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Preface

This book builds on Hello, here is some text without a meaning. This text should show

what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and

some nonsense like “Huardest gefburn”? Kjift – not at all! A blind text like this gives

you information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of words

should match the language.

(xx then three-four paragraphs here, on the carrying ideas behind and structure

of the book: exercises and stories. a partly flipped classroom, with direct participa-

tion from the first pages of each chapter. there will be solutions to all exercises, notthe Hjort-

Stoltenberg

book website
physically placed inside the book, but rather on the book’s website-to-be, perhaps url’d

www.mn.uio.no/math/english/research/projects/HjortStoltenberg. That website

will also have all datasets and code is R and python to carry out all analyses, for the

construction of each of the book’s figures, etc.

(xx if we’re clever with the 777 exercises, 77 stories, we should mention Stigler’s 7

pillars. x)

(xx briefly on on prerequisties: linear algebra, with matrix theory, etc.; calcululs,

with functions of one or more variables, partial derivatives, etc.; programming, in R

or Python or other appropriate language, both for running common algorithms inside

relevant pacakages, and for programming one’s own functions, for simulation, etc.)

(xx crisp clear prose here, regarding segments of readers and how they can manouevre

through the material. overall: from beginning master’s level, in statistics, probability

theory, data science, machine learning, and upwards, to PhD level and more. xx) (i)

The Linear Readers, who will benefit from having the stamina to work through chapter

by chapter (ideally also exercise for exercise), and appropriate subsets of our stories.

These readers will be at a high master or PhD level. (ii) The Statistical Stories Readers,

for those who already know the basics on statistical models, parameter estimation and

testing, some Bayes, etc. (iii) Our book is also for the specialists inside certain themes,

who wish to learn even more.

(xx crisp clear prose here, regarding courses and teaching. below we help readers

and instructors by also providing short lists of relevant stories, for the different types of

iii
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courses using our book. xx) Several types of courses can be taught from this book. several courses

which can be

taught from our

book

(i) Hard-core statistical inference, with parametric models, etc.: Chs. 1, half of 2,

then most of 3, 4, half of 5, 6, 7; a selection of Stories.

(ii) Large-sample theory, the careful probablity theory leading to CLT and more,

with applications in statistics: Chs. 1, 2, 5; half of 9, a selection of Stories.

(iii) Empirical processes, convergence, approximations, applications in statistics:

Chs. 1, 2, 5, 9; a selection of Stories.

(iv) Survival and event history analysis: Chs. 1, the essence of 2, 3, 4, 5, then the

full 9; a selection of Stories.

(v) Model selection and model averaging: Chs. 1, the essence of 2, 3, 4, 5, then the

full 11; a selection of Stories.

(vi) Bayesian statistics and confidence distributions: Chs. 1, the essence of 3, 5, then

the full 7, 8, parts of 15; a selection of Stories.

(vii) Statistics with applications: a special course can be taught with little emphasis

on the theoretical details, but illustrating concepts, models, methods, inference views

through a selection of perhaps fifty of our Stories.

The authors owe special thanks to Céline Cunen, Gudmund Hermansen, Tore Schwe-

der, for having contributed significantly to several of our Statistical Stories, and also for

always pleasant and inspiring long-term collaborations. Deep thanks are also due to a

long list of colleagues and friends, who have taken part in discussions and rounds of

clarification of relevance to various exercises and stories in our book: Marthe Aastveit,

Patrick Ball, Bear Braumoeller, Gerda Claeskens, Aaron Clauset, Dennis Cristensen,

Ingrid Dæhlen, Arnoldo Frigessi, Ingrid Glad, H̊avard Hegre, Aliaksandr Hubin, Ingrid

Hobæk Haff, Kristoffer Hellton, Bjørn Jamtveit, Martin Jullum, Vinnie Ko, Alexander

Koning, Ian McKeague, Per Mykland, Per August Moen, Jonas Moss, H̊avard Mokleiv

Nyg̊ard, Lars Olsen, Steven Pinker, Sam Power, Oskar Høgberg Simensen, Catharina

Stoltenberg, Gunnar Taraldsen, Ingunn Fride Tvete, Ingrid Van Keilegom, Lars Walløe,

Jonathan Williams, Lan Zhang.

We have also benefitted, directly and indirectly, through the collective efforts of

several grander wide-horizoned funded projects: the FocuStat: Focus Driven Statistical

Inference with Complex Data 2014-2019 project (led by Hjort) at the Department of

Mathematics, University of Oslo, funded by the Norwegian Research Council; the Sta-

bility and Change 2022-2023 project (led by Hjort and Hegre), funded by and hosted

at the Centre for Advanced Study (CAS), Academy of Science and Letters, Oslo; and

Integreat: The Norwegian Centre for Knowledge-Driven Machine Learning 2023-2033

Centre of Excellence (led by Frigessi and Glad), Oslo, funded by the Norwegian Research

Council. We finally acknowledge with gratitude a partial support stipend from the Nor-

wegian Non-Fiction Writers and Translators Association (Norsk faglitterær forfatter- og

oversetterforening).

Nils Lid Hjort and Emil Aas Stoltenberg

Blindern, some day in 2025
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II.i

Demography, Epidemiology, Medicine

(xx WELL: various things to fix, as of 12-August-2024, polish and finish. nils tries to tend

to these: (i) round off Oslo quantile babies story. (ii) round off overdispersed and Markov

children. (iii) nils goes for Story i.10, with PCI versus only usual medical treatment for

coronary disease. (iv) things to calibarte from nils Time to second child and Emil Third

child stories. xx)

Story i.1 Cooling of newborns. Seminal work carried out by Marianne Thoresen and

coworkers (see work pointed to in Walløe et al. (2019a)) has demonstrated that when a

newborn has been deprived of oxygen during birth, an emergency intervention involving

cooling (therapeutic hypothermia) can save its life, with no loss of motoric or mental

abilities later on – provided this is implemented within six hours. Is it still helpful, or

not at all, when the cooling scheme starts later than six hours? Laptook (2017) report on

a wide and elaborate study, combining information from many registries across several

U.S. state, pertaining to this and related question. In particular, one counts the number

of events, in the cooled and non-cooled groups, the event in question being death or

disability (with a precise definition of disability, assessed when the child is about 18

months old). The essential relevant summary, from all these life-and-death efforts, lies

in the two times two table

non-cooled infants m0: y0 and m0-y0: 79: 22 and 57

hypothermic infants: m1: y1 and m1-y1: 78: 19 and 59

Seeing these as two biomial experiments, y0 ∼ binom(m0, p0) and y1 ∼ binom(m1, p1),

the statistical question is what inferences we may make, for comparing p0 and p1.

(a) First, give ordinary (and perhaps approximate) 95 percent confidence intervals for

p0 and p1, and comment. Then compute and display in the same diagram the confidence

distributions cc0(p0) and cc1(p1), associated with the optimal binomial confidence dis-

tributions C(p) = Prp(Y > yobs) +
1
2Prp(Y = yobs), as for the left panel of Figure i.1;

see Ex. 7.31.

(b) To analyse the degree to which p0 and p1 might be different, transform to the logistic

scale, with p0 = exp(θ0)/{1 + exp(θ0)} and p1 = exp(θ0 + γ)/{1 + exp(θ0 + γ)}. Note

421
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Figure i.1: Left panel: confidence curves for p0 and p1, with 95 intervals [0.189,0.384] and

[0.159,0.347]. Right panel: confidence curve for rr = p1/p0, with 95 interval [0.509,1.485].

There is no indication that p0 and p1 really differ.

that γ can be seen as the log-odds difference log(p1/(1− p1))− log(p0/(1− p0)); results

may also be given in terms of the odds ratio ρ = exp(γ). Use Ex. 7.32 to compute the

optimal confidence curve cc(ρ), and give a 95 percent interval for the parameter. The

Laptook (2017) article reported mainly in terms of the relative risk parameter rr = p1/p0,

however. Construct therefore a confidence distribution cc(rr) also for that parameter,

using the Wilks theorem based recipe of Ex. 5.28, as in the right panel of Figure i.1.

Give the median confidence estimate r̂r0.50 and a 95 percent interval.

(c) The Laptook (2017) report framed results in terms of Bayesian priors and posteriors.

With priors p0 ∼ Beta(a0, b0) and p1 ∼ Beta(a1, b1), show that rr = p1/p0 given data

is a ratio of independent Beta(a0 + y0, b0 +m0 − y0) and Beta(a1 + y1, b1 +m1 − y1).

Deduce that the posterior distribution has cumulative

F (v |data) =
∫ 1

0

G(vp0, a1 + y1, b1 +m1 − y1)g(p0, a0 + y0, b0 +m0 − y0) dp0,

in terms of the density g and c.d.f. G for Beta distributions. Compute and display this

F (rr |data), using the Jeffreys prior Beta( 12 ,
1
2 ) (xx pointer to Ch7 with this detail xx),

Show that it becomes very close to the prior-free CD C(rr), constructed from the cc(rr)

above as 1
2 − 1

2cc(rr) for rr ≤ r̂r0.50 and 1
2 + 1

2cc(rr) for rr ≥ r̂r0.50 (xx pointer to that

thing in Ch8 xx).

(d) Laptook (2017) used several informative priors for their analyses, including one called

by them a neutral prior, with mean zero and standard deviataion 0.35 for log rr. Translate

this to two equal Beta priors (a, a), (a, a), finding the a matching their 0.35 standard

deviation, perhaps via simulations; you should find a
.
= 8.95. For this neutral prior,

display the posterior c.d.f. and density for rr. Compute also Pr(rr ≤ v |data) for v =

0.90, 0.95, 1.00.
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(e) Above we have computed Pr(rr < 1 | y0 = 22, y1 = 19) = 0.664 with the neutral

prior. Compute Pr(rr < 1 | y0 = 22, y1) for imagined data sets with y1 = 19, 18, . . . , 5,

say, keeping the other aspects of the data fixed, including y0 = 22. How small ought y1
to have been, in order for the rr < 1 scenario to have posterior probabilty above 0.95?

(f) (xx round off. point to Hjort blog story Hjort (2017a), big JAMA paper Laptook

(2017), short critical follow-up papers Walløe et al. (2019a,b). xx)

Story i.2 Overdispersed children. Some one and a half century ago, there were as many

as n = 38495 plentiful 8-or-more children families living in Sachsen, with Geißler (1889)

dutifully counting and reporting about them and the number of girls and boys. The little

table to the left here gives the number N(y) of these families having y girls and 8 − y

boys, for y = 0, 1, . . . , 8. In the course of this and the following Story i.3 we will work

through models 1, 2, 3, say, producing expected numbers E1(y), E2(y), E3(y) to match

the N(y), along with what we term Pearson residuals {N(y)− Ej(y)}/Ej(y)
1/2.

y N E1 pear1 E2 pear2 E3 pear3

0 264 192.325 5.168 255.621 0.524 255.210 0.550

1 1655 1445.384 5.514 1657.032 -0.050 1655.181 -0.004

2 4948 4752.364 2.838 4909.686 0.547 4901.376 0.666

3 8498 8928.902 -4.560 8683.213 -1.988 8692.383 -2.085

4 10263 10484.952 -2.168 10024.863 2.378 10034.318 2.283

5 7603 7879.792 -3.118 7735.975 -1.512 7736.379 -1.516

6 3951 3701.205 4.106 3896.509 0.873 3890.978 0.962

7 1152 993.421 5.031 1171.238 -0.562 1167.280 -0.447

8 161 116.655 4.106 160.865 0.011 161.895 -0.070

(a) Compute the overall fraction of girls, among the mn = 307860 children, as p̂ =∑m
y=0N(y)y/(mn) = 0.4844. Show that the null hypothesis p = 0.50 must be soundly

rejected here.

(b) Of course a statistician can’t always expect to see the difference between 0.500 and

0.485 as a clearly significant one – as this very much depends on the sample size. Suppose

you go out on the street sampling, counting a binomial B ∼ binom(k, p) after having

studied k objects or persons. How large must k be, in order for your 0.05-level test of

p = 0.50 against p ̸= 0.50 to have detection power say 0.95, if the truth is p = 0.485?

What if you use a 0.01-level test and need detection power 0.99?

(c) Assume that the binomial model Y ∼ binom(8, p0) holds, with the same p0 across

all families. Find point estimates and 99 percent confidence intervals for nf1(0, p0), the

expected number of all-boys families, and for nf1(8, p0), the expected number of all-girls

families, among the n = 38495 families with eight children. Then check with the real

world.

(d) Under the assumption that the girl-probability p is constant, across families, we would

have Y ∼ binom(8, p), for these n = 38495 Sachsen families. Compute E1(y) = nf1(y, p̂),

the expected number of y-girls families, under this model, with f1(y, p) the usual bino-

mial. Compute also the Pearson residual, say P1(y) = {N(y) − E1(y)}/E1(y)
1/2, for

y = 0, 1, . . . , 8. These should roughly be standard normal, if the model used is good.
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Figure i.2: Left panel: Pearson residuals {N(y) − E(y)}/E(y)1/2, for three models:

the simple binomial (red, dashed curve); the betabinomial (black, full curve); and the

Markov model (black, dotted curve). Here N(y) is the observed number of girls y,

and E1(y), E2(y), E3(y) the expected number under models 1, 2, 3. Models 2 and 3

produce very similar fitted values. Right panel: Simulated log-likelihood ℓ̂n(ρ), using

105 simulations for each value of the Markovian correlation parameter ρ, for 8-children

families, along with a cubic smoother, to read off the ML estimate ρ̂ = 0.044.

Check with Figure i.2 (left panel). Discuss what you find: in particular, it appears that

the real world exhibits significantly more ‘extreme families’, those with all boys or all

girls, than what is predicted under the straight binomial model.

(e) Suppose rather that each family has its own girl-probability p, but that this p varies

across families, according to some distribution with overall mean p0 and positive standard

deviation τ0. Show that EY = mp0 and that the extra-binomial variability manifests

itself by VarY = mp0(1 − p0) +m(m − 1)τ20 ; this is also clear from Ex. 1.21. Compute

the empirical variance S2 =
∑n

i=1(yi − ȳ)2/(n− 1) =
∑m

y=0N(y)(y −mp̂)2/(n− 1), set

the extra-binomial variance S2 −mp̂0(1− p̂0) equal to m(m− 1)τ20 , and show that this

leads to τ̂0 = 0.0538.

(f) Establish that this extra-variation, with τ̂0 = 0.0538, is indeed very significantly

positive. Again, we would not always be able to identify a standard deviation of this size

as being significantly present, but we are, of course, helped by the enormous sample size.

(g) A natural two-parameter model, to explain also the extra-binomial variability, is to

take Y | p ∼ binom(m, p) and p ∼ Beta(a, b); see Ex. 1.21. Show that this leads to

f2(y, a, b) =

(
m

y

)
Γ(a+ y)Γ(b+m− y)

Γ(a)Γ(b)

Γ(a+ b)

Γ(a+ b+m)
for y = 0, 1, . . . ,m.

Representing (a, b) as (kp0, k(1 − p0)), estimate k from the overdispersion number τ̂0 =

0.0538; the result should be k̂ = 85.1961. Draw the resulting Beta density in a dia-
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gram. How many families in the world have their girl-probabilities outside the interval

[0.40, 0.60]?

(h) Compute the expected numbers E2(y) and the Pearson residuals P2(y) = {N(y) −
E2(y)}/E2(y)

1/2 also for this two-parameter model, and reconstruct the relevant parts of

the table above and Figure i.2 (left panel). Compute the Pearson statistics
∑m

y=0 P1(y)
2 =

159.41, way too big for the binomial, but
∑m

y=0 P2(y)
2 = 13.55, close to acceptable, for

the beta-binomial.

(i) To assess whether a proposed model f(y, θ) for the probabilities Pr(Y = y) is ade-

quate, one may in addition to Pearson residuals inspection use the likelihood theory of

Ch. 5. Show that the log-likelihood function is ℓn(θ) =
∑m

y=0N(y) log f(y, θ), with an en-

suing ML estimator θ̂. Deduce that the consequent Wilks testing statistic takes the form

Wn = 2
∑m

y=0N(y) log{r̂(y)/f(y, θ̂)}, with r̂(y) = N(y)/n the raw estimates. Explain

that if the parametric model holds, then the distribution ofWn is very close to a χ2
df , with

df = m−dim(θ). Compute theWn for the two models considered here, the binomial and

the beta-binomial, and comment. – For the beta-binomial model, this involves finding

the ML estimates via numerical optimisation, leading to (â, b̂) = (41.244, 43.904).

Story i.3 Markovian children. Let us now introduce a model for Markovian children,

where the gender of your next child depends (but only slightly, as it turns out) on

the gender of your currently last child. Let (q0, p0) = (1 − p0, p0) be the long-term

frequencies for boys and girls. Instead of taking births to be fully independent of each

other, consider the Markov chain x1, x2, . . . of births (again with 0 for boy and 1 for girl),

with x1 drawn from the (q0, p0) coin of reproduction, and then following the two-stage

transition probability matrix

P =

(
q0 + ρp0, p0 − ρp0
q0 − ρq0, p0 + ρq0

)
=

(
q0, p0
q0, p0

)
+ ρ

(
p0, −p0
−q0, q0

)
, (i.1)

with ρ a fine-tuning Markov dependence parameter.

(a) Argue first that with ρ = 0 we’re back to ordinary independence, with a binomial

distribution for the number of girls in a family of a given size. Show that (q0, p0) indeed

is the equiblibrium distribution for this Markov chain. Work out the covariance of ‘it’s

a girl’, ‘it’s a girl’, and show that ρ is the correlation, also for boy, boy. What is the

parameter region for ρ? Below we shall find ‘same gender twice in a row’ correlation ρ

around 0.05.

(b) Klotz (1972) discussed girl-boy sibling sequences among 195 Amish families, in a

society where presumably birth control mechanisms were not used or indeed thought of

(the data stem from observations recorded before 1910). The sibling flock sizes were

from 2 to 16. In total these 195 families had 716 girls and 742 boys, with girl-ratio

716/1458 = 0.491. We now fit the two-parameter Markov model (i.1) to these data.

Write (xi,1, . . . , xi,mi) for the gender sequence in family i, with 1 for girls and 0 for boys.

Show that the full likelihood for the n = 195 sibling chains of children may be expressed
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as

L(p0, ρ) =

n∏
i=1

{
(1− p0)

1−xi,1p
xi,1

0

mi∏
j=2

Prp0,ρ(xi,j |xi,j−1)
}
,

and that this leads to the log-likelihood

ℓ(p0, ρ) = M log p0 + (n−M) log(1− p0)

+N0,0 log p0,0 +N0,1 log p0,1 +N1,0 log p1,0 +N1,1 log p1,1,

in terms of the components p0,0, p0,1, p1,0, p1,1 of the transition probability matrix (i.1).

Here M is the number of families with first child girl, n−M the number of families with

first child boy, and Na,b =
∑n

i=1

∑mi

j=2 I((xi,j−1, xi,j) = (a, b)) the number of transitions

seen from a to b. Using ML theory methods from Ex. 12.18, establish that the point

estimate for ρ becomes a significant nonzero 0.074, with standard error 0.028; the 95

percent interval is [0.019, 0.127]. Construct also a confidence curve cc(ρ). Give also the

estimated transition probability matrix. What is the estimated probability of having five

girls in a row? – Remark (i): Note the practical point that we can carry out full analysis

via maximisation of ℓ(p0, ρ), or of its profiled ℓprof(ρ); we do not need extra details for

this or similar models, per se, though such are given in Klotz (1972, 1973); Lindqvist

(1978). Remark (ii): It took us considerable efforts and patience to transcribe the Klotz

(1972) data, which he gave in compressed octogonal form, into sibling gender sequencess

of 0s and 1s. Here it is sufficient to inform our readers about the required summary

statitics: M = 85, (N0,0, N0,1, N1,0, N1,1) = (345, 298, 287, 333). Explain that you for the

Markov model worked with here do not need more detail for the n = 195 variable-length

0-1 time series.

(c) For the Klotz (1972) data, we have the precise gender sequences for the 195 families.

For the Geißler data we have only the number of girls and boys in a sibling flock, however,

making it harder but not impossible to unearth Markovian dependence. Consider any

parametric model for f(y, ρ) = Prρ(Y = y), the number of girls among m siblings. As we

have seen in Story i.2, the log-likelihood function is ℓn(ρ) =
∑m

y=0N(y) log f(y, ρ), with

N(y) the number of times Y = y is observed in the data. For the Markov model there is

no easy formula for f(y, ρ) = Prρ(X1 + · · · +Xm = y), but we may for each ρ simulate

a high number of chains (x1, . . . , xm) and estimate f(y, ρ) with the relative proportion

of these chains which have sum y. Argue that this leads to the simulated log-likelihood

function

ℓ̂n(ρ) =

m∑
y=0

N(y) log f̂(y, ρ).

Implement such a scheme, and construct a version of Figure i.2, right panel (which used

105 simulations for each value in a grid of ρ). Supplement the ℓ̂n curve with a cubic

regression smoother, of the type ρ̂(ρ) = β0 + β1ρ + β2ρ
2 + β3ρ

3; this is the smooth

approximation curve in the figure’s right panel. Read off ρ̂ = 0.044 as a good numerical

approximation to the ML estimator. Use the Wilks based construction recipe of Ex. 7.9

to produce a confidence curve cc(ρ), and read off a 95 percent interval (which turns out

to be [0.037, 0.051]).
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(d) For the estimated ρ̂ = 0.044, simulate a high number of (x1, . . . , xm) Markovian

children in m-children families, to get f̂3(y) = f(y, ρ̂). Compute from this expected

numbers E3(y) = nf̂3(y), Pearson residuals (N − E3)/E
1/2
3 , as with the table of Story

i.2. Compute also the Pearson type statistic
∑m

y=0 P3(y)
2, which will be close to the

corresponding statistic for the beta-binomial model. As with Story i.2(i), compute the

Wilks statistic Wn for the present Markov model, and comment on your findings.

Story i.4 IUD expulsion. Data have been collected for a certain intrauterine device for

n = 100 women (xx pointer here to data overview, there mentioning Peterson (1975)

and Aalen, but mention that this is 1970ies in U.S. xx). The iud-data file has three

columns: the index i = 1, . . . , n; the time ti to ‘event’, measured in days, from the first

day of use; and an index for ‘event’, specifically with ‘2’ denoting expulsion, and ‘3’ or

‘4’ being removal for pains or bleeding. Here we shall be concerned with modelling the

time to expulsion of the IUD, and let δi be a 1-0 indicator for this event. For most users

this never happens (there are 11 cases of δi = 1), so this means heavy censoring, in the

survival analysis language of Ch. 10.
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Figure i.3: For the IUD expulsion data: cumulative hazards (left panel); survival curves

Pr(no expulsion so far) (right panel), where the scale is above 0.80. Nonparametric and

parametric.

(a) (xx check similarity with substory for Better Angels. xx) Assume each woman has

her constant hazard rate θ, in the process leading to IUD expulsion, but that these rates

vary in the population of IUD users, according to a Gam(a, b) distribution. With the

convenient reparametrisation (a, b) = (θ0/c, 1/c), show that θ then has mean θ0 and

variance cθ0. Show, perhaps using Ex. 1.10, that the hazard rate for a randomly sampled

woman then becomes α(t, θ0, c) = θ0/(1 + ct). The c parameter might be called a frailty

parameter, since it models the degree to which IUD users are different, with the frail

ones tending to experience expulsion early, and with yet others not having problems at

all. Comment on the case c→ 0.
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(b) Show that the log-likelihood function becomes

ℓ(θ0, c) =

n∑
i=1

[
{log θ0 − log(1 + cti)}δi − (θ0/c) log(1 + cti)

]
,

and give also an expression for the profiled log-likelihood ℓprof(c). Display that function,

and compute the ML estimates (1.320, 38.710) for (θ0, c). Construct versions of the left

and right panels of Figure i.3.

(c) Compute estimated standard deviations, for the estimators portrayed in Figure i.3,

and construct additional figures with pointwise 90 percent confidence bands.

(d) The ML estimates above, along with their estimated standard deviations, are found

based on data for n = 100 women followed over 510 days, or 1.397 years, during which

11 users experienced expulsion. Simulate more data, from the estimated model, say for

another 510 days, for the 89 users still at risk for expulsion. Assess how much more

precise the model parameters can be estimated now. (xx here i also have in mind the

approximate variance expression (1/n)J−1
[0,τ ], where we now increase τ . xx)
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Figure i.4: Left panel: confidence curve cc(c) for the frailty parameter c. The ML

estimate is 38.71, and the 90 percent interval is quite skewed, from 7.27 to 260.81. Right

panel: 100 simulated S(t) from posterior distribution.

(e) Compute and display a confidence curve cc(c) for the dispersion parameter c, as in

Figure i.4, left panel, using the Wilks theorems, see Ex. 7.9, and give in particular a 90

percent confidence interval. Note that the cc(c) is strongly skewed to the right, giving

asymmetric confidence intervals.

(f) We now disregard the parametric model worked with above, and enter Bayesian

nonparametric terrain from Ch. 15, aiming at using Beta processes for the cumulative

hazard A(t) to reach posterior inference for both A and the survival function S(t) =
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∏
[0,t]{1 − dA(s)}, see (xx pointer to exercises xx). The Beta process prior involves

setting up the prior mean function dA0(s) = α0(s) ds and prior precision function k(s),

with increments dA(s) having Beta distributions with parameters (k(s)α0(s) ds, k(s){1−
α0(s) ds}). Here we do this by taking A0(t) = α0t with constant rate, supplemented with

a constant precision function k. The prior construction task is then to choose rate α0

and precision k so that Beta increments (kα0 ds, k(1 − α0 ds)), with means α0 ds and

variances α0 ds/(k + 1), are reasonable, but still allow flexibility in order for the data

to point us in other directions, if appropriate, in the given IUD expulsion context. For

the present illustration, aiming at a somewhat informative prior, we take into account

that around 90 percent of IUD users do not experience expulsion during a year of use,

and decide somewhat arbitrarily to translate the prior desiderata into (i) having S0(t) =

exp{−A0(t)} = 0.90, at time t0 = 1.00 years; (ii) having a distribution for S(t0) which

has 0.95 of its probability mass above 0.60. Show that the first demand means α0 =

− log 0.90 = 0.105, and then carry out a search over a grid of k values, checking for

each the implied distribution for S(t0). Make a plot of the 0.05 quantile for S(t0), as a

function of k, and show that this leads to k0 = 2.20 (computed without full precision).

Simulate a high number of S(t0), for this choice of (k0, α0), and display a fine histogram.

(g) Having completed the Beta process prior construction, carry out posterior inference.

Display say 100 simulated paths of A and of S =
∏

[0,t](1−dA), as with Figure i.4, right

panel. Comment on what this conveys. Construct also a figure showing, as a function

of time up to 1.50 years, (i) the 0.05 and 0.95 quantiles for the posterior of S(t), (ii) a

90 percent frequentist confidence band, around the Kaplan–Meier curve (xx pointer to

Ch11 things xx). This demonstrates that the Bayesian nonparametric approach, with the

Beta process prior with modest prior strength, produces bands with the right frequentist

coverage.

(h) (xx with your code, try other schemes for the Beta process prior. in particular, show

the results for the case of the noninformative case, with k(s) close to zero. compare

the Bayesian posterior 90 percent pointwise bands, here computed via simulations but

no large-sample approximations, with those obtained via Nelson–Aalen bands. they are

pretty similar, so frequentist coverage of Bayesian bands pretty accurate. point to BvM

theorem here. xx)

Story i.5 Boys are born slightly bigger than girls. (xx quantile things, to be told.

perestroika required. first separate quantiles, boys and girls, then ratios of quantiles. xx)

nb = 548 boys and ng = 480 girls born in oslo. ratio of quantiles. let fb(x) and fg(x) be

the birthweight densities, for boys and for girls, with cumulative distribution functions

Fb(x) and Fg(x). here we shall compare quantiles for boys and girls, µb,q = F−1
b (q) and

µg,q = F−1
g (µg), at different levels q. may give a figure of estimated densities, standard

kernel methods from Ch. 13. see Figures.

(a) Show that boys are significantly bigger than girls, but that there is no clear indication

that they have different variances in their birthweight distributions.

(b) For each of the five quantile levels 0.1, 0.3, 0.5, 0.7, 0.9, construct a CD for the F−1(q),

for boys and for girls, using the order statistic method of Ex. 7.16. Compute also the
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Figure i.5: Confidence curves for the five deciles F−1(q), for levels 0.1, 0.3, 0.5, 0.7,

0.9, for the birthweight distributions of boys (upper panel) and girls (lower panel), in

kg. 95 percent confidence intervals for the 5 + 5 quantities are indicated with the blue

horizontal lines.

consequent confidence curves cc(µq), and make a version of Figure i.5. (xx should get a

better plot from nils com16c. xx)

(c) In the following, keep one quantile level q fixed, to avoid a too heavily subscripted

notation. From Ex. 3.18 we know that n
1/2
b (Qb−µb) →d N(0, κ2b) and n

1/2
g (Qg −µg) →d

N(0, κ2g), with κb = {q(1 − q)}1/2/fb(µb,q) and with κg = {q(1 − q)}1/2/fg(µb,g). Show

that this entails

Qb = µb + κb/n
1/2
b Zb and Qg = µg + κg/n

1/2
g Zg,

where Zb = Zb,nb
and Zg = Zg,ng

have distributions coming (very) close to the standard

normal.

(d) Estimate the difference between the boys and girls distributions, as a function of the

quantile q, along with a confidence band. Construct a version of Figure i.6, using gram.

The horizonal line represents the estimated overall difference d = ξb − ξg.

(e) We now wish to estimate the ratio of quantiles function ρ = µb/µg, nonparametrically,

using ρ̂ = Qb/Qg. Use delta method arguments to deduce that

ρ̂ = ρ{1 + (1/µb)(κb/n
1/2
b )Zb − (1/µg)κg/n

1/2
g Zg},
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and from this that ρ̂ ≈d N(ρ, v2), with variance

v2 =
(µb

µg

)2( 1

µ2
b

κ2b
nb

+
1

µ2
g

κ2g
ng

)
=

1

µ2
g

(κ2b
nb

+ ρ2
κ2g
ng

)
.

Construct a version of Figure i.6. (xx conclude that across quantiles, boys tend to be

about 5 percent bigger than girls. Attempt to build a model for how F−1
b (q) for boys

relates to F−1
g (q) for girls. xx)
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Figure i.6: For the 548 boys and 480 girls born at Rikshospitalet in Oslo, during 2001–

2008, and for quantiles in [0.05,0.95], the plot displays the estimated difference of quan-

tiles (left panel), and the estimated quotient of quantiles (right panel), along with a 95

percent confidence band.

