and each partial sum is bounded by the same integrable
function g, then f, and each partial sum is integrable, and [ 37, fidp = [ 3772, f;dp.
(iti) If 372, [1fildp < oo, then 3772, [f;] < oo almost surely, this sum is integrable,
and [, fidp = [3°72, fjdu. See Ex. A.31(c) for important applications of these
results.

(c) Let f1, fa,... be a sequence of measurable complex valued functions. Show that if
Yooy J 1 fuldp < oo, then [377° ) fudu =377, [ fadp.

(d) Deduce from (b) that if f is a nonnegative measurable function, then v(A) = [, fdu
for A € A defines a measure on (2, 4). One says that f is the density of v with respect
to w, and write f = dv/dp. Show that if u(A) = 0 then v(A) = 0; one says that v is
absolutely continuous with respect to u, a property denoted v < u. Notice also that
since v is a measure, the properties of measures studied in Ex. A.4 and Ex. A.5 carry
over to integrals of nonnegative functions. We treat densities in more details in Ex. A.20.

(e) Let v(A) = [, fdu be the measure introduced in (d). We want to show that that

/gdv = /gfdu, (A.2)

for any measurable function g. To do so, we emply a bootstrapping argument. It goes
like this: First, prove (A.2) for indicator functions g = I4. Second, extend (A.2) to
simple functions g = Z§=1 ajla,. Third, use Ex. A.2(g) and the monotone convergence
theorem, and deduce that (A.2) holds for measurable functions g: 2 — Ry. Finally,

using linearity again, show that (A.2) holds for all measurable functions g: Q@ — R,
provided g is integrable with respect to v.

(f) Let (2,A,u) be a measure space, (X,B) a measurable space, and f: Q@ — X a
measurable function. From Ex. A.4(h) we know that uf~': B — [0,00] is a measure.
Let g: X — R be integrable with respect to uf~!. Show that

/ o(f (@))dp(w) = / o(2) d(uf ) ().
1) B
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You may once again use a bootstrapping argument to show this. For the measurability
of g(f(+)), see Ex. A.3(i).

(g) Here is a lemma whose importance in Chapter 5 cannot be exaggerated, and whose
proof employs the dominated convergence theorem. Let (), .A) and (R, B(R)) be mea-
surable spaces. Suppose that g: ) x R — R is such that y — g(y,6) is measurable and
integrable for each 6 € (a,b) C R, and that dg(y, #)/00 exists for all 6 € (a,b). Show that
9g(y,0)/00 is measurable. Suppose further that there is an integrable function h(y) such
that |0g(y, 0)/00| < h(y) for all § € (a,b) and all y, combine the fundamental theorem
of calculus and the dominated converge theorem to show that

d

T 9(y,0) du(y) =/%g(y,9)du(y), for 0 € (a,b),

that is, we can pass the derivative under the integral sign.

(h) Suppose f: [a,b] — R is a Riemann integrable function. Show that f is Lebesgue
measurable, and that its classical Riemann-definition integral f; f(z) dz coincides with
the more general integral we’ve worked with in this exercise, fab f@)dA(z) = f; FdA,
with A the Lebesgue measure defined on the Lebesgue subsets of [a, b].

Ex. A.13 Probability spaces. Mathematically speaking, we are free to define the basics
of probabilities, along with axioms these should satisfy, without yet tying these to the
so-called real world. So let us define a probability space as a triple (2, A, P), where € is
a set; A a o-algebra of subsets of Q; and P: A — [0,1] a probability measure, defined
simply to be a measure, in the sense of Ex. A.4, with full measure P(Q) = 1.

We may envisage P as a probability machine, assessing to each A a probability
P(A). Such a probability measure on (€2,.4) has axiomatic properties following those of
more general measures, given in Ex. A.2, and for convenience stated again here, for the
present case of P(Q) = 1. We demand

(i) that P(0) = 0;
(ii) that Pr(Ue,A;) = >"5°, Pr(4;) for are disjoint sets Ay, Aa, ... in A;
(iii) and that P(Q) = 1.
The subsets A can be given several names, including events; the conceptual idea is that
we do not yet know whether a certain A occurs or not, but we can give it a probability.

(a) For all events A and B show that Pr(A \ B) = Pr(4) — Pr(4A N B); that Pr(A) =
1 — Pr(A°); and that Pr(AU B) = Pr(4) + Pr(B) — Pr(A N B). Generalise this latter
formula to the union of three events, and then try to generalise it to the union of four or
more events.

(b) If A and B have probabilities 0.95, or more, show that Pr(A N B) > 0.90. Gener-
alise. This simple lower-bounding of certain types of probabilities is sometimes called
the Bonferroni method, or Bonferroni correction.

(c¢) From Ex. A.4(b) we know that if A; C Ay C ---, then Pr(U32, A,,) = lim,,_,o Pr(A4,);
and, secondly, if A1 D As D -+, then Pr(N®,4,,) = lim,_, o Pr(4,). Show that either
of these two statements could replace (ii) in the axiom list above.
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(d) Above we have been careful to define probability measures P for large collections
of events, namely o-algebras, but also avoiding defining P(A) for every subset A. At-
tempting to do that, in various natural spaces, will lead to difficulties and incoherencies,
related to the existence of non-measurable sets. These issues are not present when the
full space (Q is finite, however, as one can simply allow every subset to be included, in the
set of subsets for which a probability is attached. Show indeed that if Q = {wy,...,wmn},
with perhaps a large m, and these singletons are attached probabilities p1, ..., pm, (non-
negative, with sum 1), then

Pr(A) = Z pj, for any subset A,
j:rw;€A

defines a probability measure on (2,.4), where, in this case, A = 2 the set of all 2™
subsets (which, from Ex. A.2(a), we know is a o-algebra). Generalise to the case of
countably big spaces, say 0 = {w1,ws, ...}, with pointmasses pi,ps, ... summing to 1.
In these cases the collection A of all subsets is the natural set of events.

Ex. A.14 Distribution functions. Consider the case where the probability space is
(R, B, P), with B = B(R) the Borel o-algebra on the real line, and P is some probability
measure on this measurable space. For such a P, define the cumulative distribution
function (c.d.f. for short) as

F(t) = PI'(At), with At = (—oo7t]7
where we also allow the simpler notation P (oo, t] for P((—o0,t]).

(a) Show that F' is nondecreasing, right continuous, with F(t) — 1 and F(t) — 0 as
t — oo and t — —oo, respectively. Show also that F'(t — 1/n) — Pr(—o0,t), and that

Pr(a+1/n,b—1/n]=F(b—-1/n)— F(a+1/n) —» F(b—) — F(a) = Prla,b),

for all intervals (a,b). Here F(b—) is notation for the limit of F(b —¢) as ¢ — 0,
converging to zero from above, and is also the same as P(—o00,b).

(b) Show that Pr({t}), the probability assigned to the fixed point ¢, is F(t) — F(t—).
This probability is often zero, as is the case for all ¢ if F' is continuous. Show that the
set Dp of discontinuities for F' is at most countably infinite.

(c) Suppose P; and P, are two probability measures on (R, B), with the same c.d.f.,
ie. Fi = F». An important fact (to say the least) is that if F; = Fb, then indeed
Pi(A) = Py(A) for all A € B(R). Show this, from Carathéodory’s Extension Theorem of
Ex. A.6, or, alternatively from one of the theorems of Ex. A.5. Very conveniently, this
allows one to define a full probability measure P by giving only its c.d.f., or its values
for all intervals. For example, saying that P(a,b) = f;(27r)*1/2 exp(—32?) dz, for all
intervals (a,b), is a sufficient description of the standard normal distribution; we don’t
need to give a more laborious recipe for how to compute P(A) for more complicated
events A.
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(d) Suppose P is a probability measure on (R? B), where B = B(R?) is the Borel-
o-algebra in the plane (see Ex. A.2(e)). Define the cumulative distribution function
corresponding to P by

F(t1,t2) = P(Ay 1) = P((—00,t1] x (—00, ta]).
Show that for any rectangle,
P((al,bl] X (a2,b2]) = F(al,ag) — F(al,bg) — F(CLQ,bl) + F(ag,bg).

Use again Ex. A.5, or indeed Carathéodory Extension Theorem of Ex. A.G, to prove that
if two probability measures are equal for all rectangles, then they are identical, i.e., giving
the same probability to any Borel set. Thus a probability measure P on (R?, B2) is fully
determined by giving its F'(t1,t2) function.

(e) Attempt to generalise (d) to dimension k, i.e., to (R¥, B(R¥)); in particular, the
probability attached to a rectangle (a1,b1] % (ag, br] can be expressed as a sum of values
of F computed at the 2* vertices of the rectangle, with +1 signs, as seen above for k = 2.

(f) Let P be a probability measure such that the distribution function F(z) = P(—o0, z]
(see Ex. A.14(c)) is montonically increasing. Suppose that g is a real valued function
such that the Riemann—Stieltjes integral fab g dF exists. Show that f[a p9dP = fab gdF.

Ex. A.15 Random wvariables. Speaking mathematically, a random wvariable is a mea-
surable function on a probability space. Measurable functions were defined in Ex. A.3,
but let us repeat some of the details. With (2, A, Pr) a ‘background’ probability space,
we construct random variables as measurable functions X: Q@ — X, where (X,B) is
the measurable space where X (w) lands. Measurability means that the inverse images
X7Y(B) ={w € Q: X(w) € B} are in A for any B € B. As is common, we often write
{X € B} instead of the more cumbersome {w € Q: X (w) € B}, and Pr(X € B) instead
of Pr({w € Q: X(w) € B}).

(a) The probability distribution, distribution, or law, of a random variable X, say P, is
defined by

P(B) =Pr(X € B) =Pr(X *(B)), for BecB.

With pedantic care, we define P via (Pr X~1)(B) = Pr(X~}(B)). Even though this
is just repeating Ex. A.4(h) with the extra requirement that P(X) = 1, show that
P =Pr X! indeed is a probability measure on (X, B).

(b) Often what matters is the distribution of X, rather than particularities of the back-
ground space. Indeed there may be different spaces (£2;,.A;,Pr;) and random variables
X;: Q; — X inducing precisely the same distribution, i.e., the different P; = Pr; Xj_1
might be identical. For a given P on (X, B), show that the identity map z +— z is
one such construction, leading to a random variable X with distribution P. In the case
of X;: Q; — R, we have seen in Ex. A.14 that what matters is the c.d.f. Pr;(X; <
t) = Pj(—oo,t] = Fj(t); as long as these are equal, the distributions P; = Pr; X;l are
identical. Give three separate such constructions of the standard normal distribution.

probability
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() If X:Q — R is a random variable, defined on a background probability space
(Q, A, Pr), its mean, or expected value, is defined as

EX = /XdPr: /X(w) dPr(w)

as long as this integral is finite, i.e., X is integrable. Since the expectation is a Lebesgue
integral (as defined in Ex. A.10), the convergence theorems of Ex. A.11, as well as the
properties of the Lebesgue integral derived in Ex. A.10(g)—(h) and Ex. A.12 apply. In
particular, with g: R — R any measurable function, deduce from Ex. A.12(f) that

Eg(X) = /g(X(w))dPr(w) = /g(m) dP(x), with P=PrX

provided g is P-integrable. In particular, only the distribution P of X matters, not the
details associated with the background probability space.

(d) With the mean of a real random variable well defined, we may of course go on to
other and higher moments. For a random variable X : Q — R, as above, with ¢ = E X
show that

B(X-¢ = [(X-¢PdPr= [ @-¢PdP@)= [ ydQu)
—00 0
with @ the distribution of Y = (X — &)?; so there’s no ambiguity. This quantity is of
course the variance of X, denoted Var X = E (X — £)2. The square root of Var X is
called the standard deviation of X.

(e) Consider integrable random variables X,Y: © — R defined on the same background
probability space (2,4, Pr). Show that E (aX +0Y) =aEX +bEY (see Ex. A.10(g)),
and generalise . In particular, for integrable random variables Xi,...,X,, we have
EX;+ -+ X, =EX; +---+EX,, regardless of any dependencies between these
variables.

(f) For variables with finite second moments, show that Var X = E X?—(E X)?2. Since the
variance must be nonnegative, we get that E X2 > (E X)2. This is a nice reminder of what
way the inequality goes in Jensen’s inequality: E g(X) > ¢g(E X) whenever g: R — R is
a convex function, i.e., a function such that g(az + (1 — a)y) < ag(z) + (1 — a)g(y) for
all 0 < a <1 and all z,y € R. Prove it. Show also that (E|X|")'/" is increasing in 7.

Ex. A.16 Product measure and iterated integrals. Let (X, A, u) and (¥, B,v) be two
o-finite measure spaces. The measurable space (X x V), A® B) consists of the Cartesian
product X x Y (see Ex. A.1(f)) and the o-algebra A ® B generated by the measurable
rectangles A x B, for A € A and B € B. In this exercise we first construct a measure
uwxvon A® B, such that (u x v)(A x B) = u(A)v(B) for all measurable rectangles
A x B. This measure is called the product measure. Second, we establish conditions
under which we can compute double integrals by iterated integration,

/fduxz/ //fxydu ) dpu(x //fzydu ) du(y). (A.3)

for measurable functions f: X x ) — R.

the expectation
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(a) Show that Il = {A x B: A€ A, B € B} is a m-system generating A ® B.

(b) For (A.3) to make sense, we need a technical lemma. Assume that f: X xY — [0, 00)
is measurable, and that y is o-finite. Then (i) z — f(z,y) is A-measurable for each y € Y;
and (i) [ f(z,y)du(x) is B-measurable. To prove (i) and (i), assume that y is finite,
check (i) and (ii) for f = I for C € II, then use Dynkin’s lemma (Ex. A.5(c)) to show
that (i) and (ii) holds for for f = I for C € A®B. Third, use a bootstrapping argument,
and, finally, extend what you have to u being o-finite.

(¢) Due to our efforts in (b), it makes sense to define

//chydl/ )du(z), for C e A®B.

Show that A is a measure, and argue that it is the unique measure such that A\(A x B) =
w(A)v(B) on the m-system from (a). Conclude from this that (A.3) holds for indicator
functions (so we could have defined A with the order of integration reversed), and, indeed
A is the product measure p x v.