(f) (xx just a bit more. xx) [xx can ask for estimates with bands of the ratio f1(y)/f2(y),

perhaps constructed by first estimating the log difference, finding band there, and exp-

ing home. could also bake a Type B Story from the birthweights of Oslo boys and Oslo

girls, 2001–2008, with other natural analyses. see (xx Data Story B.2.B xx). xx]

Story i.6 Mothers, babies, birthweights, factors. (xx polish. we include perhaps as

many as six figures. xx) Here we work with the dataset for n = 189 mothers and their

newborns, collected for a study at Baystate Medical Center, Springfield, Massachusetts,

during 1986. The focus is on y, the birthweight (in kg), with covariates including x1,

weight before pregnancy (in kg); x2, age; x3, indicator for smoking or not; x4, indicator

for ethnic group 1 (white), x5, indicator for ethnic group 2 (black), x6, indicator for

ethnic group 3 (other). Of particular interest in this study was their potential influence

on the probability for having a small birthweight, defined as y ≤ y0 = 2.500. One may

therefore work with e.g. logistic regressions, for the 1-0 variables zi = I(yi ≤ y0), or with

other regression models with the continuous outcomes yi.
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Figure i.7: Left panel: density estimates f̂0 and f̂1, for weights of newborns, in kg, from

mothers who are respectively nonsmokers (full curve) and smokers (broken curve). Right

panel: birthweights for the three ethnic groups, with 99 percent confidence intervals for

their means.

(a) Construct and display nonparametric density estimates f̂0 and f̂1 for the birthweights,

for non-smoking and smoking mothers, as in Figure i.7, left panel. Test equality of means

for the two groups; give a 95 percent confidence interval for the mean difference, say

µ0 − µ1; and test also equality of spread.

(b) Plot the birthweights for the three ethnic groups, as in Figure i.7, right panel, along

with 99 percent confidence intervals for the three population means, say ξ1, ξ2, ξ3. Carry

out a one-way layout test to assess the hypothesis ξ1 = ξ2 = ξ3, using Ex. 4.41. Use

similar methods to check whether the weight of mothers are about the same in the

smoking and non-smoking groups.

(c) As a side issue, not connected to the main story concerning influence of covariates,

plot the empirical c.d.f. Fn for the weight of mothers, and use the methods of Ex. 4.3

to read off 95 confidence intervals for the quantiles F−1(q), at levels 0.10, 0.50, 0.90.

Construct a version of Figure i.8, left panel. (xx answers: 43.10 to 46.20 for 0.10; 54.44

to 56.69 for median; 74.85 to 84.36 for 0.90. xx)

(d) Clearly the weights of newborns carry significant variability, here with standard

deviation around 0.730, and it is not to be expected that this variability can be fully

explained via taking age, weight, smoking habits, ethnicity into a model. Use methods

of Ex. 4.37 to assess how much of the overall variability is being explained by the five

covariates x1, . . . , x5. This is most conveniently done via the linear regression model yi =

β0+β1x
∗
i,1+· · ·+β5x∗i,5+εi, using the normalised covariates x∗i,j = xi,j−x̄j for j = 1, . . . , 5,

where εi ∼ N(0, σ2). Compute as in the exercise pointed to Σn = (1/n)
∑n

i=1 x
∗
i (x

∗
i )

t,
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the least squares estimates β̂0, β̂, along with the terms in the variance decomposition

(1/n)

n∑
i=1

(yi − ȳ)2 = (1/n)

n∑
i=1

(yi − µ̂i)
2 + β̂tΣnβ̂,

in which µ̂i = β̂0 + xtiβ̂. Use this to compute also

R2 =
β̂tΣnβ̂

β̂tΣnβ̂ + σ̃2
= 1−

(1/n)
∑n

i=1(yi − µ̂i)
2

(1/n)
∑n

i=1(yi − ȳ)2
,

interpreted as the part of the variance explained via the covariates. The result is 14.84

percent. Then do more, finding a full confidence curve for the population parameter ρ =

βtΣnβ/(β
tΣnβ+σ

2) for which R2 is an estimate. Construct a version of Figure i.8, right

panel, which has this cc(ρ), using all five covariates, alongside corresponding one-at-a-

time confidence curves for the five separate covariates. Note that the implied σ parameter,

in these submodels, changes value and interpretation, depending on which covariates are

included in the regression equation. We learn that the five individual covariates only

explain 3-5 percent of the overall variability each, whereas the full information of the

five covariates explains about 14 percent. A 90 percent interval for that ρ is [6.31, 21.23],

indicated via the horizontal 0.90 line in the confidence figure.
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Figure i.8: Left panel: the empirical c.d.f. for the pre-pregnancy weight of 189 mothers,

with bands to read off 90 percent confidence intervals for the 0.10 level and 0.90 level

quantiles. Right panel: confidence curves cc(ρ) for the ratio of variation explained by

the five covariates, in percent (full curve), along with sumilar one-at-a-time confidence

curves for the five individual covariates.

(e) Carry out logistic regression with the five covariates, for the 1-0 outcomes zi, i.e. using

the model pi = H(β0+β1xi,1+ · · ·+β5xi,5) with H(u) = exp(u)/{1+exp(u)} the logistic

transform. This is easily accomplished in R using doit = glm(y ∼ x1 + x2 + x3 + x4

+ x5, family=binomial) and summary(doit), producing a table as with the four left
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columns below. Explain how these estimates can be interpreted; carry out Wald tests,

as per Ex. 5.47; and give 95 percent intervals for the five regression coefficients.

logistic regression: with full birthweight outcomes:

estimate stderr z value Pr(>|z|) estimate stderr z value Pr(>|z|)

1.27571 1.01663 1.255 0.20954

x1 -0.02761 0.01408 -1.961 0.04982 * -0.0255 0.0096 -2.6577 0.0079 ** beta1

x2 -0.02248 0.03417 -0.658 0.51065 0.0013 0.0265 0.0500 0.9601 beta2

x3 1.05444 0.38000 2.775 0.00552 ** 1.0415 0.2889 3.6057 0.0003 *** beta3

x4 -0.94326 0.41623 -2.266 0.02344 * -0.9687 0.3187 -3.0400 0.0024 * beta4

x5 0.28841 0.52676 0.548 0.58402 0.2790 0.4157 0.6711 0.5022 beta5
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Figure i.9: Left panel: plot of (p̂i, p
∗
i ), estimated probabilities for having birthweight

less than 2.500 kg, for the 189 mothers, using respectively the logistic regression model

and the full-data model. The p∗i estimates are more precise. Right panel: probability of

small birthweight, for a white smoking mother of mean age, as a function of her weight

pre pregnancy, estimated with logistic regression (upper curve) and the full-data model

(lower curve). The full-data model is more precise.

(f) Hosmer and Lemeshow (1999) and other researchers have analysed these data with

an emphasis on logistic regression, i.e. using the indicator outcomes zi = I(yi ≤ 2.500),

somehow throwing away part of the statistical information. To see if it pays off to use

the full birthweight outcomes yi, consider the seven-parameter model where yi |xi has

c.d.f. G(yi |xi) = H(yi/τ+β0+β1xi,1+· · ·+β5xi,5). Argue that the β1, . . . , β5 coefficients

have the same interpretation as in the logistic setup. Fit this model, by programming

and optimising the log-likelihood, reaching coefficients, standard deviations, Wald ratios,

p-values as in the four right columns in the table. Note that the βj estimates are similar,

but they are now more precisely estimated, with tighter confidence intervals, sharper

Wald ratios, and smaller p-values where they matter.

(g) With the two models we may now compute and compare estimates of the pi = Pr(yi ≤
2.500 |xi). For the full-data model, these are p∗i = H(2.500/τ̂+ β̂0+ β̂1xi,1+ · · ·+ β̂5xi,5).
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Construct a version of Figure i.9, left panel. The correlation is as high as 0.98, but

estimates from the full-data model are more precise. Construct also a version of Figure

i.9, right panel, giving two estimates of the probability curve Pr(Y ≤ 2.500 |x), for a

white smoking woman, of mean age 23.24, as a function of her weight.

Story i.7 Mothers, babies, birthweights, birth order. A high number of standard models

and methods for statistical inference presuppose independence, that measurements taken

do not influence the others. Here we consider a dataset of consecutive birthweights, for

200 women having had five children. At the outset also these thousand birthweights could

be independent, but we learn via modelling, testing, estimation that (i) there is indeed

dependence, inside each quintuple of siblings, and (ii) that the birthweight is slowly in-

creasing as a function of birth order. The dataset consists of (yi,1, . . . , yi,5, xi,1, . . . , xi,5),

with birthweights, then mother’s age at these births.
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Figure i.10: Left panel: boxplots for birthweights (in kg), for children 1 to 5, for the 199

mothers. Right panel: the birthweights, for children 1 to 5, for 25 of the 199 mothers,

along with the estimated mean curve â+ b̂(j− 1), with about 45 grams increase per new

child.

(a) Let Yi = (Yi,1, . . . , Yi,5) be the 5-vector of birthweights for mother i = 1, . . . , n.

Produce versions of Figure i.10, with so-called boxplots in the left panel and a sam-

ple of 25 such Yi plotted in the right panel (with weight in kg). The boxplots are

quick and informative summaries of unidimensional datasets, giving minimum and max-

imum, with the median shown inside the 0.25 to 0.75 quantiles, and are plotted using

boxplot(cbind(y1,y2,y3,y4,y5)) commands in R.

(b) For the 200 mothers, plot their ages for when they gave birth. You will then detect

that mother no. 142 mysteriously had her 4th and 5th child at age 99. Not quite willing

to believe this, push her out of the dataset, so that the following analyses are carried out

for the remaining 199 mothers.

(c) For testing whether the mean parameters ξ1, . . . , ξ5 for five groups are equal, Ex. 4.41
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gives a clear recipe, via an F test, with between-group variability divided by within-

group variability. Explain why this might not be appropriate here. To take maternal

dependence into account, consider instead the model

Yi,j = a+ b(j − 1) +Mi + εi,j for i = 1, . . . , n, j = 1, . . . , 5,

where the mother componentsM1, . . . ,Mn are seen as i.i.d. N(0, τ2), along with the extra

variation εi,j , seen as i.i.d. N(0, σ2), and independent of the Mi. Explain that the model

may be written Yi ∼ N5(ξi,Σ
2), with

ξi =


a

a+ b

a+ 2b

a+ 3b

a+ 4b

 and Σ =


τ2 + σ2 τ2 τ2 τ2 τ2

τ2 τ2 + σ2 τ2 τ2 τ2

τ2 τ2 τ2 τ2 + σ2 τ2

τ2 τ2 τ2 τ2 + σ2 τ2

τ2 τ2 τ2 τ2 τ2 + σ2

 .

In particular, the inter-mother correlation between siblings is then ρ = τ2/(σ2 + τ2).

(d) Show that the log-likelihood function can be written

ℓn(a, b, σ, τ) =

n∑
i=1

{− 1
2 log |Σ| −

1
2 (yi − ξi)

tΣ−1(yi − ξi)− (5/2) log(2π)}.

Maximise this function, using the general likelihood theory of Ch. 5 to find both ML

estimators and their estimated standard deviations. Produce a table like that under

‘model A’ below. Explain that this leads to preliminary findings (i) the τ is very clearly

present, with estimated intra-mother correlation 0.4201; (ii) that the b parameter is tiny,

though highly significant, with about 45 grams added per new child.

model A model B

para se wald para se wald

a 3.0454 0.0354 2.6726 0.1215

b 0.0446 0.0097 4.5837 0.0031 0.0162 0.1932

c 0.0212 0.0066 3.2046

sigma 0.4343 0.0109 0.4343 0.0109

tau 0.3697 0.0238 0.3581 0.0234

logLmax -734.371 -729.354

(e) So birth order, with no further information taken into account, is significant. We

may formulate and analyse a somewhat bigger model, however, which takes in also the

age at which the mother had her five children. With xi,j her age when having her child

j, fit the model

Yi,j = a+ b(j − 1) + cxi,j +Mi + εi,j for i = 1, . . . , n, j = 1, 2, 3, 4, 5,

and produce a table like that under ‘model B’. Here c for moter’s age looks much more

important than the b for birth order; explain that this shifts the interpretation of the

previous finding from ‘the birth order matters’ to ‘but what really goes on is the age of

the mother’. The two explanations, birth order and mother’s age, are clearly correlated;

compute the estimated correlation between b̂ and ĉ.
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(f) Carry out model comparison here, using the Wilks test, or the AIC, to demonstrate

that the 5-parameter model with both b and c is clearly better than the 4-parameter

model with only b.

(g) Working with the 5-parameter model, find and display a confidence curve for the

inter-mother correlation. The point estimate is 0.404, and the 95 percent interval is

[0.338, 0.474].

Story i.8 Time to second child after stillbirth. Stillbirths luckily occur more rarely than

for earlier generations. Here we consider data extracted from the Norwegian Medical

Birth Registry, pertaining to the time to next birth for young women having experienced

a stillbirth (death or loss of a baby after 20 weeks of pregnancy). The dataset consists

of all the 451 Norwegian women who had their first birth during 1967 to 1971, who were

at the time of this birth below 25 years of age and married, and for whom the child was

stillborn. The data available are grouped into time windows [lj , rj ], in months, given in

the table below, with Yj indicating the number of women that at the start of that time

window have not yet had a second child, and the number ∆Nj of those who actually

gave birth inside that time interval. Below we shall work through two different models

for such data, and in the process also estimate the fraction of couples for whom a second

child will not occur. For convenience the time scale of months has been converted to

years in calculations below.

left right Y DN left right Y DN

9 10 451 5 36 42 92 7

10 11 446 15 42 48 85 13

11 12 431 27 48 54 72 10

12 13 404 31 54 60 62 4

13 14 373 38 60 72 58 4

14 15 335 29 72 84 54 5

15 18 306 79 84 96 49 1

18 21 227 44 96 108 48 2

21 24 183 36 108 120 46 1

24 27 147 24 120 144 34 2

27 30 123 12 144 156 17 0

30 36 111 19 156 180 6 0

(a) Suppose the time T to the second child has waiting time function S(t) = Pr(T ≥ t),

with density f(t). On the time-continuous scale, there is an intensity function or hazard

rate α(t) = f(t)/S(t). For our grouped data, show that

hj = Pr(T ∈ [lj , rj ] |T ≥ lj) = {S(lj)− S(rj)}/S(lj) = 1− S(rj)/S(lj).

Compute the nonparametric estimates ĥj = (∆Nj/Yj)/(rj − lj), and plot them, with ĥj
tied to the the midpoint mj =

1
2 (lj + rj).

(b) Then consider a parametric model S(t, θ) for the waiting time, with ensuing intensitis

hj(θ) = 1−S(rj , θ)/S(lj , θ) for the n time windowss [lj , rj ]. Show that the log-likelihood

function can be written

ℓ(θ) =

n∑
i=1

[∆Nj log hj(θ) + (Yj −∆Nj) log{1− hj(θ)}].
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Figure i.11: Left panel: nonparametric and parametric estimates of the intensity curves

for time to 2nd child after stillborn 1st child, with the gamma process threshold crossing

model. Right panel: simulated gamma processes, for ten envisaged married couples;

these need to cross d̂ = 17.494 to have a 2nd child.

(xx a bit more here. the same as a sequence of nested binomials, though these are not

independent. but large-sample theory works. Hjort and Lumley (1993). calibrate with

how we present things elsewhere. xx)

(c) The model we work with now is of the Gamma process threshold crossing type,

a variant of what we used for the Roman era Egypt lifetime analyses in Story ii.11.

Specifically, the time T to 2nd child is seen as the time it takes a gamma process Z(t)

to cross threshold d, where Z(t) ∼ Gam(aM(t), 1), and the motor function is taken as

a Weibull: M(t) = 1 − exp[−{(t − t0)/b}c], where t0 = 9/12 = 0.75. With G(x, a, 1)

the c.d.f. of a Gam(a, 1), show that S(t) = Pr(T ≥ t) = G(d, aM(t), 1), leading to

hj(θ) = 1 − G(d, aM(rj), 1)/G(d, aM(lj), 1). Maximise the log-likelihood; you should

find parameter estimates (23.721, 0.400, 0.495, 17.494) for (a, b, c, d). Construct a version

of Figure i.11, left panel. Then simulate Gamma processes, checking for each whether

they cross d̂, and make a version of the figure’s right panel.

(d) Plot F̂ (t) = F (t, â, b̂, ĉ, d̂), a cumulative curve that will not reach 1; not all gamma

processes Gam(aM(t), 1) will succeed in crossing the threshold d. Show that the fraction

of couples who not have a second child, with this model, is p = G(d, a, 1), here estimated

at 8.9 percent. Find a 90 percent confidence interval for this p.

(e) There are clearly several different models which might work well for the nested

binomials above, perhaps motivated from different perspectives. A rich class of waiting

time distributions emerges via the multiplicative frailty constructions worked with in

Ex. 10.15. Assuming that couples have intensity function Zα0(s) for having a second

child, with Z =
∑N

i=1Xi of compound Poisson type, show that

S(t) = exp[−λ{1− L0(A(t))}], in terms of L0(u) = E exp(−uXi),
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with λ the Poisson parameter. If the Xi are positive, show that the fraction of couples

not having second child is p = exp(−λ).
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Figure i.12: Left panel: the Rashomon syndrome: two rather different models for the

cumulative waiting time function F (t) = Pr(T ≤ t) lead to almost identical estimated

curves. The median time for having a second child as about 1.52 years. Right panel:

ten simulated c.d.f.s F (t) = 1− exp{−ZA0(t)}, via the compound Poisson frailty hazard

model. One of these is flat at zero, implying no 2nd child will come.

(f) Now construct a four-parameter model as follows. We start with a Weibull distribu-

tion, with intensity α0(t) = a(t− t0)k and cumulative intensity A0(t) = a(t− t0)k+1/(k+

1). Then postulate that the couples in the population studied have intensity functions

Zα0(t), where Z =
∑N

i=1Xi is compound Poisson, with the Xi ∼ Gam(c, c) having a

fixed mean 1, to avoid overparametrisation. Show that

S(t) = exp
(
−λ
[
1−

{ c

c+A0(t)

}c])
.

(This model is similar to the one proposed by Aalen (1992) for these data, but here we use

a perhaps more straightforward model construction, with a different parametrisation.)

Programme and maximise the log-likelihood function, which should give parameter esti-

mates (1.865, 1.152, 0.305, 2.756) for (a, k, c, λ). Estimate the not having a second child

fraction p, with a confidence interval, and compare with what was obtained above for the

gamma process threshold crossing model. Also, plot the estimated cumulative waiting

time function F (t) = Pr(T ≤ t), for both the gamma process and the compound Pois-

son frailty models, producing Figure i.12, left panel. Observe and discuss aspects of thethe Rashomon

effect fact that these two curves are almost identical. In a rather diffierent context and setup,

Breiman (2001, Section 8) names this the Rashomon effect, or syndrome; quite differ-

ent models, built from different perspectives, might in the end fit data almost equally

well. In the eponymous 1950 Japanese film, different eyewitnesses report very different
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and partly contradictory interpretations of the very same event. The lesson is that even

though a model fits and ‘explains’ data, the cautious quotation marks for the explain part

might be needed. We cannot know, from the data alone, whether the processes leading

to a second child somehow reflect underlying ingredients better explained by cumulative

gamma processes or by frailties following a compound Poisson. (xx check and do a bit

cross-pointing for other places where we use the compound poisson model, Ch1, Ch10.

xx)

(g) For the compound Poisson frailty hazard function model above, simulate say 100 re-

alisations of Z =
∑N

i=1Xi, and from these realisations of c.d.f.s F (t) = 1−exp{−ZA0(t)}
for the time to 2nd child, using the estimated values of (a, k, c, λ). Make a version of Fig-

ure i.12, right panel, which shows ten such c.d.f.s., one of which is simply zero, indicating

there will not be a 2nd child for that couple.

(h) (xx should put in just a little more. how do we know that the Np(θ9, Ĵ
−1) recipe

works here; perhaps martingales. also: study time to 2nd child given that there will be

one, i.e. condition on T < ∞. this is conditioning on N ≥ 1 for the aalen model, and

conditioning on Z(∞) > d for the nils model. can simulate from these two estimated

conditional distributions. xx)

Story i.9 A third child? [xx the R-script for this story is survivalstory emil1.R xx]

Do parents want to mix the sexes? The units in the data set third births.txt are

mothers of two ( the data stems from the Medical Birth Registry of Norway, and is

openly available on the website of the book Aalen et al. (2008)). The data set contains

the age of the mother at the first birth; the number of days between the births of the

first and second child; the genders of her first two children; the number of days from

the second to the third birth or censoring, which will be our outcome of interest; and an

indicator of noncensoring.

(a) To investigate whether parents want both girls and boys, we can compare the prob-

ability of having a third child for the families with two girls or two boys, to the prob-

ability of having a third child among those with a girl and a boy. The time to a third

child or censoring is given in days, so it is perhaps natural to stay in discrete time.

Let x = I{two girls or two boys}, and t = min(t∗, c) where t∗ is the true time to a

third child, and c a censoring time. Assume that our data are n independent repli-

cates of (t, δ, x), where δ is an idicator of noncensoring. Estimate the two survival func-

tions Pr(t ≥ j |x = 1) and Pr(t ≥ j |x = 0), and also the two cumulative hazards

Aj(x) =
∑j

i=1 Pr(t = i | t ≥ i, x) for x = 0, 1, both using the maximiser of the likelihood

the discrete time likelihood in Ex. 10.8(c). These two estimators are the discrete time

analogues of the Kaplan–Meier estimator and the Nelson–Aalen estimator. Plot these in

two different plots, and comment on your findings.

(b) (a) xx] [xx Greenwood’s formula and add pointwise confidence bands to the two plots

from

(c) Instead of estimating separate hazards for the two groups, as in (a), we’ll now try out

a few different regression approaches. For all the regression models, αi,j is the hazard
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Figure i.13: [xx text here. perhaps also add confidence bands to these xx]

of the ith mother at time j, we think of γj as a baseline hazard at time j. To allow

for some generality of the results we reach, we let xi = (xi,1, . . . , xi,p)
t be a vector of

covariates for the ith mother, though, in the setting of this exercise, we’ll simply have

xi = I{two girls or two boys}. We start out with discrete time relative risk regression

models, that is, models where the hazard of the ith mother at time j is

αi,j = γjr(x
t
iβ). (i.2)

Taking r(z) = exp(z) leads to a Cox type model. In the discrete time setup studied

here, however, where hazard is a probability (not just a nonnegative function, as in the

continuous case), models where r(z) takes values between zero and one might be more

theoretically sound. The model r(z) = 1/{1 + exp(−z)} is one such (a continuous time

version of this latter model was studied in a Bayesian framework in De Blasi and Hjort

(2007)). The parameters of models of the form (i.2) may in principle be estimated by

findind the maximisers of the likelihood function

L(γ, β) =
∏
j≥0

n∏
i=1

α
∆Ni,j

i,j (1− αi,j)
Yi,j−∆Ni,j , (i.3)

since this product is really a finite one, every factor after the largest survival time being

equal to 1. With xi = I{two girls or two boys}, try to estimate of the parameters of (i.2)

with r(z) = exp(z) and r(z) = 1/{1 + exp(−z)} using the maximum likelihood method.

Compare the estimated survival functions from the two models. Proceed directly to the

next subpoint if you don’t find sensible estimates.
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(d) Estimating γ0, γ1, . . . and β in one go can be quite burdensome. A procedure that is

operationally more smooth, is to first estimate the β parameter(s) using a discrete time

version of Cox’s partial likelihood. That is, first we find the minimiser β̂ of (evocatively,

we here use notation from Ex. ??)

Hn(β) = −n−1
∑
j≥0

n∑
i=1

{log r(xtiβ)− log
(
nS

(0)
n,j(β)

)
}∆Ni,j ,

where S
(0)
n,j(β) = n−1

∑n
i=1 Yi,jr(x

t
iβ), and then estimate γj with a discrete time analogue

of the Breslow-estimator, γ̂j = ∆Nj/{
∑n

i=1 Yi,jr(x
t
iβ̂)}. Note that, contrary to the

continuous time (no-ties) scenario under which Cox’s partial likelihood was derived in

Ex. 10.12, the function m(β) is neither a partial- nor a profile- likelihood. That does not

prevent it, however, from producing good estimates. Fit one of the two models from (c)

to the data, and plot the two survival functions (i.e. for the xi = 0 and xi = 1 mothers)

based on the Breslow-type estimates.

(e) We’ll now see why and in what sense the estimation method from (d) works. For

some nonnegative function r(z), assume that the data truly stem from a model with

hazard rate αi,j = γ◦j r(x
t
iβ

◦). Introduce S
(1)
n,j(β) =

∑n
i=1 xiYi,jr

′(xtiβ), and S
(2)
n,j(β) =∑n

i=1 xix
t
iYi,jr

′(xtiβ)/r(x
t
iβ) where r

′(z) = ∂r(z)/∂z.

[xx hit xx] Show that the first derivative of m(β) evaluated in the true value β◦ is

the mean zero martingale

∂

∂β
logm(β◦)τ =

n∑
i=1

τ∑
j=0

(
xi
r′(xtiβ

◦)

r(xtiβ
◦)

−
s
(1)
n,j(β

◦)

s
(0)
n,j(β

◦)

)
∆Mi,j ,

whereMi,j is the discrete time martingaleMi,j = Ni,j−
∑j

ℓ=0 Yi,jαi,j , as defined in (10.2).

You may also show that the second derivative of m(β) evaluated in the true parameter

values is

∂2

∂β∂βt
logm(β)τ = −

τ∑
j=0

{s(2)n,j(β
◦)

s
(0)
n,j(β

◦)
−
s
(1)
n,j(β

◦)(s
(1)
n,j(β

◦))t

s
(0)
n,j(β

◦)2

}
s
(0)
n,j(β

◦)γj ,

which gives the following relation between the predictable variation of ∂ logm(β◦)/∂β

and its derivative,

⟨ ∂
∂β

logm(β◦),
∂

∂β
logm(β◦)⟩τ = − ∂2

∂β∂βt
logm(β◦)τ + εn,τ ,

where εn,τ is a certain mean zero martingale. Look at Lenglart’s inequality in Ex. 10.7

and the central limit theorem in Ex. 10.9, and sketch a limit-in-distribution result for

the maximiser β̂ of the m(β).

(f) Back to our application with xi = I{two girls or two boys}. Let the hazard of the

ith mother at time j be αi,j = γj exp(xiβ)/{1 + exp(xiβ)}, or with some other r(xiβ)

if you like. Use the results from (e) to test the hypothesis β◦ = 0 versus its two sided

alternative. Make a plot of the survival functions Pr(T ≥ j |x = 0) and Pr(T ≥ j |x = 1).
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(g) Is there a difference between the two girls and the two boys families? Let now

xi = I{two girls} and zi = I{two girls}, and suppose the hazard of the ith mother at

time j be αi,j = γj exp(xiβ + ziη)/{1 + exp(xiβ + ziη)}, or, again with your favourite

r(·) function. Test the relevant hypotheses. [xx be more precise xx]

Story i.10 PCI and rare events confidence fusion of thirteen studies. Percutaneous

Coronary Intervention is a so-called minimally invasive procedure, used for certain pa-

tients with stable coronary disease, to open clogged arteries. There is a literature pertain-

ing to whether PCI lowers the risk of future death cardiac death, compared to recieving

medical treatment alone. A very firm conclusion has apparently not been reached. Note

that several traditional statistical methods do not work well here, since it is harder to

compare probabilities for rare events than for events with probabilities say bigger than

0.15.

Organising information from Schömig et al. (2008) we find the table below, from

thirteen different studies; see also Zabriskie et al. (2021). We translate this to thirteen

two by two tables, with yi,0 and yi,1 the number of cardiac deaths, out of respectively

mi,0 and mi,1 patients. Group 0 is that receiving medical treatment alone, and Group 1

that with PCI. The overall question addressed here is whether the risk has been reduced

for Group 1, compared to Group 0, also taking on board that the implied probabilities

pi,0 and pi,1 may vary across studies. The overall rates of cardiac death, for patient

groups 0 and 1, are 5.4 and 4.1 percent. (xx need to calibrate and cross-check. we do

have (p0, p1) for one table in Ex. 4.30; perhaps we touch this in Ch5; then to be rounded

off with CD and cc in Ex. 7.32. question is whether we have the many-tables thing in

Ch7 or do it directly here. xx)

y1 m1 y0 m0

Sievers et al. 0 44 1 44

Dakik et al. 1 21 1 23

AVERT 1 177 1 164

MASS 4 72 2 72

Bech et al. 1 90 2 91

ALKK 4 149 14 151

RITA-2 20 504 24 514

TIME 32 153 33 148

Hambrecht et al. 0 50 0 51

INSPIRE 2 104 1 101

MASS II 24 205 25 203

SWISSI II 3 96 22 105

COURAGE 23 1149 25 1138

(a) Under natural rules and conditions for how patients enter treatment and are then

being sorted into the two groups, adhered to in these studies, we may take yi,0 and yi,1
as outcomes of Yi,0 ∼ binom(mi,0, pi,0) and Yi,1 ∼ binom(mi,1, pi,1). Starting then with

one 2×2 table of such binomial outcomes at the time, we use the logistic representation,

as in Ex. 4.30 and 7.32, to write pi,0 = H(θi) and pi,1 = H(θi + γi), with H(u) =

exp(u)/{1 + exp(u)}. The focus is on γi, the log-odds difference, or equivalently on
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Figure i.14: Left panel: confidence curves cc(γ) from thirteen separate studies, along with

the fusion (black, fuller curve); the question is if γ < 0 or not. Right panel: confidence

cruve cc∗(ρ) for the odds ratio ρ = exp(γ); the question is if ρ < 1 or not. The 95 percent

interval is [0.572, 0.954], and the median confidence estimate is 0.740.

ρi = exp(γi), the odds ratio, and whether it is negative or not. Compute and display

what is according to Ex. 7.32 the optimal CD for γi,

Ci(γi) = Prγi
(Yi > yi,obs |Zi = zi,obs) +

1
2 Prγi

(Yi = yi,obs |Zi = zi,obs),

with Zi = Yi,0 + Yi,1; this involves the excentric hypergeometric distribution. Convert

these to confidence curves cci(γi), as in the left panel of Figure i.14. Note that most of

the 95 percent confidence intervals include zero, and with median confidence estimates

on both sides of zero; these studies when taken separately do not lend strong support to

PCI being beneficial, i.e. that γi < 0.

(b) Now make the additional assumption that the γi are about equal, to some common

γ; the probabilities (pi,0, pi,1) are still seen as varying across studies. With k = 13 for

the number of 2× 2 tables, set up the log-likelihood for the 2k observations, in terms of

the k + 1 parameters. Show from (xx stuff in Ch7 xx) that there is an optimal CD for

γ, taking the form

C∗(γ) = Prγ{S > Sobs |Z1 = z1,obs, . . . , Zk = zk,obs}
+ 1

2 Prγ{S = Sobs |Z1 = z1,obs, . . . , Zk = zk,obs}.

Here S =
∑k

i=1 Yi,1, with Sobs = 115. Computing these probabilities is for each given

γ achieved by simulating Yi,1 | zi,obs, for i = 1, . . . , k, then summing these to get S,

and repeating this a high number of times. Carry out this, producing both the tight

fusion confidence curve cc∗(γ), shown in bold in the left panel of Figure i.14, and the

corresponding fusion confidence curve cc∗(ρ), in the right panel. You should find C∗(0) =

0.99. Discuss the implications of this, and of seeing most of the mass to the left of zero.
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Figure i.15: As with Figure i.14, but now with the meta-analysis data seen as Poisson

pairs (λi, λiκ). Left panel: confidence curves cc(κ) from thirteen separate studies, along

with the fusion (black, fuller curve); the question is if κ < 1 or not. Right panel, zooming

in: confidence curve cc∗(κ), with 95 percent interval [0.597, 0.971], and median confidence

estimate 0.762.