(d) Combine what you found in (c¢) with the monotone convergence theorem (a boostrap-
ping argument) to show that (A.3) holds for all measurable functions f: X x Y — [0, c0].

(e) Suppose that f: X x J — R is integrable with respect to u x v. Show that (A.3)
holds also in this case. Notice that the sets {z € X': [, [f(z,y)|dv(y) = oo} and {y €
Y: [y |f(z,y)|du(r) = oo} have u- and v-measure zero, respectively (see Ex. A.10(d)),
so you can modify f on these sets to avoid oo — oo type trouble.

Ex. A.17 Convolutions. Let X and Y be independent real random variables with
distributions Px and Py, and cumulative distribution functions Fx(x) = Px(—00, ]
and Fy (y) = Py (—o00,y].

(a) For B € B(R) write B—xz = {b—2z:b € B} ={y € Riz+y € B}, and use
Ex. A.16(d) to show that
Pr(X+Y€B):/Py(B—m)dPX /PX B —y)dPy(y).
R

This defines the measure Py * Px on (R, B(R)), called the convolution of Px and Py,
ie., (Px*Py)(B) = [ Py(B—x)dPx(z), for B € B(R). Note also that the convolution
is commutative, i.e., Py * Px = Px * Py.

(b) Show that Z = X +Y has cumulative distribution function
HE) = [ (s - a)dPx(@) = [ Fx( - ) dFr (o)

Show also that if Py and Py have densities, say fx and fy, with respect to Lebesgue
meaures on the real line, then the distribution of Z, namely Py % Px, has density

2) = / fy(z — @) fx () dz = / Fx(z =) fr () dy,

also, as we see, with respect to Lebesgue measure. The density h is often denoted
(fx * fy)(2), which is called the convolution of fx and fy.

Tonelli’s
theorem

Fubini’s
theorem
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(c¢) (xx just a bit more, with X discrete and Y having a density. an illustration. also
pointers to mgf things and CLT etc. xx)

(d) If f,g: R — R are two functions such that [ g(z—x)f(x) dz is finite for all z, we may
also define the convolution (g f)(z) = [g(z — ) f(z)dz = [ f(z — y)g(y) dy for z € R.
Show that if g is bounded and continuously differentiable with a bounded derivative ¢,
and [ f(x)dz is finite, then (f * g)(z) is also bounded and continuously differentiable,
with derivative

@*n%@:wy*nw>:/51z—@ﬂ@dm

You may look at Ex. A.12(g) to find weaker conditions under which the equality above
holds. Notice also that f(z)dz may be replaced by any finite measure, i.e., the existence
of a density is not used.

(e) As a corollary to (d), suppose that g is k times continuously differentiable function
that vanishes outside of a compact set (i.e., g is nonzero only on a closed and bounded
set), and that f is as before. Show that (g f) is also k times continuously differentiable,
with derivatives (g * f)U) = (¢\9) x f) for j < k. Moreover, show that if f also vanishes
outside of a compact set (which need not be the same as for g), then g f vanishes outside
of a compact set.

(f) Let g be as in (e), and suppose that f is the density of the uniform distribution on
[a,b], i.e., f(z) =1/(b—a) for x € [a,b], and f(x) = 0 elsewhere. Show that (g * f) has
one more continuous derivative than g, and that these derivatives take the form

§)(z — a) — gz~ )
b—a ’

(9% /)9 (2) =

forj=1,...,k.

(g) We'll use our findings above to prove the existence of a infinitely smooth density
function with support [—1,1]. Let Uy, Us, ... be ii.d. uniforms on [—1,1]. Show that

Uy Uy Us
Yzi _ _
s=5 t t g

has a density, say f3, that is one time continuously differentiable. Proceed by induction
to show that the density of Y,,, = >, U, /2™ is m — 2 times continuously differentiable.
Finally, argue that the density of

Yy = i Un/2" = i Un/2" + Z Un /2",
n=1 n=1

n>n+1
is infinitely smooth, i.e., has infinitely many continuous derivatives.

Ex. A.18 Independence. Here we define and work through basic properties of indepen-
dence, for events and for random variables.

(a) For a probability space (2,4, Pr), we start out saying that two events A and B are
independent if Pr(ANB) = Pr(A)Pr(B). Show that then also A and B¢ are independent,
A¢ and B are independent, and A° and B¢ are independent. Show that all events are
independent of the emptyset and of the full set (2.
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(b) Try to exhibit an example, with a finite Q, of events A, B,C such that A and
B are independent, A and C' are independent, B and C are independent, but where
Pr(ANn BNC) # Pr(A)Pr(B)Pr(C). Hence care is needed when defining independence
for more than two events. We say that Ay,..., A, are independent if

Pr(A4;, Nn---A;,) =Pr(4;,) --Pr(4;,), forany {i1,...,ix} C{1,...,n}.

Show that this is equivalent to requiring that Pr(B; N ---NB,) = Pr(By) - - Pr(B,) for
the 2™ such equations obtained by setting B; = A; or B; = AS.

(¢) The definition in (b) extends to countably infinite many events. The events Ay, Ao, ...

are independent if for any finite number of distinct indices 41,...,4, € {1,2,...}, the
events A;,,...,A; are independent, in the sense defined in (b). We say that the sub-
o-algebras Gi,Gs,... of A are independent if for arbitrary representatives A; € G,

As € Go, and so on, the events Ay, Ao, ... are independent. Suppose that II; and Il are
two m-systems such that Pr(A; N Ay) = Pr(A;)Pr(As) whenever A; € TI; and A, € 5.
Use Dynkin’s lemma (see Ex. A.5(c)) to show that o(II;) and o(Il3) are independent.
Generalise to m-systems II;, Iy, ... and o-algebras o(II1), o(Il2), . . ..

(d) Consider random variables X1, Xa, . .. defined on the probability space (£2,.4, Pr). We independent
say that Xq, Xs,... are independent if the o-algebras they generate, o(X1),0(Xy),. .., izrr‘iﬁ;s
are independent in the sense defined in (¢). Suppose that X and Y are two random

variables defined (£, A, Pr), and that
Pr(X <z,Y <y)=Pr(X <2)Pr(Y <y), foralzyeR,

i.e., their joint c.d.f. equals the product of the marginal c.d.f.’s. Use the result from (c)
to show that X and Y are independent.

(e) Consider the probability space ({1,2,3,4,5,6},2 Pr), where Pr is the uniform
probability measure on this space. Define the random variables X = I35, and
Y = I56y. Write down the full o-algebras o(X) and o(Y'), and show that, indeed,
Pr(AN B) =Pr(A)Pr(B) for all A€ o(X) and B € o(Y).

(f) Let (X,.A) and (Y, B) be measurable spaces, and let X: - X and Y: Q@ — Y be
random variables on the same underlying probability space, with distributions P; and
Ps, respectively. From Ex. A.16 we know that the measure P; X P, on, defined by

(P x Pp)(C //chydPg )P (z //Ica:ydPl x) dPy(y),

for C' € A® B, is the unique probability measure on (X x Y, A ® B) such that (P} x
Py)(A x B) = P1(A)Py(B) for all measurable rectangles A x B. Show that X and Y are
independent if and only if (X,Y") has distribution P; X Ps.

(g) So (PyxP)(C)=Pr((X,Y) € C) is now properly defined for much more complicated
sets than the direct product sets A x B. Let X and Y be independent, both with uniform
distributions on [—1, 1], with subintervals of equal length having the same probability.
Find the probability that (X,Y") lands inside the unit circle.
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(h) Show that if X and Y are independent random variables, and g and h are measurable
functions, then g(X) and h(Y") are also independent. Use a bootstrapping argument (see
Ex. A.12(e)) to show that

Eg(X)h(Y) = Eg(X)Eh(Y),

provided ¢g(X) and h(Y') are integrable. The covariance of two random variables W and
Z with means iy = EW and £z = E Z, respectively, is defined by

cov(W, Z) = E(W —&w)(Z = £2).

Show that cov(W, Z) = E (W Z) — éw&z, and conclude that if W and Z are independent,
then cov(W, Z) = 0.

(i) We must of course extend (f) and (h) to the case of more than two independent
random variables. With Xj,..., X,, defined on the same underlying probability space
(Q, A, Pr), their distributions are P; = Pr Xfl, ...,P, = PrX, ! Suppose that these
random variables are independent, i.e., 0(X1),...,0(X,) are independent o-algebras (see
definition in (d)), and show that this is equivalent to

Pr(X; <zy,...,Xp <) = Pi(—00,21] -+ Py(—00, ], forall xy,...,z, €R,
that is, again, the joint c.d.f. equals the product of the marginal c.d.f.’s. Generalise
the construction in (f): For j = 1,...,n, suppose that X;: Q — X; where (X;, ;) are
measurable spaces, and show that this gives rise to a well-defined product probability
measure () = P; X -+ X P, on the o-algebra B; ® --- ® B,,, generated by all rectangles

By x --- x By, where B; € Bj for j = 1,...,n. Generalise also the if and only if claim
from (f) to this higher dimensional setting.

(j) Show that if Xi,...,X,, are independent, and ¢i,...,gx are measurable functions,
then also g1(X1),...,gx(Xk) are independent. Show also that

Egi(X1) - gr(Xix) = Egi1(X1) - Egr(Xy),

when these means exist. The variance of a random variable was defined in Ex. A.15(d).

Let X4,..., X, be random variables with finite second moments, show that
n n n—1 n
Var(z X;) = ZVar(Xi) +2 Z Z cov(X;, X;),
i=1 i=1 i=1 j=i+1

and, consequently, by (h), that Var(3>! , X;) = > I, Var(X;) if the Xy,...,X,, are
independent. We note that double sums such as that on the right above are often written
Doi<icj<n Gilj = Z?:_ll Z?:Hl a;a;j. (xx point briefly to stigler and seven pillars. xx)

(k) Why product spaces? Because they are an efficient way of constructing probability
spaces on which an arbitrary number of independent random variables with arbitrary
distributions live. To see what is meant by this, consider the probability space from (e).
Is it possible to construct two independent Bernoulli random variables with the same
success probability on this space? Is it possible to construct more than two independent
Bernoulli random variable on this space?
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(1) Suppose that Ay, As, ..., By, Ba,... are independent events. Show that the o-algebras
0(Ay, As,...) and o(By, Ba,...) are independent. Let A;, Ao, ... be independent events,
and consider the tail-o-algebra A = NS 0(An, Apt1,...). Prove Kolmogorov’s zero-one
law, namely that if A € A, then Pr(A) =0 or Pr(4) = 1.

Ex. A.19 The Borel-Cantelli lemma. Let Ay, As, ... be events, in a relevant probability
space, with probabilities p; = Pr(A4;). Consider A; . = Np>1Um>nAp, = limsup,,_,o An,
the full-sequence event corresponding to the A,, occurring infinitely often (see Ex. A.8).
In Ex. A.8(f) we proved that of Z?;pi is convergent then Pr(A4;,. ) = 0, so sooner or
later, there will be a finite (but random) n, such that none of the A,, will ever occur, for
m > n. In (b) we prove a partial converse of this result.

(a) Let Ay, As, ... be a sequence of events, and let N be the total number of occurrences
of the A;. Show that EN = >"°, p;.

(b) Assume in addition that the A, As,... are independent. Show that if Y >~ p; is
divergent, then Pr(A4;,) = 1. In particular, for the case of independent events, there
can’t be say a 50 percent chance that there will be infinitely many occurrences.

(¢) Consider independent Bernoulli 0-1 variables X; with Pr(X; = 1) = p;. What is
the probability for having infinitely many X; = 1, for p; = 1/i%%, for p; = 1/i, for
p; = 1/i1017

(d) Let X7, Xo,...beliid. from the unit exponential distribution. Will there be infinitely
many cases with X; > 0.99 log i, with X; > logi, with X; > 1.01 log?

(e) Let X1, Xo,... be ii.d. standard normal. Show first that
Pr(X; >a)=1-®(a) = ¢(a)/a,

in the sense that the ratio between the exact and the approximate quantities tends to
1. (xx this is the Mills ratio. xx) Show that there will be infinitely many cases with
1X] > (2 log i)1/2.

(f) (xx one or two more. new records, Pr(R, =1) = 1/n. xx)

Ex. A.20 Probability densities. We have seen in Ex. A.14 that probability measures on
the real line are fully characterised by the cumulative distribution functions. Very often
there is an even more practical and satisfying way of defining a probability distribution,
however, via its probability density function. These may be defined not only in famil-
iar situations with continuous distributions, but with discrete data, and with measures
having both continuous and discrete components.

(a) In various classical situations, the density is simply the derivative of the cumulative
distribution function, say f(z) = F’(z), when the random variable X in question has a
differentiable c.d.f. F'. From the fundamental theorem of calculus,

b
Pr(X € [a,b]) = F(b) — F(a) = / F@)de, for all a,b]

probability
density function
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The general theory of measure and integration allows the clear definition of [ 4 f(x)de
for any Borel set A. Show that Pr(X € A) = [, f(z)dz, for all such A, i.e. not merely
for intervals. Giving f(x), instead of the cumulative F(x), or perhaps more complicated
ways of defining a distribution P(A) for all A, is the most convenient (and traditional)
way in which to define a probability distribution.

(b) Suppose in general terms that v and p are o-finite measures on a measurable space
(X,A) (see Ex. A.4). Suppose next that the measure v is dominated by p, meaning that
u(A) = 0 implies v(A) = 0; one also says that v is absolutely continuous with respect
to . Under these conditions, the Radon—Nikodym theorem gives a converse to what we
found in Ex. A.12(d): it says that there is a nonnegative A-measurable function f, such
that

v(A) = /Af(x) du(z) forall A e A. (A.4)

The function f, called the density of v with respect to pu, is often denoted dv/dpu, to
remind us that this is a density of v with respect to u. If v = P is a probability measure,
then f = dP/dv is a probability density function. [xx fix xx] We defer the proof of the
Radon—Nikodym theorem until Ex. 10.10, when we have developed the appropriate tools
for proving it in a nice probabilistic manner.

Look back at Ex. A.10(d) and explain why the density f = dv/du in (A.4) is only
unique p-almost surely. Explain why (a), where F' has a derivative and is the integral
of this derivative, matches this more general setup, where u is the Lebesgue measure,
with p(a,b) = b — a for all intervals. Many classes of probability distributions, like the
normal, the gamma, the Beta, the Weibull, the exponential, the t, the chi-squared, etc.,
are of this type, where a clear probability density function can be given as here, that is,
with respect to standard Lebesgue measure.