(c) Binomials with small probabilities are close to Poisson, see Ex. 2.8, so one may alter-

natively view the meta-analysis data as Poisson pairs (Yi,0, Yi,1). It is practical to nor-

malise the parameters as (ei,0λi, ei,1λiκi), in terms of (ei,0, ei,1) = (mi,0/100,mi,1/100),

so that λi and λiκi are the rates per 100 patients, for the two groups; see also Cunen

and Hjort (2015). Show that the log-likelihood for pair i takes the form ℓi = −λi(ei,0 +
ei,1κi) + zi log λi + yi,1 log κi, plus terms not depending on the parameters. Use (xx

pointer to Ch8 xx) to argue that the optimal confidence distribution for κi, based on this

data pair, takes the form

Ci(κi) = Prκi
(Yi > yi,obs |Zi = zi,obs) +

1
2 Prκi

(Yi = yi,obs |Zi = zi,obs).

This is partly as for the γi case above, but show now that the conditional distribu-

tions Yi,1 | zi are binomial (zi, ei,1κi/(ei,0+ ei,1κi)). Compute and display the confidence

distributions and the confidence curves cci(κi). (xx check Figure i.15. xx)

(d) Consider then the fixed effects Poisson pairs model, with k + 1 parameters, with a

common PCI Poisson factor κ. Show that the log-likelihood function becomes

ℓ =

k∑
i=1

{−(ei,0 + ei,1κ)λi + zi log λi + yi,1 log κ}.

Show that the optimal CD for this κ becomes

C∗(κ) = Prκ{S > Sobs |Z1 = z1,obs, . . . , Zk = zk,obs}
+ 1

2 Prκ{S = Sobs |Z1 = z1,obs, . . . , Zk = zk,obs}.
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As above, to compute this, one needs to simulate a high number of S =
∑k

i=1 Yi,1
conditional on z1,obs, . . . , zk,obs. (xx compute, display, comment, find interval, construct

a version of Figure i.15, compute C∗(1). xx)

(e) (xx something on not-constant κ, with variance heterogeneity there too; nils rant,

so far. xx) Suppose now that the κi also vary across studies. To model this, take these

to stem from a Gamma distribution, with parameters (a, b) = (κ0/c, 1/c), such that the

mean is κ0 and the variance cκ0; the homogeneous case corresponds to c = 0. Writing

g(y, θ) for the Poisson probabilities with parameter θ, show for the distribution of the i

the pair that

f̄(yi,0, yi,1) =

∫ ∞

0

g(yi,0, ei,0λi)g(yi,1, ei,1λiκi)π(κi) dκi

= exp{−(ei,0λi)}λzii
ba

Γ(a)

Γ(a+ yi,1)

(b+ ei,1λi)a+yi,1

e
yi,0

i,0 e
yi,1

i,1

yi,0! yi,1!
.

Write down the resulting log-likelihood function ℓ(λ1, . . . , λk, κ0, c), for the k+2-parameter

model. Use this to also show that the profiled log-likelihood ℓprof(κ0, c), where one max-

imises of λ1, . . . , λk, can be written
∑k

i=1 Âi(κ0, c), say, where Âi(κ0, c) is

Ai = −ei,0λi + zi log λi + log Γ(a+ yi,1)− log Γ(a) + a log b− (a+ yi,1) log(b+ ei,1λi),

inserting the maximiser λ̂i = λ̂i(κ0, c) for λi. Find indeed an expression for this max-

imiser, by solving a quadratic equation; implement the strategy, and compute ℓprof(κ0, c)

for some values. (xx nils jots down details, part of the solutions, i suppose. xx) taking

the derivative, λ̂i is the solution to

zi
λi

− a+ yi,1
b+ ei,1λi

= ei,0, or zi(b+ ei,1λi)− (a+ yi,1)λi = ei,0λi(b+ ei,1λi),

which can be organised to (xx check this xx)

ei,0ei,1λ
2
i + λi(ei,0b+ a+ yi,1 − ei,1zi)− zib = 0.

special case zi = 0: then contribution is zero. Compute the ℓprof(c), and demonstrate

that for this particular dataset, there is no sign of variance heterogeneity for κ; the

maximum likelihood estimate of ĉ = 0. (xx hm, things to check, could be fine with an

example with positive c, to see the estimated π(κ), etc. check ML in k + 1-parameter

model. xx)

(f) (xx a separate little point about ‘what do do with zero cases’, where different opinions

have been voiced in the literature. here it comes from clear math: the (0, 0) cases can

be discarded from the analysis. xx)

(g)

Story i.11 Suicide attempt rates for Paroxetine vs. placebo. There are several studies

of the effects and side effects of the antidepressant Paroxetine (sold under brand names

Seroxat, Paxil, and yet others, since 1992). While beneficial for hundreds of thousands
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of users, serious concerns are also part of the broader picture, with one particularly

disturbing aspect being its potential association with suicidal thoughts and actions. Here

we use data and information from Aursnes et al. (2005, 2006), who used Bayesian analyses

with informative priors, based on data and other information available to those authors

in respectively 2005 and 2006. Below we discuss these priors to posteriors calculations,

but also include other non-Bayesian methods.

The data are as simple as two Poisson counts, Y0 ∼ Pois(m0θ0) and Y1 ∼ Pois(m1θ1),

for the placebo and the drug groups, with m0 and m1 cumulative exposure time, here

conveniently counted as patient years. The parameter of primary interest is γ = θ1/θ0.

The articles pointed to concentrate on the probability that γ > 1, or, equivalently, that

κ > 0, where κ = log(θ1/θ0) is a more convenient scale for computation and summary

reporting, due the inherent strong right skewnesses involved on the γ scale.

For the studies in question, the 2005 article had (y0, y1) = (1, 7), after (m0,m1) =

(73.3, 190.7) patient years, and used informative priors based on previous literature to

conclude that it was rather likely that θ1 > θ0, i.e. an increased suicide attempt risk

in the Paroxetine group. This was followed by media exposure and debate, along with

critical comments from both individual researchers and from GlaxoSmithKline plc, the

multinational pharmaceutical and biotechnology company manufacturing the drug. This

again led to the 2006 article, by the same four authors, with more extensive data collection

and also further care for accuracy. In summary, the data now had (y0, y1) = (1, 11), after

(m0,m1) = (333.0, 601.0) patient years. The 2005 data are to be seen as part of the

extended and more accurately curated 2006 dataset.
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Figure i.16: Cumulative confidence distributions (left panel) and confidence curves (right

panel), for κ = log(θ1/θ0), based on information in the 2005 article (red, slanted) and

in the 2006 article (black, full). The central question is whether θ1 > θ0, i.e. whether

κ > 0. The evidence for this is much clearer with the 2006 information.

(a) With Z = Y0 + Y1, show that Y1 | z ∼ binom(z,m1γ/(m0 +m1γ)), with γ = exp(κ).
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Compute and display what is according to Ex. 7.34 the optimal confidence distribution,

C(κ) = Prκ(Y1 > y1,obs |Y0 + Y1 = zobs) +
1
2Prκ(Y1 = y1,obs |Y0 + Y1 = zobs),

with the 2005-information and the 2006-information; construct versions of Figure i.16,

both on the κ and γ scales. Verify in particular that C2005(0) = 0.188 and C2006(0) =

0.022. Explain how these can be seen as p-values for testing θ0 ≤ θ1 against the drastic

alternative that the antidepressant in question increases the suicide attempt risk. Dis-

cuss also how the complementary numbers 0.812 and 0.978 can be seen as epistemic

probabiities for θ1 > θ0. Give also 95 percent confidence intervals, first for κ and then

transformed back to the scale of θ1/θ0.

(b) Suppose now that adequate prior distributions are set of the type θ0 ∼ Gam(a0, b0)

and θ1 ∼ Gam(a1, b1). Show that this leads to clear posterior distributions

θ0 |data ∼ Gam(a0 + y0, b0 +m0), θ1 |data ∼ Gam(a1 + y1, b1 +m1).

Show that the posterior cumulative and density functions for κ = log(θ1/θ0) can be

expressed as

F (κ |data) =

∫ ∞

0

G(exp(κ)θ0, a1 + y1, b1 +m1) g(θ0, a0 + y0, b0 +m0) dθ0,

f(κ |data) =

∫ ∞

0

g(exp(κ)θ0, a1 + y1, b1 +m1) exp(κ)θ0 g(θ0, a0 + y0, b0 +m0) dθ0,

in terms of the cumulative and density G(·, a, b) and g(·, a, b) of the Gam(a, b). In particu-

lar, explain that pB = 1−F (0 |data) is the posterior probability for the dramatic θ1 > θ0
scenario, building on both the priors and the Poisson counts (y0, y1) with (m0,m1) pa-

tient years. Give also corresponding expressions for the posterior cumulative and density

on the direct scale of γ = θ1/θ0.

(c) For each of the 2005-infomation and 2006-information cases, compute and display

pB = 1−
∫ ∞

0

G(θ0, a+ y1, 50 +m1) g(θ0, a+ y0, 50 +m1) dθ0

as a function of a, a common parameter in gamma prior parameters (a, 50), (a, 50) for

θ0, θ1, interpreted as the expected number of suicide attempts in the course of 50 patient

years, for either the placebo or drug groups of patients. Comment on your findings.

(d) Several informative priors are carefully argued for and worked with in Aursnes et al.

(2005, 2006). “This does not mean that these parameters are to be interpreted as ran-

dom variables, but our knowledge of the parameters is uncertain and we describe this

uncertainty with the help of probability distributions,” as they write, when setting their

priors, in fact by attempting to match conclusions of earlier meta-analysis publications

to gamma prior parameters. For illustration in the present story we are content with

using one of these, called by them in their 2006 article the slightly optimistic prior,
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Figure i.17: From the informative slightly optimistic prior (red, slanted) to the posterior

(black, full), using the 2006 data; cumulatives in left panel, densities in right panel. The

evidence is very strong that θ1 > θ0.

having (a0, b0) = (0.71, 50) and (a1, b1) = (0.58, 50). The idea was to quantify the ex-

pected number of suicide attempts for the placebo and the drug groups, in the course

of 50 patient years, and with these expected numbers adding up to 1.29 attempts per

100 patient years, matching information recorded in previous literature. For this prior,

work through the numerics, and display the prior and posterior densities, as well as the

prior and posterior cumulatives, for the focus parameter log(θ1/θ0); construct versions

of Figure i.17. Find the 95 percent posterior interval for κ, and by transformation for

θ1/θ0. Also, record the Bayesian answer pB to the question of how likely we should think

it is that the drug increases suicide attempt risk.

(e) Results reported on in Aursnes et al. (2005, 2006) were not reached via the precise

integration tools above; the authors resorted rather to simulation. Carry out such work

too, simulating say 105 realisations of log(θ2/θ1) from the posterior distribution, followed

by simple density estimation, to reach a simulated version of Figure i.17. As explained

via the integration details above, however, there is no real need for simulation here.

(f) (xx something more. try noninformative priors, of the type (0.1, 0.1) and (0.1, 0.1)

for θ0 and θ1. and something more neutral, like (1, 50) and (1, 50). xx)

(g) (xx something iiccff using Cunen and Hjort (2022). combining one of these informa-

tive priors with the new data. several paths possible. (i) using the informative priors for

θ0 and θ1, then log-likelihoods for θ0 and θ1, i.e. four sources combined to find cc∗(κ).

(ii) using the log-prior for κ coming out of two priors, and the converted log-likelihood

for κ coming from cc(κ). both should work, but four sources in detail might be a bit

more precise. xx)

(h) (xx could push this to Notes and pointers: the analyses above have presumed that

θ0 and θ1 are somehow well-defined overall rate parameters, one for the Paroxetine users
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and one for the placebo group. more realistically, these suicide attempt rate parameters

would vary in the population, e.g. with gender and age. argue that this could lead to

negative binomial models for the final counts (Y0, Y1). perhaps are conclusions above

too sharp. but we can’t well answer this since we do not have data divided into any

subcategories. xx)

Story i.12 Brazilian children. [xx do we have exercises on M - and Z-estimation some-

where? This story can, among other things, be a nice case study in M -estimation? xx]

As part of a sanitation program in the metropolitan area of Salvador, Brazil, the Institute

of Public Health at the Federal University of Bahia conducted several studies and data

gathering efforts. One of these consisted of surveying the extent to which infants in the

Salvador area suffered from episodes of diarrhoea. Data collectors were assigned to house-

holds and conducted home visits over a period of 455 days from October 2000 to January

2002. One child aged under 3 years at entry was monitored from each household. Being

monitored, here means that a data collector went on a home visit and checked whether

the child had diarrhoea or not that very day. In other words, for days at which no data

collector went to the home of the child, the zero-one diarrhoea indicator is censored. In

the data set, there are periods during which data collectors go on vacation, during which

they are themselves home with sickness, and also periods during which they are on strike.

For these and surely other more or less mundane reasons, there are longer periods for

which they some children are not observed at all. In this story, we seek to model the 955

sequences of zero-one data, model the influence of covariates on a child’s tendency to fall

ill with diarrhoea, all in a manner that accounts for the censoring described above.

(a) The plot in the left panel of Figure i.18 shows the data for one-tenth of the children

in the study (the data are plotted for one tenth of the children due to legibility). Each

horizontal sequence of dots show the data for one child: Black dots indicate diarrhoea,

grey dots indicate that the child was in good health, and the white dots indicate censoring

(that is, we can think of the white dot as hiding a black or a grey dot from view). Read

in the data and reproduce one version of this plot.

(b) The processes-to-models idea worked with in Stoltenberg and Hjort (2021) is a natu-

ral extension of the probit regression model. Recall that in the probit model independent Probit model

zero-one data Y1, . . . , Yn are seen as generated by latent random variables ηi = ztiγ + ξi
being above or below zero, that is Yi = I{ηi ≥ 0} for j = 1, . . . , n, where zi is a vec-

tor of covariates, γ is a vector of unknown cofficients, and ξi are independent standard

normal random variables. Show that the likelihood function for γ based on observ-

ing (z1, Y1), . . . , (zn, Yn) is Ln(γ) =
∏n

i=1 Φ(z
t
iγ)

Yi{1− Φ(ztiγ)}1−Yi . [xx and something

more? xx]

(c) With n children observed over time, we not only have cross-section of data, as in (b),

but n zero-one sequences (Yi,0, . . . , Yi,ki)1≤i≤n of various lengths ki, and since the health

of a child today is probably the best predictor of the childs health tomorrow, we ought

to take this time dependence into account. Suppose that ξ1(t), . . . , ξn(t) are independent

Gaussian processes with covariance function cov(ξi(t), ξi(s)) = exp(−a|t − s|) for some

parameter a > 0. Now ηi(t) = zi(t)
t + ξi(t) and the zero-one processes Yi(t) = I{ηi(t) ≥
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Figure i.18: Left panel: observation pattern and actual observations for diarrhoea data

(for every 10th child in the sample of 925). The grey dots indicate that the child was

healthy at the observation time, and the black dots indicate that the child was sick.

The white areas are time points at which no observations were made. Right-panel: a

sample path of a stationary Ornstein–Uhlenbeck process with the values of Yi,0, . . . , Yi,ki

superimposed. The red sine-curve is the time-varying threshold. The grey ticks on the

x-axis are the times at which observations were made

0} are only observed at the possibly random and child specific times ti,0, ti,1, . . . , ti,ki
,

so that the observed data are Yi,j = Yi(ti,j) and zi(ti,j) for j = 1, . . . , ki and i =

1, . . . , n. Simulate such data with t ∈ [0, 1], a = 1, zi(t) = z∗i sin(2πt) for independent

standard normals z∗1 , . . . , z
∗
n, and ti,0, . . . , ti,ki

sampled from some Poisson process over

[0, 1] (practically, sample Bernoulli random variables over the fine grid you are simulating

ξi(t) on). Make a version of the plot in the right panel of Figure i.18.

(d) Suppose that the covariance function and the parameter a are known, so that the only

unknown to make inference for is γ. Let γ̂n be the maximiser of the ‘probit likelihood’

L̃n(γ) =
∏n

i=1

∏ki

j=1 Φ(z
t
i (ti,j)γ)

Yi,j{1−Φ(zti (ti,j)γ)}1−Yi,j , and work out the large sample

theory for the γ̂n estimator. You may treat the covariates and the observation times as

fixed, i.e., not random variables, and also suppose that the covariates are constant in

time, zi(ti,j) = zi. Check your findings on simulated data.

(e) Cases where both a and γ are unknown are more complicated. The sequences

Yi,0, Yi,1, . . . , Yi,ki
are not Markov (see Slud (1989)), which entails that the full likeli-

hood Ln(a, γ) =
∏n

i=1 Pr(Yi,0 = yi,0, . . . , Yi,ki = yi,ki) does not factorise. For the time

being, this is problematic because maximising Ln(a, γ) can take forever on your com-

puter. A fix making everything more computationally convenient is to only consider the

probabilities of adjacent pairs, that is, find the maximisers of the function

Qn(a, γ) =

n∏
i=1

ki∏
j=1

Pr{(Yi,j−1, Yi,j) = (yi,j−1, yi,j)}.

Try this out on simulated data and ‘see’ that it works. In view of Qn(a, γ) can you

propose other methods that might yield more efficient estimators, while at the same
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time not being too burdensome on your computer? [xx pointers to quasi- or composite

likelihood literature xx]

(f)

(g) (xx perhaps include something on how these data are modelled in Borgan et al. (2007)

xx)

(h) In Stoltenberg and Hjort (2021) . . .

(i)

Story i.13 Onset of menarche. (xx Data from 2.B. xx) When is the onset of menarche,

what is the underlying distribution? For estimating F (x) = Pr(T ≤ x), where T is

the precise age at which menarche starts, for a given population, it would have been

statistically easiest and best if one could ask a high number of women about the precise

date in question, giving, in that case, data points t1, . . . , tn. Since this is impractical, and

might also lead to uncertainties in the data, a simpler and robust approach is to rather

ask for a yes-no answer to the question, has it happened or not, for women sampled

across a range of ages. For n = 25 age groups, represented in this dataset via their

midpoints xj , one has recorded that yj out of mj Warszawa girls have experienced onset

of menarche. We view yj as a binomial (mj , pj), with pj = F (xj), and wish to estimate

F .
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Figure i.19: Left panel: raw data yj/mj , with the fitted logistic model of order 1, for the

age at onset of menarche, for the Polish girls dataset. The model fits well, but there are

better models. Right panel: estimated density of onset, via the Gamma process model

(full curve), the three-parameter skewed logistic (dashed curve), and the simpler logistic

(dotted curve).

(a) Introduce for numerical convenience zj = xj − 9.00 as age variable. Fit first the

simple logistic model, where F1(t) = H(β0 + β1z), with the logistic transform H; see

Ex. 5.43. Construct a version of Figure i.19, left panel.
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(b) Then fit the logistic models also of order 2, 3, 4:

F2(t) = H(β0 + β1z + β2z
2),

F3(t) = H(β0 + β1z + β2z
2 + β3z

3),

F4(t) = H(β0 + β1z + β2z
2 + β3z

3 + β4z
4).

Plot these in a diagram, alongside p̂j = yj/mj . For each model, compute the log-

likelihood maximum, and the AIC scores. Which order is best?

(c) Fit also a fifth model, a skewed logistic model, where

pj = H(β0 + β1xj)
κ =

{ exp(β0 + β1xj)

1 + exp(β0 + β1xj)

}κ

.

Again, compute the log-likelihood maximum, for which one finds κ̂ = 2.021; the Wilks

statistic for testing the two-parameter model against the three-parameter skewed model;

and the AIC score. Explain that the evidence clearly favours the three-parameter skewed

model. Also carry out CD analysis, using the Wilks based method, see Ex. 7.9, to

compute and display the confidence curve cc(κ). This involves the log-likelihood profile

ℓprof(κ) = max
all β0,β1

ℓ(β0, β1, κ).

You should find the asymmetric 95 percent interval [1.202, 4.483], clearly to the right on

κ = 1.

(d) Assume the event takes place for an individual when a stochastic nondrecreasing

process {R(x) : x > 0} associated with her crosses a threshold d. Show for such a setup

that F (x) = Pr(T ≤ x) = Pr(R(x) > d). Different models for R then lead to different

and potentially new models for F . In particular, take R a Gamma process, with R(x) ∼
Gam(a(x − x0), 1), for x0 = 9.00. Show that then F (x) = 1 − G(d, a(x − x0), 1), with

the c.d.f. for the Gam(a(x − x0), 1). Fit this two-parameter model, draw the estimated

F and f alongside the others, as with Figure i.19, right panel. You should also check

the AIC scores, finding that this Gamma process model works the best. For this best

model, slightly more probability is placed on the age interval [11, 13] than for the logistic

models, and the peak, estimated at 12.85 years, is less sharp.

Story i.14 Diabetic retinopathy study. In the broad study Klein et al. (2008), the aim

was to examine the 25-year cumulative progression and regression of diabetic retinopathy,

in the light of various risk factors. It involved following insulin-taking persons living

in Wisconsin with type 1 diabetes diagnosed before age 30. The main outcome y is an

indicator for moderate to severe nonproliferate retinopathy, or proliferate retinopathy, for

one or both eyes; out of n = 691 individuals with no missing covariates, there are 134 with

y = 1 and 557 with y = 0. We have organised data into rows of (x1, x2, z1, z2, z3, z4, z5, y),

with x1, duration since diagnosis; x2, indicator for presence of macular edema in one or

both eyes; z1, glycosylated hemoglobin level; z2, body-mass index bmi; z3, pulse rate; z4,

gender (1 for male, 0 for female); z5, indicator for presence of urine protein. We treat

the covariates x1, x2 as protected, i.e. they need to be included in each candidate model,
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whereas z1, . . . , z5 are open, i.e. can be included or excluded in submodels, for different

purposes. This leads to searching through 25 = 32 logistic regression models, submodels

of the wide model of the form

p(x, z) = Pr(Y = 1 |x, z) = H(β0 + β1x1 + β2x2 + γ1z1 + γ2z2 + γ3z3 + γ4z4 + γ5z5),

with H(u) = exp(u)/{1 + exp(u)} the logistic transform. An earlier analysis of these

data has been given in Claeskens and Hjort (2008a), but the treatment below is partly

different.
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Figure i.20: Left panel: estimating the probabiity of developing retinopathy, as a function

of time since diabetes diagnosis, for individuals at quantile levels 0.50, 0.90, 0.90 for

z1, z2, z3, with no edema and no urine condition; the FIC winner (black full curve), the

AIC winner (red slanted), the average of best ten FIC (dotted). Right panel: FIC plots

for four strata of individuals, corresponding to having x1, z1 set equal to their median

values, z2, z3 to their 90 percent quantile levels, z4 = 1 for male, and values of (x2, z5)

set equal to (0, 0) (best estimate 0.116); (0, 1) (best estimate 0.299); (1, 0) (best estimate

0.637); (1, 1) (best estimate 0.807). Estimates are on the vertical axis, with root-fic on

the horizontal, i.e. estimated root-mse. The more to the left in the plot, the better the

submodel and its estimate. There are different best models for the different strata.

(a) First carry out logistic regression in the wide model, with all 3 + 5 = 8 parameters,

and comment on what you find. In particular, covariate z5 is seen as strong, increasing

the Y = 1 probability when present, whereas covariate z3 appears to be significant,

with higher pulse associated with Y = 1. In the FICology terminology of Ch. 11, see

Ex. (11.24) and related exercises, compute the 8×8 normalised Fisher information matrix

Ĵ , and the crucial 5× 5 matrix Q̂.

(b) Suppose we wish to estimate ϕ = p(x0, z0) accurately, for a given person, with

covariates x0 = (1, x0,1, x0,2)
t and z0 = (z0,1, . . . , z0,5)

t. With partial derivatives of
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p(x0, z0), with respect to β and γ, show that

ω = J10J
−1
00

∂ϕ
∂θ − ∂ϕ

∂γ = h(xt0β + zt0γ)(J10J
−1
00 x0 − z0),

with h(u) = exp(u)/{1+exp(u)}2 the derivative ofH; explain how these can be estimated

from data, needed for the FIC calculus.

(c) Set up clear formulae for ficS , as in Ex. 11.24 and related exercises, involving also as

many as 32 5× 5 matrices ĜS , for the subsets S of {1, . . . , 5}.

(d) Construct a version of Figure i.20, left panel, as follows. For this illustration, we

focus on individuals at quantile level 0.50, 0.90, 0.90 for z1, z2, z3, with no edema and

no urine condition. For each duration x1 there are 25 = 32 different estimates of the

logistic probability of developing retinopathy before that time. The red slanted curve is

for the AIC best model, which includes z3, z5 but not z1, z2, z4. The full curve is for the

FIC best model, which after about 40 years includes z1, z2, z3 but not z4, z5. The third

dotted curve has for each x1 taken the average estimate of the ten best FIC models. In

this particular case the differences are small, but in other applications there are bigger

discrepancies between best FIC and best AIC, and then better chances of letting FIC

find out when which covariates are more influential than others.

(e) Attempt to construct a version of Figure i.20, right panel, as follows. Motivated by

attempting to understand which factors are important for assessing the risk of diabetic

retinopathy, for those with relatively high values of bmi and pulse rate, pick individuals

with median value for x1, z1 but at 90 percent quantile levels for z2, z3, with z4 = 1

(i.e. male), and then the four possibilities for x2 and z5 (presence or not of endema;

presence or not of urine protein). Carry out FIC analysis for these four positions in

covariate space. In addition to finding the best estimate, i.e. the FIC winner, go for each

case through the ten best models, and check which of z1, . . . , z5 are are included at least

50 percent of the time. Check that this leads to covariates only 1, for (0, 0); 1, 2, 3 5, for

(0, 1); only 1, for (1, 0); 2, 3, 5 for (1, 1). The FIC point is that there are different best

models in different regions of covariate space.

(f) (xx male vs. female, check if same models are selected via AFIC. xx)

Story i.15 Cigarettes and lung cancer. (xx to come here, minidrafting at the moment.

xx) For 44 US states (actually, 43 states and the District of Columbia), the dataset

comprises (x, y), with x the cigarette consumption, in hundreds of cigarettes smoked per

capita, and y, the deaths per 100K population from lung cancer.

(a) Work through first the linear regression model, with yi = α0 +α1(xi − x̄) + εi,0, and

then then the quadratic version with yi = β0 + β1(xi − x̄) + β2(xi − x̄)2 + εi, where the

linear model takes the εi,0 i.i.d. from N(0, σ2
0) and the quadratic one the εo as i.i.d. from

N(0, σ2). For the two models, compute estimates and their precision, with emphasis on

the sign and size of the derivative of the regression curve, i.e. α1 for the linead model

and β1 + 2β2(x− x̄) for the quadratic one.

(b) Compute AIC for the two models and conclude that the quadratic model is judged

better.
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Figure i.21: Left panel: (x, y), with estimates and 95 percent band via ordinary frequen-

tist regression analysis (full curves), and the Bayesian analysis using the prior respecting

monotonicity (dashed lines). Right panel: MCMC realisations from the posterior distri-

bution for (β1, β2).

(c) Explain that it is natural to require that the mean curve is monotone in x, and that

this for the quadratic model means β1 + 2β2(x − x̄) ≥ 0 for the range of x. Show that

this translates to β1 + 2βu ≥ 0 for u ∈ [−10.91, 17.48]. A Bayesian analys ought to take

this into account.

(d)

(e)

Story i.16 Life expectancy. [xx [xx might delete this story xx]Could base story on

Borgan and Keilman (2019), but there are many other things here as well. Nice intro in

Norwegian is Gran and Stensrud (2022). And also cite the methods protocol Wilmoth

et al. (2021). Code for this story is in lifeexpectancy emil1.R xx]. Life expectancy is

a common measure of the quality of life in a given country. Countries whose inhabitants

are expected to live longer are generally viewed as more fortunate countries to be born

in. As is implied by its name, life expectancy is an estimate of the expected lifetime of

someone born in a given country in a given year. The challenge in estimating such an

expectation is what data to use. There are two main methods: (i) We might wait until

all people born in a given year have passed away, then compute the average length of

their lifes. This is called the cohort method. (ii) The period method assumes that the

children born in 2023 say, will throughout their lives be exposed to the mortality rates

currently observed. Statistically speaking, this means that the lifetimes of the people

alive in 2023 are assumed to be sampled from the same distribution.

(a) Let T ∈ {0, 1, . . . , τ} be a random variable with hazard Pr(T = j |T ≥ j) = αj for

j = 0, 1, . . . , τ . Let (Tx,1, . . . , Tx,n)0≤x≤τ be i.i.d. with the same distribution as T . Sup-

pose that n is known and that we are given the data ∆Nτ−j,j =
∑n

i=1 I{Tτ−j,j = j} and
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Yτ−j,j =
∑n

i=1 I{Tτ−j,j ≥ j} for j = 0, 1, . . . , τ . The period method problem is akin to es-

timating ET based on data of this sort. Since the estimator {(τ+1)n}−1
∑τ

t=0

∑n
i=1 Tt,i

is not an option, the trick is to write (show it!)

ET =

τ∑
ℓ=0

ℓ−1∏
k=1

(1− αk),

and then estimate the hazard rates α0, α1, . . . , ατ−1. Show that for j = 0, 1, . . . , τ − 1,

∆Nτ−j,j | (Yτ−j,j = yτ−j,j) ∼ binom
(
yτ−j,j , αj

)
,

and set ℓcond(α0, . . . , ατ−1) =
∑τ

j=0{xτ−j,j log(αj) + (yτ−j,j − xτ−j,j) log(1−αj}. Show
also that the full likelihood of these data is ℓfull = logLfull where logLfull is (proportional

to)

Lfull(α0, . . . , ατ−1) = {α∆Nτ,0

0 (1− α0)
n−∆Nτ,0}{fY0,τ

τ (1− fτ )
n−Y0,τ }

× {
τ−1∏
j=1

α
∆Nτ−j,j

j (1− αj)
Yτ−j,j−∆Nτ−j,jS

Yτ−j,j

j (1− Sj)
n−Yτ−j,j},

where, we recall that Sj =
∏j−1

k=0(1 − αk) and fj = Sjαj . Let (α̂0, α̂1) and (α̃0, α̃1)

be the maximisers of ℓcond(α0, α1) and ℓfull(α0, α1), respectively. By way of simulation,

compare the means squared errors of the estimators µ̂ = (1− α̂0) + (1− α̂0)(1− α̂1) and

µ̃ = (1 − α̃0) + (1 − α̃0)(1 − α̃1). Approximately how much is lost by disregarding the

information about α0 and α1 contained the at-risk counters?

(b) The standard estimator for ET for a given country in a given year t, disregarding

some demographic technicalities (see Wilmoth et al. (2021)), is µ̂(t) =
∑110

ℓ=1

∏ℓ−1
j=0(1 −

α̂
(t)
j ) where α̂

(t)
j = ∆Nt−j,j/Yt−j,j for j = 0, 1, . . . , 110. One reason for using this estima-

tor and not the one based on the maximisers of the full likelihood of (∆Nt−j,j , Yt−j,j)0≤j≤110,

is that the number of people born in year y might, due to immigration, be smaller than

the number of people aged a at risk in year y + a (in the expression for ℓfull in (a) this

would amount to negative n− y2−j,j terms). Read in the deaths and exposure data sets

for Italy, Japan, Sweden, and Norway (called deathsITA.txt, exposureITA.txt, and so

on), and compute µ̂(t) for t = 1947, . . . , 2019, or the latest available year, for females in

the four countries. Reproduce a version of the plot in Figure i.22.

(c) Among the many data sets provided by the Human Mortality Database, we use the

Deaths and the Exposure-to-risk data sets. For example, the two data sets for Japan for

the year 2020 have the following form:

(d) The question posed in Borgan and Keilman (2019) is what story the plot in Figure i.22

tells us: Is it correct that women born in Italy and Japan may now expect to live longer

than women born in Sweden and Norway, or are the differences seen in the plot an

artefact of the estimation method?

(e)
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Figure i.22: Estimated life expectancy at birth for females in Italy, Japan, Sweden, and

Norway for the period from 1947 to 2019, computed using the period method. Retrieved

from The Human Mortality Database www.mortality.org

(f)

Story i.17 A cure model. Some parents are happy with two children. From the plot in

Figure i.13 we see that about fifty percent of all mothers of two do not have a third child:

the survival curves flattens out. This might be because they make a conscious effort not

to have a third child, or because they do not manage to produce one due to age etc. A

statistical way of modelling this is to suppose that at the time of the birth of the second

child, the mother draws a Bernoulli random variable U . If U = 1 she will have a third

child, while if U = 0 she will not, with unkown Pr(U = 1) = p unknown. If U = 1, then

the survival function S(t) = Pr(still no third child at time t) will eventually reach zero,

while if the mother belong to the no-third-child group U = 0, then her ‘survival function’

is equal to 1 for all time. This gives a population survival function

Spop.(t) = 1− p+ pS(t).

Here, Spop.(t) is a degenerate survival function because it tends to 1 − p > 0 as t → 0,

while S(t) is a bona fide survival function. In general, both p and S(t) may depend on

covariates. In this story, we will study a model where p does not depend on covariates, but

S(t) does. In particular, the ith mother has survival function Spop.,i(t) = 1− p+ pSi(t),

where Si(t) = S0(t)
exp(xiβ) for xi = I{two girls or two boys}, as in Story i.9, where

S0(t) = exp(−
∫ t

0
α0(s) d) is some baseline survival function, and α0(t) a baseline hazard.

[xx say that we are in continuous time, and introduce N , Y , M xx]

(a) Give the baseline survival function your favourite parametric specification, for ex-

ample the Weibull S0(t) = S0(t | a, b) = exp(−bta). Show that the population hazard
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function (i.e., when U is averaged out) is

αpop.(t) =
pα0(t)S(t)

1− p+ pS(t)
,

Estimate the parameters p, β, a, and b, and plot the estimated survival functions

S0(t | â, b̂) and S0(t | â, b̂)exp(β̂), with the hats indicating the maximum likelihood esti-

mators. Add pointwise 95 percent confidence bands to your plot. See Figure xx.

(b) If the baseline hazard is not given a parametric specification, we are no longer in a

situation where it can be disregarded in the estimation of the other parameters (that is,

using Cox’s partial likelihood, see Ex. [xx ch. 10 somewhere xx]).

(c)

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)

for children: see Hjort blog post Hjort (2018a). (xx round off. studying things for

sibling flock sizes m = 2, . . . , 12. is the ρ parameter different for smaller families (say

m ≤ 5) compared to bigger families (say m ≥ 10)? point to blogpost. xx)

(xx iud: mention Peterson (1975) and find Aalen spiralen 1972. data are from the

1970ies. data quality not perfect, since some expulsions are detected around one-year

controls. xx)

(xx Re Nε: point to Hjort and Fenstad (1992); Grønneberg and Hjort (2012). xx)

(xx mention illustrations of Gamma process models, for a couple of the stories, stem

from applications presented in Cunen and Hjort (2024). polish girls, old egypt, time to

2nd child. xx)

(xx re Laptook: point to Hjort blog story Hjort (2017a), big JAMA paper Laptook

(2017), short critical follow-up papers Walløe et al. (2019a,b). xx)





II.ii

Art, History, Literature, Music

(xx WELL: lots of things to fix, as of 12-August-2024. todo list for nils includes: (i) clean

the GoT and WoR stories; some should be scrapped; probably enough with one, not two.

revised game plan as of august 2023: nelson-aalen and kaplan-meier; do gompertz, but

as benchmark; briefly estimate parameters via quantiles, before turning to ML; throw in

one more para model; ask about a focus parameter. (ii) make the Platon story tighter,

and round off. point to Markov chapter things. (iii) get the Tirant lo Blanc story started.

use changepoint process things from Ch9. xx)

Story ii.1 Game of Thrones and the Wars of the Roses. (xx we have one not two GoT-

WoR stories. the present version as of 12-August-2024 will be significantly shortened.

need intro sentences, also about the sampling and the populations; we’re not sampling

the general populations in the usual sense, hence need for care for interpretation. data:

(t, δ, x1, x2) for the two populations, with x1 an indicator for belonging to the nobility

or not, and x2 an indicator for gender, x2 = 1 for women and x2 = 0 for men. there are

ng = 328 and nw = 407 individuals in the two datasets. For the WoR data there is no

censoring, so all δi = 1 there, whereas there is about 54 percent censoring for the GoT

data. xx) (xx need to calibrate with French presidents. avoid repeated similar use of

gompertz, so make sure for this story that we use another interesting model too. xx) In

the datasets the lifetimes are essentially recorded as natural numbers, 1.0, 2.0, 3.0, 6.0,

7.0, etc. When computing and displaying the nonparametric cumulative hazard rates

and survival curves below we choose for convenience to jitter these, i.e. adding a small

level of random noise, to avoid artificial consequences associated with these ties.

(a) For the two datasets, so far disregarding information concerning gender and nobility,

compute and display nonparametric Nelson–Aalen cumulative hazard curves Âgot and

Âwor and Kaplan–Meier survival curves Ŝgot(t) and Ŝwor, as in Figure ii.1. Define the

empirical q quantile as the first t for which the estimated c.d.f. F̂ (t) = 1− Ŝ(t) is equal

to or above q. Show that the 0.25 and 0.75 quantiles are 34.9 and 66.8 for GoT, and 46.1

and 70.0 for WoR.

(b) Consider the two-parameter Gompertz model for survival data, with hazard rate

α(t) = exp(γ0 + γ1t); see Ex. 1.55. Show that the cumulative hazard can be written

461
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Figure ii.1: Cumulative hazard rates (left panel) and survival curves (right panel), non-

parametric and fitted via the two-parameter Gompertz model, for the GoT and WoR

survival data. WoR lives tend to be longer than GoT lives up to about age 75. Horizon-

tal lines indicate 0.25 and 0.75 quantiles. The 0.25 and 0.75 lifetime quantiles are 34.9

and 66.8 for GoT, and 46.1 and 70.0 for WoR.

A(t) = exp(γ0){exp(γ1t) − 1}/γ1, and give a formula for the survival function S(t) and

for the quantile (1 − S)−1(q). Before we come to ML estimation, fit such Gompertz

models to the GoT and WoR datasets, by equating the 0.25 and 0.75 quantiles (this

means solving two equations with two unknowns, for GoT and for WoR). In this fashion,

complete a full version of Figure ii.1. Sum up what your comparison between the two

worlds tells us, so far.

(c) Turning now to maximum likelihood estimation, show that with the Gompertz model

for the hazard rates, the log-likelihood function can be represented as
∑n

i=1{(γ0+γ1ti)δi−∫ ti
0

exp(γ0 + γ1s) ds}. Make this expression more explicit, and find ML estimates, for

GoT and for WoR. Construct a completed version of Figure ii.1, with both nonparametric

and parametrically fitted curves.

(d) Then use a regression version of the Gompertz model, for the two populations, with

hazard rates

αi(s) = exp(γ0 + γ1s) exp(xi,1β1 + xi,2β2) for i = 1, . . . , n.

Show that the log-likelihood becomes

ℓn =

n∑
i=1

{
(γ0 + γ1ti + xi,1β1 + xi,2β2)δi − exp(γ0)

exp(γ1ti)− 1

γ1
exp(xi,1β1 + xi,2β2)

}
.

Fit this four-parameter model to the two datasets, finding ML estimates, using the pre-

covariate ML estimates as starting values for the optimisation. Use the ML theory (xx
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Figure ii.2: (xx check with com2* of kioskvelterwork22*. black full, black dashed: got0,

got1. red full, red dashed: wor0, wor1. with x2=0, i.e. for a man. medians, from smaller

to bigger, then: got0, got1, wor1, wor0. xx) Left panel: survival curves. Right panel:

hazard rates.

find right thing in Ch 10 xx) to find confidence intervals for the crucial parameters β1, β2,

for GoT and for WoR. Explain how this indicates (i) that there is no essential difference

between the survival of men and women, for the two populations; (ii) that for WoR, it

was worse to belong to nobility than not (β1 is significantly positive); (iii) that for GoT,

it was better to belong to the nobility than not (β1 is significantly negative).

(e) (xx delta method for a couple of interesting foci. also do AIC for different parametric

models, with weibull and gamma in lieu of gompertz. xx) Show that median lifetime t∗,

for an individual with covariates x1 and x2, is determined by

exp(γ0){exp(γ1t∗)− 1}/γ1 exp(x1β1 + x2β2) = log 2.

Estimate this median time, for a man belonging to the nobility, and for another man

outside nobility, for the GoT and for the WoR worlds. Supply also 90 percent confidence

intervals. (xx answers in such a table; estimates and intervals. GoT: best to be noble;

WoR: best outside. see Figure ii.2. xx)

Got, outside Got, inside

47.14 42.77 51.51 56.72 52.06 61.38

WoR, outside WoR, inside

63.39 61.18 65.61 58.85 57.09 60.62

(f) (xx compare with classic Cox semiparametric. losing some precision. here we allow

crossing hazards, not demanded proportional. point to Jullum and Hjort (2019). xx)

(g) (xx something with interesting focus and then delta method. can also ask readers to

redo all with Weibull in leiu of Gompertz, perhaps with aic, etc. xx)
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Story ii.2 Stride towards your bookshelves. As part of the obligatory exercises work for

a bachelor level course on statistical methodology at the Department of Mathematics,

University of Oslo, we instructed each student to stride towards her or his bookshelves,

to pick one book in Norwegian and one in English, then record the lengths of the first

100 words on page 51. The books could be novels, collections of short stories, poetry,

or prose in general, but not technical material (as with mathematics or statistics); the

students were also instructed to use page 52 if page 51 didn’t have enough words. Do

Fløgstad, Kjærstad, Solstad tend to use words with more or less the same lengths as do

Miller, Lessing, Munro? And do some students have books tending to have longer words

than those of other students?
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Figure ii.3: Empirical means (xi,N , xi,E) (left panel), and empirical standard deviations

(κ̂i,N , κ̂i,E) (right panel), for the Norwegian and English wordlengths found in 64 stu-

dents’ bookshelves, with each student sampling 100 words from their sampled books.

The students were asked to summarise information and to compare their own two

datasets in terms of means and standard deviations. This was expected to involve tests for

equality of means and of variances, confidence intervals for differences, perhaps comments

on skewnesses, etc. But the experiment also gave us an interesting combined data set,

where we recorded the empirical mean and standard deviation for each dataset, for

the two languages, for each student. In other words, we have summary statistics data

(xi,N , κ̂i,N , xi,E , κ̂i,E) for i = 1, . . . , n, for the n = 64 students, with

xi,N = average word-length for 100 Norwegian words for student i,

xi,E = average word-length for 100 English words for student i,

along with empirical standard deviations κ̂i,1 and κ̂i,2, say, for these 100 Norwegian and

100 English words, for student i.

(a) Construct a version of Figure ii.3, one panel with (xi,N , xi,E), a second panel with

(κ̂i,N , κ̂i,E). Why and in which sense was it ok for Hjort and Stoltenberg to throw away
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the individual data samples, with nm = 64 · 100 words in each of the two languages, and

just keep the empirical means and standard deviations?

(b) Carry out a test to see if the mean word lengths are about the same, for the Norwegian

and English books (in these students’ bookshelves). For this point, suppose that Xi,N ∼
N(ξi,N , κ

2
i,N/100) and Xi,E ∼ N(ξi,E , κ

2
i,E/100). Then perform a second test, to see if

the underlying spread in wordlength distributions are the same for the two languages.

[xx polish a bit. answers are no for x̄, but yes for the κ̂. xx]

(c) We then take an in interest in the correlation between the two wordlength distribu-

tions. But taking the ordinary correlation between the reported averages xi,N , xi,E is

less interesting than inference for the real correlation, between say xi,real,N , xi,real,E , these

being the averages over the tens of thousands of Norwegian and English words on the

bookshelves of student i. It turns out the ordinary correlation deflates this underlying

real correlation, due to the measurement errors involved in sampling merely 100 words

for the two corpora.

In general terms, suppose we have observations (xi, yi) for i = 1, . . . , n, where these

are really proxies for certain underlying (xi,0, yi,0), and where the measurement errors

involved are normal with known variance levels. We have in mind situations where the

correlation ρ = corr(x0, y0) between these underlying quantities is of higher concern than

the deflated correlation corr(x, y) between the directly observed (xi, yi). We formalise a

version of the setup described as

xi = xi,0 + δi,1, yi = yi,0 + δi,2,

where the not fully observed (xi,0, yi,0) have a binormal distribution, with correlation ρ,

and where the measurement errors δi,1 and δi,2 are independent zero-mean normals with

known or well estimated standard deviations τ1 and τ2. With (ξ1, ξ2) the means and

(σ1, σ2) the standard deviations for (xi,0, yi,0), show that(
xi
yi

)
∼ N2(

(
ξ1
ξ2

)
, V ), with V = Σ+D =

(
σ2
1 + τ21 , ρσ1σ2
ρσ1σ2, σ2

2 + τ22

)
,

writing D for diag(τ21 , τ
2
2 ).

(d) First we sort out what happens with the traditional empirical correlation coefficient

for the observed data, say Rn = s1,2/(s1s2), where s1 and s2 are the empirical standard

deviations for the xi and the yi, and s1,2 = (n− 1)−1
∑n

i=1(xi − x̄)(yi − ȳ)/(s1s2). Show

that

Rn →pr
ρσ1σ2

(σ2
1 + τ21 )

1/2(σ2
2 + τ22 )

1/2
,

i.e. the default operation Rn actually estimates a deflated version of the real ρ.

(e) Consider first repair operation 1, which is to estimate the σj by σ̂2
j = max(s2j − τ2j , 0)

for j = 1, 2. Show that ρ̂ = s1,2/(σ̂1σ̂2) is consistent for ρ. Note however that its

limit distribution is more complicated than for the classical case of no measurement
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error; see Ex. 2.48. (xx then spell out what this means for the bookshelves story. the

point is to see τ1 and τ2 from the data, as precisely estimated. For the xi,N , with

individual variances κ2i,N/m, argue that τN = {(1/n)
∑n

i=1 κ̂
2
i,N/m}1/2 = 0.2728 and

τE = {(1/n)
∑n

i=1 κ̂
2
i,E/m}1/2 = 0.2370 are precise estimates of the measurement errors

here. From the directly observed standard deviations sN = 0.5285 and sE = 0.4193 show

that these are reduced to σ̂N = (s2N − τ2N )1/2 = 0.4526 and σ̂E = (s2E − τ2E)
1/2 = 0.3459.

This adjusts the deflated Rn = 0.2833 to ρ̂ = 0.4010. xx)

(f) Then consider repair operation 2, using likelihood methods. Show that the log-

likelihood function for the observed data becomes

ℓn =

n∑
i=1

{
− 1

2 log |Σ+D| − 1
2

(
xi − ξ1
yi − ξ2

)t

(Σ +D)−1

(
xi − ξ1
yi − ξ2

)}
.

Show that profiling over the means leads to ℓn,prof(σ1, σ2, ρ) = − 1
2nQ(σ1, σ2, ρ), where

Q(σ1, σ2, ρ) = log |Σ+D|+Tr{(Σ +D)−1Sn},

in terms of the empirical variance matrix Sn for the (xi, yi) pairs. (xx do this for the

bookshelves data. find and display a cc(ρ). point estimate 0.401, 95 percent interval

[0.064, 0.670]. xx) (xx variations: could actually have different τi,1, τi,2 for the log-

likelihood. xx) (xx careful with wording: We learn that a student having Norwegian

books with long words tends to have English books with long words too, and vice versa.

The reasons for this interesting finding are not clear, but it’s interesting to do a bit of

speculation – some readers prefer longer-worded books, others might like shorter-worded

literature. We’re also reminded that the students were not instructed to choose books

from their bookshelves in a totally random fashion, so there’s a limit to how far we should

stretch our imagination here. xx)

(g) As is already apparent from the correlation analysis, the wordlengths exhibit not

merely the obvious variation inside bookshelves, but also between students. Construct a

version of Figure ii.4, left panel, displaying English wordlength averages xi,E along with

their associated individual 90 percent intervals. To assess the degree of disparity between

students, i.e. betweeen their bookshelves, model the xi,E as coming from a N(ξE , ω
2
E)

distribution. Show that marginally, xi,E ∼ N(ξE , σ
2
i,E + ω2

E), with σ
2
i,E = κ2i,E/m. Since

these are well estimated, we take them as nearly known, set equal to κ̂2i,E/m. (xx then

calibrate with what is in Ch7. xx) Using

QE(ωE) =

n∑
i=1

{xi,E − ξ̂E(ωE)}2

σ2
i,E + ω2

E

∼ χ2
n−1, with ξ̂E(ωE) =

∑n
i=1 xi,E/(σ

2
i,E + ω2

E)∑n
i=1 1/(σ

2
i,E + ω2

E)
,

construct the CD CE(ωE) = 1 − Γn−1(QE(ωE)) and its associated confidence curve.

Compute cc(ωE) and cc(ωN ) and display these in a diagram, as with Figure ii.4. Find

median confidence estimates and also 95 percent intervals for the spread parameters ωE

and ωN , and comment on their sizes.
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Figure ii.4: Left panel: for the n = 64 students, average word lengths in their English

books, with 90 percent confidence intervals. Right panel: confidence curves for the

spread parameters ωN and ωE , for the models where the averages xi,N and xi,E follow

distributions N(ξN , ω
2
N ) and N(ξE , ω

2
E).

Story ii.3 Tirant lo Blanc: When did Author B take over for Author A? Full of adven-

tures, battles and love stories, the chivalry romance Tirant lo Blanch is a masterpiece of

medieval literature. The novel, written in Catalan around c. 1465 and later published in

1490, is arguably the world’s first, preceding Cervantes’ more famous Don Quixote with

about 150 years. Its chief author was the Valencian nobleman Joanot Martorell (1410–“I swear to you,

my friend, this

[Tirant lo

Blanch] is the

best book of its

kind in the

world”, writes

Cervantes

1465), but his court intrigue related death happened before the novel was finished, after

which his friend Mart́ı Joan de Galba (c. 1445-1490) somehow took over, completing

the manuscript. The novel hence carries its own posthumous literary mystery; when

did Author B take over for Author A? We treat this here as a statistical changepoint

challenge.

The book has as many as 487 chapters, varying in size. Chapter i has mi words, of

lengths wi,1, . . . , wi,mi
. From these we compute the relative proportions p̂i,1, . . . , p̂1,10 of

words of lengths 1, . . . , 10, with ‘10’ meaning ‘10 or longer’. These relative proportions

constitute our data, from which we then attempt to estimate a changepoint. (A bureau-

cratic footnote here is that our dataset actually uses these relative proportions only for

a subset of n = 425 of the 487 chapters, the remaining chapters judged being too small.)

1 2 3 4 5 6 7 8 9 10

1 0.082 0.231 0.173 0.075 0.129 0.078 0.063 0.067 0.035 0.067

2 0.111 0.237 0.168 0.103 0.109 0.069 0.059 0.076 0.034 0.034

3 0.093 0.233 0.204 0.109 0.095 0.094 0.065 0.043 0.037 0.027

4 0.103 0.224 0.188 0.106 0.090 0.106 0.070 0.048 0.034 0.031

5 0.109 0.190 0.212 0.113 0.118 0.094 0.056 0.051 0.027 0.031

6 0.112 0.221 0.205 0.112 0.098 0.099 0.060 0.044 0.024 0.024

7 0.113 0.223 0.180 0.064 0.102 0.099 0.053 0.053 0.067 0.046

8 0.110 0.219 0.173 0.080 0.114 0.122 0.046 0.068 0.021 0.046

9 0.103 0.188 0.215 0.072 0.067 0.126 0.054 0.067 0.063 0.045
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10 0.106 0.220 0.219 0.107 0.097 0.083 0.054 0.054 0.031 0.028

......

485 0.130 0.235 0.143 0.077 0.104 0.116 0.057 0.073 0.032 0.034

486 0.112 0.219 0.226 0.114 0.100 0.070 0.032 0.075 0.027 0.025

487 0.138 0.141 0.178 0.152 0.118 0.103 0.060 0.026 0.046 0.037
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Figure ii.5: Left panel: Tirant lo Blanch, from a 1511 edition. Right panel: estimated

changepoint, chapter 371, with confidence; this is when using wordlengths 5, 6, 7, 8, 9,

10, i.e. six-dimensional vectors.

(a) The relative proportions lead to means yi =
∑10

j=1 jp̂i,j and variances s2i =
∑10

j=1(j−
yi)

2p̂i,j , which can be tracked through the book’s 487 chapters. We wiew the means as

yi ∼ N(ξi, σ
2
i /mi), with yi and si estimating ξi and σi. We first attempt to assess whether

there indeed has been a change in literary style, in these wordlength distributions, via

these means and standard deviations. Compute for each candidate changepoint τ the

left and right means ȳL =
∑

i≤τ miyi/
∑

i≤τ mi and ȳR =
∑

i≥τ+1miyi/
∑

i≥τ+1mi,

along with left and right variances s2L =
∑

i≤τ mi(yi − ȳL)
2/τ and s2R =

∑
i≥τ+1mi(yi −

ȳR)
2/(n− τ). Use methods from Ex. 9.37-9.38 to construct, plot, and analyse the moni-

toring functions

Hn,1(τ) =
ȳR − ȳL

{s2L/
∑

i≤τ mi + s2R/
∑

i≥τ+1mi}1/2
,

Hn,2(τ) =
s̄R − s̄L

{ 1
2s

2
L/τ +

1
2s

2
R/(n− τ)}1/2

,

see Figure ii.7, left panel. Explain that these should behave as normalised Browian

bridges, say T (s) = W 0(s)/{s(1 − s)}1/2, if there has been no change in word length

distributions, for Authors A and B. With plots monitored for τ = [0.05n], . . . , [0.95n],

show via Ex. 9.37 that these should be inside ±3.645 with probability 0.99, under the

null hypothesis of no change. We see from these monitoring plots that the no-change

hypothesis is very firmly rejected regarding the means but less clearly regarding the
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Figure ii.6: Left panel: average word length, per chapter, with estimated changepoint at

chapter 345; overall average changes from 3.962 to 4.126. Right panel: standard deviation

of word lengths, per chapter, with estimated changepoint at chapter 370; overall standard

deviation changes from 2.328 to 2.482.

standard deviations. Going on to estimate the changepoint positions, for means and

standard deviations, via the maximum relative change for ȳR − ȳL and s̄R − s̄L, find

τ̂1 = 295 (which is Chapter 345) and τ̂2 = 319 (which is Chapter 370), and construct

versions of Figure ii.6. Tentatively, words become longer after about Chapter 345.

(b) We learn from monitoring the wordlength means yi that there is indeed a clear break

with the null hypothesis of no change, and the near triangular shape of the normalised

ȳR− ȳl plot of Figure ii.7 (left panel), in particular, indicates a changepoint, with slightly

longer words to the right and slightly shorter words to the left, seen also in Figure ii.6.

Now carry out similar monitoring for each word length j = 1, . . . , 10. This involves

computing, for each of the ten p = Pr(w = j), and for each τ , left and right estimated

probabilities p̄L =
∑

i≤τ mip̂i/
∑

i≤τ mi and p̄R =
∑

i≥τ+1mip̂i/
∑

i≥τ+1mi, along with

left and right estimated variances σ̂2
L =

∑
i≤τ (p̂i − p̄L)

2/τ and σ̂2
R =

∑
i≥τ+1(p̂i −

p̄R)
2/(n− τ). Show via Ex. 9.37-9.38 again that the plots

Mn(τ) =
p̄R − p̄L

(σ̂2
L/
∑

i≤τ mi + σ̂2
R/
∑

i≥τ+1mi)1/2

approach normalised Brownian bridges, under the no change hypothesis. Read off minima

and maxima for these plots, shown in Figure ii.7, right panel, to tentatively state that

longer words become more frequent (particularly those of length 7, 9, 10) whereas shorter

words become less frequent, with these tentative changes taking place inside the range

from Chapter 300 to Chapter 400.

(c) In addition to the already useful monitoring plots above, better statistical precision

will come out of examining models and log-likelihoods. Consider then any relevant p =
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Figure ii.7: Left panel: monitoring plots for the means ξ and standard deviations σ of

wordlengths. Right panel: monitoring plots for each pj = Pr(w = j), for word lengths

j = 1, . . . , 10. The horizonal lines at ±3.645 incidate the 99 percent band for such plots,

under the hypothesis of there being no change between authors A and B.

Pr(A), with A a subset of {1, . . . , 10}, where we estimate p1, . . . , pn by summing the

basic relative frequencies over elements of A. Consider the model which takes p̂j to stem

from N(pL, σ
2
L/mj) for j ≤ τ and then from N(pR, σ

2
R/mj) for j ≥ τ +1. Show first that

the log-likelihood ℓ(τ, pL, σL, pR, σR) becomes∑
j≤τ

{− log σL − 1
2mj(p̂j − pL)

2/σ2
L}+

∑
j≥τ+1

{− log σR − 1
2mj(p̂j − pR)

2/σ2
R}

plus the for the present purposes immaterial constant
∑n

j=1{
1
2 logmj − 1

2 log(2π)}. For

fixed τ , show that this is maximised for

p̂L =
∑
j≤τ

(mj/mL)p̂j , σ̂2
L = (1/τ)

∑
j≤τ

mj(p̂j − p̂L)
2,

with similar expressions for the maximisers p̂R, σ̂R. Deduce that the profiled log-likelihood

function is

ℓprof(τ) = −τ log σ̂L − (n− τ) log σ̂R.

As a parallel to the monitoring plotsMn(τ) above, one for each wordlength j = 1, . . . , 10,

construct and plot the ten deviance functions Dn(τ) = 2{ℓprof,max − ℓprof(τ)}. Do also

this for the subset A = {7, 8, 9, 10}, monitoring the longer words across the chapters.

(d) Then consider a full vector p̂j of a subset of size q of the relative frequencies

(p̂j,1, . . . , p̂j,10). Work with the model taking p̂j ∼ Nq(pL,ΣL/mj) for j ≤ τ and

p̂j ∼ Nq(pR,ΣR/mj) for j ≥ τ + 1. Show in generalisation of the above that for a

fixed candidate value τ , the ML estimators become

p̂L =
∑
j≤τ

(mj/mL)p̂j , Σ̂L = (1/τ)
∑
j≤τ

mj(p̂j − p̂L)(p̂j − p̂L)
t,
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with similar expressions for the parameters to the right. Show then that

ℓprof(τ) = − 1
2τ log |Σ̂L| − 1

2 (n− τ) log |Σ̂R|.

Plot this profile function, along with the deviance function D(τ) = 2{ℓprof,max−ℓprof(τ)},
for a few choices of A, subset of {1, . . . , 10}. For the full 9-vector {1, . . . , 9}, one finds

τ̂ = 320, corresponding to Chapter 371, and with some other choices the plot favours

τ̂ = 295, making Chapter 345 the more likely changepoint.

(e) A demanding task is then to supplement the changepoint estimate with confidence

intervals. A full confidence curve, as per Ch. 7, can be constructed as

cc(τ) = Prτ{D(τ, Y ∗) < D(τ, yobs)}+ 1
2Prτ{D(τ, Y ∗) = Dobs(τ, yobs)},

with Y ∗ a full simulated dataset, for the given candidate position τ , drawn from the

multinormal model with estimated position for pL,ΣL to the left of τ and pR,ΣR to the

right. This requires somewhat laborious bookkeeping and simulation, with say 103 such

full paths of multinormal data, for each τ . Carry out such a scheme, for the case of

wordlengths A = {5, 6, 7, 8, 9, 10}, leading to a version of Figure ii.5, right panel. The

point estimate is at Chapter 371, but still with some probability around Chapter 345,

leading to confidence sets being unions of disjoint likely sets. You may similarly run such

a programme for other wordlength subsets. Check also with Story iii.3, for building a

similarly structured confidence curve for a changepoint, but in a rather easier Poisson

model for a simpler dataset.

Story ii.4 The children of Odin. As we know, Odin had six male offspring – Thor,

Balder, Vitharr, Váli, Heimdallr, Bragi – with the sources saying nothing about daugh-

ters. So how many children is it likely that he had, in total? With N the number of

children, and y the number of boys, we assume y |N ∼ binom(N, p), with p = 0.514

(a good overall point estimate human reproduction; see Story i.2). So the data is that

y = 6, and we can attempt confidence inference for N . The themes and details below

expand on those given in Schweder and Hjort (2016, Example 3.11).

(a) A natural construction for a CD is

C(N, y) = PrN (Y > y) + 1
2PrN (Y = y),

with the half-correction for discreteness, as in the partly parallel situation of Ex. 7.31.

Compute and display this CD, and take differences to compute also the confidence point

masses, c(N, y). Construct a version of Figure ii.8, left panel.

(b) A CD C(θ, y), for a parameter θ based on data y, should ideally have the uniformity

property that U = C(θ0, Y ) has the uniform distribution, for any fixed θ0, with Y a

random dataset drawn from the model at that position in the parameter space. This is

not quite possible here, since the situation is discrete, with not many values to attain for

y. For a given N0 = 14, simulate say 104 realisations of U = C(N0, Y ), then compute

and display the empirical distribution function Pr(U ≤ u). Comment on your findings.
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Figure ii.8: Left panel: confidence point masses c(N, y), for N ≥ 6. Right panel: The

confidence point masses (full line) alongside the Bayesian posterior, with the prior 1/(N+

1).

(c) Carry out also a Bayesian analysis, using the prior proportional to 1/(N + 1) for

N ≥ 0. Compare the posterior distribution to the CD, as with Figure ii.8, right panel.