(¢) The strength of the general f = dP/du machinery above is that it can be fruit-
fully used for large classes of other probability measures too, not only for those which
are dominated by the Lebesgue measure. The dominating measure is often chosen by
mathematical convenience, to match the situation at hand. For the Poisson and other
distributions, with random variables landing in X = {0, 1, 2, ...}, consider, for any subset
of X, u(A) equal to the number of numbers j € A, that is, p is the counting measure on
the integers, which, from Ex. A.2(g), we know is a o-finite measure. Show that with P
having a Poisson distribution P, with mean 6, that there is a density f = dP/du, given
by f(z) = exp(—0)0*/x! for x =0,1,2,..., in the sense given above.

(d) Consider a probability measure P on [0, 1] with probabilities 0.1 and 0.1 at positions
0 and 1, and which has P(a,b) = 0.8(b — a) for (a,b) inside (0,1). Thus P is not
continuous, and not discrete, but a mixture. Show that P is dominated by the measure
i, which has pointmasses 1 and 1 at the points 0 and 1, and is uniform inside (0, 1).
Find the probability density f(z) =dP(z)/du.

(e) Suppose P is dominated by a o-finite p, with f(z) = dP(z)/du the probability
density, as per (A.4). With X having distribution P, and g(x) being a function for which
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the mean is finite (with respect to P), we can now take the change of variable formula
from Ex. A.157? one step further, so to speak. With the help of Ex. A.12(e), show that

B9(x) = [ @) aP@) = [ o) 5 duto) = [ g(of () aute),

In particular, if 1 is Lebesgue measure on the real line, we get from Ex. A.12(h) that
Eg(X) = [ g(z)f(x)dx, and we are back to the expectation formula from introductory
statistics courses.

(f) (xx round this off. drive home that this makes it possible and convenient to derive
results in a general manner, point to Cramér-Rao, which we need to redo, as of 12-
August-2024, and also that we can handle any type of mixed distributions, not merely
the classic ones, the continuous and the discrete. ask for the mean and variance of the
0.1, 0.1, 0.8 distribution above. xx)

Ex. A.21 Radon—Nikodym derivatives Let P, ), and p be o-finite measures on the
measure space (,.A).

(a) Show that if Q@ < P and P < \, then Q < A, and that we have the following relation
of Radon—Nikodym derivatives,

d@Q dQdP Imost |

— = ——, p-almost surely.

dp _apdu’ Y
The second part here is, to a certain extent, Ex. A.12(e) in new dressing, and you might
use that exercise to prove it.

(b) Show that if @ < P, then the density dQ/dP is positive Q-almost surely. Next,
show that if Q < P and P < @, then

dP d
0 I(dQ/dP > 0)(£)_17 almost surely,
with respect to both @ and P. You may again use Ex. A.12(e).

(c) Suppose that @ < p and P < p. Let N = {dP/du = 0}. Show that there is a
measurable function f > 0 such that

Q(A) = /AfdPJrQ(AﬂN).

The pair (f, N) is called the Lebesgue decomposition of @ with respect to P. If P and
Q are two o-finite measures, in particular probability measures, then @ + P is o-finite
and Q € Q@+ P and P < Q + P, and a Lebesgue decomposition of () with respect to P
exists. Such constructions willl§ play an important role in parts of Chapter 2.

(d) Suppose that @ < p and P < u. Show that @Q < P if and only if the set {dQ/du >
0} N {dP/dp = 0} has measure zero under p. Show also that if this is the case, i.e., if
w({dQ/dp > 0} N {dP/du = 0}) = 0, then

dQ _ dQ/du
dP ~ dP/du

I{dP/dyp =0}, P-almost surely.
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()

(f) Let P be the N(¢, 1) distributions, and P ,,,-1/2j, be the N(§+n~'/2h, 1) distribution,
e.g., P¢ has density f(z;£) = (1/v2) exp(—3 (z—§)?) with respect to Lebesgue measure
on the real line. Show that P, -1/2, < Pg; that

APe 12, h 1 h?

P (x):exp(ﬁ(x—f)—ig),

and that B¢ (dPgy,,-1/2,/dPe)(X) = 1, i.e., when the expectation is taken under P.

(g) Let (X, By, p) and (), Be, v) be two o-finite measurable spaces. Suppose that X : 2 —
X and Y: Q — Y are independent random variables with distributions P; and P, and
that P} < p and P> < v. Denote the densities f; and fs. Show that the distribution of
(X,Y) has density f; fo with respect to the product measure g x v on (X x Y, B; ® Bs)
(see Ex. A.18(f)). Generalise to higher dimensions. This result is fundamental to the
likelihood theory we cover in Chapter 5.

Ex. A.22 Basic conditional probability. Let (2, A, Pr) be a probability space. The Venn-
diagram below provides the intuition behind the definition of the conditional probability
of an event A, given that the event B has occurred. If all we know is that B occurred,
then the probability that A also occured is the the size of the area of B that intersects
A, relative to the total size of B. Here, size is measured by, well, a probability measure.
Thus, the conditional probability of A given B is defined by

Pr(AnB)

Pr(A[B) = W?

provided Pr(B) > 0. (A.5)
The notation Pr(A|B) might be unfortunate, because it may seem that the events A
and B are on an equal footing. They are not. The event we condition on, namely B,
is fixed, while the event we are computing the conditional probability of, that is A, can
change. In fact, A — P(A| B) is a probability measure, while B — P(A| B) is not.

Q

(a) Show that Pr(A| B) is a probability measure (€2,.4).

(b) The function L(B) = Pr(A| B) where the event A is fixed and the event we condition
on might change, is called the likelihood function, and L(B) is referred to as the likelihood
of B. Show that L(B) is not a probability measure.
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(¢) Suppose that B has positive probability. Show that A and B are independent if and
only if Pr(A| B) = Pr(A).

(d) Let Ay,..., A, be disjoint events such that Uj_;A; = Q. From the definition of
conditional probability, deduce the law of total probability, that for any event B, Pr(B) =
Pr(B|A1)Pr(A;) + -+ Pr(B| A,)Pr(4,). Deduce also Bayes’ theorem,

Pr(B|A;)Pr(4;)
Pr(B|A;)Pr(A1) + -+ + Pr(B| A,)Pr(4,)’

Pr(4; | B) =

provided Pr(B) > 0.

Ex. A.23 Conditional expectation. Let X be an integrable real random variable on a
probability space (£2, 4, Pr). The probability of X landing in B € B(R) given the event
A € A, is, using the definition in (A.5), Pr(X € B|A) = Pr({X € B} n A)/Pr(4),
provided Pr(A) > 0. We can then define the conditional expectation of X given A by

E(X|A) = ifg{)‘ - AX(;P:(%) :/XdPr(w|A).

The point being that conditioning on an event A with positive probability is just a matter
of using the definition in (A.5) in the obvious manner.

(a) Let’s look at an example. Suppose that X ~ N(0,1), and set A = {X > ¢} for some
constant ¢. Show that E (X |A) = [z¢(x)/{1 — ®(c)}H (x € [¢, 00)) dx.

(b) In (a), we conditioned on the event A = {X > c}. But what if we want a function
Z:Q — Rsuch that Z(w) =E (X |A) if w € A, and Z(w) = E(X | A°) if w € A°? That
is, Z is the function

Z=E(X[A)ac +E(X|A)l4.

While E (X | A¢) and E (X | A) are constants, the indicator functions I4. and I4 are
random variables, and so Z is also a random variable. We define this function Z to
be the conditional expectation of X given I4, denoted E (X |I4). Thus, conditional
expectations given a random variables, are themselves random variables. Notice that
E (X | I4) is measurable with respect to o(14) = {A, A%, 0,Q} C A, and also that if we
modify E (X |I4) on a set of measure zero, e.g., set Z' = E (X |I4) +al{xcqy for a € R,
then Pr(Z # Z') = 0. Show that EE (X |I4) = E X, and that, indeed EZ’ = E X.

(¢) Let X be some integrable random variable, and let Y be a discrete random variable
with values in {y1,¥y2,...}. Define 4; ={Y =y} ={w e @: Y(w) =y} forj =1,2,....
As a mild extension of (b), we can define the conditional expectation of X given Y as
the random variable

B(X[Y) =S B(X[A) (A.6)

Show that EE (X |Y) = EX, and also E1o,E (X |Y) = El4, X for any A; = {Y =y;}.
In fact, try to show that
EIGE(X|Y)=ElgX, (A7)

for any event G in the o-algebra generated by Y.

law of total
probability

Bayes theorem



conditional
expectation

tower property
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expectation
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(d) So far we have only considered conditioning on events or on discrete random variables.
But what if the random variable we want to condition on, say Y, is continuous, so that
Pr(Y = y) = 0 for all y. Then the definition of E (X |Y") given in (A.6) does not make
sense, as it would involve division by zero. The solution to this problem is to take (A.7)
as the definition of conditional expectation. Here is how. On the probability space
(©2, A, Pr) let X be an integrable random variable, and let G be a sub-c-algebra of A.
Then any G-measurable random variable Z such that

ElcZ =EIsX, foral Geg, (A.8)

is called the conditional expectation of X given G, denoted E(X |G). This definition
entails that the conditional expectation is only defined up to sets of measure zero, and
we call any Z satisfying (A.8) a wersion of the conditional expectation. Suppose that
Z and Z' are two G-measurable random variables, so that both EIgZ = EIgX and
ElqZ' = EIgX for all G € G. Show that Z = Z’ almost surely.

(e) Prove that conditional expectation exists. More to the point, appeal to the Radon—
Nikodym theorem, and show that if X is an integrable random variable on (Q, A4, Pr),
and G C A, then there exists a G-measurable random variable Z satisfying (A.8).

(f) There are some very useful results that follow directly from the definition in (A.8).
You should convince yourself that they do. First, if X is G-measurable, then E (X |G) =
X, almost surely. Second, for any integrable X, we have that,

EX =EE(X|G). (A.9)

When G = o(Y) for a random variable Y, we typically write E(X |Y) instead of the
more cumbersome E (X |G) or E{X |o(Y)}, and get the formula EX = EE(X|Y).
Show that E X equals the conditional expectation of X given the trivial o-algebra, that
is, EX = E (X | {0,Q}), almost surely, and deduce that (A.9) is a special case of the tower
property of conditional expectation, which says that when G C B are sub-o-algebras of
-Av

E(X|B)=E(E(X|B)|G), as.

(g) Comparing the definition in (A.8) with the result in (A.7), we see that G corresponds
to the o-algebra generated by Y. Let’s go ‘backwards’, and see that (A.8) leads back to
the definition we started out with. Suppose that G1, G, ... are disjoint sets whose union
equals 2, and let G be the o-algebra generated by G1,Go, . ... Define

Z(w) = E(X|Gj), we Gj and Pr(G;) > 0,
B Zj w € Gj and Pr(G;) =0,

for arbitrary constant zj, z2,.... Show that Z is a version of E (X |G).

(h) Deduce from (g) that if X =a on aset G € G, then alg + E (X | G)Ig- is a version
of E(X|G). In (g) you might have already used the fact that if G C G has no nonempty
proper subsets, then E (X | G) must be constant over G. Prove it.
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(i) Let X,Y7,...,Y, be real random variables in (2, A), and set Y = (¥71,...,Y,). From
Ex. A.3(i) we know that if g: R” — R is a measurable function, then X = g(Y) is
measurable with respect to o(Y). Combine Ex. A.3(f)&(g) to show that the converse
also holds: If X is measurable with respect to o(Y), then there exists a measurable
function g: R™ — R such that X = g(Y).

(j) The upshot of (i) is that for the conditional expectation E (X |Y), there exists a
measurable function g so that ¢(Y) = E(X|Y), almost surely. So when we write
E(X|Y =y), we mean g(y). Show that, with Py the distribution of Y,

E(XIp) = /CE(X |Y =y)dPy(y), forevery B=Y1(C)ca(Y).

In particular, Show that if (X, Y") has joint density fx y with respect to Lebesgue measure
on (R2, B(R?%)), then the function

_ Jxfxy(zy)de
9ty) = [ fxy(zy)da

is such that g(Y) = E (X |Y) almost surely.

Ex. A.24 Properties of conditional expectation. Even though a conditional expectation
is a random variable and an expectation is a constant, many of the same properties and
theorems apply. Let (€, .A,Pr) be a probability space, G a sub-o-algebra of A, and let
X and Y be integrable random variables.

(a) Use bootstrapping to show that if XY is integrable, and Y is G-measurable, we can
‘take out what is known’ from the conditional expectation, that is

E(XY|G)=YE(X|G), as.
(b) If X = a a.s., show that E (X |G) = a. For constants a and b, show that
E(@X +bY|G)=aE(X|G)+bE(Y|G), as.
Show that if X <Y almost surely, then E (X |G) < E (Y |G) almost surely.

(¢) Show that Fatou’s lemma holds for conditional expectation, that is

E(liminf X,, | G) < liminfE (X, |G), a.s..
n—o0

n—oo

(d) Show that if X, is a monotone increasing (or decreasing) sequence of integrable
random variables such that X,, — X a.s., then E(X,,|G) = E(X|G) as..

(e) Show that if X,, is a sequence of integrable random variables such that X, — X
a.s. and |X,| <Y a.s. for an integrable random variable Y, then E (X, |G) — E(X |G)

a.s..

(f) Show that in ?? and (e), if the sequence X, only converges in probability to X
(instead of almost surely), then we have E (X,, | G) —, E(X | G).

take out what is
known

monotone
convergence

dominated
convergence
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(g) Let g be a convex function such that g(X) is integrable.. Show that
E{g(X)1G} 2 g(E{X[G}), as.

Applying this to the convex function g(z) = |z|P for some 1 < p < oo, we have that
|E(X |G) <E(/X||G), as.. Show also that (E|E (X | G)|P)Y/? < (E|X|P)'/P

(h) Suppose that X is square integrable. The conditional variance of X given G, denoted
Var(X | G), is any version of the random variable E{(X — E (X |G))?|G}. Show that if
Y and Z are G-measurable random variables, such that XY is square integrable, then

Var(YX + Z|G) = Y?Var(X |G), as..