(d) Invent your own prior for N (formed before you learn in school that y = 6), and

compare the posterior distribution wit that that found above.

(e) The frequentist CD C(N, y) above should be trusted as a good and neutral statistical

summary function for the unknown N . Find and display the Bayesian prior that would

give the same result.

(f) In some of the Snorri kennings there are also references to Týr and Höd as sons of Odin

(and yet other names are mentioned in the somewhat apocryphical Skáldskaparmál).

Adjust the calculations above to this revised case, with y = 8, and comment on your

findings.

(g) Find or dream up another situation (not necessarily with full data) where the model

above might be used, i.e. p is known, but the binomial N is unknown.

Story ii.5 How many Abel envelopes from 1902? (xx needs finetuning with the figures;

see com335* of nilswork22. xx) Hundred years after the death of Niels Henrik Abel

(1802–1829), the Norwegian postal office issued a certain stamp and a ‘first-day cover’

envelope commemorating him; this was only the second time such an honour had been

bestowed upon a person outside royalty (in 1928, a similar first-day cover had been issued

for Henrik Ibsen, hundred years after his being born). As the facsimile of Figure ii.9 (left

panel) indicates, these carry ‘R numbers’ (as in ‘rekommandert post’), and R numbers

from five such Abel 1929 envelopes, from various philatelic sales lists and auctions in

the 2003–2008 period, were 280, 304, 308, 310, 328. The operating assumption is that

the Abelian first-day covers with stamps were produced in a running noninterrupted
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sequence, but one does not know when it started and neither when it ended. So how

many were there? An answer to this curiosity question also enters the realm of philatelic

market prices and speculations (one such specimen might fetch 5000 kroner, in 2025).
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Figure ii.9: Left panel: a philatelic rarity: an Abel first-day envelope from 1929. Right

panel: confidence curves for the unknown number N of such envelopes, based on the first

piece of information (black curve), with 5 envelopes, and after the updated information

(red slanted), now with 10 known envelopes. 95 percent intervals for the unknown N are

from 51 to 164 (with the first 5 envelopes), then narrowed down to 55 to 94 (with the

updated information).

(a) We allow ourselves a statistical detour, discussing natural setups and solutions for
range estimation for the case of continuous data, before returning to Abel. So, for a
concrete illustration, consider the numbers

4.712 6.412 7.043 7.141 7.245 7.379 7.602 8.417 8.671 8.702

We’ve simulated these n = 10 points, from a uniform distribution over [a, b], and ordered

them, for simplicity. But we won’t tell you the values we used for a or b, or indeed the

range γ = b − a. Your task will be to make inference about this γ. We come back to

Bayesian solutions below, but now approach the problem using frequentist confidence

distributions. With Y1, . . . , Yn from the uniform on [a, b], explain that one may write

Yi = a+(b−a)Ui, with the Ui from the standard uniform over the unit interval. Deduce

that Rn = Y(n) − Y(1) = γRn,0, with Rn,0 = U(n) − U(1), relating the range of data

naturally to the range of a uniform sample. Explain that Rn/γ is a pivot, as defined in

Ex. 7.7.

(b) With Hn the c.d.f. of the uniform range Rn,0 distribution, show that the canon-

ical confidence distribution for γ becomes Cn(γ,data) = Pra,b(Rn ≥ Rn,obs) = 1 −
Hn(Rn,obs/γ), for γ ≥ Rn,obs (here observed to be 3.990). Simulate say 104 realisations

of Rn,0 in your computer, and use these to compute and display the CD Cn(γ,data),
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as well as the confidence curve ccn(γ,data) = |1 − 2Cn(γ,data)|. Use also the explicit

knowledge from Ex. 3.17, that Hn actually is a Be(n− 1, 2), to show that the confidence

distribution and its confidence density become

Cn(γ,data) = 1− n(Rn,obs/γ)
n−1 + (n− 1)(Rn,obs/γ)

n,

cn(γ,data) = n(n− 1)Rn−1
n,obs(γ −Rn,obs)/γ

n+1,

for γ ≥ Rn,obs. Compute the median confidence and maximum confidence estimates.

(c) We now approach the inference problem with Bayesian means. Starting with the

likelihood function, show that it can be written as follows, expressed as a function of

(a, γ) rather than of (a, b):

Ln(a, γ) = (1/γ)n I(a ≤ y(1) and y(n) ≤ a+ γ),

in particular taking the value zero if a > y(1) or y(n) > a+ γ. Find the ML estimates for

a and for γ. Then, with a flat prior on a, independently of a prior p(γ) for γ, show that

the posterior distribution of γ is

p(γ |data) ∝ p(γ)(γ −Rn,obs)(1/γ)
n for γ ≥ Rn,obs.

(d) Without clear prior knowledge concerning the range a natural prior is proportional

to 1/γ. Show that this leads to the Bayesian posterior distribution agreeing precisely

with the frequentist CD above. In particular, explain that the Bayes machine, starting

from the 1/γ prior, leads to credibility intervals with perfect frequentist coverage. The

95 percent interval becomes [4.094, 7.189], for example. As an alternative, consider also

using a flat prior for γ, and show that this leads to a posterior with density and cumulative

equal to (xx check all details here xx)

gn(γ |data) = (n− 1)(n− 2)Rn−2
n,obs(γ −Rn,obs)/γ

n,

Gn(γ |data) = 1− (n− 1)(Rn,obs/γ)
n−2 + (n− 2)(Rn,obs/γ)

n−1,

for γ ≥ Rn,obs. Plot both posteriors (with one of these equal to the CD) for the dataset

above.

(e) We now return to the Abel numbers 280, 304, 308, 310, 328, first with a natural

CD approach. Take these to be a random sample X1, . . . , Xn (without replacement) of

size n = 5 from {a + 1, . . . , a +N}, with both a and N unknown. It is natural to base

the inference on the range Rn = Vn − Un, where Un = mini≤nXi and Vn = maxi≤nXi.

Show that its distribution is independent of a. Argue that this leads to the confidence

distribution C(N) = PrN (Rn > 48)+ 1
2 PrN (Rn = 48); as usual, PrN signals probability

calculations under the value N of this parameter.

(f) It remains to find expressions for the distribution of Rn. Consider first the joint

distribution of (U0
n, V

0
n ), where U

0
n and V 0

n are as Un and Vn, but in the situation where

a = 0. Show that their joint probability distribution can be expressed as

f(u, v) =

(
v − u− 1

n− 2

)/(N
n

)
for 1 ≤ u, u+ n− 1 ≤ v ≤ N.
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Deduce that the distribution of Zn = Vn − Un can be written

PrN (Zn = z) =
∑

v−u=z

f(u, v) = (N − z)

(
z − 1

n− 2

)/(N
n

)
for z = n− 1, . . . , N − 1. Compute and display the CD and the confidence curve cc(N)

for N .

(g) We then work towards a Bayesian solution, based on data X1, . . . , Xn as above, a

random draw from {a+ 1, . . . , a+N}. With independent priors p0(a) and p(N) for the

start-point a and sequence length N , show that

p(a,N |data) ∝ p0(a)p(N) I(a+ 1 ≤ Un < Vn ≤ a+N)/

(
N

n

)
.

With a flat prior on the starting point a, show that this under some conditions leads to

p(N |data) ∝ p(N)
(N −Rn)

N(N − 1) · · · (N − n+ 1)
;

note the partial similarity to the posterior p(γ |data) in the continuous case above. Work

out the posterior distribution for N , over a suitable range of N values, starting with a

flat prior. Find posterior median and a 95 percent interval. – One ought to be careful

here, since the prior for a should be flat on 1, 2, 3, . . ., not including negative numbers.

Show that the associated refinement of the direct result above becomes p(N |data) ∝
p(N)q(N)/{N(N−1) · · · (N−n+1)}, where q(N) counts the number of a ≥ 1 satisfying

Vn −N ≤ a ≤ Un − 1. Show that this means either Un − 1 − (Vn −N − 1) = N − Rn,

provided Vn ≥ N + 1, or Un − 1, in the case of Vn ≤ N . In other words and symbols,

q(N) = (N − Rn) I(Vn > N) + (Un − 1) I(Vn ≤ N). Show however that for the present

occasion, the relevant values of N are smaller than Vn = 328, so this additional layer of

care turns out not to be needed.

(h) In addition to the five R numbers 280, 304, 308, 310, 328 known as of 2008, five more

such first-day Abel envelopes have been unearthed, the latest in 2022: 285, 314, 317,

327, 334. Update your inference, for the CD and the Bayesian posterior, and construct

versions of Figure ii.10; CDs in the left panel and Bayesian cumulatives in the right.

Translate also the CDs to confidence curves, as with Figure ii.10, right panel. Compute

also the median confidence and median Bayes estimates, along with 95 percent intervals.

(Answers: for data up to 2008, point estimates are 69 and 75, with intervals [51, 164] and

[51, 170], for the CD and the Bayes. With extended data up to 2022, point estimates are

64 and 64, with intervals [55, 94] and [55, 100].)

Story ii.6 Markov and Pushkin. (xx calibrate things with what’s in Ch. 12. calibrate

with what we describe in dataoverview. xx) A.A. Markov invented Markov chains in 1906,

with monumental consequences for probability theory, statistics, dependence models,

time series, Bayesian computation and simulation, and for a steadily increasing range

of applications in multiple domains, from biology and economics to mobile phones and
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Figure ii.10: Left panel: confidence distribution for N , the number of Abel 1929 first-day

cover envelopes, based on the 5 known numbers by 2008 (full curve), and on the now

10 known numbers by 2022 (dashed curve). Right panel: for the same information, the

Bayesian posterior c.d.f.

AI. He should also be remembered for having presented the first ever data analysis

of a Markov chain. Astoundingly, he went through the first 20,000 letters of Pushkin’s

classic 1833 epic poem Evgeniĭ Onegin, tabling transitions from vowels and consonants,

reporting his findings in Markov (1913). In Markov model language, with transition

probabilities pa,b on the two-state {0, 1}, with 0 for soglasniĭ and 1 for glasniĭ, and will disappear

as fast as

smoke: for

Satan, love’s a

splendid joke

where Markov demonstrated that p̂0,1 (consonant to vowel) is clearly different from p̂1,1
(vowel to vowel); see the analysis below.

The crucial point is that consonants and vowels do not flow independently, when

we speak or think or recite poems. In statistical terms, this standard 1st order memory

Markov model increases the explanatory power enormously, when compared to the too

simple independence model. As we shall see, however, the 1st order memory model is

not good enough either; checking triples of transitions, with a 2nd order memory model

pa,b,c = Pr(Xi+1 = c |Xi−1 = a,Xi = b) for a, b, c ∈ {0, 1}, there are clear signs of depar-
ture from the 1st order memory model. The 33 letter Russian alphabet has 10 vowels and

21 consonants (where we include ĭ), along with the soft-sign and hard-sign. We base our

analysis below on the 23 = 8 triple counts Na,b,c =
∑n−1

i=2 I{(Xi−1, Xi, Xi+1) = (a, b, c)},
This has involved taking a Russian online text-file of Pushkin’s poem, available at wiki-

source, cleaning away punctuation and the occasional non-Russian words (in French,

English, Italian), then patiently letter by letter find-replace-ing consonants and vowels

to 0s and 1s for the first n = 20000 letters, where we have disregarded the soft-sign and

hard-sign letters. The triple counts thus found are as follows, summing to 19998:

N0,0,0 = 644, N0,0,1 = 3516, N0,1,0 = 7018, N0,1,1 = 593

N1,0,0 = 3516, N1,0,1 = 4095, N1,1,0 = 593, N1,1,1 = 23
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(a) Before coming to the triples, carry out 1st order Markov chain estimation, via Na,b =∑
cNa,b,c to find the transition matrix

P =

(
0.353, 0.647

0.925, 0.075

)
.

Find the equilibrium distribution, with 58.9 percent consonants and 41.1 percent vowels.

(b) (xx calibrate and smooth. xx) For counting transitions in a 1st order memory Markov

chain, yielding transition probability estimators p̂a,b = Na,b/Na,· we have learned in

Ex. 12.17 that these behave as multinomial ratios, given Na,·, with covariances pa,b(δb,b′−
pa,b′)/Na,·, and independently for different a. Now we need to generalise this to 2nd order

memory Markov chains. With no further structure on these k2(k − 1) parameters pa,b,c,

show that the log-likelihood function is ℓn =
∑

a,b,cNa,b,c log pa,b,c, with ML estimators

p̂a,b,c = Na,b,c/Na,b,·. Show that these ratios with given Na,b,· behave as in a multinomial

setup, and independently for (a, b) different from (a′, b′). This makes it possible to

estimate variances of all smooth functions of the pa,b,c parameters, via the delta metod.
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Figure ii.11: Transition probabilities for vowel-consonant shifts in Pushkin’s Onegin,

here computed for the k = 20 consecutive parts with 1000 letters in each. With 0 for

consonants and 1 for vowels: Left panel: 1st order Markov, p1,1 (mean 0.075) and p0,0
(mean 0.353). Right panel: p1,1,1 (mean 0.037), p0,0,0 (mean 0.155), p1,0,1 (mean 0.538),

p0,1,0 (mean 0.022).

(c) Coming back to Pushkin, we model the vowels and consonants as 0s and 1s from

a 2nd order memory Markov chain, to learn the extent to which Markov’s 1st order

memory Markov chain model from 1913 is too simplistic. Consider the ratios

ρ0,0 = p1,0,0/p0,0,0, ρ0,1 = p1,0,1/p0,0,1, ρ1,0 = p1,1,0/p0,1,0, ρ1,1 = p1,1,1/p0,1,1.
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Explain that these should all be close to 1 under Markov’s 1st order memory assumptions.

Show that ρ̂0,0 = p̂1,0,0/p̂0,0,0 has approximate variance

τ20,0 =
1

(p0,0,0)2
p1,0,0 p1,0,1
N1,0,·

+
(p1,0,0)

2

(p0,0,0)4
p0,0,0 p0,0,1
N0,0,·

=
1

(p0,0,0)2

{p1,0,0 p1,0,1
N1,0,·

+ ρ20,0
p0,0,0 p0,0,1
N0,0,·

}
.

Give estimates and estimated standard deviations for the four ρa,b ratios. The 1st order

probability of coming to vowel from vowel is 0.0749, for example. The more carefully

estimated 2nd order probabilities are 0.0373 from (vowel, vowel) to vowel, rather smaller

than 0.0779 from (consonant, vowel) to vowel. Explain how this contradicts the 1st order

memory Markov model.

from 1 from 0 rho tau

00 0.4620 0.1548 2.9841 0.1142

01 0.5380 0.8452 0.6366 0.0080

10 0.9627 0.9221 1.0440 0.0090

11 0.0373 0.0779 0.4792 0.0998

(d) Was Pushkin reasonably consistent, regarding the vowel-consonant interplay, through-

out his long work? Divide the long chain of 20000 vowels and consonants into k = 20

consecutive chunks, each of length 1000, and for each of these compute the 1st order p̂a,b
and 2nd order p̂a,b,c transition frequencies, for a, b = 0, 1 (again with 0 for consonant and

1 for vowel). Give versions of Figure ii.11, left and right panels. Then carry out simple

t-testing of equality of parts 1-10 and 11-20. For (consonant, vowel) to consonant, for

instance, show that the p0,1,0 have not remained constant over the full work.

(e) (xx this perhaps to be omitted. xx) How would you go about estimation in and

testing of the 3rd order memory Markov model here? (xx may ask for log-likelihood

maxima for Markov chains of order 0, 1, 2, 3. parameter dimensions are 1, 2, 4, 8.

apparently, the 2nd order model, with 4 parameters, is better than the 3rd order model,

with 8 parameters. xx)

Story ii.7 And Quiet Does Not Flow the Don. The Nobel Prize in literature for 1965 was

awarded Mikhail Sholokhov (1905–1984), for the epic novel Tihiĭ Don about Cossack

life and the birth of a new Soviet society. Sholokhov has been compared to Tolstŏı and

was at least a generation ago called ‘the greatest of our writers’ in Russia and in the

Soviet Union, with thousands of editions of his novels and stories. But in the autumn

of 1974 an article was published in Paris, Strem� ‘Tihogo Dona’ (Zagadki romana)
(‘The Rapids of Quiet Don: the Enigmas of the Novel’), by the author and critic D*. He

claimed that Tikhĭı Don was not at all Sholokhov’s work, but that it rather was written by

Fiodor Kriukov, a more obscure author who fought against bolshevism and died in 1920.

The article was given credibility and prestige by none other than Aleksandr Solzhenitsyn

(a Nobel prize winner five years after Sholokhov, with a history of previous quarrels), who

wrote a preface giving full support to D*’s conclusion. Scandals followed, also touching

the upper echelons of Soviet society, and Sholokhov’s reputation was faltering abroad

(‘vibrations of dislike instantly flowed between us’, writes Lessing (1997), another Nobel
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Prize winner). Are we in fact faced with one of the most flagrant cases of plagiarism in

the history of literature?

Even experts on literature, art, and music are prone to making occasional mis-

takes, as demonstrated often enough, and it is clear that independent arguments based

on quantitative comparisons are of interest. If not taken as ‘direct proof’, then such

comparisons may at least offer independent objective evidence and sometimes additional

insights. In such a spirit, an inter-Nordic research team was formed in 1975, captained

by Geir Kjetsaa, a professor of Russian literature at the University of Oslo, with the

aim of disentangling the Don mystery. In addition to various linguistic analyses and

several doses of detective work, quantitative data were gathered and organised, relating

to word lengths, sentence lengths, frequencies of certain words and phrases, grammatical

characteristics, etc. These data were extracted from three corpora: (i) X, or Sh, 4183

sentences, from published work guaranteed to be by Sholokhov; (ii) Kr, or Kr, 3739

sentences, that which with equal trustworthiness came from the hand of the alternative

hypothesis Kriukov; and (iii) TD, or TD, the Nobel winning apple of discord, with 3760

sentences. The Nx numbers below, the number of sentences with lengths inside windows

1-5, 6-10, 11-15, etc., have been extracted from tables in Kjetsaa et al. (1984). Our

contribution here is to squeeze clearer author discrimination and some deeper statistical

insights out of some of Kjetsaa et al.’s data. In particular, with Nj lengths inside window

j below, the expected numbers N̂j and pearson residuals (Nj−N̂j)/N̂
1/2
j are computed

using a certain parametric sentence length distribution developed below, then used to

discriminate between authors. See also Hjort (2007) for further background, details, and

analyses.

Sh: TD: Kr:

Nx expected pearson Nx expected pearson Nx expected pearson

1- 5 799 803.38 -0.15 684 690.10 -0.23 714 717.56 -0.13

6-10 1408 1396.97 0.30 1212 1188.52 0.68 1046 1038.89 0.22

11-15 875 884.84 -0.33 826 854.39 -0.97 787 793.32 -0.22

16-20 492 461.25 1.43 480 418.67 3.00 528 504.56 1.04

21-25 285 275.90 0.55 244 248.07 -0.26 317 305.22 0.67

26-30 144 161.52 -1.38 121 151.10 -2.45 165 174.82 -0.74

31-35 78 91.34 -1.40 75 89.66 -1.55 78 96.12 -1.85

36-40 37 50.34 -1.88 48 52.08 -0.56 44 51.29 -1.02

41-45 32 27.21 0.92 31 29.76 0.23 28 26.76 0.24

46-50 13 14.49 -0.39 16 16.80 -0.19 11 13.72 -0.73

51-55 8 7.62 0.14 12 9.38 0.85 8 6.93 0.40

56-60 8 3.97 2.03 3 5.20 -0.96 5 3.46 0.83

61-65 4 2.05 1.36 8 2.86 3.04 5 1.71 2.51

4183 16.69 3760 30.22 3730 14.41

(a) Before we begin constructing sentence length distributions, let us examine the raw

table as such, with its k = 13 length windows 1-5 to 61-65. Viewing these as multinomial

processes, with probability vectors pSh, pTD, pKr of length k, test the hypothesis HA,

that Sh and TD have the same mechanism, and then HB , that Kr and TD have the same

mechanism. You may use the
∑k

j=1(p̂j − q̂j)
2/r̂j type test developed in Story vii.1. You

should find that HA is accepted but that HB is rejected, already pointing to Sholokhov

being the rightful author.
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(b) Wouldn’t it be splendid, to be a very clever statistician and compute clear probabil-

ities

prA = Pr(Sh is the TD author |data),
prB = Pr(Kr is the TD author |data),
prC = Pr(neither of them is the TD author |data),

via the sentence length data? This is ambitious, conceptually and operationally, but a

Bayesian attempt is as follows. For the three scenarios here, called A, B, C, suppose (i)

that prior probabilities πA, πB , πC are put up, by an expert, or by yourself (and a simple

neutral ( 13 ,
1
3 ,

1
3 ) can be used); (ii) that appropriate priors are specified for pA and pKr,

in the case of A, for pB and pSh, in the case of B, and for pSh, pTD, pKr in the case of C;

and (iii) that the multinomial setup is judged acceptable. Show then that

prA = πAf̄A/f̄ , prB = πB f̄B/f̄ , prC = πC f̄C/f̄ , (ii.1)

featuring marginal probabiilties

f̄A =

∫ k∏
j=1

p
Shj+TDj

j πA(pA) dpA

∫ k∏
j=1

p
Krj
j πKr(pKr) dpKr,

f̄B =

∫ k∏
j=1

p
Krj+TDj

j πB(pB) dpB

∫ k∏
j=1

p
Shj

j πSh(pSh) dpSh,

f̄C =

∫ k∏
j=1

p
Shj

j πSh(pSh) dpSh

∫ k∏
j=1

p
TDj

j πKr(pTD) dpTD

∫ k∏
j=1

p
Krj
j πKr(pKr) dpKr.

Also, f̄ = πAf̄A + πB f̄B + πC f̄C , so indeed prA,prB ,prC sum to one.

(c) This might look forbidding but is actually doable. Argue first that it makes sense to

employ the same prior, for the different p = (p1, . . . , pk) probability vectors here, so that

differences in the posterior probabilities prA, prB , prC will not be due to differences in

prior perceptions of the sentence length distributions; also, these are rather similar across

the three corpora. Secondly, it helps to choose this prior as a Dirichlet, say p ∼ Dir(cp0)

with mean p0 = (p0,1, . . . , p0,k); see Ex. ??. Show that

f̄A = K2

∏k
j=1 Γ(cp0,j + Shj +TDj)

Γ(c+ nSh + nTD)

∏k
j=1 Γ(cp0,j +Krj)

Γ(c+ nKr)
,

f̄B = K2

∏k
j=1 Γ(cp0,j +Krj +TDj)

Γ(c+ nKr + nTD)

∏k
j=1 Γ(cp0,j + Shj)

Γ(c+ nSh)
,

f̄C = K3

∏k
j=1 Γ(cp0,j + Shj)

Γ(c+ nSh)

∏k
j=1 Γ(cp0,j +TDj)

Γ(c+ nTD)

∏k
j=1 Γ(cp0,j +Krj)

Γ(c+ nKr)
,

in which K = Γ(c)/
∏k

j=1 Γ(cp0,j). Now implement these formulae. Use p0 roughly equal

to the normalised Nj counts for TD, and try out values e.g. 100, 1000, 4000 for the prior

sample size c. You should find that even if you start with a Solzhenitsyn type prior

(0.05, 0.90, 0.05), heavily favouring Kriukov, the result is an overwhelming prA = 0.999

or even more.
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(d) The conclusion is already rather clear, without even having attempted to model the

sentence lengths beyond having a generic (p1, . . . , p13) for the 13 length windows. There

will be benefits from attempting such length modelling, however, because conclusions

might be firmer and more informative for the present Quiet Don issue, and because such

efforts might lead to fruitful comparison tools for other authors and other corpora. –

We do come to more relevant parametric models below, but first we briefly consider the

Poisson. Without going into finer likelihood details, compute perhaps crude estimates of

means and variances, for the three corpora, using e.g. midpoints of the length windows

1-5, 6-10, etc. Demonstrate that the variances are much bigger than the means, actually

with a factor of about 6. Perhaps no serious writers distribute their sentence lengths

quite as primitively as via a Poisson.

(e) A sensible model for the sentence lengths needs to have at least two parameters

on board. Consider the mixed Poisson, where the rate parameter is not constant but

varies in the world of sentences. If Y given λ is Poisson with this parameter, but λ has

a Gam(a, b) distribution, show as with Ex. 1.26 that the marginal takes the begative

binomial form

f∗(y, a, b) =
ba

Γ(a)

1

y!

Γ(a+ y)

(b+ 1)a+y
for y = 0, 1, 2, . . . .

Show that its mean is µ = a/b and its variance a/b2 = µ(1 + 1/b), indicating the level

of over-dispersion. Generally speaking, a model Pr(L = y) = f(y, θ) for length data y

implies window probabilities qj(θ) =
∑

y∈window j f(y, θ). Fit the two-parameter mixed

Poisson model to the three corpora, using minimum chi-squared with the grouped data,

minimising Q(θ) =
∑k

j=1{Nj−nqj(θ)}2/{nqj(θ)}. Here Nj is the number of sentences in

length window j, and n =
∑k

j=1Nj the full number of sentences in the corpus examined.

Fit this two-parameter model to the three corpora, recording also the minimum chi-

squared scores and checking the Pearson type residuals (Nj − nq̂j)/q̂
1/2
j . You will find

minimum values 118.145, 130.002, 19.951 for Sh, TD, Kr, which is too large for a good

model, and with several residuals out of normal range.

(f) The two-parameter mixed Poisson found to be too simple invites further probing into

the sentence length mechanisms. An acceptable model, as it turns out, is the following

mixture of a pure Poisson and another mixed Poisson, with a modification stemming

from the fact that sentences containing zero words do not really count among Nobel

literature laureates (with the notable exception of a 1958 story by Heinrich Böll):

f(y, p, ξ, a, b) = p
exp(−ξ)ξy/y!
1− exp(ξ)

+ (1− p)
f∗(y, a, b)

1− f∗(0, a, b)
for y = 1, 2, . . . .

It would have been easier and statistically more informative to analyse the full empirical
distributions, for lengths 1 to 65, but unfortunately the research team only kept the
summary tables for windows 1-5, 6-10, etc. (G. Kjetsaa, personal communication to
N.L.H., 1995). Explain that the log-likelihood function for these binned multinomial data

becomes ℓ(θ) =
∑k

j=1Nj log qj(θ). For the three text corpora, and for this four-parameter
model, find both minimum chi-squared and maximum likelihood estimates; these are
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Figure ii.12: Sentence length distributions, observed (full lines) and fitted to the four-

parameter model (dotted lines), for the three text corpora Sholokhov, Tikhii Don, and

Kriukov. The distributions are quite similar, and a statistical magnifying glass is needed

to see which of Sh and Kr is closest to TD.

indeed quite close, see the table below. Construct versions of Figures ii.12 and ii.13,

along with computing expected N̂j = nqj(θ̂) and pearson residuals (Nj − N̂j)/N̂
1/2
j ,

as in the table above. We learn that the sentence length distributions are fairly similar,
for Sh, TD, Kr, making it a challenging statistical task to disentangle them. (xx need to
sort out and to point to large-sample similarity of ML and minimum chi-squared. check
Ferguson (1996). xx)

Sh: TD: Kr:

ML MQ se ML MQ se ML MQ se

p 0.211 0.220 0.022 0.214 0.230 0.024 0.042 0.051 0.025

xi 8.530 8.678 0.407 9.476 9.649 0.389 7.802 8.707 2.280

a 2.260 2.161 0.126 2.097 1.962 0.115 2.458 2.352 0.140

b 0.172 0.163 0.009 0.157 0.145 0.009 0.186 0.177 0.009

(g) Translating the hypotheses HA and HB of question (a) to the present setting, with

parameter vectors θ = (p, ξ, a, b)t driving the models, carry out natural tests for θSh =

θTD and for θKr = θTD, using methods of Ex. 4.42. You should find that the first is fully

accepted but the second firmly rejected, in line with what was found for the probability

vectors pSh, pTD, pKr above. Again, this lends support to the Stalin Prize 1941 winner

being the rightful author of Tikhĭı Don.
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Figure ii.13: Left panel: sentence length distributions, estimated via the four-parameter

model, for the three text corpora Sholokhov, Tikhii Don, and Kriukov; Sh is rather closer

to TD than Kr is. Right panel: the estimated ratios fSh/fTD and fKr/fTD, the former

much closer to 1 than the latter.

(h) The disputed authorship question can also be approached via model selection method-

ology. The two main theories or claims correspond to Model A: Sh and TD stem from

the same source, with common parameter θA, whereas Kr comes from a different θKr;

and Model B: Kr and TD come from the same source, with common parameter θB , and

Sh comes from a different θSh. Let us also include Model C: the three corpora stem

from different sources with three different parameter vectors. Explain that Models A

and B have 8 parameters, whereas Model C has 12 parameters. Fit the three different

models, via maximum likelihood, recording the implied log-likelihood maxima for the

ℓA(θ), ℓB(θ), etc. Compute first AIC scores, and comment. For BIC scores, argue that

we should have

bicA = 2(ℓA,max + ℓKr,max)− 4 log(nSh + nTD)− 4 log nKr,

bicB = 2(ℓB,max + ℓSh,max)− 4 log(nKr + nTD)− 4 log nSh,

bicC = 2(ℓSh,max + ℓTD,max + ℓKr,max)− 4(log nKr + log nTD + log nKr).

How do you conclude, based on this?

(i) We computed posterior probabilities prA, prB , prC in the course of question (b)

above, but then only used the direct window counts N1, . . . , N13. With the parametric

model developed above we should be able to compute more precise estimates. Argue

that formulae (ii.1) can still be used, provided we have priors pA and pKr under Model

A, priors pB and pSh under Model B, and priors pSh, pTD, pKr under Model C. These

involve marginal probabilities f̄A, f̄B , f̄C . Show that

f̄A =

∫ { k∏
j=1

qj(θA)
Shj+TDj

}
pA(θA) dθA

∫ { k∏
j=1

qj(θKr)
Krj
}
pKr(θKr) dθKr,
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involving 4-dimensional integrals over (p, ξ, a, b), and put up similar expressions for f̄B
and f̄C . Then use Laplace approximation methods of Ex. 6.22 to establish that

log f̄A
.
= 1

2bicA − 1
2 log |JA| −

1
2 log |JKr|+ log pA(θ̂A) + log pKr(θ̂Kr) + 4 log(2π),

log f̄B
.
= 1

2bicB − 1
2 log |JB | −

1
2 log |JSh|+ log pB(θ̂B) + log pSh(θ̂Sh) + 4 log(2π),

log f̄C
.
= 1

2bicC − 1
2 log |JSh| −

1
2 log |JTD| − 1

2 log |JKr|

+ log pSh(θ̂Sh) + log pSh(θ̂TD) + log pSh(θ̂Kr) + 6 log(2π).

Here ℓA,max is the maximum of ℓA(θ), with JA = −∂tℓA(θ̂A)/∂θ∂θt/(nSh + nTD) the

associated normalised Hessian matrix, etc. Several paths may be considered hre, but

a natural simplification is the use of Jeffreys type neutral priors, of the type pA(θ) ∝
|JA|1/2. Show that this causes several terms to cancel in these approximations, and that

it all leads to posterior probabilities for A, B, C, as per formulae (ii.1), with

prA = πA exp( 12bicA)/d, prB = πB exp( 12bicB)/d, prc = πC exp( 12bicC + 2 log(2π))/d.