(i) Suppose that X is square integrable. Show the following very useful variance decom-
position formula

Var(X) =EVar(X |G) + Var(E(X | G)), as..
We'll meet this formula in the proof of the Rao—Blackwell theorem, see Ex. 8.4.

Ex. A.25 Conditional probability, distributions, and densities. Let (2, F,Pr) be a
probability space. The conditional probability of the event A € F given a sub-o-algebra
G of Fis defined as Pr(A|G) =E(I4|G). If X: Q — X is a random variable with values
in the measurable space (X, B), the conditional distribution of X given G is Px(B|G) =
Pr(X € B|G) as B ranges over B. Since the conditional expectation is only defined
almost surely, so are conditional probabilities and distributions. This means that any
function p(w, B) such that for each B € B, p(w, B) = Px(B|G)(w) for Pr-almost all w, is
a called the conditional distribution of X given G. In this book, we deal exclusively with
random variables taking values in complete and separable metric spaces, so we can, and
will, assume that all the conditonal distributions we encounter are regular, i.e., they are
such that B — Px(B|G)(w) is a probability measure on (X, B) for Pr-almost all w € Q.

(a) Let X and Y be real valued random variables. When, for some B € B(R), we write
Px(B|Y =y)or Pr(X € B|Y =y), we mean the function E (I5(X)|Y = y) introduced
in Ex. A.23(i). A version of the conditional distribution of X given Y ...

(b) Let Px(B|G) be the conditional distribution of a real-valued random variable X
given G, and suppose that g: R — R is a measurable function such that g(X) is integrable.
Show that

E(9(X) | 9)(w) = /g(z) Px(dz|G)(w),

for Pr-almost all w € Q. This is the conditional expectation analogue of the second
expression for E g(X) in Ex. A.1577.

(¢) Suppose that (X, A, p) and (Y, B,v) are o-finite measure spaces, and let X: Q — X
and Y: Q — ) be random variables. Let Py be the distribution of Y on (Y, B), and let
Px y be their joint distribution on (X x ), A ® B). Suppose that Pxy < p X v with
density fx,y. Show that Py <« v with density

fr () = /X Frov (@, y) duz),
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and that the conditional distribution of X given Y = y has densities

_ fX,Y(xay)
Ifxiv(x|y) = T

with respect to p. Convince yourself that the two expressions above also holds with X
and Y switching roles. In particular, show that the densities above can be expressed as

fyix(y|z)fx(z)
Ty () '

This is Bayes’ theorem for densities. In the case that X is a (random) parameter, and Y
are the data, fx |y (z|y) is called the posterior density of the parameter given the data.

fxiv(z|y) =

(d) Show that if g: R — R is a measurable function such that g(X) is integrable, then

B (o) |0(v)) = [ g()fx v(@]Y) du(o)

almost surely. Note that this is the conditional expectation analogue of the expression
for Eg(X) in Ex. A.20(e).

(e) The results in (c) are in the background of many of the conditional probability calcu-
lations to be carried out in this book, but they cannot always be used. In Ex. A.23(a), we
had X ~ N(0,1) and the event A = {X > c}. Consider the random variable Y = I(X >
¢). The distributions of X and Y have, of course, densities with respect to Lebesgue
and counting measure, say A and pu, respectively. Show, however, that the distribution
of (X,Y) is not dominated by the product measure A x v on (R x {0,1}, B(R) @ 2{0:1}).
Define the set function p(C) = A({z € R: (z,I{z > ¢}) € C}) on B(R) @ 2{®1}. Show
that p is a measure, and that Pxy < p. Find an expression for the density. Introduce
the set function Ax |y (B|y) = AN(B,), where B, = {z € R: I(x > ¢) = y} for B € B(R).
Show that Ax |y (B |y) is a measure on (R, B(R)) for y = 0,1; that the conditional dis-
tribution of X given Y = y is dominated Ax |y (B|y); and find an expression for the
density.

(f)

(g) Let X and Y be independent random variables on the probabilty space (2,4, Pr).
Let g be a real-valued function such that g(X,Y) is integrable with respect to Pr. Show
that

E((X.Y) oY) = [ gla¥) dPx (@),
where Py = Pr X! is the distribution of X.
(h)

(i) Suppose that (X, A, ) be a o-finite measure space, and (0, B) a measurable space.
Let X: Q — X and #: Q@ — © be random variables on the same underlying probability
space ({2, F,Pr). Suppose that the conditional distribution of X given 6 is Py, and that
Py < p for all 8 € ©, with densities fy(z). Let II be the distribution of §. We think of
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0 as a random parameter, and, as is the convention, we do not distinguish between the
random variable 6 and the values it attains. Show that (X, 6) has joint distribution

H«XQGC%j/k@ﬂHM@MuXm@ﬁ%

for C € A® B, where pu x II is the product measure on (X x ©, A4 ® B). Show that the
posterior distribution of 6 given X is

X) dII(6)
Pr(f e Blo(X)) = / 9<—,
OB = [, T, fx ane)
almost surely. Show also that if v is a o-finite measure on (©, B) such that IT < v with
density m, then the posterior density of 6 given X is

w(0]2)— . Jo@)(®)

[ fo(a)m(0) du(9)

with respect to v. This version of Bayes’ theorem, with this notation, is the workhorse
formula of Chapter 6.

(j) (xx the more general cases, and examples; Bayes’ theorem for densities; include also
classical transformation formula, with Jacobian etc.)

(k)

)

Ex. A.26 Conditional independence. [xx some intro text xx]|

(a)

(b) Let F, G, and H be o-algebras. Show that F Ll H |G if and only if
Pr(H|FVvG)=Pr(H|G), as., for all H € H,

where F V G is the smallest o-algebra that contains F and G.

Ex. A.27 Extension of probability spaces. An extension of a probability space (2, F, Pr)
is a product space (2 x X, F @ B) equipped with a probability measure Pr’ such that
Pr'(A x X) = Pr(A) for all A € F.

(a) Let Y be a random variable (or vector, or process) on (€, F,Pr). We can extend Y
to be defined on the extension (Q x X,F ® B,Pr’) by setting Y’ (w,z) = Y (w). Show
that Y’ has the same distribution as Y, and, in particular, that E' g(Y') = Eg(Y) for all
measurable g: X — R.

(b) Let @ be a probability kernel (or Markov kernel) between the probability space
(©,G,Pr) and the measurable space (X, B). That is @: 2 x X — [0, 00) is so that

w — Q(w, B) is G-measurable for each fixed B € B; and
B — Q(w, B) is a probability measure on (X, B) for each w € .
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The regular conditional distributions introduced in Ex. A.25 are probability kernels.
Other examples of probability kernels are the mixed normal densities we meet in Ex. 2.56,
where o: Q — (0,00) a random variable, and

22

1
B= Vo) P a0

dz).

If we were to simulate a random variable X from Q(w, -) we would perhaps run something
ressembling the following little script

sigma <- rgamma(1,2,2) # for example
X <- rnorm(1,0,sigma)

and almost without thinking about it, X would have been taken as conditionally inde-
pendent of all other random variables, given o. Since our probability space may not be
rich enough to support such as conditionally independent random variable (see example
below), we might need enlarge the probability space. Here is how: Suppose we have a
probability space (2, F,Pr) and G C F. Let @ be a probability kernel between (€2, G, Pr)
and (X, B). Consider (2 x X,G ® B, Pr’) with

Pr'(A) = /Q RIA(w,x)Q(w, dz) dPr(w), for all A € G ® B.

Show that (i) Pr'(G x X) = Pr(G) for all G € G, meaning that the product space
just defined is indeed an extension; (ii) that the random variable X(w,z) = x is so
that Pr'(X € B|o(V)) = Q(-, B), Pr'-almost surely; and (iii) that X is conditionally
independent of all F-measurable random variables, given G.

(c) Consider the probability space ({H,T}, 27T} Pr) with Pr a probability measure
such that Pr(H) = p. Let 6: {H T} — {0, 1} be such that Pr(9 = 1) = p, and consider
the probability kernel Q(w, B w) [z d(x)dz + (1 - 0(w)) [5 d(x/v2)/vV2dx, where
¢ is the standard normal dens1ty Construct an extens1on on which the random variable
X has conditional distribution @, given 6.

Ex. A.28 Regularity and approximations. Let (X, d) be a metric space and consider the
measurable space (X, B, i), where B is the Borel o-algebra, and p is a finite measure.
The distance from a point x to a set A is d(x, A) = inf{d(x,y): y € A}. Using this
distance, we can express any closed set F' as a countable intersection of open sets, as
follows F' = N2 {z € X:d(z,F) < 1/n}. So by De Morgan’s laws, any open set G
can be expressed as a countable union of closed sets G = US2 1 {x € X: d(x,G) > 1/n}.
These facts are useful in what follows.

(a) Show that p(B) = suppcp p(F) for any open set B, where the supremum is taken
over closed sets F. Similarly, show that u(C) = infgHeo u(G) for any closed set C,
with the infinum taken over open sets G. Recall that {B C X': B is open} and {C C
X: C is closed} are m-systems, and that they both generate the Borel o-algebra, facts
we use below.
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(b) Show that D, = {B € B: u(B) = suppcppu(F), F closed} and D, = {B €
B: (B) = infgcae p(G), G open} are d-systems, and conclude from Dynkin’s lemma
(see Ex. A.5) that for any B € B,
B) = F)= inf pu(G
n(B) ;tcl%u( )= jnf u(G),

where the supremum and the infimum are taken over closed sets F' and open sets G,
respectively.

(c) Show that for any measurable function f: X — R such that [ fPdu < oo, ie.,
f € LP(X,B,u), there is a sequence fi, f2,...: X — R of bounded and continuous
functions such that [ |f, — f|? du — 0.

Ex. A.29 The mean via the cumulative distribution function. Consider a random
variable X on [0, 00), with cumulative function F.

(a) Show that the mean EX = [ 2dF(z) also can be expressed as [;~(1 — F)du.
You may use z = fooo I(x > y)dy and then Fubini. Show furthermore that E XP =
[ A1 = F(z'/?)} da.

(b) As a simple illustration, consider X with density function f(z) = 0 exp(—0x), where
0 is a positive parameter. Find the cumulative F', and compute E X in two ways.

(¢) (xx something with a discrete distribution too. find the AmStat paper we talked
briefly about, for a bit more. xx)

Ex. A.30 Moment-generating functions: examples. [xx we have not introduces these
distributions yet. xx| (xx nils lifts these to Chl; then need post-polish here in App. xx)
For a random variable Y, with distribution P, its moment generating function is

M(t) = E exp(tY) = /exp(ty) dP(y),

defined for each ¢ at which the expectation exists. The moment generating function is
useful for finding and characterising distributions, for finding their moments, for han-
dling the distributions of sums of variables, and in connection with distributional lim-
its. When Y has a density f(y) (with respect to Lebesgue measure), we have M(t) =
Jexp(ty) f(y) dy, and if it is discrete with pointmasses f(y) for sample space S, say,
then M(t) = Zye sexp(ty) f(y). The expectation operator is more general, however, and
M (t) is perfectly defined also for intermediate cases where Y can have both discrete and
continuous parts; see Ex. A.15.

(a) For astandard normal Y ~ N(0, 1), show that M (¢) = exp(4t?). When Y ~ N(u,0?),
derive M (t) = exp(ut + 30°t?).

(b) For Y ~ Expo(), show that M(t) =1/(1 —t/0), for t < 6.

(c) For Y ~ Gam(a,b), with density {b*/T'(a)}y®~* exp(—by), show that M(t) = {b/(b—
t)}, for t < b. In particular, M(¢) = 1/(1 — ¢t)* for Gam(a, 1).
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(d) Suppose Y is equal to zero with probability 0.90, but a standard normal with prob-
ability 0.10. Find the M (t), and generalise.

(e) For the binomial (n,p), show that M (t) = {1 — p + pexp(t)}™.

(f) For Y ~ Pois(f), find M (t) = exp{f(e’ — 1)}. Use this, with Ex. 1.26, to find M (t)
also for the negative binomial (a,p). (xx hm, should give the formula here. xx)

(g) Let Y = +1 with probabilities 3, 1. Show that

M(t) = cosh(t) = 1(e' + ™) =1+ (1/2)t> 4+ (1/4)t* + (1/61)t° + - - .

(h) For the uniform distribution on the unit interval, show that M (t) = {exp(t) — 1} /¢,
for t # 0, and with M (0) = 1.

(i) Let Y have the uniform distribution on the [—1, 1] interval. Show that

exp(t) — exp(—t sinh ¢
iy = ) —exp(=t) _sinh,

and that this function may be written as the infinite sum 1 + (1/30)¢2 + (1/50)t% + - - -.

Ex. A.31 Moment-generating functions: properties. Among the basic properties of
moment-generating functions is that it generates moments. As we will see in this exercise,
the rth derivative of M(t) = E exp(tY") at the point zero equals EY™.

(a) Suppose that the moment generating function M (t) of a random variable Y is finite
for all t € (—to, to), for some ¢y > 0. For some ¢ in this interval, the sum M (—t)+ M(t) is
then also clearly finite. Appeal to Ex. A.12(b) to show that the finiteness of M (—t)+M (t)
implies that E |Y|?* is finite for all £ > 1. Now, use that |z|?*=1 < 1 + |2|?* to fill in
the odd gaps. This highlights the restrictiveness of the moment-generating function: by
assuming its existence in a neighbourhood of zero, we are effectively assuming that all
moments exist.

(b) To see that the converse of (a) does not hold, that is, a distribution with finite
moments of all orders may not have a moment-generating function that is finite in some
interval around zero, consider the log-normal distribution; see Ex. 1.53.

(¢) Provided M(t) is finite in an interval around zero, say (—to,%o), to > 0, you may
again use Ex. A.12(b) to show that
M(t) = o EY", for |t| < to.

k=0
We now see that if we can slip the derivative inside this sum, then we have the property
mentioned in the introduction. To see that we can, choose points a and b so that [t] <
a < b < ty, and show that

k_ 4k
w §3kak_1,
—
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provided |h| < a — [t|. Next, show that there is an M > 0 so that 3ka*~! < 3MbF,
and use this to conclude that >"p , 3ka* TEY* < co. Using these results, explain why
M'(t) =72 ("1 /(k — 1))EY*. Finally, by induction, show that

k—r

t
EYF.
(k—r)!

M®(t) = i

k=r

This expression shows that moment-generating functions generate moments in the sense

that M((0) = E(Y™").

(d) For X ~ N(0,1), show that M(t) for |X| becomes 2exp($t*)®(t), and use this to
find its mean and variance.

(e) Tt Y has mean £ and standard deviation o, and moment-generating function M(t),
give a formula for that of Y/ = (Y —¢)/o. Illustrate this in the case of Y ~ Pois(#), com-
puting and drawing the moment-generating function of (Y —6)/6/2, alongside exp($t?).
Comment on what you find.

(f) If Y has a distribution symmetric around zero, such that ¥ and —Y have the same
distribution, then M (t) = M (—t), so it depends on t only via |¢|.

Ex. A.32 Uniqueness of the Laplace transform. For random variables taking values on
the positive halfline [0,00), it is sometimes more convenient to work with the Laplace
transform instead of the moment-generating function. Let X be a random variable with
support [0,00), and denote its distribution and c.d.f. by P and F, respectively. Define
the Laplace transform L(t) = E exp(—tX), for t > 0. We here follow Billingsley (1995,
pp. 284-286) in proving that L(t) determines the distribution of X.

(a) Show that L(t) is finite for all ¢ > 0, and deduce from Ex. A.31(c) that the rth
derivative of L(t) is L") (t) = (—=1)"E X" exp(—tX).

(b) To prove that the Laplace transform uniquely determines the distribution of X, we
make a detour via the Poisson distribution. Let Yy be a Poisson random variable with
mean 6, i.e., Yy has density f(r;0) = (1/r)8" exp(—6) with respect to counting measure
on {0,1,2,...}. Use the Chebyshov inequality (see Ex. 2.11) to show that Yp/0 —, 1
as § — oo. Let G(t;0) = Pr(Yy/0 < t) = ELGZ% (r;0) be the c.d.f. of Yp/0, where
|u] = max{m € Z: m < u}. Deduce from the convergence in probability result that as
0 tends to infinity, G(¢;0) — 1 if ¢t > 1 and G(¢;6) —» 0if t < 1.

(c) Show that we can write,

Lty (—1)"
d A t"L0(t) = EG(y/X:tX).

7!
r=0

and show that G(y/z;tx) — I{0 < z < y} as t — oo, almost everywhere. Appeal to
the right convergence theorem to conclude that EG(y/X;tX) — F(y), for all continuity
points of F(y) = P(—o0,y].
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(d) [xx include continuity theorem for Laplace transform, i.e., that for nonnegative ran-
dom variables X,, the Laplace transforms converge to a the Laplace transform of a rv X,
then X,, =4 X xx]

Ex. A.33 Moment-generating functions for sums. (xx point here to Ex. 7?7, and more.
xx) If Y7 and Y3 are independent, with given distributions, say with densities f; and fs,
then their sum Z = Y7 4+ Y5 have of course a well-defined distribution, and its density
can be expressed as

g2(2) :/fl(Z—y2)f2(y2)dy2 :/fl(yl)fQ(Z—yl)dy1-

With algebraic patience this may e.g. be used to show that if Y7 ~ N(u1,0}) and
Ya ~ N(pa,0%3), then indeed Y; + Y3 is normal too, with parameters p; + pio and o + 03
see Ex. 1.2. Such convolutions quickly become convoluted in more general setups, how-
ever, and finding the density of say Y; + Y5 + Y3 + Y, from given densities f1, fo, f3, fa
may become too complicated. Pushing the matter to the domain of moment-generating
functions instead makes matters simpler.

(a) When X and Y are independent, then Mxiy(t) = Mx(t)My(t), in the obvious
notation. This generalises of course to the case of more than two independent variables.

(b) Let Y; ~ N(u;,02), fori =1,...,n, with these variables being independent. Find the
moment-generating function for the sum Z =Y; +---+Y,,, and use the characterisation
property to establish that indeed Z ~ N(30 | pi, >y 07).

(c) Let Y7,...,Y) be independent Gamma distributed variables, with parameters (a1, b),
..., (ag,b); see Ex. 1.9. Show that their sum is a Gamma with parameters (Zle a;, b).

(d) Suppose Z = Y7 +Y>, with these two being independent, and suppose you know that
Y1 ~ N(0,2) and Z ~ N(0, 7). Prove that Y3 must be a N(0,5).

(e) Similarly, suppose Z = Y7 + Ya, with these two being independent, and assume it is
known that Y7 ~ x%, and that Z ~ x3,. Prove that Y5 ~ x3,.

Ex. A.34 Characteristic functions. The characteristic function of a random variable X
is defined as

¢(t) = E exp(itX) = E cos(tX) + i E sin(tX),

with ¢ = /=1 the complex unit, and ¢t € R. As the name suggests, the characteristic
function is useful for finding and characterising distributions, for finding their moments,
for handling the distributions of sums of variables, and for finding with distributional
limits. What distingusihes it from the moment-generating function is that it always
exists, i.e., we do not need to make the assumption of all moments being finite (see
Ex. A.31(a)).

(a) Show that the characteristic function always exists, in fact |p(¢)| < 1. Establish that
lo(t+h) —(t)] < E|exp(ihX)—1|, and use this inequlity to show that ¢(t) is uniformly
continuous.
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(b) Show that if Z ~ N(0,1), then its characteristic function is ¢z (t) = exp(—1t?), and
that if X ~ N(u,0?) its characteristic function is ¢x (t) = exp(ity — 5t%0?).

(c) Show that the Cauchy distribution with density f(x) = (1/7)(1 + 2?)~! has char-
acteristic function exp(—|t|). Note that this function does not have a derivative at zero,
corresponding to the fact that the Cauchy distribution does not have a finite mean.

(d) Suppose that X has c.d.f. F'. Show that the characteristic function is real-valued if
and only if the distribution is symmetric, that is. F(z) =1 — F(—z) for all .

(e) Form =0,1,2,... define ry, (z) = exp(iz) — >, (iz)* /k!, and let r_; (z) = exp(iz).
Convince yourself that rm () = rm_1(x) — (iz)™/m!, and that rm,(z) =i [ rm—1(y) dy
for x > 0 and r,,(z) = —i fa? rm—1(y) dy for z < 0. Show that |ro(z)| < min(2,|z|), and
proceed by induction to show that

‘x|m+l

. o (iz)* o 20z™
‘GXP(W)_kZ:O 7! |§m1n( - 7m),

form=20,1,2,....

In particular, for m = 0,1, 2,
|exp(iz) — 1| < min(|z|,2),
|exp(iz) — (1 + iz)| < min(5|z[*, 2[2]),
|exp(iz) — (1 4 iz — $2°)| < min(}|z|*, 2°).
(f) Use the inequality in (e¢) and the dominated convergence theorem to show that if

E X2 is finite, then ¢(t) = 1+ itE X — 2t?E X?+0(t?) as t — 0. In particular, if EX = 0
and E X? = 02, we have

o(t) =1— 120>+ o(t?), ast—0.
Generalise to show that if E |X|™ < oo for some m > 1, then
o(t) = Z((it)k'/k!)EXk +o(t™), ast—0.
k=0
(g) Assume that E|X]| is finite. For h > 0 write,

ot +h) —o(t) exp(ihX) — 1
h

=E exp(itX)( . ),

and, taking limits as h — 0, combine the inequality from (e) and the dominated conver-
gence theorem to show that ¢’(t) = E {iX exp(itX)}. Proceed inductively to show that,
provided E | X|" is finite, the rth derivative of the characteristic function is

oM (t) = E{(iX)" exp(itX)}.

This shows that the moments can be read off from the characteristic function. Use the
same proof technique as in (a) to show that ¢(")(¢) is uniformly continuous.
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Ex. A.35 Uniqueness of characteristic functions. If two random variables have identical
characteristic functions, then their distributions are identical too. This fact is proved via
so-called ‘inversions theorems’, providing a mechanism for finding the distribution of a
random variable from its characteristic function.

(a) One such inversion formula is as follows: If the random variable X has characteristic
function p(t) that is integrable, i.e., [ |p(t)]dt < oo, then X has density f, for which a
formula is

flx) = % /exp(—itz)gp(t) dt.

Write down what this means, in the cases of a normal and a Cauchy, and verify the
implied formulae. Show that f in each such case of an integrable (t) necessarily becomes
continuous.

(b) As a small digression, show that the characteristic function of the uniform distribu-
tion on [—1,1] is ¢(t) = sin(t)/t. Deduce that

t t
/ |&| dt = even though / sint dt = .

(¢) Point (a) above gives a formula for the density f of a random variable, in the case of
it having an integrable characteristic function ¢. One also needs a more general formula,
for the case of random variables that do not have densities, etc. Let X be any random
variable, with cumulative distribution function F' and characteristic function ¢ (but with
nothing assumed about it having a density), and add a little Gaulian noise to X,

U, = X +0Z, with Z ~N(0, 1),

with ¢ > 0 and Z is independent of X. Then U, has a density, even if X does not have
one. Our intention is to let ¢ — 0, to come back to X. Show that U, has cumulative
distribution function and density of the form

B u—x (u—x)?
Fg(u)_/<1>( . )dF(z), and f,(u /\/ﬂ exp( T)dF(m),

where ®(z) = [*_(1/v27) exp(—42?) da is the standard normal distribution function.

(d) Verify that the characteristic function of U, is ¢(t)exp(—3t?0?), and that it is
integrable. Thus, according to (a) we must have that the density of U, is

1

folu) = Py /exp(—z’tu)cp(t) exp(—1t*c?) dt.

To see that this equality is true, start by showing that E [ exp{it(X —u) — %tzag} dt =
27 fo(u), and apply Fubini’s theorem.

(e) Deduce from (d) that for a < b,

1 /exp(—itb) — exp(—ita)

Pr(U, € (a,b]) = o(t) exp(—3t°0”) dt,

o —1t
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and from this, derive the general inversion formula, valid for all continuity points a and
b(a<b)of F,

FO) ~ F0) = im o [ SPEI ORI gy 4202 .

(f) Assume that X and Y are random variables with identical characteristic functions.
Show that X and Y must be equal in distribution.

(2) Let X1,..., X, be independent N(u;,0?) random variables. Show that Z?:l X; has
a normal distribution.

(h) By the inequality in Ex. A.34(e), and using that the absolute value of the complex
exponential is 1, show that for all real x and vy,

|exp(iy) — exp(iz)| < |z —yl.

Now, let X be a random variable with characteristic function ¢, and suppose that
[ le(t)] dt is finite. Show that X has density f(z) = (27)~! [ exp(—itx)p(t) dt, meaning
that the claim in (a) is true.

Ex. A.36 Characteristic functions for vector variables. With X = (X1,...,X;)" a
random vector, in dimension k, we define its characteristic functions as

@(tr,...,tr) = E exp(it' X) = E exp{i(t: X1 + - - - + t,.Xs) }
for t = (t1,...,tx)"

(a) Show that the properties from Ex. A.34, with the appropriate amendments, gener-
alises to the k-dimensional case. In particular, show that |¢(t1,. .., )| <1, and [xx list
relevant props here xx].

(b) Show that if the components are independent, then ¢(t1,...,t5) = @1(t1) - - ok (tr),
in terms of the individual characteristic functions ¢1,...,¢g. Thus, the characteristic
function of any subset of (X1, ..., Xx) can be retrieved by setting the appropriate subset
of (t1,...,tx) to zero.

(c) Show for the multinormal case, where X ~ Ny (&, %), that ¢(t) = exp(it'é — 3t'%t).

(d) The inversion formula derived in Ex. A.35 also generalises to the k-dimensional
case. In analogy to that exercise, let Z1,..., Z; independent standard normal random
variables, and define U, ; = X; +0Z; for j = 1,...,k. Amend the proof from said
exercise to show that

Pr{Uml S (al,bl},. . .,Ug)k S (ak,bk]}

k . )

1 exp(—it;b;) — exp(—itja;) 1,2 2
= — =t t1,...,t,)dty -+ - dig.
(QF)k/ /1:[1 it exp( a0 Jox (ti, ... tx)dty k

Next, take the limit as ¢ — 0 to obtain the general inversion formula for k-dimensional
random vectors. Conclude that if X = (X3,...,Xy) and Y = (Y7,...,Y%) are random
vectors with identical characteristic functions, then they are also identical in distribution.

inversion
formula
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(e) Let X = (X3,...,X;) and Y = (Y7,...,Y)) be two random vectors. Show that if
AX =X+ Xy = a1+ Y = 'Y for all vectors ¢ = (cq,...,cx)", then X
and Y are identical in distribution.

(f) Let X = (Xy,...,Xy)" be a random vector, and suppose that its characteristic
functions p(t1,...,tx) is such that [--- [|o(t1,...,tg)|dts,...dtx < co. Show that X
has density

1 i .
flay,. ... xp) = W/-~-/(jl:[lexp(—ztjxj))go(tl,...,tk)dtl---dtk.

Ex. A.37 Smoothness of characteristics functions. In Ex. A.34(g) we have seen that the
more moments a random variable X has, the smoother its characteristic function ¢(t) is.
In (a) , which is the Riemann-Lebesgue lemma, the smoothness of ¢(t) is connected to
the behaviour of ¢(t) as |¢| tends to infinity.

(a) Suppose that X has density f with respect to Lebesgue measure. Show that ¢(t) — 0
as [t| — oo. Show that if f has k > 1 integrable derivatives, then ¢(t) = o(1/t*) as
[t| — oc.

(b) Suppose that the characteristic function ¢ of the random variable X is such that
|p(t)] = 1 for all t. Show that X must be equal to a constant, i.e., it has a degenerate
distribution.

(c) Show that sup, .. [¢(t)| <1 for any € > 0.

(d) Generalise the above to higher dimensions, i.e., the characteristic functions of random
vectors of dimension k > 2.

Ex. A.38 Uniqueness of moment-generating functions. Moment-generating functions
characterise distributions: If X and Y are random variables such that E exp(tX) =
E exp(tY) < oo for all t € (—tp, %), then X and Y have the same distribution.