Here d is the normalising constant needed to have the probabilities summing to 1. Com-

pute these probabilities, based on neutral start prior ( 13 ,
1
3 ,

1
3 ), on a Solzhenitsyn type

prior (0.01, 0.98, 0.01) strongly negative to Sholokhov, and perhaps your own. Show that

the pro-Sholohhov probability is at least 0.999.

Story ii.8 Republic, Laws, Critias, Philebus, Politicus, Sophist, Timaeus. (xx needs

polish, but i’m getting there. i mention the Markov type models for pi1,...,i5 at the end,

but don’t really pursue this. xx) Perhaps you, like Plato, or Πλατωνως, for stylistic or

rhetorical reasons, are very careful with your sentence endings. In this case your clausula,

the five last syllables, is an instance of S L S L S, for ‘short’ and ‘long’ (or ‘light’ and

‘stressed’). There are 25 = 32 variations. Corpora can be carefully read and analysed,

with the different types of clausulae tabulated and compared. In probability modelling

language, we then get estimates of each work’s 32-dimensional clausula probability vector,

say p = (p1, . . . , p32).

(xx to be done. data from Cox and Brandwood (1959), but here we do more.

Scholars agree that A: Republic (Politeia) comes several years before B: Laws (Nomoi).

There is no clear consensus regarding the correct placing of the five Socratic dialogues

Critias (Kritias), Philebus (Filebos), Politicus (Politikos), Sophist (Sofistis), Timaeus

(Timaios), inside the time window from Republic to Laws, however. Here we make a

statistical attempt at solving this puzzle. data collected in 2.B. point briefly to Story

vii.1. Sample sizes, i.e. the number of sentences or phrases from which the clausulae have

been lifted and sifted, are quite big for Rep and Laws, with nA = 3778 and nB = 3783,

but lower for the five intermediate dialogues; they are 150, 958, 770, 919, 762 for Crit,

Phil, Pol, Soph, Tim. xx)

(a) Let N = (N1, . . . , Nk) be a multinomial (n, p1, . . . , pk), see Ex. 1.5. We write pk =

1− p1 − · · · − pk−1, making (p1, . . . , pk) a probability vector. Show that with no further

constraints on the pj , the maximum likelihood estimators are p̂j = Nj/n, with log-

likelihood maximum ℓmax = n
∑k

j=1 p̂j log p̂j + cn, where cn = log(n!)−
∑k

j=1 log(Nj !) is

a constant depending on the data but not the parameters.



Art, History, Literature, Music 485

2
4

6
8

 

R
ep

ub
lic

, L
aw

s

1 8 16 24 32

−
6

−
4

−
2

0
2

4

clausulae

R
ep

ub
lic

 m
in

us
 L

aw
s

1 8 16 24 32

Figure ii.14: Left panel: Republic (black, full curve), Laws (red, dashed), frequencies

p̂A,j and p̂B,j for the 25 = 32 clausulae, in percent. Right panel: Republic minus Laws:

frequency differences p̂A,j − p̂B,j , in percent, with 99 percent confidence intervals.

(b) Suppose NA = (NA,1, . . . , NA,k) and NB = (NB,1, . . . , NB,k) are two independent

multinomials, with total counts nA and nB , and probability vectors pA = (pA,1, . . . , pA,k)

and pB = (pB,1, . . . , pB,k), and that these count vectors can be meaningfully compared,

in the sense that pA,j and pB,j relate to the same category j. Show that the full log-

likelihood can be written
∑k

j=1(NA,j log pA,j+NB,j log pB,j)+cA,B , with constant cA,B =

log nA + log nB −
∑k

j=1{log(NA,j !) + log(NB,j !)}.

(c) Consider testing the null hypothesis that pA = pB , against the alternative that these

two vectors are not equal. Show that maximising the log-likelihood under the null and

under the wider alternative leads to

ℓmax,0 = (nA + nB)

k∑
j=1

p̂j log p̂j + cA,B ,

ℓmax,wide = nA

k∑
j=1

p̂A,j log p̂A,j + nB

k∑
j=1

p̂B,j log p̂B,j + cA,B ,

with p̂j = (NA,j +NB,j)/(nA+nB) = (nAp̂A+nN p̂B)/(nA+nB). Show from the Wilks

theorems that

D = 2

k∑
j=1

{nAp̂A,j log p̂A,j + nB p̂B,j log p̂B,j − (nA + nB)p̂j log p̂j}

is approximately a χ2
k−1, under the pA = pB hypothesis assumption. Compute D for

the case of comparing Platon’s Republic (A) with Laws (B), and establish that these are

firmly different.
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(d) Construct a version of Figure ii.14. It plots the frequencies p̂A,j and p̂B,j (left panel),

in percent, and then the differences d̂j = p̂A,j − p̂B,j (right panel), also in percent, with

99 percent confidence intervals; these are pretty narrow, with precise frequencies, due

to the high sample sizes nA, nB . Construct also a table with these differences, their

estimated standard deviations sdj , and Wald ratios d̂j/sdj (the lines below are from

such a table). Verify that the three cases with the strongest pA,j > pB,j behaviour are

‘10010’ (or LSSLS), ‘01001’ (or SLSSL), ‘10011’ (or LSSLL); and similarly that the three

cases exhibiting the strongest pA,j < pB,j are ‘10001’ (or LSSSL), ‘00011’ (or SSSLL),

‘11101’ (or LLLSL).

# cases where pA is much bigger than pB:

9 1 0 0 1 0 2.8 0.6 2.2 0.296 7.424

13 0 1 0 0 1 4.6 1.1 3.5 0.381 9.194

22 1 0 0 1 1 4.2 0.6 3.6 0.350 10.296

# cases where pA is much smaller than pB:

10 1 0 0 0 1 4.6 8.8 -4.2 0.573 -7.330

16 0 0 0 1 1 2.5 5.7 -3.2 0.455 -7.040

30 1 1 1 0 1 4.1 8.8 -4.7 0.562 -8.358

(e) In the Platonic context, consider one of the five dialogues, giving rise to a multinomial

N = (N1, . . . , Nk), with total count n and probability vector p = (p1, . . . , pk). We

attempt to somehow place this p on a probabilistic bridge from pA to pB . For nonnegative

weights w1, . . . , wk given to the 32 rhythmic clausulae, consider

dw(p, pA) =

k∑
j=1

wj{pj log(pj/pA,j)− (pj − pA,j)},

dw(p, pB) =

k∑
j=1

wj{pj log(pj/pB,j)− (pj − pB,j)},

seen as weighted distances, from p to pA, and from p to pB . Show that r log(r/rA) −
(r− rA) is always nonnegative, for r and rA in (0, 1), implying that the two distances are

indeed nonnegative. Taking all wj equal to 1 corresponds to placing equal importance

weight to all k cases; show that one then has the simplified expressions d(p, pA) =∑k
j=1 pj log(pj/pA,j) and d(p, pB) =

∑k
j=1 pj log(pj/pB,j) (where individual terms might

be negative, though their sums are guaranteed to be nonnegative, by the above). Show

that these are Kullback–Leibler distances, as per Ex. 5.6.

(f) The idea is now to estimate

γ = dw(p, pA)− dw(p, pB) =

k∑
j=1

wj

{
pj log

pB,j

pA,j
− (pB,j − pA,j)

}
(ii.2)

for each of the five works between A and B. It should be negative for those composed

just after A and positive for those written close to B. With p̂j = Nj/n the proportion of

clausula j, for the work considered, show that

γ̂ = dw(p̂, pA)− dw(p̂, pB) =

k∑
j=1

wj

{
p̂j log

pB,j

pA,j
− (pB,j − pA,j)

}
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Figure ii.15: Left panel: confidence curves for γ of (ii.2), in the order of Timaeus, Sophist,

Critias, Politicus, Philebus, from left position of A, Republic, to B, Laws. Right panel:

confidence distributions for the λ of (ii.3), appearing in the precise same order. Here we

have used wj = 1 for the 10 clausulae with the most prominent changes, and wj = 0 for

the rest.

is unbiased, approximately normal, with variance τ2 = (1/n){
∑k

j=1 c
2
jpj−(

∑k
j=1 cjpj)

2},
where cj = wj log(pB,j/pA,j); see also Story vii.1. Estimate the γ, in this fashion,

along with estimated variances, and construct a version of Figure ii.15 (left panel), with

confidence curves cc(γj). For this use wj = 1 for the 10 clausulae with the most prominent

changes, and wj = 0 for the rest. Verify that they occur in the order of Timaeus, Sophist,

Critias, Politicus, Philebus.

(g) One model for Plato’s envisaged transition in style, from A, Republic, to B, Laws,

considering pA and pB as given, or estimated with good precision, takes pj = (1−λ)pA,j+

λpB,j , with λ ∈ [0, 1] indicating the Platonic path from A to B. We should now fit this

model, for each of the five intermediate dialogues. A method for achieving this is to

minimise the empirical version of the weighted KL distance

dw(p, pλ) =

k∑
j=1

wj [pj log{pj/pj(λ)} − {pj − pj(λ)}]. (ii.3)

Show that this leads to maximising the weighted log-likelihood function

ℓw(λ) = n

k∑
j=1

wj{p̂j log pj(λ)− pj(λ)}.

(xx more. approximate standard error, as with mwl estimators Ch5. Make a version of

Figure ii.15 (right panel), with confidence distributions Cj(λ), and verify that their order

is the same as that found above. xx)
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(h) Another model for this transition from A to B takes pj = p1−κ
A,j p

κ
B,j/R(κ), with

R(κ) =
∑k

j′=1 p
1−κ
A,j′p

κ
B,j′ , with one appropriate κ for each of the works composed between

A and B. On this bridge, endpoints pA and pB correspond to κ = 0 and κ = 1. Show

that the log-likelihood function becomes

ℓn(κ) =

k∑
j=1

Nj{κ(log pB,j − log pA,j)− logR(κ)} = κUn − n logR(κ),

where Un =
∑k

j=1Nj(log pB,j− log pA,j). (xx more. fit κ for each of the five. this model,

even though it’s not perfect, generates the score from the d(p, pA) and d(p, pB) analyses.

xx)

(i) (xx somewhat briefly. making models for p = (p1, . . . , pk) with fewer parameters than

k − 1 = 31. can attempt Markov models. it works but is laborious. xx)

Story ii.9 Presidents of the First Republic. Liberté, egalité, fraternité is the

famous motto of the French Republic. At the time of its origination, during the French

revolution, the motto often came with a darker addition: – ou la mort. It is this

aspect we will examine in this story. Revolutionary days are a time for experimentation,

and a number of new systems were tested out during the First Republic (1792–1804),

for example a new calendar system, several new state religions (among others the Cult

of Reason and the Cult of the Supreme Being), and, naturally, new political systems.

One such system was the National Convention (of 749 elected members), whose president

could then be considered France’s legitimate Head of State in this period. The presidents

were elected for 14 day terms, and this gives us an interesting dataset of n = 73 different

French presidents for the full National Convention period (September 1792 to November

1795). The dataset comprises id (identity label, 1 to 73); birth (date); death (date);

presistart (start of presidency); presiend (end of presidency); v, indicator for having

experienced a violent death; giro, indicator for belonging to the Gironde party; vip, a

proxy for fame, taken here to be the number of languages in which there is a wikipedia

page for the president in question.

In the following, we take an interest the time ti it took president i to die, from the

end of his presidency, for the 73 presidents. To analyse such data we may operate with

two viewpoints, so to speak. Perspective A is that ‘a life is a life and you die when

you die’, and since we know the ti for each president there is no statistical censoring.

Perspective B is different, and holds that the life of a guillotined man ‘should’ have been

longer, so we then consider the imagined what-if lifetime t∗i to have been unpleasantly

censored. In yet other words, with perspective B, the survival data are of the form (ti, δi),

with δi = 0 for those having met a violent death and δi = 1 for those lucky enough not

to have been killed.

(a) With viewpoint A, just described, compute and display the Nelson–Aalen estimator

for the implied cumulative hazard function. Use a couple of lines to explain what the

estimator is telling us here. What is the estimated median time, say m̂A, from end of

presidency to death?
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Figure ii.16: Left panel: nonparametric Nelson–Aalen estimate for the cumulative haz-

ard (ragged curve), for the time to death since end of presidency, along with 90 percent

confidence band. The smooth curve is the estimated Weibull model based cumulative

hazard. The median time for the distribution corresponds to crossing log 2. Right panel:

corresponding figure with the Kaplan–Meier survival curve (ragged), along with 90 per-

cent confidence bands, and the smooth Weibull based survival curve.

(b) We now leave viewpoint A and for the rest of this exercise operate under per-

spective B. Compute and display the Nelson–Aalen estimator ÂB for the underlying

cumulative hazard rate, along with an approximate 90% pointwise confidence band

ÂB(t) ± 1.645 σ̂B(t), say (xx pointer here to formula and properties from Ch10 xx).

Compute and display also the Kaplan–Meier estimator, and read off the estimated me-

dian time from end of presidency to death, say m̂B , from this plot. Comment on the two

median estimates m̂A and m̂B .

(c) To test whether AB(t0) = a0, for some given time t0 and level a0, explain that a

test with approximate level 0.10 is to accept provided |ÂB(t0)− a0| ≤ 1.645 σ̂B(t0). Use

this to construct a nonparametric approximate 90 percent confidence interval for the

median mB , collecting together all values t0 for which |ÂB(t0) − log 2| ≤ 1.645 σ̂B(t0).

(xx pointer here to nonparametric ci for quantiles for iid data in Ch3. cross-check here

if this is inside Ch10 or not. thus no need to get into hazard rate estimation etc. xx)

(d) (xx pointer to general loglik expression for survival data, inside Ch10. xx) We shall

now fit a parametric Weibull model to the survival data (ti, δi), with cumulative hazard

rate function of the form A(t) = (t/a)b, i.e. hazard rate α(s) = bsb−1/ab for s > 0. Show

that the log-likelihood function may be expressed as

ℓn(a, b) =
∑

δB,i=1

{log b+ (b− 1) log ti − b log a} −
n∑

i=1

(ti/a)
b.

Fit this two-parameter model by numerically finding the maximum likelihood estimates

(c, b) in question (you should find (31.513, 1.821)); you may e.g. use the R algorithm nlm
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to minimise the negative log-likelihood function. Compute also approximate standard

errors (estimated standard deviations) for the two parameter estimates. Construct a

version of Figure ii.16, and comment on what might be learned from this.

(e) Using the Weibull model, estimate the probability pB that a newly retired president

will live for at least twenty more years, supposing and praying he is not beheaded. Also

give a 90% confidence interval for this pB . How different is your estimate of pA, the

corresponding probability under perspective A?

(f) So 18 out of the 73 presidents were executed. How long would their lives have been,

in the what-if nation of France, sans guilliotine? With T a lifetime known to have come

to at least t0, show in general terms that Pr(T ≥ t |T ≥ t0) = exp[−{A(t) − A(t0)}]
for t ≥ t0. with A the cumulative hazard function. Show then that a person who has

reached age t0 has median lifetime t∗ = A−1(A(t0) + log 2). If your lifetime is governed

by the Weibull model, and your age today is t0, deduce that your median lifetime is

t∗ = a{(t0/a)b + log 2}1/b = (tb0 + ab log 2)1/b. For presidents 1, 2, 3, 8, 9, 12, 15, 16,

21, 22, 25, 28, 30, 34, 35, 41, 44, 58, estimate their median lifetimes, had they not

been executed, (i) using the Weibull model, (ii) nonparametrically. For methods (i) and

(ii), supply also approximate 90 percent confidence intervals for these median what-if

lifetimes.

(g) Now push the covariate x = giro into the analysis. There are several options here,

corresponding to different Weibull regression setups. Try out Ai(t) = (t/ai)
bi , with

the choices (i) ai = a exp(β1xi) and b constant; (ii) a constant but bi = b exp(β2xi); (iii)

ai = a exp(β1xi) and bi = b exp(β2xi). Give standard errors for the regression coefficients

and test β1 = 0 and β2 = 0. Summarise your findings.

(h) (xx one more thing. could ask to have the analyses redone with one or two other

models, comparing to the Weibull. point to a bit of common themes for story GoT-WoR,

where we drive Gompertz instead. xx)

Story ii.10 Dangerous job assignment: Roman Emperor. How often do you think

about the Roman Empire? Pontifex maximus, princeps senatus, augustus, basieleus –

whatever the title used, being the official ruler of the Senatus Populusque Romanus was

not an easy job. Lists can be compiled pertaining to the different Roman emperors,

their reigns, how and when they were elected, and how and when they died. A source

for such information, and more, is the encyclopaedic website De Imperatoribus Romanis.

Here we use the dataset given in Saleh (2019, Appendix), for the 69 legitimate emperors,

from Augustus (reign 31 B.C. to 14 A.D.) to Theodosius I (reign 379 to 395 A.D.), with

start-date, end-date, and an indicator v for whether he met a violent death (by murder,

suicide, or during combat with a foreign enemy) or not.

There is a certain existential and statistical resemblance here to the drama of the

73 presidents of the French Republic 1792–1795, studied in Story ii.9. To examine,

model, analyse the violent-death-or-not data for the Roman emperors below we add

more components, however, and ask other questions. We formulate the time T to death,

measured from the start-of-reign date, as min(T0, T1), where T0 is time to non-violent
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death and T1 time to violent death, whatever comes first. This is an instance of the

competing risks setup from survival analysis. Methods of Ch. 10 may be used to model

and analyse the distributions of T0 and T1 separately, where v = 1 means censoring for

T0 and v = 0 means censoring for T1.
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Figure ii.17: Left panel: Kaplan–Meier survival curves, with gamma mixture models.

The higher survival is for non-violent death and the lower survival, with more rapid-

coming death, is with violence. Estimated medians m̂0 = 19.0 and m̂1 = 7.0 correspond

to crossing the 0.50 line. Right panel: probability of a death having been a violent one,

as a function of time since start of reign.

(a) Access and organise the data to have a file of (ti, xi, vi), with ti the length of the

reign, starting in year xi, and with vi = 1 for violent death and vi = 0 for non-violent

death. Compute and display Nelson–Aalen estimates Â0 and Â1 for the cumulative

hazard rates, and Kaplan–Meier estimates Ŝ0 and Ŝ1 for the survival curves; see the left

panel of Figure ii.17. Read off median time-to-death estimates for the two distributions;

you should find m̂0 = 19.0 and m̂1 = 7.0. How do you interpret these median estimates?

(b) With the apparatus of survival analysis and censored data we can model the dis-

tributions involved, associated with T0 and T1, even when only one of T0, T1 is actu-

ally observed. To attempt parametric modelling, start out fitting the survival data to

Gamma distributions, say Gam(a0, b0) and Gam(a1, b1). Plot the estimated gamma sur-

vival curves along with the Kaplan–Meier curves, and form an opinion of how well they

fit.

(c) To check if the core mechanisms might have been changing, for T0 or T1, over the

four hundred years, fit gamma regression survival models, of the type

T0,i ∼ Gam(a0 exp(γ0xi), b0) and T1,i ∼ Gam(a1 exp(γ1xi), b1).

Estimate γ0 and γ1, and decide if these are significantly different from zero or not.
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(d) We now add on one more statistical assumption, namely that T0 and T1 are indepen-

dent. Discuss briefly what this means in the present context. Show that T = min(T0, T1)

has survival function S(t) = S0(t)S1(t), cumulative hazard rate A(t) = A0(t) + A1(t),

and hazard rate α(t) = α0(t) + α1(t), in terms of the individual hazard rates α0 and α1.

(e) Show also in general terms that with parametric models f0(t, θ0) and f1(t, θ1) for the

T0 and T1 distributions, and data (Ti, δi) with δi being 0, 1 for the Ti,0 smallest or Ti,1
smallest, then the likelihood function can be expressed as

L(θ0, θ1) =
∏
δi=0

f0(ti, θ0)S1(ti, θ1)
∏
δi=1

f1(ti, θ1)S0(ti, θ0) = L0(θ0)L1(θ1).

This invites modelling and analysing the two distributions separately.

(f) Then fit gamma distribution mixtures to T0 and T1,

f0 = p0 Gam(a0,1, b0,1) + (1− p0)Gam(a0,2, b0,2),

f1 = p1 Gam(a1,1, b1,1) + (1− p1)Gam(a1,2, b1,2),

by maximising the two log-likelihood functions numerically. Carry out Wilks type testing

to assess the increase in maximised log-likelihood, and comment. Construct a version of

Figure ii.17, left panel.

(g) Suppose you learn that an emperor has died, at time t after start-of-reign. What is

the probability that his death was a violent one? Compute this probability, as a function

of t, and construct a version of Figure ii.17, right panel.

Story ii.11 Lifelengths in Roman Era Egypt, 2100 years ago. Intriguingly, archeologists

have been able to learn the ages at death of 141 mummified individuals living in Roman

Era Egypt, some 2100 years ago, see Spiegelberg (1901). These lifelengths, varying from

1 to 96 years, for 82 men and 59 women, were discussed and analysed by Karl Pearson in

the very first volume of Biometrika, see Pearson (1902). We treat them here as a random

sample of lifelengths from the upper social class of Roman Era Egypt, during a period

of relatove societal stability; more details are in Claeskens and Hjort (2008b, Ch. 2). (xx

with data and details in Ch. B.2.B. when polishing, do the right pointing to Ch10 and

to ML machinery of Ch5. xx)

Despite Pearson’s not unreasonable comment that “in dealing with [these data] I

have not ventured to separate the men from the women mortality, the numbers are far

too insignificant” we shall work with parametric modelling of the men’s and women’s

survival functions and hazard rates, and in that process illustrate the main practical

uses of maximum likelihood machineries, both for model parameters and for natural

parameter functions of these, and for model comparison and model selection.

(a) Go through as many as eight candidate models for these data, given below. For each

model, estimate the parameters via maximum likelihood, along with estimated standard

deviations for these. Here we use the general versatile machinery partly showcased and

summed up in Stories iv.6 and vii.4, involving programming the log-likelihood functions,
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Figure ii.18: Lifelengths in Roman Era Egypt, a century B.C., with men tending to

have longer lives than women. Left panel: nonparametric Nelson–Aalen plots for the

cumulative hazards, for men (lower curves) and for women (upper curves), along with

parametric fits from Models 2b (Weibull with equal 2nd parameter) and 3b (Gompertz

with equal 2nd parameter) as per Ex. ii.11. Estimated 50 and 75 percent survival times

can be read off from the two horizontal lines at log 2 and log 4. Right panel: survival

curves for the men (upper curves) and women (lower curves), nonparametric (rugged)

along with parametric fits. Estimated 0.50 and 0.75 percent survival times are read off

from where the curves cross the 0.50 and 0.25 lines.

finding their optima, and inverting the Fisher information matrices. Part of the learn-

ing experience here is that handling rather different parametric models does not take

many extra forces, but may involve relatively small changes from script to script. (i)

Use gamma distributions Gam(am, bm) and Gam(aw, bw) for the men and the women,

with parametrisation as in Ex. 1.9. Then use gamma distributions again, but take a

common b for the shape parameter. (ii) Then use Weibull distributions (am, bm) and

(aw, bw), with parametrisation as in Ex. 1.54. Similarly, use a common shape parameter

b for the two groups, but separate am and aw. (iii) Then use Gompertz distributions

with parameters (am, bm) and (aw, bw), with parametrisation as in Ex. 1.55. Again al-

low the variation taking a common shape parameter b but different am, aw for the two

Gompertz distributions. (iv) Throw in also the log-normal distributions, first with four

free parameters (ξm, σm), (ξw, σw), then with a common σ for the log-normals. For

each of these 4 + 4 models, graph the estimated cumulative hazard functions A(t, θ̂)

for men and women, plotted alongside the nonparametric Nelson–Aalen curves, and also

the estimated survival curves S(t, θ̂) for men and women, alongside the nonparametric

Kaplan–Meier curves. In other words, construct versions of Figure ii.18, left and right

panels.

(b) After having fitted all the candidate models, and computed the log-likelihood maxima
in question, it is a small extra step to count parameters and compute the AIC scores.
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Do this, organising your results into a table with the three first columns here, with ‘dim’
denoting the number of parameters in the model. Conclude that model 3B is the best (so
far), the Gompertz model with parameters (am, b) and (aw, b), as judged by the AIC; see
the AIC ranks in column 4. Incidentally, show that the log-normal models are decidely
worse. We include them here for the sake of exercising the general maximum likelihood
machinery, and since we could not have known a priori which models are good and which
are not.

dim logLmax aic rank men women delta sd low up

model 1A 4 -612.064 -1232.129 5 26.655 21.877 4.778 3.371 -0.766 10.323 gamma

model 1B 3 -614.922 -1235.844 6 26.055 22.725 3.330 3.439 -2.327 8.986

model 2A 4 -609.954 -1227.909 4 28.262 22.728 5.534 3.502 -0.226 11.294 weib

model 2B 3 -610.387 -1226.774 3 29.120 21.910 7.209 2.997 2.279 12.139

model 3A 4 -608.388 -1224.776 2 31.783 22.140 9.644 4.246 2.659 16.629 gomp

model 3B 3 -608.520 -1223.040 1 31.124 22.723 8.401 3.447 2.730 14.072

model 4A 4 -627.397 -1262.794 7 23.237 19.958 3.279 3.447 -2.391 8.949 logN

model 4B 3 -629.511 -1265.023 8 23.237 19.958 3.279 3.521 -2.514 9.071

(c) For the three best of the fitted models, compute and graph the estimated densities

f̂(t), survival curves Ŝ(t), and cumulative hazard rates Â(t). Complement these with

the nonparametric Nelson–Aalen estimators. Present also the estimated hazard rates

α̂(t). Construct a version of Figure ii.18. Explain how estimated median survival time

in Roman era Egypt can be read off from the horizontal log 2 line, and similarly the

estimated 75 percent quantile survival time via the log 4 line.

(d) It appears clear that in Roman era Egypt, men tended to have longer lives than

women. The direct nonparametric median lifetime estimates are 28 for men and 22

for women. For each of the eight candidate models, compute the implied median-life

difference estimate, i.e. of δ = F−1
m (0.50)−F−1

w (0.50). Also use the maximum likelihood

theory as partly summarised in Story vii.4, specifically the use of the delta method

for any smooth function of the model parameters, to compute the approximate standard

deviation for these δ̂ estimates, and give 90 percent confidence intervals. These estimates,

with lower and upper confidence points, are given in the table above. Your code should

be flexible enough to carry out similar analyses for e.g. the upper quartile difference

F−1
m (0.75) − F−1

w (0.75), a parameter of high interest for the five million Egyptians two

thousand years ago. Attempt to pinpoint where the men and women of Roman Era

Egypt started having different lifelength expectancies.

(e) (xx find an easy reference to the fact that a high proportion of women died in child-

birth, in many socities. xx) The models worked through above are generic in character

and do not take on board why or in which ways the lives of men and women might

have been dfferent in old Egypt. The flexibility and versality of the maximum likelihood

machinery should inspire building other models. Consider random lifetimes

Tm = min{t ≥ 0: Zm(t) ≥ c}, Tw = min{t ≥ 0: Zw(t) ≥ c},

defined via cumulative risk processes Zm and Zw for men and women; when these cross

threshold c, the individual dies. A natural class of such processes, amenable to further
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Figure ii.19: (xx text to be coordinated and polished. xx) Left panel: Nelson–Aalen cu-

mulative hazards for men and women of Roman Era Egypt, along with those fitted to the

gamma process threshold crossing model; these are better than the 4 + 4 models worked

with initially. Right panel: associated survival curves, nonparametric and parametric.

survival analysis for their threshold crossing times, is that of independent increment

gamma processes, see Cunen and Hjort (2024). For the present purposes we take Zm(t)

having mean function at whereas Zw(t) has mean function at+d ex(t), with an extra risk

function ex(t) here taken to be the c.d.f. of a uniform distribution on [15, 40]. Show that

this leads to survival functions Sm(t) = G(c, at, 1) and Sw(t) = G(c, at + d ex(t), 1) for

men and women, where G(·, u, 1) is the c.d.f. for Gam(u, 1). Show that the log-likelihood

function becomes

ℓ(a, c, d) =

nm∑
i=1

log fm(tm,i) +

nw∑
i=1

log fw(tw,i),

with the nm and nw lifelengths for men and women, and with densities fm(t) = −S′
m(t)

and fw(t) = −S′
w(t) implied by the survival functions.

(f) Now programme and optimise the log-likelihood. You should find (â, ĉ, d̂) = (0.033,

0.687, 0.810), and with a much higher log-likelihood maximum −604.368 than for the

eight models worked with above. Show also that this leads to an AIC score very clearly

better than for the competitors. Display nonparametric and parametrically fitted cumu-

lative hazard rates and survival curvess, as in Figure ii.19, left and right panels. The

gamma process models provide much better fits than for models portrayed in Figure

ii.18.

(g) To illustrate how the gamma process models work, simulate e.g. 25 Zm processes,

with mean function at, and Zw processes, with mean function at + d ex(t), using the

estimated (â, ĉ, d̂). Death occurs when the process reaches c. More men than women
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Figure ii.20: (xx text to be coordinated and polished. xx) 25 simulated gamma processes,

for mean functions at for the men (left panel) and at+d ex(t) for the women (right panel);

an individual dies when his or her process crosses the threshold c = 0.687, the horizontal

line.

survive the age of forty. Construct a version of Figure ii.20 (male processes in left panel,

female in right panel). (xx put in somewhere: with our gamma process model, women

and men have the same longer-time survival chances after the age of forty. xx)

Story ii.12 Bach, Reger, organ fugues, and Wohltemperierte I und II. A fugue, whether

for a piano, an organ, a choir, or an ensemble of instruments, starts with the principal

fugue theme itself, before it is imitated and varied, perhaps in complex ways, in other

voices; typical Bach fugues have from three to five voices. Rydén (2020) has studied such

fugue themes from the organ works of Bach and other composers. He has accurately de-

fined certain features, for quantitative analysis and comparisons. These can be identified

and counted for each given fugue theme. In brief, these are

x1, the length, number of notes, range 7 to 64;

x2, the compass, range (in semitones), range 5 to 20;

x3, the number of unique notes, range 4 to 12;

x4, the initial interval (in semitones), range 0 to 12;

x5, the number of unique intervals between successive notes, range 2 to 11;

x6, the max interval (in semitones), range 2 to 12.

Further aspects of the data are briefly described in (xx data overview 2.B xx). (xx could

mention Prout, 1891, Tovey, 1924. xx)

The musical here is to statistically describe and compare the fugues of J.S. Bach

(1685–1750) and Max Reger (1873–1916). Figure ii.21 (left panel) shows (x1, x6) for the
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nB = 47 Bach fugues and nR = 45 Reger fugues, indicating also that the distributions

are not very different. (xx mention the Händel concerto gross, is it no. 7, with only a

single note for the fugue theme, so x3 = 1; for Bach and Reger the range is from 4 to 12,

though. xx)
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Figure ii.21: Left panel: for the chief organ fugue themes of Bach (B, 47 fugues) and

Reger (R, 45 fugues), the plot gives features x1, the length, and x6, the max interval.