(a) Suppose that E f(X) = E f(Y) for all bounded and continuous functions f. Ap-
proximate the indicator function I{y < x} by a sequence of bounded and continuous
functions to show that F(x) = G(z) for all . From Ex. A.14(c), this entails that X and
Y have the same distribution.

(b) Let X and Y be random variables with distributions F and G on the unit interval,
with identical moment-generating functions, fol exp(tx) dF(z) = fol exp(tx) dG(x) for
all t € (—to, ), say. Show that then fol p(x)dF(z) = fol p(x) dG(z) for all polynomials
p(zx). Use the Weierstrafl approximation theorem, see Ex. 2.18, to show that this equality
must hold for all continuous functions f. Point to (a) and conclude.

(¢) Suppose that X and Y have identical moment-generating functions that are finite on
(—to,to). Let px and ¢y be their characteristic functions. We follow Billingsley (1995)
in showing that ¢ x = ¢y. Appeal to Ex. A.31(c) to argue that

t2k E ‘X|2k _

lim =0, forte (—to,to).
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Let 0 < s < min(tp,1), and fix an 0 < r < s. Argue that there is an ko so that
2kr?—1 < 52k for all k > kq. Use this and the inequality |z|?*~1 < 1+ |z|?* to show that
limg o0 t2* "1 E | X |?*~1/(2k — 1)! = 0 for t € (—tg,tg), as well. Next, use the inequality
in Ex. A.34(e) to show that

< W™

|<pX(t+h I; ]? (k) WE|X|m, for h € (—r,1),

with a similar inequality holding for ¢y for the same h, where <p pe ( ), k=0,1,...
the derivatives from Ex A.34(g). Since X and Y have identitical moment sequences
(why?), (k)(O) goy ( ) for k =0,1,2,..., and so ¢x(t) = ¢y (t) for t € (—r,r). For
an arbitrary 0 < € < r, consider the 1nequahty above witht =r—cand t = —r+¢, and
argue that ¢x (t) = gy (t) for t € (—2r,2r). Use the same argument with ¢t = 2r — ¢ and
t = —2r + ¢, to argue that ¢x(t) = py (t) for t € (—3r,3r), and so on, forevermore.

(d) (xx perhaps other conditions ensuring that identical moment sequences ensure iden-
tical distribiutions. Then a few counterexamples! xx)

Ex. A.39 Posterior distributions without Bayes. In Chapter 15 we will need to find
posterior distributions without densities, i.e., in situations where neither of the formulae
of Ex. A.25(i) are applicable.

(a)
(b)

Ex. A.40 Something More. (xx not yet an exercise, but a place to jot down a few
comments, also as of 12-August-2024. we need the ‘double variance’ formula too. and
show we round off ChZero with a few things to make the readers feel ‘aha, so after all of
this, we can do familiar things again’, with ordinary integrals and sums and means and
variances. perhaps a few simple but nonstandard things too. xx)

Notes and pointers

(xx we point to some of the many books on measure theory for probability and statistics,
and also to where key ideas originated. Kolmogorov (1933a,b). Billingsley (1968); Royden
and Fitzpatrick (2010) also Shiryaev (1996) and Williams (1991) and Kallenberg (2002).
also, briefly, to ‘what is a statistical model’, McCullagh (2002). Cantor set and Cantor
function, F' is continuous on [0, 1] but not at all absolutely continuous. In connection
with Ex. 2.5, mention that X,, —4 X and X,, uniformly integrable, implies E X,, - E X,
and that the proof of this employs a theorem of Skorokhod, see Billingsley (1995, p. 338)
XX)

Notes to Ex. A.25. A conditional distribution is said to be regular if Px(B|G)(w)
is a distribution on (X, B) for Pr-almost all w € . Not all conditional distributions are
regular (see, e.g. Dudley (2002, Problem 6, p. 351)), but, fortunately, if the measurable
space (X, B) is composed of a complete and separable metric space (X, d), and the Borel-
o-algebra B on X (see Ex. A.2(i)), then there exists a regular conditional distribution
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of X given G (see, e.g., Dudley (2002, Theorem 10.2.2, p. 345) or Schervish (1995,
Lemma B.40, p. 621)). In this book, we deal exclusively with complete and separable
metric spaces, and all conditional distributions will be assumed regular without further
mention.

For Ex. A.17, Emil is indebted to the lecture notes for the course Statistics 381:
Measure-Theoretic Probability 1, by Steven Lalley, at the University of Chicago. Provide
a citation






References

Aalen, O. O. (1992). Modelling heterogeneity in survival analysis by the compound Poisson distribution.
Annals of Applied Probability, 2:951-972.

Aalen, O. O., Borgan, @., and Gjessing, H. K. (2008). Survival and Event History Analysis. A process
point of view. Springer, New York.

Aalen, O. O. and Gjessing, H. K. (2004). Survival models based on the Ornstein—Uhlenbeck process.
Lifetime Data Analysis, 10:407-423.

Ait-Sahalia, Y. and Jacod, J. (2014). High-Frequency Financial Econometrics. Princeton University
Press, Princeton.

Aldous, D. J. and Eagleson, G. K. (1978). On mixing and stability of limit theorems. The Annals of
Probability, pages 325—331.

Andersen, P. K., Borgan, @., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting
Processes. Springer-Verlag, Berlin.

Angrist, J. D. and Pischke, J.-S. (2010). The credibility revolution in empirical economics: How better
research design is taking the con out of econometrics. Journal of Economic Perspectives, 24:3-30.

Ashworth, S., Berry, C. R., and de Mesquita, E. B. (2021). Theory and Credibility: Integrating Theo-
retical and Empirical Social Science. Princeton University Press, Princeton.

Aursnes, 1., Tvete, I. F., Gasemyr, J., and Natvig, B. (2005). Suicide attempts in clinical trials with
paroxetine randomised against placebo. BMC Medicine, xx:1-5.

Aursnes, 1., Tvete, I. F., Gasemyr, J., and Natvig, B. (2006). Even more suicide attempts in clinical
trials with paroxetine randomised against placebo. BMC' Psychiatry, xx:1-3.

Ball, P. (1999). Making the Case: Investigating Large Scale Human Rights Violations Using Information
Systems and Data Analysis. American Academy for the Advancement of Science, Washington.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani, R. J. (2022). Conformal prediction beyond
exchangeability. arXiv preprint arXiv:2202.13415.

Barfort, S., Klemmensen, R., and Larsen, E. G. (2020). Longevity returns to political office. Political
Science Research and Methods, 9:658-664.

Bartolucci, F. and Lupparelli, M. (2008). Focused Information Criterion for capture-recapture models
for closed populations. Scandinavian Journal of Statistis, 9:658-664.

Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998). Robust and efficient estimation by
minimising a densithy power divergence. Biometrika, 85:549-559.

Basu, A., Shioya, H., and Park, C. (2011). Statistical Inference: The Minimum Distance Approach.
Chapman & Hall/CRC Press, London.

705



706 References

Basu, D. (1955). On statistics independent of a complete sufficient statistic. Sankhya, 15:377-180.
Billingsley, P. (1961). Statistical Inference for Markov Processes. Chicago University Press, Chicago.
Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

Billingsley, P. (1995). Probability and Measure. Third Edition. Wiley, New York.

Blower, J. G., Cook, L. M., and Bishop, J. A. (1981). Estimating the Size of Animal Populations. Allen
& Unwin, Kondon.

Boitsov, V. D., Karsakov, A. L., and Trofimov, A. G. (2012). Atlantic water temperature and climate
in the barents sea, 2000-2009. ICES Journal of Marine Science, 69:833—840.

Bolt, U. (2013). Faster Than Lightning: My Autobiography. HarperSport, London.

Borgan, 0., Fiaccone, R. L., Henderson, R., and Barreto, M. L. (2007). Dynamic analysis of recurrent
event data with missing observations, with application to infant diarrhoea in brazil. Scandinavian
Journal of Statistics, 34:53—69.

Borgan, @. and Keilman, N. (2019). Do Japanese and Italian women live longer than women in Scandi-
navia? FEuropean Journal of Population, 35:87-99.

Bowman, A. (1984). An alternative method of cross-validation for the smoothing of density estimates.
Biometrika, 71:353-360.

Breiman, L. (2001). Statistical modeling: The two cultures [with comments and a rejoinder by the
author|. Statistical Science, 16:199-231.

Brunborg, H., Lyngstad, T. H., and Urdal, H. (2003). Accounting for genocide: How many were killed
in Srebrenica? FEuropean Journal of Population, 19:229-248.

Candes, E. J., Lei, L., and Ren, Z. (2021). Conformalized survival analysis. arXiv preprint
arXiw:2103.09763.

Card, D. and Krueger, A. B. (1994). Minimum wages and employment: A case study of the fast-food
industry in New Jersey and Pennsylvania. The American Economic Review, 84:772-793.

Casella, G. and George, E. 1. (1992). Explaining the Gibbs Sampler. American Statistician, 46:167-174.

Chernozhukov, V., Wiithrich, K., and Zhu, Y. (2021). Distributional conformal prediction. Proceedings
of the National Academy of Sciences, 118:€2107794118.

Claeskens, G. and Hjort, N. L. (2003). The focused information criterion [with discussion and a rejoinder].
Journal of the American Statistical Association, 98:900-916.

Claeskens, G. and Hjort, N. L. (2008a). Minimizing average risk in regression. FEconometric Theory,
24:493-527.

Claeskens, G. and Hjort, N. L. (2008b). Model Selection and Model Averaging. Cambridge University
Press, Cambridge.

Clauset, A. (2018). Trends and fluctuations in the severity of interstate wars. Science Advances, 4:1-9.

Clauset, A. (2020). On the frequency and severity of interstate wars. In Gleditsch, N. P., editor, Lewis
Fry Richardson: His Intellectual Legacy and Influence in the Social Sciences, pages 113—128. Springer,
Berlin.

Clevenson, M. L. and Zidek, J. V. (1975). Simultaneous estimation of the means of independent Poisson
laws. Journal of the American Statistical Association, 70:698—705.



References 707

Cox, D. R. (1958). Some problems with statistical inference. The Annals of Mathematical Statistics,
29:357-372.

Cox, D. R. (1972). Regression models and life-tables [with discussion]. Journal of the Royal Statistical
Society: Series B, 34:187—202.

Cox, D. R. and Brandwood, L. (1959). On a discriminatory problem connected with the worlks of Plato.
Journal of the Royal Statistical Society Series B, 21:195-200.

Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. Chapman & Hall, London.
Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton.

Cramér, H. (1976). Half a century with probability theory: some personal reflections. Annals of Proba-
bility Theory, 4:509-546.

Cunen, C. (2015). Mortality and Nobility in the Wars of the Roses and Game of Thrones. FocuStat
Blog, University of Oslo, iv.

Cunen, C., Hermansen, G. H., and Hjort, N. L. (2018). Confidence distributions for change points and
regime shifts. Journal of Statistical Planning and Inference, 195:14-34.

Cunen, C. and Hjort, N. L. (2015). Optimal inference via confidence distributions for two-by-two tables
modelled as Poisson pairs: fixed and random effects. In Nair, V., editor, Proceedings of the 60th
World Statistics Congress, ISI Rio, pages xx—xx. Springer, Rio.

Cunen, C. and Hjort, N. L. (2022). Combining information from diverse sources: the II-CC-FF paradigm.
Scandinavian Journal of Statistics, 49:625-656.

Cunen, C. and Hjort, N. L. (2024). Survival and event history models and methods via Gamma processes.
Technical report, University of Oslo. Technical report.

Cunen, C., Hjort, N. L., and Nygard, H. M. (2020a). Statistical sightings of better angels. Journal of
Peace Research, 57:221-234.

Cunen, C., Hjort, N. L., and Schweder, T. (2020b). Confidence in confidence distributions! Proceedings
of the Royal Society, A, 476:1-5.

Cunen, C., Wallge, L., and Hjort, N. L. (2020c). Focused model selection for linear mixed models, with
an application to whale ecology. Annals of Applied Statistics, 14:872-904.

Dagsvik, J. K., Fortuna, M., and Moen, S. H. (2020). How does temperature vary over time?: Evidence
on the stationary and fractal nature of temperature fluctuations. Journal of the Royal Statistical
Society A, pages 8383-908.

De Blasi, P. and Hjort, N. L. (2007). Bayesian survival analysis in proportional hazard models with
logistic relative risk. Scandinavian Journal of Statistics, 34:229-257.

DeGroot, M. H. (1970). Optimal Statistical Decisions. John Wiley & Sons, Hoboken, N.J.

Dudley, R. M. (2002). Real Analysis and Probability. Cambridge University Press, Cambridge.
Eddington, A. S. (1914). Stellar Movements and the Structure of the Universe. Macmillan, London.
Efron, B. (2023). Ezponential Families in Theory and Practice. Cambridge University Press, Cambridge.
Efron, B. and Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236:119-127.

Einmahl, J. H. J. and Smeets, S. G. W. R. (2011). Ultimate 100 m world records through extreme-value
theory. Statistica Neerlandica, 65:32—42.



708 References

Embrechts, P., Kliippelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and
Finance. Springer, London.

Fagerland, M., Lydersen, S., and Laake, P. (2017). Statistical Analaysis of Contingency Tables. Chapman
and Hall/CRC, New YOrk.

Ferguson, T. S. (1996). A Course in Large Sample Theory. Chapman & Hall, London.

Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of
an observation by the mean error, and by the mean square error. Monthly Notices of the Royal
Astronomical Society, 80:758-770.

Fisher, R. A. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society, 26:528—
535.

Franklin, B. (1793). The Autobiography of Benjamin Franklin. Dover, New York. Reprinted from Dover,
New York, 1996.

Friesinger, A. (2004). Mein Leben, mein Sport, meine besten Fitness-Tipps. Goldmann, Berlin.

Frigessi, A. and Hjort, N. L. (2002). Statistical methods for discontiniuous phenomena. Journal of
Nonparametric Statistics, 14:1-5.

Galton, F. (1889). Natural Inheritance. Macmillan, London.

GeiBler, A. (1889). Beitriage zur Frage des Geschlechts verhéltnisses der Geborenen. Zeitschrift des
koniglichen sdchsischen statistischen Bureaus, 35:1-24.

Gelman, A., Hill, J., and Vehtari, A. (2022). Regression and Other Stories. Cambridge University Press,
Cambridge.

Gelman, A. and Nolan, D. (2002). A probability model for golf putting. Teaching Statistics, 24:93-95.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-741.

Ghosh, M. (2002). Basu’s theorem with applications: a personalistic review. Sankhya, 35:721-741.
Special issue in memory of D. Basu.

Gilovich, T., Vallone, R., and Tversky, A. (1985). The hot hand in basketball: On the misperception of
random sequences. Cognitive Psychology, 17:295-314.

Gjessing, H. K., Aalen, O. O., and Hjort, N. L. (2003). Frailty models based on Lévy processes. Advances
in Applied Probability, 35:532-550.

Glad, I. K., Hjort, N. L., and Ushakov, N. G. (2003). Correction of density estimators that are not
densities. Scandinavian Journal of Statistics, 30:415-427.

Gleditsch, N. P. (2020). Lewis Fry Richardson: His Intellectual Legacy and Influence in the Social
Sciences (edited book). Springer, Berlin.

Goudie, I. B. J. and Goudie, M. (2007). Who captures the marks for the Petersen estimator? Journal
of the Royal Statistical Society, Series A, 170:825-839.

Gran, J. M. and Stensrud, M. J. (2022). Hva er forventet levealder? Tidsskrift for Den norske lege-
forening, page 245.

Grgnneberg, S. and Hjort, N. L. (2012). On the errors committed by sequences of estimator functionals.
Mathematical Methods of Statistics, 20:327—-346.



References 709

Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrics,
11:1-12.

Hall, P. G. (1983). Large-sample optimality of least squares cross-validation in density estimation. Annals
of Statistics, 11:1156-1174.

Halmos, P. R. and Savage, L. J. (1949). Application of the Radon—Nikodym theorem to the theory of
sufficient statistics. The Annals of Mathematical Statistics, 20:225-241.

Hanche-Olsen, H. and Holden, H. (2010). The Kolmogorov-Riesz compactness theorem. FEzpositiones
Mathematicase, 28:385-394.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second Edition. Springer, New York.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 9:97-109.

Haug, K. K. (2019). Focused model selection for Markov chain models, with an application to armed
conflict data. Technical report, University of Oslo. Master Thesis.

Heger, A. (2011). Jeg og jordkloden. Dagsavisen, Dec. 16.

Hermansen, G. H., Hjort, N. L., and Kjesbu, O. S. (2016). Modern statistical methods applied on
extensive historic data: Hjort liver quality time series 1859-2012 and associated influential factors.
Canadian Journal of Fisheries and Aquatic Sciences, 73:273-295.

Hjort, J. (1914). Fluctuations in the Great Fisheries of Northern FEurope, Viewed in the Light of
Biological Research. Conseil Permanent International Pour I’Exploration de la Mer, Copenhagen.

Hjort, N. L. (1986a). Bayes estimators and asymptotic efficiency in parametric counting process models.
Scandinaavian Journal of Statistics, 13:63—85.

Hjort, N. L. (1986b). Notes on the Theory of Statistical Symbol Recognition. Norwegian Computing
Centre, Oslo.

Hjort, N. L. (1990a). Goodness of fit tests for life history data based on cumulative hazard rates. Annals
of Statistics, 18:1221-1258.

Hjort, N. L. (1990b). Nonparametric Bayes estimators based on Beta processes in models for life history
data. Annals of Statistics, 18:1259—1294.

Hjort, N. L. (1992). On inference in parametric survival data models. International Statisical Review,
xx:355—-387.

Hjort, N. L. (1994). The exact amount of t-ness that the normal model can tolerate. Journal of the
American Statistical Association, 89:665—675.

Hjort, N. L. (2007). And quiet does not flow the Don: Statistical analysis of a quarrel between Nobel
laureates. In @streng, W., editor, Concilience, pages 134-140. Centre for Advanced Research, Oslo.

Hjort, N. L. (2008). Discussion of P.L. Davies’ article ‘Approximating data’. Journal of the Korean
Statistical Society, 37:221-225.

Hjort, N. L. (2014). Discussion of efron’s article ‘Estimation and accuracy after model selection’. Journal
of the American Statistical Association, 110:1017—1020.

Hjort, N. L. (2017a). Cooling of Newborns and the Difference Between 0.244 and 0.278. FocuStat Blog,
University of Oslo, xv.



710 References

Hjort, N. L. (2017b). The Semifinals Factor for Skiing Fast in the Finals. FocuStat Blog, University of
Oslo, xv.

Hjort, N. L. (2018a). Overdispersed Children. FocuStat Blog, University of Oslo, xxi.

Hjort, N. L. (2018b). Towards a More Peaceful World [insert ‘I’ or ‘?” here]. FocuStat Blog, University
of Oslo, xvii.

Hjort, N. L. (2019a). The Magic Square of 33. FocuStat Blog, University of Oslo, xxi.

Hjort, N. L. (2019b). Sudoku Solving by Probability Models and Markov Chains. FocuStat Blog,
University of Oslo, xxi.

Hjort, N. L. and Claeskens, G. (2003a). Frequentist model averaging [with discussion and a rejoinder].
Journal of the American Statistical Association, 98:879-899.

Hjort, N. L. and Claeskens, G. (2003b). Rejoinder to the discussion of the Hjort and Claeskens and
Claeskens and Hjort papers. Journal of the American Statistical Association, 98:917-925.

Hjort, N. L. and Fenstad, G. (1992). On the last time and the number of times an estimator is more
than e from its target value. The Annals of Statistics, 20:469-489.

Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with a parametric start. The
Annals of Statistics, 23:882-904.

Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation. The Annals
of Statistics, 24:1619-1647.

Hjort, N. L. and Koning, A. J. (2002). Tests for constancy of model parameters over time. Journal of
Nonparametric Statistics, 14:113-132.

Hjort, N. L. and Lumley, T. (1993). Normalised local hazard plots. Technical report, Department of
Statistics, University of Oxford, Oxford.

Hjort, N. L., McKeague, I. W., and Van Keilegom, I. (2009). Extending the scope of empirical likelihood.
Annals of Statistics, 37:1079-1111.

Hjort, N. L., McKeague, I. W., and Van Keilegom, I. (2018). Hybrid combinations of parametric and
empirical likelihoods. Statistica Sinica, 27:2389-2407.

Hjort, N. L. and Petrone, S. (2007). Nonparametric quantile inference using Dirichlet processes. In Nair,
V., editor, Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pages
463-492. World Scientific, New Jersey.

Hjort, N. L. and Pollard, D. B. (1993). Asymptotics for minimisers of convex processes. Technical report,
Department of Mathematics, University of Oslo.

Hjort, N. L. and Schweder, T. (2018). Confidence distributions and related themes: introduction to the
special issue. Journal of Statistical Planning and Inference, 195:1-13.

Hjort, N. L. and Stoltenberg, E. A. (2021). The partly parametric and partly nonparametric additive
risk model. Lifetime Data Analysis, 27:1-31.

Hjort, N. L. and Varin, C. (2008). ML, PL, QL in Markov chain models. Scandinavian Journal of
Statistics, 35:64-82.

Hjort, N. L. and Walker, S. G. (2009). Quantile pyramids for Bayesian nonparametrics. Annals of
Statistics, 37:105-131.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association,
81:945-960.



References 711

Holum, D. (1984). The Complete Handbook of Speed Skating. High Peaks Cyclery, Lake Pacid.
Hosmer, D. W. and Lemeshow, S. (1999). Applied Logistic Regression. Wiley, New York.
Hveberg, K. (2019). Lene din ensomhet langsomt mot min. Aschehoug, Oslo.

Imbens, G. W. and Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge University Press, Cambridge.

Inlow, M. (2010). A moment generating function proof of the Lindeberg-Lévy central limit theorem.
American Statistician, 64:228-230.

Jacod, J. and Mémin, J. (1981). Sur un type de convergence intermédiaire entre la convergence en loi
et la convergence en probabilité. In Séminaire de Probabilités (Strasbourg), tome 15, pages 529-546.
Springer.

Jacod, J. and Protter, P. (2004). Probability Essentials. Second Edition. Springer, Berlin.

Jacod, J. and Shiryaev, A. (2013). Limit Theorems for Stochastic Processes. Second Edition. Springer,
Berlin.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to Statistical Learning
with Applications in R. Second Edition. Springer, New York.

James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, pages 361-379.

Jamtveit, B., Jacobsen, A. U., and Wyller, T. B. (2018). Utvikling i andel administrativt personale i
norske helseforetak. Samfunnsgkonomen, 6:17-21.

Jamtveit, B., Jettestuen, E., and Mathiesen, J. (2009). Scaling properties of European research units.
Proceedings of the National Academy of Sciences, 106:13160—13163.

Jansen, D. (1994). Full Circle. Villard Books, New York.

Jones, M. C. (1991). The roles of ISE and MISE in density estimation. Statistics and Probability Letters,
12:51-56.

Jones, M. C., Hjort, N. L., Harris, I. R., and Basu, A. (2001). A comparison of related density-based
minimum divergence estimators. Biometrika, 88:865—873.

Jullum, M. and Hjort, N. L. (2017). Parametric or nonparametric: The FIC approach. Statistica Sinica,
27:951-981.

Jullum, M. and Hjort, N. L. (2019). What price semiparametric Cox regression? Lifetime Data Analysis,
25:406-438.

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux, New York.

Kahneman, D., Sibony, O., and Sunstein, C. R. (2020). Noise: A Flaw in Human Judgment. William
Collins, London.

Kallenberg, O. (2002). Foundations of Modern Probability. Second Edition. Springer, Berlin.

Kjesbu, O. S., Opdal, A. F., Korsbrekke, K., Devine, J. A., and Skjeeraasen, J. E. (2014). Making use of
Johan Hjort’s ‘unknown’ legacy: reconstruction of a 150-year coastal time-series on northeast Arctic
cod (Gadus morhua) liver data reveals long-term trends in energy allocation patterns. ICES Journal
of Marine Science, 71:2053—-2063.

Kjetsaa, G., Gustavson, S., Beckman, B., and Gil, S. (1984). The Authorship of The Quiet Don [also
published in Russian]. Solum/Humanities Press, Oslo.



712 References

Klein, R., Knudtson, M. D., Lee, K. E., Gangnon, R., and Klein, B. E. (2008). The Wisconsin epidemi-
ologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons
with type 1 diabetes. Ophtalmology, 115:1859—1868.

Klotz, J. (1972). Markov chain clustering of births by year. Proceedings of the Sizth Berkeley Symposium
on Mathematical Statistics and Probability Theory, 4:173-185.

Klotz, J. (1973). Statistical inference in Bernoulli trials with dependence. Annals of Statistics, 1:373-379.

Koehler, J. J. and Conley, C. A. (2003). The “hot hand” myth in professional basketball. Journal of
Sport and Ezercise Psychology, 25:253—259.

Kolmogorov, A. N. (1933a). Grundbegriffe der Wahrscheinlichkeitsrechnung. Julius Springer, Berlin.

Kolmogorov, A. N. (1933b). Sulla determinazione empirica di una legge di distribuzione. Giorn Ist Ital
Attuar, 4:83-91.

Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. Springer,
New York.

Kusolitsch, N. (2010). Why the theorem of Scheffé should be rather called a theorem of Riesz. Periodica
Mathematica Hungarica, 61:225-229.

Laptook, A. e. a. (2017). Effect of therapeutic hypothermia initiated after 6 hours of age on death
and disability among newborns with hypoxic-ischemic encephalopathy: A randomized clinical trial.

Journal of the American Medical Association, 318:1550-1560.

Larkey, P. D., Smith, R. A., and Kadane, J. B. (1989). It’s okay to believe in the “hot hand”. Chance,
2:22-30.

Le May Doan, C. (2002). Going For Gold. McClelland & Stewart Publisher, Toronto.
LeCam, L. (1986). The Central Limit Theorem around 1935. Statistical Science, 1:78-91.

Lehmann, E. L. (1950). Notes on the Theory of Estimation. Berkeley University Press, Berkeley. Notes
recorded by Colin Blyth.

Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Fran-
cisco.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-free predictive
inference for regression. Journal of the American Statistical Association, 113:1094-1111.

Leike, A. (2001). Demonstration of the exponential decay law using beer froth. Furopean Journal of
Physics, 23:1-21.

Lessing, D. (1997). Walking in the Shade: Volume Two of My Autobiography, 1949 to 1962. xx, xx.

Lindeberg, J. W. (1922). Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrech-
nung. Mathematische Zeitschrift, 15:211-225.

Lindqvist, B. H. (1978). A note on Bernoulli trials with dependence. Scandinavian Journal of Statistics,
5:205-208.

Loader, C. (1996). Local likelihood density estimation. Annals of Statistics, 67:1602-1618.

Lum, K., Price, M. E., and Banks, D. (2013). Applications of multiple systems estimation in human
rights research. American Statistician, 24:191-200.



References 713

Markov, A. A. (1906). PacmpocTtpanenue 3akoHa OOJLIMINX YKUCEJT HA BEJIUYUHDLI, 3aB-
ucAamue apyr ot apyra [Extending the law of large numbers for variables that are dependent
of each other]. I3BecTust Pusuro-maremaTrnueckoro obmecrsa npu Ka3anckom yHU-
Bepcurere (2-1 cepust), 15:124-156.

Markov, A. A. (1913). IIpumep craTtucTryeckoro nccienopanus Hag TekcToM “EBrenms
Omneruna”, WIJLIIFOCTPUPYIOMIUY CBA3L UCIBLITAHNY B LIENDL [Example of a statistical investi-
gation illustrating the transitions in the chain for the ‘Evgenii Onegin’ text]. I3BecTus Axanevmun
Hayx, Caukr-IlerepOypr (6-s1 cepus), 7:153-162.

Marron, S. and Wand, M. P. (1992). Exact mean integrated squared error. Annals of Statistics, 20:712—
736.

MecCloskey, R. (1943). Homer Price. Scholastic Inc., New York.
McCullagh, P. (2002). What is a statistical model? [with discussion]. Annals of Statistics, 30:1225-1310.

Miller, J. B. and Sanjurjo, A. (2018). Surprised by the hot hand fallacy? A truth in the law of small
numbers. Econometrica, 86:2019-2047.