Right panel: using logistic regression on the basis of fugue features x1, x3, the figure

shows the estimated Pr(Bach |x1, x3), for the 92 fugues, listed with the 45 Reger ones

first, the 47 Bach ones afterwards.

(a) For an initial check of the data, take the nB +nR = 92 fugues together. Go through

each of the fugue features x1, . . . , x6, and give brief statistical descriptions. Identify also

pairs of features with strong correlation, if any. Construct a version of Figure ii.21, left

panel, which has (x1, x6) for Bach and Reger; construct a similar one for (x1, x3).

(b) For each of the fugue features x1, . . . , x6, compute means and standard deviations,
for the 47 Bach fugues and 45 Reger fugues. Then for each feature, test equality of means,
say ξB,j = ξR,j , using t testing; see Ex. 3.11. Comment both on the use of t testing for
these data and on your findings. (You should find that for feature x3, Reger has higher
mean than Bach, whereas they are more or less equal, for the other five features.)

mean B mean R sd B sd R kurt B kurt R

x1 25.766 21.111 16.240 11.924 -0.336 2.571

x2 11.043 11.911 3.520 2.636 -0.642 -0.821

x3 6.872 8.556 1.541 1.791 0.729 -1.055

x4 2.617 2.222 2.524 1.894 2.323 13.201

x5 6.000 5.978 2.467 2.072 -0.579 -0.901

x6 8.021 8.089 3.267 2.275 -1.114 -1.053

(c) Then go on to testing equality of standard deviations, say σB,j = σR,j . Do this first

by applying a traditional F test, as from Ex. 4.38, even though the data are not normal.
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This should give an indication that Bach intriguingly exhibits greater variability than

Reger, for features x1, x2, x4, x6, with the means being about the same. Also carry out

the somewhat more elaborate testing regime, for equality of standard deviations, from

Ex. 4.38, which does not rely on normal data. Does this change the previous tentative

findings?

(d) The fugue features x1, . . . , x6 devised by Rydén (2020) are meant as useful musico-

logical descriptors, but as they concern merely the fugue theme itself, not the further

compositional development, they cannot be expected to and do not pretend to discrim-

inate between e.g. Bach and Reger to any high degree. Even amateur musicians are

able to see or hear the difference between a Bach page and a Reger page, by looking

through or playing the music, though it would be hard to translate such knowledge into

algorithms. Leaving these musical considerations aside, we look here into the degree of

discrimination afforded by the fugue theme features. This can clearly be done in several

ways, but here we attempt to build a formula for the probability that the piece is by

Bach, via logistic regression,

Pr(Bach |x1, . . . , x6) =
exp(β0 + β1x1 + · · ·+ β6x6)

1 + exp(β0 + β1x1 + · · ·+ β6x6)
.

Carry out such an analysis, and check how well it works, when we tentatively sort fugues

into Bach, if the probability is at least 0.50, and Reger, if the probability is less than

0.50. In this analysis, which features xj are significantly present, according to the logistic

regression? (xx nils will check whether this is an ok illustration or not: given the hope

of expressing Pr(Bach) in this way, what’s the uncertainty, how wide are confidence

intervals? but we should have another illustration of this somewhere. xx)

(e) Search through submodels, where some but not all of the six features are being used,

and check their AIC scores. You should find that including x1, x3, but excluding the other

four, gives the best AIC score. Construct a version of Figure ii.21, right panel, which

uses logistic regression for x1, x3. What is the apparent success rate, for the ensuing

algorithm, which sorts fugues into Bach and Reger?

(f) The direct counting of how many of the 92 fugues are correctly sorted into Bach and

Reger suffers from a certain bias (xx point to things in Ch. 11 xx), since the data are

used both to construct a formula and to test that formula. To form a clearer picture,

carry out leave-one-out cross validation (xx pointer xx), and estimate the success rate.

(g) Rydén (2020) concentrated on the organ fugues of Bach, Reger, and others, as dis-

cussed above. We recommend playing through also the 24 fugues of Wohltemperiertes

Klavier I (from the Köthen period, c. 1722) and the 24 fugues of Wohltemperiertes Klavier

II (from Leipzig, c. 1742). Has Bach stayed about the same, as a fugue theme composer,

for the clavier? (xx might point to Hindemith 1950. xx) One of us has actually played all

24 + 24 fugues and carefully recorded a table of x1, . . . , x6; see 2.B. Use this to construct

a version of the table below, of means, standard deviations, skewness, kurtoses, for the

six characteristics, for WTK I and WTK II:
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xi sigma skewness kurtosis

I II I II I II I II

x1 18.042 21.333 7.932 9.342 0.653 0.429 -0.098 -0.241

x2 11.083 11.000 2.749 2.874 -0.264 -0.158 -0.947 -0.767

x3 7.750 7.333 2.069 1.685 0.547 0.120 -0.466 -0.615

x4 2.667 2.750 1.903 1.800 1.149 0.745 -0.004 0.226

x5 5.083 5.500 1.767 1.445 0.921 -0.373 0.350 -0.833

x6 8.167 7.750 2.220 2.625 -0.201 0.316 0.107 -1.023

(h) To assess the grand hypothesis that Bach did not change much, as a fugue theme

composer from 1722 to 1742, carry out tests for the hypotheses ξI,j = ξII,j and σI,j =

σII,j , for the means and standard deviations, for features x1, . . . , x6.

(i) Then compute empirical correlations, say rI,j,k and rII,j,k, for the two datasets, for

j < k. To compare these, test equality, using the machinery of Ex. 2.48. Argue that since

kurtoses values are relatively small, these simpler methods will suffice, without bringing

in the somewhat heavier machinery of Ex. 2.49.

(j) Take the 48 WTK clavier fugues together, and compare these with the organ fugues.

What might be notable differences?

(k) (xx briefly, other themes, other questions to briefly explore. distance between two

distributions for (x, y), when these take on integer values. xx)

Story ii.13 How many piano tuners in Oslo? Applications of Bayesian methods, in

complicated and perhaps nonstandard cases, particularly in situations with limited data

and many model parameters, involve the challenging task of setting up the priors. This

could often involve translation of different pieces of information into probability distri-

butions, perhaps followed by nontrivial combinations of these. This exercise is meant

as a perhaps rough illustration of such themes. – The task is to guess the number N

of piano tuners in Oslo, based on perhaps rough approximations and calculations, along

with uncertainty assessments. (xx note, 7 june 2021, from nils piano tuner: N = 23 in

oslo, 62 in Norway, but there are various half-timers and charlatans. xx)

(a) Such a moderately rough setup takes N = np1p2/k, with n the population of Oslo;

p1 the ‘piano fraction’ of these, so that np1 is roughly the number of pianos in Oslo; p2
the fraction of these again who tune their pianos at least once a year; and k the average

number of piano tuning jobs carried about in the course of a year, by a piano tuner in

Oslo. – Of course there are other ways to set up such things, with other components,

and a clearer chain of arguments could be forced to form more precise definitions and

assumptions (one could think in terms of families and their sizes, etc., to get a better

grip on p1, etc.). Show that with independent priors for n, p1, p2, k, then a prior estimate

for N is EnE p1 E p2 E1/k.
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Figure ii.22: Histogram of 105 simulated values of N = np1p2/k from the prior indicated,

for the number of piano tuners in Oslo.

(b) An attempt is as follows: let

n ∼ N(ξ0, σ
2
0), with prior guess ξ0;

p1 ∼ Beta(c1p1,0, c1(1− p1,0)), with prior guess p1,0;

p2 ∼ Beta(c2p2,0, c2(1− p2,0)), with prior guess p2,0;

k ∼ Pois(k0), with prior guess k0.

One then first finds good prior means, for the four components in the setup, and then

finetune their precision via σ0 for n, c1 for p1, and c2 for p2. – Try this setup, with prior

guesses 0.60 ·106, 0.07, 0.40, k0 = 500, and then variability determined by σ0 = 0.05 ·106,
c1 = 15, c2 = 10. Simulate 105 realisations from each of the four distributions, inspect

their histograms, and present a final histogram for N = np1p2/k. Also compute the

0.10, 0.50, 0.90 points in this distribution (our simulations for this particular prior lead

to 4.03, 26.2, 91.7), and compare in particular the median with the mean.

(c) Play with other prior parameters, for some or all of the four prior components above,

using your insights for finetuning of both prior guesses and the prior uncertainties. This

should lead you to a perhaps more accurate prior for N than the one given above.

(d) Suppose we use the four prior components as above, but that further information

is gathered regarding the two components n and p2. For n, the population size of Oslo,

along with the perhaps not fully defined suburbs and surroundings (since piano tuners
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from Oslo might travel to Ski and Ås), assume there is a point estimate n̂ = 0.64·106, with
standard deviation 0.04 · 106. For p2, the fraction of pianos tuned at least once a year, a

quick Facebook check with friends and acquantainces (and their friends and acquantainces

again) indicates that y2 = 55 of m2 = 100 piano owners tune their instruments at least

once a year. Use these extra pieces of information to update the priors of n and p2, and

then revise the full distribution of N = np1p2/k. Simulate again 105 realisations from

the N distributio, find out how the 0.10, 0.50, 0.90 quantiles have changed.

(e) (xx rounding this off. mention briefly Fermi. also the number of solar systems in a

galaxy with intelligent life. illustrate the machinery of changing the final N = np1 · · · pk
with more information on a single component. xx)

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)

(xx For Story ii.9, mention Cunen, and point to yet other questions to raise. xx)

(xx for Story ii.6, mention Markov (1906, 1913); Hjort and Varin (2008), language

models, more. xx)





II.iii

Economics, Political Science, Sociology

(xx WELL: lots of things to fix, as of 12-August-2024. a partial todo list for nils includes:

(i) nils splits Srebrenica and Guatemala into two stories. complete the Guatemala one

carefully. further edit and polish needed there. (ii) get our slightly revised jamtveit

dataset in order, and do the rest. (iii) round off the waiting time things xi+1 − xi,

with right p-value, relating this to boundary things still missing at the end of Ch5,

regarding Dn =
√
n(γ̂ − γ0) under δ/

√
n and δ ≥ 0. (iv) for Galton data, finish the

ϕi,j = pi,j/(pi,·p·,j) things, and give CD for a τ ≥ 0 thing.

Story iii.1 Power law scaling for academics and support staff. Considering the world of

science, and more particularly the people populating the world’s many research institu-

tions, there is a surprisingly clear relationship between x0, the number of scientists, and

y0, the number of non-scientists or support staff (from administration and economists

and lawyers to a range of technical positions). Here we use a dataset building on Jamtveit

et al. (2009), with (x0, y0) for n = 61 institutions. These 2008 data range from smaller

centres, like the Centre for Advanced Study of Theoretical Linguistics at the University

of Tromsø, with 18 academics and 2 support staff; the bigger ones, like the Faculty of

Mathematics and Natural Sciences at the University of Oslo, with 944 academics and

356 support; to the truly gargantuan ones, like the UK National Health System, with

230,000 in science but 1,130,000 in various support positions. Intriguingly, all these data

dots of (x0, y0), from the tiny to medium to very big, follow a very clear regression line

on the log-scale, as seen in Figure iii.1, left panel. We shall work through the relevant

details and aspects to land the associated growth equation

number of support people = c (number of research people)b,

with b a positive growth parameter. (xx point to this phenomenon being at work in

various other context and applications. growing cities. Story iv.3. mention Jamtveit

et al. (2018) for an instance of growth parameter b shifting after political reform. nils

emil: we use the jamtveit data, with n = 61, but amend it slightly, using FHI, BI, and

perhaps a few updated numbers, for MN fakultetet, for CEES, for NR. we ask around

for these. xx)

503
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Figure iii.1: Left panel: on log10 scale, the number of academics (x-axis) vs. the number

of support employees (y-axis), for 61 research institutions, with regression line and 95

percent confidence band. Right panel: confidence curve for the break-even size x0 =

10−a/(b−1) at which the non-academic staff will equal the academic staff in size.

(a) Transform to x = log10 x0 and y = log10 y0, and carry out linear regression analysis

yi = a+ bxi + εi on those scales, with the εi seen as i.i.d. with mean zero and standard

deviation σ. You should find (â, b̂) = (−1.116, 1.289), with standard errors (0.076, 0.025).

Show that this leads to the power-law growth curve ŷ0 = 0.077 · x1.2890 for relating the

non-academic to the academic.

(b) In this context, searching for a universal statistical law valid along the full scale, from

the smallest of apples to the colossal ones, argue that it makes sense to give each research

institution equal weight. Back this up with inspection of the resiudals ε̂i = (yi−â−b̂xi)/σ̂.
For research institutions with 500 scientists, about how many non-scientists are there?

Construct a version of Figure iii.1, left panel, with a 95 percent pointwise confidence

band around the regression line. Estimate also the correlation, on the (x, y) scale, and

give a confidence interval. Is the correlation on the (x0, y0) scale meaningful?

(c) So how big will a research environment need to be, in order for the number of non-

scientists to equal the number of scientists? Argue that this concerns γ = 10−a/(b−1).

Estimate this number, and construct a version of Figure iii.1, right panel, using ideas of

Ex. 7.21 to work out a full confidence curve for this parameter.

(d) (xx to be finalised after having finalised the dataset. compare b for Norway, Denmark,

Sweden, and Other. small differences, but significant. xx)

(e) (xx can bother to do this too, a fresh little change from logistic regression. xx)

consider R(x0) = y0/(x0 + z0), the fraction of non-academics in a research institution,

by the above expected to be low for small but higher for bigger environments. explain

that this leads to studying the parameter

ρ(x0) =
10a+b log10 x

10log10 x + 10a+b log10 x
=

10axb−1

1 + 10axb−1
,
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and show that this is a logistic regression in log10 xi. plot (log10 x0, R(x0)) along with

the estimated ρ̂(x0), and give a 95 percent confidence band.

(f) We learn from the above that there is a bureaucratic growth parameter b at work

for a long range of institutions, with y0
.
= cxb0. The growth parameter might however

vary across societies, as we saw when comparing Norway, Denmark, Sweden, or over

time, perhaps caused by political decisions. We now access the second dataset from

Jamtveit et al. (2009), with information pertaining to the sizes of the Universities of

Oslo, Bergen, Trondheim over the period 1960 to 2008. We may organise these data

as triples (ti, x0,i, y0,i), with ti being calendar year minus 1960. Again transforming to

xi = log10 x0,i and yi = log10 y0,i, work through models 0, 1, 2, which have the yi as

respectively N(a0 + b0xi, σ
2
0), N(a1 + (b1 + c1ti)xi, σ

2
1), N(a2 + (b2 + c2ti + dt2i )xi, σ

2
2),

the idea being to allow data to show us if b has not been constant over time. For the

three candidate models, estimate the parameters, comparing in the end the σ̂j and the

AIC scores aicj , e.g. using Ex. 11.4. Show that model 2, with growth parameter seen

as b2 + c2t+ d2t
2 over time t = year− 1960, is judged the best one. Plot the estimated

growth parameter over this time window, and comment.

(g) Above the context and the natural interest in the growth parameter led naturally to

a regression model with mean structure a+ (b+ ct+ dt2)x. Explain why and how this is

different from the more traditional modelling with mean structure a′ + b′x + c′t + d′t2,

say.

Story iii.2 Poisson overdispersion and changepoints for British mining disasters. (xx

clean this and calibrate well between this and the next story. xx) The table (xx in the

Ch overview xx) gives the number of British coal-mining disasters per year, from 1851

to 1962, and the data are shown in the left panel of Figure iii.2. Such types of data are

often well modelled as coming from the Poisson distribution. But something appears to

have been taking place, over the period of 112 years, and ths simple hypothesis of these

data having been generated by the same Poisson does not appear a likely one here. A

natural question to examine is therefore, for how long time has the homogeneous Poisson

nature likely been at work? For more on these data, and for more careful modelling and

analysis than in the present simplified version of that story, see Cunen et al. (2018); in

particular, they find evidence for a breakpoint, from a higher Poisson rate to a lower one,

in 1891.

(a) Assume Y1, . . . , Yn are i.i.d. from the same Poisson distribution, with parameter θ.

Then the variance is equal to the mean, and the ratio S2
n/Ȳn, the sample variance divided

by the sample mean, should not be much bigger than one. Use first general results from

Ex. ?? to find the joint limit distribution of (
√
n(Ȳn − θ),

√
n(S2

n − θ)).

(b) (xx check here. xx) Then use this, supplemented by the delta method, to show that√
n(S2

n/Ȳn−1) →d N(0, 2), under the hypothesis of a homogeneous Poisson model. Show

that Pr{S2
n/Ȳn ≤ 1 + 1.645/(n/2)1/2} converges to 0.90, with increasing sample size n.

(c) Reconstruct a version of the plot given in the right panel of Figure iii.2, with the

ratios of sample variance by sample mean plotted as a function of year, i.e. the cumulative
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Figure iii.2: Left panel: the number of British mining accidents per year, from 1851 to

1962. Right panel: the variance to mean ratio, for steadily longer stretches of time, since

1851, along with the tolerance line under the homogeneous Poisson hypothesis.

history from 1851 to the year in question, along with the tolerance band as per the

recipe above. Show that the plot crosses its tolerance limit at around 1903, and discuss

interpretatiaons and implications of this.

(d) To aid our understanding of what goes on with the S2
n/Ȳn ratio, in situations where

the pure homogeneous assumption does not hold, suppose first, in general terms, that

X1, . . . , Xn are independent with the same standard deviation σ, but with potentially

different means ξ1, . . . , ξn. Show that the sample variance S2
n = (n−1)−1

∑n
i=1(Xi−X̄n)

2

has expected value σ2 + (n − 1)−1
∑n

i=1(ξi − ξ̄n)
2, with ξ̄n = n−1

∑n
i=1 ξi. Hence when

the means are not identical, the sample variance estimates the real variance plus the

‘extra variance’ among the means.

(e) Then for the particular case of Yi ∼ Pois(θi), with the means perhaps not being

identical, show that S2
n has mean value θ̄ + (n − 1)−1

∑n
i=1(θi − θ̄)2, and argue that

the S2
n/Ȳn ratio aims at the parameter 1 + (1/θ̄)τ2n, with τ

2
n = (n− 1)−1

∑n
i=1(θi − θ̄)2.

Attempt to use these formulae and insights to help interpret what you find for the

evolution of the British mining disaters counts over time.

(f) Above we found that the data can’t possibly have come from the same underlying

Poisson distribution, since the variance to mean ratio becomes to big after about 1903.

That analysis did not go into reasons of ways in which the constancy assumption did

not hold up, however. Here we reach more informative conclusions, consistent with there

having been a changepoint, with parameter value up to about 1891, and a different

parameter value at work after that. – Construct the monitoring process Hn(t)/σ̂, with

Hn(t) = n−1/2
∑

i≤[nt](Yi− Ȳn), as per (9.2) of Ex. 9.33; this is the black rugged curve in

Figure iii.3, left panel. Its values at the individual years j = 1, . . . , n are n−1/2(
∑

i≤j Yi−
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Figure iii.3: Left panel: monitoring plot Hn(t)/σ̂ for the British mining disaster data,

along with the fitted triangle from the changepoint model with a value θL up to 1891 and

a new value θR after 1891. Right panel: the different monitoring plot Tn(t) of running

t tests, comparing left with right as a function of time. (xx explain weighted Brownian

bridge if no change. xx)

jȳn)/σ̂, starting and ending at zero. As shown in the exercise pointed to, the Hn plot

should behave as a Brownian bridge under the hypothesis of there having been no change.

(g) Along with the monitoring process, fit the triangle, shown in red in Figure iii.3, left

panel, corresponding to having one value θL before 1891 and a new value θR afterwards.

Specifically, this is

hj = (1/
√
n)
∑
i≤j

{(θ̂L − θ̂) I(xi ≤ 1891) + (θ̂R − θ̂) I(xi > 1891)}/σ̂

for j = 1, . . . , n, with θ̂L and θ̂R the data averages to the left and right of 1891, and

with θ̂ and σ̂ the overall data average and standard deviation. Show via the arguments

of Ex. 9.34 that this is the estimated ideal curve the Hn process is implicitly estimating,

if the underlying state of affairs indeed is a changepoint at 1891. We see that the fit is

very good, giving support to the notion that 1891 indeed was a changepoint, with better

conditions (lower accident rate) after that year.

(h) Work also with the running t test monitoring plot of Ex. 9.37, with

Tn(τ) =
ȳL(τ)− ȳR(τ)

{σ̂L(τ)2/τ + σ̂R(τ)2/(n− τ)}1/2
.

This is the natural t test, formed at position τ , with difference of data averages to the left

and right, divided by the estimated standard deviation. Construct a version of Figure

iii.3, right panel. Explain that the evidence against the hypothesis of a constant rate

over time is very clear, since the Tn plot should be close to a normalised Brownian bridge
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under that assumption. In addition, also the running t tests points to 1891 as a good

changepoint, with very high difference between left and right, but also to 1947.

Story iii.3 Changepoints for British mining. In Story iii.2 we analysed the series of

serious accidents in British mining, over the long time period 1851-1962. Monitoring

processes revealed (a) that the null hypothesis of a constant rate did not survive scrutiny

and (b) that a changepoint analysis pointed to the year 1891, with a ‘before’ and ‘after’

in terms of Poisson paramerters. A modelling perspective for identifying a change is

as follows. Suppose y1, . . . , yτ stem from Pois(θL), with yτ+1, . . . , yn from Pois(θR).

Both Bayesian and frequentist methods may then be used for inference about both the

changepoint τ and the degree of change, say ρ = θL/θR.
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Figure iii.4: Bayesian changepoint analysis for the British mining disasters: Left panel:

posterior probabilities for the changepoint τ , also pointing to 1891 as the most likely.

Right panel: posterior distribution for the rate change ρ = θL/θR, via 105 simulations.

(a) With a Bayesian perspective, a prior for the three parameters can let τ come from

some π(τ), then θL and θR be independent from the same g(θ, a, b), the Gam(a, b) density.

As in Story iii.2, let ȳL and ȳR be data averages over the left and right stretches, from 1

to τ and from τ +1 to n. Using the gamma-Poisson machinery of Ex. 6.1 and 6.20, show

that the joint distribution for parameters can be written

f = π(τ)g(θL, a, b)g(θR, a, b)

τ∏
i=1

exp(−θL)θyi

L

n∏
i=τ+1

exp(−θR)θyi

R /(y1! · · · yn!)

∝ π(τ)g(θL, a+ τ ȳL, b+ τ)g(θR, a+ (n− τ)ȳR, b+ n− τ)f̄L(τ)f̄R(τ),

in which

f̄L(τ) =
Γ(a+ τ ȳL)

(b+ τ)a+τȳL
, f̄R(τ) =

Γ(a+ (n− τ)ȳR)

(b+ n− τ)a+(n−τ)ȳR
.

Derive that π(τ |data) ∝ π(τ)f̄L(τ)f̄R(τ). Explain that θL and θR have gamma posteri-

ors, given τ , but that their full posterior distributions then become mixures of such.
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(b) Implement these formulae, using a flat prior for τ on 1, . . . , n− 1, and gamma priors

e.g. Gam(1, 1) for θL, θR, and produce a version of the posterior plot of Figure iii.4, left

panel. In addition to caring about the changepoint, here found to most probable for 1891,

consider the ratio ρ = θL/θR. Simulate say 105 such ρ from the appropriate posterior

distribution, via steps (i) simulate τ , (ii) for the sampled τ , use gamma posteriors for

numerator and denominator. Display this posterior distribution for ρ, as with Figure

iii.4, right panel, and give a 95 percent credibility interval.
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Figure iii.5: Frequentist changepoint analysis for the British mining disasters: Left panel:

profiled log-likelihood ℓprof(τ), peaking at τ̂ = 41, which means year 1891. Right panel:

confidence curve for the changepoint.

(c) A frequentist perspective may start with the log-likelihood function. Show that this

is

ℓ(τ, θL, θR) =
∑
i≤τ

log f(yi, θL) +
∑
i>τ

log f(yi, θR)

= τ{−θL(τ) + ȳL log θL}+ (n− τ){−θR + ȳR(τ) log θR},

and that this for fixed τ is maximised by θ̂L = ȳL(τ) and θ̂R = ȳR(τ). Explain that this

leads to the profiled log-likeihood,

ℓprof(τ) = max{ℓ(τ, θL, θR) : all θL, θR} = τH(ȳL(τ)) + (n− τ)H(ȳR(τ)),

with H(u) = u log u−u. Compute and display this function, as in Figure iii.5, left panel.

Verify that it is maximised at τ = 41, which means the year 1891. From this we also

obtain θ̂L = 3.097 and θ̂R = 0.901, estimated Poisson rates before and after 1891.

(d) Consider the deviance function D(τ, y) = 2{ℓprof,max − ℓprof(τ)}. In this setting,

with τ a discrete parameter, there is no Wilks theorem and hence no easy version of
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the associated Recipe Four of Ex. 7.9 for constructing a confidene curve for τ . Define

however

cc(τ) = Prτ{D(τ, Y ∗) < D(τ, yobs)}+ 1
2Prτ{D(τ, Y ∗) = D(τ, yobs)},

in which Y ∗ denotes a full random sequence Y ∗
1 , . . . , Y

∗
n drawn from the Poisson, with

θ̂L for i ≤ τ and θ̂R for i > τ . Carry out simulations, perhaps 103 Poisson paths for each

candidate position τ , to compute this confidence curve, as in Figure iii.5, right panel.

(xx a few more details, regarding half-correction and zero at τ̂ . xx)

Story iii.4 War and Peace and War and Peace, I. (xx amend properly: first BEFORE

2022, then with Rus-Ukr on board, changing things quite a bit. xx) When is the next

big interstate war coming? Why do the nations so furiously rage together, why do the

people imagine a vayne thing? The dataset allwars-data, available at the book website,

contains data pairs (xi, zi) for all n0 = 95 gruesome interstate wars with at least 1000

battle deaths. The data are partly from well-maintained and publicly available databases

for such matters, specifically the Correlates of War project, from the Franco-Spanish war

in 1823 to the invasion of Iraq in 2003. Here xi is the time where war i started, with

dates transformed via months and days to decimals, so that the Korean war started

at x60 = 1950.483, the Vietnam war at x67 = 1965.103, etc.; and zi is the number of

battle deaths. Figure iii.6 (left panel) displays the (xi, log zi), along with a horizontal

line attempting to divide already big wars into the truly horrendously big ones and the

relatively speaking less big ones. We return to several other aspects of these war data

in Story iii.5, but presently focus attention on the xi, and more specifically with the

between-times wi = xi+1 − xi.

As of 2024 there is no clear figure for the full number of deaths for the supremely

unfortunate data point no. 96, with onset February 2022 (as per Correlates of War

definitions). Here and in the subsequent Story iii.4 we first carry out analyses for war

data before 2022, with n = 94 waiting times between n0 = 95 wars (up to March 2003),

and then check how estimates and analyses change after 2022.

(a) There are both empirical studies and certain theoretical arguments, also for many

other types of violence phenomena, pointing to the interesting and non-obvious suppo-

sition that the between-times ought to be approximately independent and identically

exponentially distributed. In other words and terms, the wi will behave as waiting times

in a Poisson process with constant rate. Fit the model f(w, λ) = λ exp(−λw) for w > 0

to the w1, . . . , wn data, via maximum likelihood. Assuming the model holds, give a 90

percent confidence interval for λ.

(b) For this one-parameter model, find a formula for the probability p = p1(λ) that the

time between two consecutive wars is at least w0 = 3.00 years. Estimate this probability,

and find a 90 percent confidence interval.

(c) Perhaps the size of a war influences the eagerness with which cohorts of humankind

again decide to embark on the next war? Fit the model where wi = xi+1 − xi is an

exponential with parameter λi = λ0 exp(βvi), where vi = log zi, and comment on your

findings.
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Figure iii.6: Left panel: the log battle deaths time zi series, for the 96 interstate wars

since 1823 to 2023. The horizontal line at y0 = log(5002) = 8.517 indicates the threshold

above which the battle deaths follow the heavy-tailed distribution (iii.1), as per Story

iii.5. There are 57 wars above that threshold. The added two horizontal lines indicate

median levels, among these wars above threshold 5002, before and after Vietnam 1965.

Right panel: the empirical cumulative hazard for the between-wars time data (black

curve), along with the two fitted parametric hazard cumulatives A(w, λ̂) and A(w, â, b̂),

via estimation carried out with pre-2022 data.

(d) Broader models emerge by taking the wi given λ to be exponential with this param-

eter λ, but to take the λ not as a single constant, but coming from a distribution of such

rates. Assume that λ comes from a Gamma distribution with parameters (a, b), i.e. with

density proportional to λa−1 exp(−bλ). As in Ex. 1.10, show that this leads to c.d.f. and

density

G(w, a, b) = 1− {b/(b+ w)}a = 1− exp{−a log(1 + w/b)},
g(w, a, b) = aba/(b+ w)a+1,

for w > 0. Starting from E (W |λ) = 1/λ and Var (W |λ) = 1/λ2, find explicit expres-

sions for the mean and variance of W .

(e) We now turn to ML estimation of the two-parameter model. It is fruitful to parametrise

the gamma mixing distribution via (a, b) = (λ0/c, 1/c); show that the random λ then

has mean λ0 and variance cλ0. Show that the density may be written g(w, λ0, c) =

λ0/(1 + cw)1+λ0/c; show that it is close to λ0 exp(−λ0w) for small c. Write down the

log-likelihood function ℓn(λ0, c) and find its maximisers (λ̂0, ĉ). Construct a version of

Figure iii.6, right panel, with the nonparametric Nelson–Aalen estimate Â(w) alongside

the parametric λ̂w and A(w, λ̂0, ĉ). (xx polish this. xx)

(f) Find a formula p = p2(a, b) for the probability that the waiting time between two wars

is at least w0 = 3.00 years. Estimate this p, using the parameter estimates you’ve found
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above, and compare with p̂1 = p1(λ̂). [xx something more, about finding confidence

interval, approximate standard deviation of p̂2, etc. could ask for bootstrapping; will

point to delta method. yes, we ask the readers to go through delta method for p2(â, b̂),

using results from earlier exercises, about (w̄, σ̂). xx]

(g) (xx then the things with the ML here. polish, calibrate with the above and with what

we have in Ch. 5 with CDs for boundary parameters, and round off. xx) In this context

we wish to have a clear test for c = 0, corresponding to Poisson process behaviour for the

waiting times, versus c > 0. This requires more care than usual since c = 0 sits at the

boundary of the parameter space, as opposed to being an inner point. To study the ML

estimator ĉ with the required care, show that the log-likelihood profile function becomes

ℓn,prof(c) = max
all λ0

ℓn(λ0, c) = −n{logBn(c) + cBn(c) + 1},

with Bn(c) = n−1
∑n

i=1(1/c) log(1 + cwi). Plot it for the war onset waiting time data.