Miller, J. B. and Sanjurjo, A. (2021). Is it a fallacy to believe in the hot hand in the NBA three-point
contest? Furopean Economic Review, 138:103771.

Mykland, P. A. and Zhang, L. (2012). The econometrics of high frequency data. In Kessler, M., Lindner,
A., and Sgrensen, M., editors, Statistical Methods for Stochastic Differential Equations, pages 109—
190. CRC Press.

Mykland, P. A., Zhang, L., and Chen, D. (2019). The algebra of two scales estimation, and the S-TSRV:
High frequency estimation that is robust to sampling times. Journal of Econometrics, 208:101-119.

Neyman, J. and Pearson, E. (1933). On the problem of the most efficient statistical hypotheses. Philo-
sophical Transactions of the Royal Society of London, 68:289-337.

Normand, S.-L. T. (1999). Tutorial in biostatistics: Meta-analysis: formulating, evaluating, combining,
and reporting. Statistics in Medicine, 18:321-359.

O’Neill, B. (2014). Some useful moment results in sampling problems. American Statistician, A 231:282—
296.

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a
correlated system of variables is such that it can be reasonably supposed to have arisen from random
sampling. Philosophical Magazine Series, 5(302):157-175.

Pearson, K. (1902). On the change in expectation of life in man during a period of circa 2000 years.
Biometrika, 1:261-264.

Petersen, C. G. J. (1896). The yearly immigration of young plaice into the Limfjord from the German
Sea. Report of the Danish Biological Station, 6:5-84.

Peterson, A. V. (1975). Nonparametric estimation in the competing risks problem. Technical report,
Department of Statistics, Stanford University.

Pinker, S. (2011). The Better Angels of Our Nature: Why Violence Has Declined. Viking Books,
Toronto.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Price, R. M. and Bonett, D. G. (2001). Estimating the variance of the sample median. Journal of
Statistical Computation and Simulation, 68:xx—xx.



714 References

Price, R. M. and Bonett, D. G. (2002). Distribution-free confidence intervals for difference and ratio of
medians. Journal of Statistical Computation and Simulation, 72:xx—Xx.

Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters.
Bulletins of the Calcutta Mathematical Society, pages 81-91.

Reeves, R. V. (2022a). Of Boys and Men: Why the Modern Male is Struggling, Why it Matters, and
What to Do About It. Brookings Institution Press, Washington, D.C.

Reeves, R. V. (2022b). Redshirt the boys. The Atlantic, October.

Romano, J. P. and Siegel, A. F. (1986). Counterezamples in Probability and Statistics. Wadsworth &
Brooks/Cole, Belmont.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational
studies for causal effects. Biometrika, 70:41-55.

Royden, H. L. and Fitzpatrick, P. M. (2010). Real Analysis [4th ed.]. Pearson Education Asia, Beijin.

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimation. Scandinavian Journal
of Statistics, 9:65—78.

Rydén, J. (2020). On features of fugue subjects: A comparison of J.S. Bach and later composers. Journal
of Mathematics and Music, pages 1-20.

Saleh, J. H. (2019). Statistical reliability analysis for a most dangerous occupation: Roman emperor.
Palgrave Communication, 5:1-7.

Sanathanan, L. (1972). Estimating the size of a multinomial population. Annals of Mathematical
Statistics, 43:142-1542.

Scheffé, H. (1947). A useful convergence theorem for probability distributions. Annals of Mathematical
Statistics, 18:434—438.

Schefté, H. (1959). The Analysis of Variance. Wiley, New York.
Schervish, M. J. (1995). Theory of Statistics. Springer, New York.

Schomig, A., Mehili, J., de Waha, A., Seyfarth, M., Pahce, J., and Kastrati, A. (2008). A meta-analysis
of 17 randomized trials of a percutaneous coronary intervention-based strategy in patients with stable
coronary artery disease. Journal of the American College of Cardiology, 52:894-904.

Schweder, T. (1980). Scandinavian statistics, some early lines of development. Scandinavian Journal of
Statistics, 7:113—-129.

Schweder, T. (1999). Early statistics in the Nordic countries — when did the Scandinavians slip behind
the British? Bulletin of the International Statistical Institute, 58:1-4.

Schweder, T. and Hjort, N. L. (2016). Confidence, Likelihood, Probability: Statistical Inference with
Confidence Distributions. Cambridge University Press, Cambridge.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New
York.

Serfling, R. J. (1980). Approzimation Theorems of Mathematical Statistics. Wiley, London.

Shafer, G. and Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning
Research, 9.

Shao, J. (1991). Second-order differentiability and jackknife. Statistica Sinica, 1:185-202.



References 715

Shiryaev, A. N. (1996). Probability. Second edition. Springer, Berlin.

Shumway, R. H. and Stoffer, D. S. (2016). Time Seires Analysis and Its Applications [4th ed.]. Springer,
Heidelberg.

Silver, N. (2012). The Signal and the Noise: Why so Many Predictions Fail, but Some Don’t. Penguin.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London.

Simpson, R. J. S. and Pearson, K. (1904). Report on certain enteric fever inoculation statistics. British
Medical Journal, 3:1243—1246.

Sims, C. A. (2012a). Appendix: inference for the Haavelmo model. Technical report, Puplic Policy &
Finance, Princeton University, Princeton, NJ.

Sims, C. A. (2012b). Statistical modeling of monetary policy and its effects [Sveriges Riksbank Prize in
Memory of Alfred Nobel lecture]. American Economic Review, xx:1-22.

Singh, K., Xie, M., and Strawderman, W. E. (2005). Combining information from independent sources
through confidence distributions. Annals of Statistics, 33:159-183.

Slud, E. (1989). Clipped Gaussian processes are never M-step Markov. Journal of Multivariate Analysis,
29:1-14.

Smith, T. D. (1994). Scaling Fisheries: The Science of Measuring the Effects of Fishing 1855-1955.
Cambridge University Press, Cambridge.

Spiegelberg, W. (1901). Aegyptische und Griechische Eigennamen aus Mumientiketten der Romischen
Kaiserzeit. Greek Inscriptions, Cairo.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution.
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pages 197—
206.

Stigler, S. M. (1973). Studies in the history of probability and statistics. xxxii: Laplace, Fisher and the
discovery of the concept of sufficiency. Biometrika, 60:439—445.

Stigler, S. M. (1977). Do robust estimators work with real data? Annals of Statistics, 27:1055-1098.
Stigler, S. M. (1983). Who discovered Bayes’s Theorem? American Statistician, 37:290-296.

Stigler, S. M. (1990). The 1988 Neyman memorial lecture: a Galtonian perspective on shrinkage esti-
mators. Statistical Science, 5:147-155.

Stigler, S. M. (2006). How Ronald Fisher became a mathematical statistician. Mathematics and Social
Sciences, 44:23-30.

Stoltenberg, E. A. (2019). An MGF proof of the Lindeberg theorem. Technical report, Department of
Mathematics, University of Oslo.

Stoltenberg, E. A. and Hjort, N. L. (2021). Models and inference for on-off data via clipped Ornsten—
Uhlenbeck processes. Scandinavian Journal of Statistics, 48:908-929.

Stout, W. F. (1974). Almost Sure Convergence. Academic Press, New York.
Student (1908). The probable error of a mean. Biometrika, 6:1-25.

Swensen, A. R. (1983). A note on convergence of distributions of conditional moments. Scandinavian
Journal of Statistics, 10:41-44.



716 References

Tibshirani, R. J., Foygel Barber, R., Candes, E., and Ramdas, A. (2019). Conformal prediction under
covariate shift. Advances in Neural Information Processing Systems, 32.

Tversky, A. and Gilovich, T. (1989). The cold facts about the “hot hand” in basketball. Chance, 2:16-21.
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

Varian, H. R. (1975). Distributive justice, welfare economics, and the theory of fairness. Philosophy and
Public Affairs, 4:223-247.

Voldner, B., Frgslie, K. F., Haakstad, L., Hoff, C., and Godang, K. (2008). Modifiable determinants
of fetal macrosomia: role of lifestyle-related factors. Acta Obstetricia et Gynecologica Scandinavica,
87:423-429.

von Bahr, B. (1965). On the convergence of moments in the central limit theorem. Annals of Mathe-
matical Statistics, xx:808—818.

von Bortkiewicz, L. (1898). Das Gesetz der kleinen Zahlen. B.G. Teubner, Berlin.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic learning in a random world. Springer
Science & Business Media, Berlin/Heidelberg.

Wallge, L., Hjort, N. L., and Thoresen, M. (2019a). Major concerns about late hypothermia study. Acta
Paediatrica, 108:588-589.

Wallge, L., Hjort, N. L., and Thoresen, M. (2019b). Why results from Bayesian statistical analyses of
clinical trials with a strong prior and small sample sizes may be misleading: The case of the NICHD
Neonatal Research Network Late Hypothermia Trial. Acta Paediatrica, 108:1190-1191.

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.

Wardrop, R. L. (1995). Simpson’s paradox and the hot hand in basketball. The American Statistician,
49:24-28.

Williams, D. (1991). Probability with Martingales. Cambridge University Press, Cambridge.

Wilmoth, J. R., Andreev, K., Jdanov, D., Glei, D., Riffe, T., Boe, C., Bubenheim, M., Philipov, D.,
Shkolnikov, V., Vachon, P., C, W., and M, B. (2021). Methods protocol for the Human Mortality
Database. University of California, Berkeley, US, and Max Planck Institute for Demographic Research,
Rostock, Germany. https://www.mortality.org/ [Version 6. Last revised January 26, 2021].

Wissner-Gross, Z. (2020). Can you feed the hot hand? https://fivethirtyeight.com/features/can-you-
feed-the-hot-hand/. Accessed: December 12, 2020.

Xie, M. and Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a
parameter: a review [with discussion and a rejoinder|. International Statistical Review, 81:3-39.

Zabriskie, B. N., Corcoran, C., and Senchaudhuri, P. (2021). A comparison of confidence distribution
approaches for rare event meta-analysis. Statistics in Medicine, 40:5276-5297.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of the
American Statistical Association, 81:446-451.

Zhang, L., Mykland, P. A., and Ait-Sahalia, Y. (2005). A tale of two time scales: Determining integrated
volatility with noisy high-frequency data. Journal of the American Statistical Association, 100:1394—
1411.



Name index

DeGroot, Morris H, 214

Schervish, Mark J., 268

17






Subject index

m-system, 644

o-finite measure, 643

d-system, 645

Monotone convergence theorem, 652
o-algebra, 640

absolute continuity, 663

absolute continuity of measures, 653
Admissibility, 268

algebra of sets, 644

ancillary statistic, 148

asymptotically uniformly integrable, 52

Bahadur’s theorem, 273
Bayes risk, 269

Bayes solution, 269

Bayes theorem, 666

Bayes’ theorem, 670

Blyth’s method, 277
bootstrapping argument, 653
Borel o-algebra on of R, 641
Borel-Cantelli lemma, 49
bounded in probability, 63

Carathéodory’s Extension Theorem, 646

Carathéodory’s lemma, 647
Cartesian product, 640
change of variable, 653

Characteristic functions with finite integral,

679
complement, 639
Completeness, 272
conditional expectation, 667
conditional probability, 669

consistency of an estimator, 48
convergence in measure, 650
convergence in probability, 650
convolutions, 658

counting measure, 644
covariance, 661

Cramér—Wold theorem, 74

de Morgan’s laws, 640

density, 653

Derivative under the integral sign, 654
distribution, 656

distributive laws, 640

Dominated convergence theorem, 652
Dynkin’s lemma, 645

empty set, 640

expectation, 657

extended real numbers, 641
extension of probability spaces, 671

Factorisation theorem, 143, 144
Fatou’s lemma, 652

finitely additive measure, 644
Fisher information, 178

Fisher information regularity conditions, 177

Floor function, 55
Fubini’s theorem, 658

improper priors, 276
independence of g-algebras, 660

independence, countably many events, 660

independence, finitely many events, 660
independent random variables, 660
infinitely often, 649

719



720

integrable functions, 651
intersection, 639

inverse image, 640
inversion formula, 679

Jensen’s inequality, 657
Jensen’s inequality for conditional expecta-
tion, 669

Kolmogorov’s zero-one law, 662
kurtosis, 54

Laplace transform, 675

law, 656

law of total probability, 666
Lebesgue decomposition, 664
Lehmann—Scheffé theorem, 272
Levy’s continuity theorem, 74
loss function, 267

Markov’s inequality, 49
measurable space, 640, 643
measure, 643

minimal sufficient statistic, 147
Minimax, 268

Monotone class, 645

Monotone class theorem, 645
multivariate CLT, 75

natural parameter region, 36
outer-measure, 647

posterior density, 670

power set, 639, 641
probability density function, 662
probability distribution, 656
probability kernel, 671
probability measure, 643
probability transform, 61
product measure, 657
product o-algebra, 641
Prokhorov’s theorem, 63
Prokohorov’s theorem, 74

Radon—Nikodym theorem, 663

Subject index

Rao—Blackwell theorem, 271

regular conditional distributions, 681
Riemann—Lebesgue lemma, 680

risk, 214

score function, 177

semi-ring, 646

semialgebra, 646

separable o-algebra, 641
sigma-algebra, o-algebra, 640

simple function on standard form, 643
Simple functions, 643

stable convergence, 85, 86

standard deviation, 657

statistic, 142

strong consistency of an estimator, 48
subsequence lemma, 64

subset, 639

Sufficient statistic, 142

tail-o-algebra, 662

the diagonal method, 64

Tightness, 62

tightness in dimension k, 74

Tonelli’s theorem, 658

tower property of conditional expectation,
667

triangular array, 71

trivial o-algebra, 641

Type I and Type II errors, 268

unbiased estimator, 268

uniformly minimum variance unbiased esti-
mator, 270

union, 639

variance, 657
version, 667

weak convergence, 58



	Preface
	Contents
	I Short & crisp
	Statistical models
	Large-sample theory
	Parameters, estimators, precision, confidence
	Testing, sufficiency, power
	Minimum divergence and maximum likelihood
	Bayesian inference and computation
	CDs, confidence curves, combining information
	Loss, risk, performance, optimality
	Bootstrapping

	II Stories
	III Appendix
	Mini-primer on measure and integration theory
	References
	Name index
	Subject index