For small c, show that Bn(c)
.
= w̄ − 1

2c(v
2
n + w̄2), where w̄ = (1/n)

∑n
i=1 wi and v2n =

(1/n)
∑n

i=1(wi − w̄)2 are the mean and variance of the wi; with continuity, therefore, we

have Bn(0) = w̄ and B′
n(0) = − 1

2 (v
2
n + w̄2). Show that

ℓ′n,prof(0) = −n{B′
n(0)/Bn(0) +Bn(0)} = 1

2nw̄(v
2
n/w̄

2 − 1).

Argue that the ML estimator ĉ is positive, provided vn/w̄n > 1, but zero, in the case

of vn/w̄ ≤ 1. Check that the derivative at zero is indeed positive for the war onset

data. (xx then round off. note that v2n/w̄n →pr 1 if the data really come from an

exponential. so prof half etc. xx) the approximation
√
n(ĉ − δ/

√
n) under c = δ/

√
n

which makes it possible to have both a test, a p-value, different from the usual things,

and a CD for c. under c = 0, should land at
√
nĉ/λ̂0 →d max(0, N), half a normal, and

Dn = 2(ℓn,max − ℓn,0) →d max(0, N)2, half a chisquared. so pvalue is ... 1 − Φ(D
1/2
n ),

which is 0.039; hence expo hypothesis is rejected. we need to crank out a good CD, and

need exercise with
√
n(ĉ− δ/

√
n) limit, at the end of Ch5, to be used in Ch7.

Story iii.5 War and Peace and War and Peace, II. (xx amend properly: first BEFORE

2022, then with Rus-Ukr on board, changing things quite a bit. xx) (xx The Long Peace.

see Hjort (2018b), Cunen et al. (2020a). data and description in 2.B. the crux is a clear

cc(ρ), with ρ = θL/θR, from two exponentials. for this part: only great wars in the

power-law tail of the two distributions. 51 wars above threshold; 37 left, 14 right, of

Vietnam. next exercise: all data. more prose needed, with pointer to story in Ch. 9,

with test to point to non-stationarity; in the present story we take Vietnam as agiven

changepoint. more prose: Richardson, Pinker (2011); Gleditsch (2020). See Figure iii.10.

xx) In Story iii.4 we worked with the waiting times between onsets of the great wars, from

1823 to 2023. Here we delve into aspects of the battle deaths numbers themselves, see

Figure iii.6, left panel. We approach one formalised version of The Long Peace Question,

investigating whether a changepoint can be tentatively identified, with the world having

become somewhat less brutal after, compared with before.

(a) Suppose Z is a nonnegative random variable with the property that for a perhaps

large threshold z0,

Pr(Z ≥ z |Z ≥ z0) = 1− (z0/z)
θ for z ≥ z0. (iii.1)
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Figure iii.7: Left panel: Kolmogorov–Smirnov type test for exponentiality of yi =

log(zi/z0), for wars above threshold z0, as a function of that threshold, to the left (full

curve) and to the right (dashed curve) of Vietnam 1965. The horizontal line indicates

upper 0.10 quantile in the null distribution, for sample size 100. Right panel: the associ-

ated p-values for these tests, to the left and right of Vietnam, computed via simulations,

for each threshold z0, with the associated sample sizes. The horizontal dashed line is at

0.05.

One says that Z has the heavy tail property, with tail parameter θ. For Z conditional

on being above the threshold z0, find a formula for its median. For θ > 1, find its mean,

and for θ > 2, find its variance. For smaller θ, the tails are indeed very heavy and go

slowly to zero.

(b) If Z above threshold z0 follows the 1 − (z0/z)
θ distribution, as above, show that

Y = log(Z/z0) ∼ Expo(θ). In other words, logZ above a threshold is exponentially

distributed.

(c) (xx to be fixed and polished. point to Ex. 9.24. the point is to arrive at z0 = 5002 as

acceptable, taking also on board that there could be a changepoint with at θL and a θR.

xx) We now attempt to decide on a good threshold z0, above which such log(Zi/z0)

should behave like data from an exponential distribution. There is ongoing debate

about whether the death count series Zi should be seen essentially stationary, over

the past two hundred years, as claims Clauset (2018), or whether there are statisti-

cal angels somwhow behind some changepoint, with higher war intensity ‘before’ than

‘after’, see Hjort (2018b); Cunen et al. (2020a). xxxxx To decide on a good thresh-

old z0, above which such log(Zi/z0) should behave exponentially ... We now inves-

tigate X1, . . . , Xn i.i.d., testing for exponentiality. ML is θ̂ = 1/X̄. So distribution

of θ̂Xi should be close to G0(t) = 1 − exp(−t). Kolmogorov–Smirnov type test, but

now with one estimated parameter, uses Zn(t) =
√
n{Gn(t) − G0(t)}, with ensuing

Kn = maxt |Zn(t)| =
√
nmaxi≤n |i/n − G0(θ̂x(i))|. there is a limit distribution, since

Zn →d Z, but the finite-sample distribution of Kn is independent of θ and can be sim-
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Figure iii.8: Left panel: running one-sided F tests for θL = θR vs. θR > θL, along with

the 0.95 quantile in the null distributions, for the 56 wars above z0 = 5002, here omitting

the first 8 and the last 8 wars. Right panel: transforming these F tests to running p-

values, with pmin = 0.0049 for Vietnam 1965.

ulated. check the two kolmo figures. sifting through z0 from 2450 to 8000. decide on

z0 = 5002. m = 56 wars among the full list of n are above this threshold. then to further

analysis based on this.

(d) (xx then the running tests for θL = θR vs. θR > θL. with Figure iii.8. We reject

constancy via the null distribution of pmin = min p(τ), which has a null distrisbution we

can simulate. xx)

(e) Careful modelling and analyses in Cunen et al. (2020a) give Statistical Sightings

of Better Angels, and specifically give indications that the distribution of war sizes has

not remained stationary over the past two hundred years. Focusing in this story on

the 56 wars above threshold, let θL and θR be the tail parameters for the heavy-tailed

distributions for the nL = 38 wars up to 1965.103 (the start of the Vietnam War) and the

for nR = 18 wars after that. With the maximum likelihood estimators, show that θ̂L ∼
θL(2nL)/χ

2
2nL

and θ̂R ∼ θR(2nR)/χ
2
2nR

. Use this to form a full confidence distribution

for the rate ratio ρ = θL/θR, as in Figure iii.10 (left panel). Read in particular off the 95

percent interval, which is [0.272, 0.948], to the left on the unit value 1 of equality between

wars before and after Vietnam.

(f) Carry out a log-likelihood-ratio test, to test the one-single-parameter model with a

common θ against the before-and-after parameters model with θL and θR. Verify that

this indicates that the statistical view, before-and-after parameters estimated at 0.451

amd 0.928 fits better than the one-common-parameter one, estimated at 0.525.

(g) Transforming back from the exponential scale of Y = log(Z/z0) to the original battle

scale of Z = z0 exp(Y ), show that ratio of before-and-after medians can be expressed as

ϕ = exp{(log 2)(1/θL−1/θR)} = 2δ, with δ = 1/θL−1/θR. Find a confidence distribution
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Figure iii.9: Left panel: empirical and parametric c.d.f.s, on log z scale, for 38 wars

before and 18 wars after Vietnam 1965, all above threshold z0 = 5002. Right panel:

empirical and parametric c.d.f.s, now on z scale, in thousands.

for δ, transform to a confidence curve for the median reduction factor ϕ, and construct

a version of Figure iii.10 (right panel).

(h) Discuss (briefly or not) whether this analysis can be taken as a sign of our world

having become less violent.

Story iii.6 War and Peace and War and Peace, III. (xx nice story. first CD and cc

for the median of battle deaths distribution, say µL before and µR after 1950. we have

nL = 60 and nR = 35. see Pinker (2011), Cunen et al. (2020a). we present CD and cc,

then use confidence conversion to construct ℓL,conv(µL) and ℓR,conv(µR). then focused

fusion for ρ = µL/µR. this is a new inference method for ratios of quantiles. xx)

(a) (xx intro, with classical large-sample methods. polish. xx) µ̂L and µ̂R are approxi-

mately normal, with variances κ2L/nL and κ2R/nR, with κK = {q(1− q)}1/2/fL(µL) and

κR = {q(1−q)}1/2/fR(µR). For the ratio ρ̂ = µ̂L/µ̂R, show that the delta method yields

ρ̂ =
µ̂L

µ̂R
≈ N(ρ, τ̂2), with τ̂2 =

1

µ̂2
R

{ κ̂2L
nL

+
( µ̂L

µ̂R

)2 κ̂2R
nR

}
.

(b) Carry out the conversion, from confidence curves to confidence log-likelihoods,

ℓL,conv(µL) = − 1
2Γ

−1
1 (ccL(µL)) and ℓR,conv(µR) = − 1

2Γ
−1
1 (ccR(µR)).

Construct a version of Figure iii.12 (left panel).

(c) Then for the focused fusion, for ρ = µL/µR, compute and display

ℓprof(ρ) = max{ℓL(µL) + ℓR(µR) : ρ = µL/µR} = max
all µR

{ℓL(ρµR) + ℓR(µR)}.

Compute also the deviance D(ρ) = 2{max ℓprof(ρ̂) − ℓprof(ρ)}, and finally the focused

fusion confidence curve cc∗(ρ) = Γ1(D(ρ)).
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Figure iii.10: Left panel: confidence curve for the ratio ρ = θL/θR, with 95 percent

interval 0.272 to 0.948. Right panel: confidence curve for the median ratio factor ϕ =

exp{(log 2)(1/θL − 1/θR)}, with 95 percent interval 1.173 to 4.148.

(d) (xx do this for several quantile levels q. comment. much clearer ρq > 1 for q ≥ 0.60,

say; check this. note that we here take 1950 as a known candidate for a change point.

xx)

Story iii.7 Psychiatric disorders and body sizes. (xx nils rant so far; the point is to have

r × s contingency things first, before we come to Galton. we also flip in Pearson, Wilks,

AIC. xx) Is there any connection or association, between different psychiatric disorders

and BMI, body mass index? There is of course a long list of alleged psychiatric disorders

and an even longer list of body shapes and we shall not attempt to answer such questions

in any deep way, apart from analysing the following dataset, excerpted from Fagerland

et al. (2017, Ch. 7). This is an r × s contingency table, with r = 5 rows, for different

disorders, and s = 3 columns, the categories there termed thin, normal, overweight, via

age-and-gender adjusted body-mass index measurements. The data relate to youngsters

age 13–18 visiting a certain psychiatric clinic in Norway during the years 2006–2008.

We formulate this as a multinomial dataset, with Ni,j in box A = i, B = j, where

A is disorder and B is body category, with sum of counts n = 529. The question is

whether there is structure in the underlying probabilities pi,j = Pr(A = i, B = j) beyond

independence.

observed expected

thin normal over thin normal over

moody 3 55 23 6.43 51.14 23.43

anxiety 8 102 36 11.59 92.18 42.23

autism 5 21 12 3.02 23.99 10.99

hyperkinetic 19 130 64 16.91 134.48 61.60

other 7 26 18 4.05 32.20 14.75

(a) Before coming back to the contingency table, we start with a general multinomial



Economics, Political Science, Sociology 517

5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

battle deaths

co
nf

id
en

ce
 fo

r 
m

ed
ia

ns
, b

ef
or

e 
an

d 
af

te
r 

19
50

5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

battle deaths

co
nf

id
en

ce
 fo

r 
m

ed
ia

ns
, b

ef
or

e 
an

d 
af

te
r 

19
50

Figure iii.11: Confidence distributions (left panel) and confidence curves (right panel)

for the two medians, µL for before 1950 (red curve), µR for after 1950 (black curve).

setup for counts (N1, . . . , Nk), with sum n and probabilities (p1, . . . , pk). Show first

that with no constraints beyond the pj summing to 1, the log-likelihood
∑

j Nj log pj is

maximised at the raw estimates p̂j = Nj/n, with ℓwide,max = n
∑

j p̂j log p̂j .

(b) Then consider some parametric model pj = pj(θ), with θ of lower dimension than

k − 1. Explain that the log-likelihood can be written ℓn(θ) = n
∑

j p̂j log pj(θ). Show in

general terms that for p close to p̂, we have

p̂ log p = p̂ log(p̂+ p− p̂) = p̂ log p+ (1/p̂)(p− p̂)− 1
2 (1/p̂

2)(p− p̂)2 +Opr(|p̂− p|3).

Explain that this implies∑
j

p̂j log pj(θ) =
∑
j

p̂j log p̂j − 1
2

∑
j

{p̂j − pj(θ)}2/p̂j +Opr(max
j

|p̂j − pj(θ)|3).

The implication for the log-likelihood is that

ℓn(θ) = ℓwide,max − 1
2Qn(θ) + εn(θ), with Qn(θ) = n

∑
j

{p̂j − pj(θ)}2/p̂j ,

the Karl Pearson type weighted sum of squares. If the model holds, for some θ0, show that

the remainder term goes to zero in probability inside neighbourhoods ∥θ − θ0∥ ≤ c/
√
n.

Argue from this that ML estimation for large samples is equivalent to minimum chi-

squared, with Kn = Qn(θ̃) = minQn(θ). Deduce also for the Wilks statistic (xx pointer

xx) that

Wn = 2(ℓwide,max − ℓ0,max) = Kn + opr(1).

from Wilks theory of Ch5 we can infer that both Dn and Kn tend to χ2
df , with df =

k − 1 − dim(θ), under model conditions. This extends the classical Karl Pearson 1900

work; see Story vii.1.
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Figure iii.12: Left panel: confidence curves converted to confidence log-likelihoods, for

the two medians, µL for before 1950 (red curve), µR for after 1950 (black curve). Right

panel: confidence curve for the ratio ρ = µL/µR, using the II-CC-FF method. The

90 percent confidence interval for the ratio is [xx check this more carefully; it takes

my com32* and com33* some twenty minutes to do it carefully enough for two digits

precision here xx] for q = 0.50, median: [1.08, 4.85]. need to run it also for q = 0.75.

(c) Now return to contingency tables, with a multinomial multinomial Ni,j , the number

of (A = i, B = j), for an r × s table, and probabilities pi,j , summing to 1. Let Pr(A =

i) = pi,· = ai, Pr(B = j) = p·,j = bj , with the ‘·’ indicating summation over the index in

question. Independence corresponds to pi,j = aibj for all pairs. Letting p̂i,j = Ni,j/n be

the direct estimates, show that the log-likelihood function for the independence model is

ℓ(a, b) = n
∑
i,j

p̂i,j(log ai + log bj) = n
∑
i

p̂i,· log ai + n
∑
j

p̂·,j log bj

with ML estimators âi = p̂i,· and b̂j = p̂·,j . Deduce that the Wilks deviance statistic, see

Ex. 5.28, is

Wn = 2n
(∑

i,j

p̂i,j log p̂i,j −
∑
i

âi log âi −
∑
j

b̂j log b̂j

)
.

Use results above to learn that under the null model of independene, Wn and the classic

Kn = n
∑
i,j

(p̂i,j − âib̂j)
2

p̂i,j
=
∑
i,j

(Ni,j − Ei,j)
2

Ei,j

have the same limit distribution χ2
df , with df = (r − 1)(s − 1), under the null. Here

Ei,j = nâib̂j are the expected numbers in the cells, under the null; these are given to

the right of the table of observed numbers. Show also that the same chi-squared limit

obtains, under independence, whether one uses Ei,j or Ni,j in the denominator.

(d) Another take on the two-factor r× s contingency table is to consider the probability

distribution Pr(B = j), as possibly influenced by A = i. Construct a version of iii.13,
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Figure iii.13: Left panel: probabilities for thin, normal, overweight, for five groups of

disorders. Right panel: the CD for δ, defined via δ2 = (1/15)2
∑

i,j(pi,j − aibj)
2/(aibj).

left panel, with the estimated probabilities (bi,1, bi,1, bi,3) for the five groups of disorders,

with b̂i,j = p̂i,j/âi = Ni,j/Ni,·. The null hypothesis, formulated based on B given A

distributions, is that the probability vectors bi = (bi,1, . . . , bi,s), for Pr(B = j |A = i),

are the same, across groups i = 1, . . . , r. This fits the framework of Ex. 4.40. Explain

that the recipe from that exercise leads to

Ln =

r∑
i=1

ni

s∑
j=1

(̂bi,j − b̂j)
2

b̂j
,

and that Ln →d χ
2
df , with df = (r − 1)(s − 1). Show that this Ln is precisely the same

as the Pearson statistics Kn above.

(e) Carry out such testing for the 5 × 3 contingency table above, by computing Kn

and Wn. Explain that the independence hypothesis is fully within the expected range.

Compute AIC for the wide model (dimension 14) and the independence model (dimension

6). In addition to do the testing, with its ‘yes’ or ‘no’ answer for a given significance level,

like 0.05, it is instructive to provide a confidence distribution for a relevant parameter.

Start by showing that Kn ≈d χ2
df(λ

2), with approximation at least holding for λ2 =∑
i,j(pi,j − aibj)

2/(aibj) small in size; see corresponding arguments in Story vii.1. We

may hence read off a CD for this λ. A more directly informative scale is δ2 = (1/152)λ2;

the idea is that since the mean of aibj is 1/15, the δ
2 is roughly the average of (pi,j−aibj)2,

making δ roughly the average of the |pi,j − aibj |. Construct a version of Figure iii.13,

right panel. (xx may invent one more submodel. in Notes, point to Jullum and Hjort

(2017). xx) Formulate a conclusion.

(f) (xx nice if we could complete the below things. relies on a lemma saying X ∼ χ2
a and

X+Y ∼ χ2
a+b implies Y independent of X and being χ2

b . the below would then be a new

little proof of chi-squared limit for Kn. at any rate, make clear from the prose that we
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have different proofs for the chis-square limit. xx) we have found the χ2
df limit in other

ways, with df = (r − 1)(s− 1), but it is interesting to understand another path too. we

use
√
n(p̂i,j−pi,j) →d Ai,j , a big zero-mean multinormal. then work under independence

with

√
n(p̂i,j − âib̂j) →d Bi,j = Ai,j − aiA·,j − bjAi,·.

So Kn = n
∑

i,j(p̂i,j − âib̂j)
2/p̂i,j tends to K =

∑
i,j B

2
i,j/(aibj). Multiply out and

simplify to get

K =
∑
i,j

(Ai,j − aiA·,j − bjAi,·)
2

aibj
=
∑
i,j

A2
i,j

aibj
−
∑
i

A2
i,·

ai
−
∑
j

A2
·,j

bj
.

Intriguingly, the Ai,· and A·,j are all independent, under the null, so K = K0−Ka−Kb,

or K0 = Ka + Kb + K, where Ka and Kb are independent and χ2
r−1, χ

2
s−1, and we

also know by KP 1900 story that K0 ∼2
rs−1. but it is not clear how to derive that

K ∼ χ2
(r−1)(s−1) from this. might involve some clever algebraic rewriting and Cochran’s

theorem.

Story iii.8 Galton and 111 husbands and wives. (xx nils ranting, so far; will be cleaned

and niceified in a little while. xx) taking first factor X gender to have 0 for women, 1 for

men, and second factor Y temper to have 0 for good, 1 for bad, we have data N0,0 = 24,

N0,1 = 34, N1,0 = 27, N1,1 = 26, seen here to be the result of a multinomial affair, with

the four categories sorted into the 2× 2 table, with probabilities Pr(X = i, Y = j) = pi,j
for i, j = 0, 1. We take the full sum n = 111 as given. We also write a = p1,· = Pr(X =

1) = Pr(man) and b = p·,1 = Pr(Y = 1) = Pr(badtempered), with the ‘·’ notation
indicating summing over the index in question.

(a) carry out independence testing, using Wilks and Pearson, as pe Story iii.7. result:

not signfinicant, and the two values are very close.

(b) Under independence, we have p1,1 = ab, etc. now introduce c = p1,1 − ab. we then

have p1,1 = ab+ c. show that the four probabilities then can be expressed as

(p0,0, p0,1, p1,0, p1,1) = ((1− a)(1− b), (1− a)b, a(1− b), ab) + c(1,−1,−1, 1).

what is the parameter space, for (a, b, c)? note independence is c = 0 in the middle.

can estimate via ML. know from exercise multinomial that
√
n(p̂i,j − pi,j) →d Ai,j ,

a zero-mean multinormal with variances pi,j(1 − pi,j) and covariances −pi,jpk,l when

(i, j) ̸= (k, l). show that the ĉ = p̂1,1 − âb̂ has

√
n(ĉ− c) →d A1,1 − aA·,1 − bA1,· = (1− a− b)A1,1 − aA0,1 − bA1,0 ∼ N(0, τ2).

find formula for τ . hence may form a cc(c) and a test for independence. easy to do Wilks,

where we do not need to compute or care about the τ .

(c) (xx repair this. xx) For the same ϕ = p1,1/(p1,·p·,1), compute the log-likelihood

profile

ℓprof(ϕ) = max{ℓ(p0,1, p1,0, p1,1) : p1,1/(p1,·p·,1) = ϕ}.
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Explain that this can be accomplished by for each candidate value ϕ, the constraint

p1,1 = ϕ(p1,0 + p1,1)(p0,1 + p1,1) can be solved for p1,0, yielding a log-likelihood function

ℓ(p0,1, p1,1, p1,0(ϕ, p0,1, p1,1)) to be maximised numerically. (xx round off. we’re aiming

for cc(ϕ) = Γ1(D(ϕ)), with the deviance D(ϕ) = 2{ℓmax − ℓprof(ϕ)} computed directly.

this is partly simpler and more automatic than the delta calculus above, modulo com-

puting tricks for the profiling. there is a general package for profiling? xx)

(d) (xx then choose something interesting, perhaps

ρ = Pr(bad husband | good wife)/Pr(bad husband |bad wife),

and construct the confidence curve. xx)

(e) (xx distance from independence type parameter, with a cc. argue that this more

informative than merely having a yes-or-no answer given by a tradition al independence

test. can take Pearson test with its implied focus parameter. xx)

Story iii.9 Terbeschikkingstelling. In the Netherlands, criminals may receive psychiatric

treatment in so-called TBS institutions as part of their sentence. (This Dutch acronym

for ‘terbeschikkingstelling’ indicates in this case ‘to be put at the disposal of’, by the

authority, for psychiatric treatment.) The psychiatric treatment precedes the actual

prison sentence. Criminals on a waiting list for placement in a TBS institution are tem-

porarily imprisoned under sometimes relatively poor conditions. After receiving various

complaints, during the mid-1990is, the National Ombudsman decided to investigate the

TBS waiting lists. (xx modify text here, and we need to decide if tables are here on in

stories overview. xx) In the tables (xx presented where xx) the number of TBS sentences

and the number of ended TBS treatments are given for each month during the years

1984–1992.

number of TBS sentences number of ended TBS sentences

’84 ’85 ’86 ’87 ’88 ’89 ’90 ’91 ’92 ’84 ’85 ’86 ’87 ’88 ’89 ’90 ’91 ’92

Jan 1 7 8 7 8 9 8 5 4 10 6 5 6 10 10 2 4 4

Feb 5 11 7 2 9 9 12 6 12 7 9 9 10 7 8 2 4 6

Mar 10 10 14 3 11 9 10 8 3 4 6 7 10 5 10 6 9 6

Apr 13 8 4 7 5 2 9 6 135 5 11 4 9 6 5 5 8 6

May 6 4 4 7 7 9 11 14 6 11 7 8 3 10 8 12 8 6

Jun 5 5 7 5 9 7 9 9 7 3 3 8 5 4 7 8 6 6

Jul 15 6 8 10 9 10 8 9 14 8 11 4 8 4 7 0 12 4

Aug 5 8 2 4 3 11 3 6 11 6 5 5 7 3 6 4 4 7

Sep 5 8 9 8 4 6 9 11 8 4 3 3 5 6 6 2 13 6

Oct 9 9 7 7 8 6 3 17 8 2 7 4 10 4 13 9 10 2

Nov 6 16 14 6 8 10 7 14 14 6 5 5 5 6 6 8 6 5

Dec 10 14 10 10 9 6 6 12 17 10 8 8 6 12 9 5 7 6

(a) For the two groups of data, organise the data to series over time, for the n = 108

months January 1984 to December 1992. We start out taking the counts YA,1, . . . , YA,n

as i.i.d. Poisson θA and likewise the counts YB,1, . . . , YB,n as i.i.d. Poisson θB . To assess
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Figure iii.14: Left panel: monitoring log-likelihood Poisson bridges for Group A the

number of TBS sentences (black, full curve), and Group B, the number of ended TBS

sentences (red, slanted curve), from monthly data January 1984 to December 1992. Right

panel: running t tests, comparing future with past, month for month, for Groups A and

B.

whether the mechanisms behind these counts have remained more or less constant over

time, construct the log-likelihood maxima bridges, as per Ex. 9.39 and 9.40. Show indeed

that this leads toMn,j = (1/
√
n)j{H(ȳj)−H(ȳn)}/κ̂, with H(u) = u log u−u, and with

κ estimating sd(y) log(θ). Construct a version of Figure iii.14, left panel, and argue that

the θA parameter has not remained constant over time.

(b) The triangular shape of the monitoring log-likelihood bridge for Group A that is

indicative of a changepoint; find that the time at which the bridge plot reaches its

minimum is April 1991. To learn more, construct and plot running t tests, as per Ex. ??,

and produce a version of the right panel of Figure iii.14.

(c) (xx then more. changepoint analysis for τ , with θi = θL for i = 1, . . . , τ then θi = θR
for i = τ + 1, . . . , n. do likelihood analysis, but also Bayesian analysis. take τ uniform

and vague priors for θL, θR. xx)

(d) (xx this from hjort and koning 2002, but needs to be reworded here. A possible

explanation could be the increased complexity of the psychiatric problems of the clients

within the TBS system, with several policy changes in Dutch psychiatric case around

1990. xx)

Story iii.10 Monetary pre-WW2 US policy and its effects. C.A. Sims won the Sveriges

Riksbank Prize in Economic Sciences im Memory of Alfred Nobel for 2011. In his prize often

inaccurately

called the Nobel

Prize of

Economics

acceptance lecture he related his own contributions to the fundamental statistical eco-

nomics theory work of Trygve Haavelmo, winner of the same Sveriges Riksbank Prize

for 1989, see e.g. Haavelmo (1943), and used the occasion to analyse a certain dataset,
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given below, concerning US macroeconomics for the pre-WW2 years 1929–1940. Specifi-

cally, the variables examined amount to the multivariate time series of consumption (C),

investment (I), government spending (G). From basic economics theory he constructed a

certain vector time series model, with six regression coefficients and three variance pa-

rameters. For this Stockholm occasion, Sims (2012a,b) advocated and showcased the use

of Bayesian methodology, setting up priors for the nine parameters followed by MCMC

computation, assessment, interpretation of posterior summaries. Below we re-analyse

the same data, using the very same model and with the same constraints on its nine

parameters; we use however the frequentist methodology of Ch. 7, and derive confidence

distributions for the crucial parameters. These clash significantly with Sims’s findings,

and we shall see how and why below. (xx we point to Ex. 7.22 and 7.23, and also to

Ex. 7.11. xx)

year C I G

1929 736.3 101.4 146.5

1930 696.8 67.6 161.4

1931 674.9 42.5 168.2

1932 614.4 12.8 162.6

1933 600.8 18.9 157.2

1934 643.7 34.1 177.3

1935 683.0 63.1 182.2

1936 752.5 80.9 212.6

1937 780.4 101.1 203.6

1938 767.8 66.8 219.3

1939 810.7 85.9 238.6

1940 752.7 119.7 245.3

(a) Consider in general terms a model for vectors y1, . . . , yn, of dimension say p, pro-

gressing in time in a one-step memory fashion, via

H0yt = c+H1yt−1 + εt for t = 1, . . . , n,

with the εt being i.i.d. from some error distribution density f0. Here H0 and H1 are

p× p matrices, perhaps constructed via regression parameters, with H0 being invertible;

also, there is a given start observation y0 from which the process then develops. Using

yt = H−1
0 zt, with zt = c+H1yt−1 + εt given yt−1 having density ft(zt | yt−1), say, show

that the joint probability distribution for (Y1, . . . , Yn), given the start y0, can be written

L =

n∏
t=1

g(yt | yt−1) =

n∏
t=1

ft(H0yt | yt−1)|H0| =
n∏

t=1

f0(H0yt − c−H1yt−1)|H0|.

For the case where the εt ∼ Np(0, D), with a diagonal σ2
1 , . . . , σ

2
p variance structure, show

that this leads to log-likelihood

ℓ =

n∑
t=1

[
log |H0|+

p∑
j=1

{− log σj − 1
2 ε̃

2
t,j/σ

2
j }
]

= n log |H0|+
p∑

j=1

{−n log σj − 1
2

n∑
t=1

ε̃2t,j/σ
2
j },
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where ε̃t = H0yt − c−H1yt−1. Supposing regression coefficients α go into the c and the

H0 and H1 matrices, show that the log-likelihood profile, maximising over σ1, . . . , σp,

becomes

ℓprof(θ) = n log |H0(α)|+
p∑

j=1

{−n log σ̂j(α)− 1
2n}, where σ̂j(α)

2 = Qj(α)/n,

writing Qj(α) =
∑n

t=1 ε̃t,j(α)
2. This reduces the log-likelihood optimisation problem

from dimension p0 + p to dimension p0 = dim(α).

(b) (xx let’s see. xx) The vector autoregressive model used in Sims (2012b) takes

Ct = β0 + β1(Ct + It +Gt) + σCZ1,t,

It = θ0 + θ1(Ct − Ct−1) + σIZ2,t,

Gt = γ0 + γ1Gt−1 + σGZ3,t,

with the error terms Zj,t being i.i.d. standard normal. With Yt = (Ct, It, Gt)
t, show that

this can be translated to the general form above, with

H0 =

1− β1, −β1, −β1
−θ1, 1, 0

0, 0, 1

 , H1 =

 0, 0, 0

−θ1, 0, 0

0, 0, γ1

 , c =

β0θ0
γ0

 .

This leads to a clearly defined log-likelihood function of six regression coefficients and

three standard deviation parameters. Show that |H0| = 1 − β1(1 + θ1) here, and it is

part of the prior constraints of the parameters that this determinant must be positive.

Programme this log-likelihood function and find its optimisers, i.e. the unrestricted ML

estimates. (xx For the unconstrained ML, nils finds the following. with approximate

normality for θ̂1, there is a pointmass 0.904 at zero. Sims says θ1 ≥ 0, γ1 ≤ 1.03, 1 −
β1(1+θ1) > 0. mention that (β̂0, β̂1) as well as (γ̂0, γ̂1) have strong negative correlations,

about −0.99, so the model is not well parametrised. this is seen also for the mcmc. –

Attention is now on θ1, which Sims explains is a priori nonnegative. xx)

ML se sims reports

201.5721 33.0779 beta0 166.0

0.5246 0.0341 beta1 0.566

63.8808 13.1022 theta0 63.0

-0.5664 0.4347 theta1 0.0

10.7936 23.5020 gamma0 10.7

0.9902 0.1259 gamma1 0.991

(c) With α = (β0, β1, θ0, θ1, γ0, γ1)
t the regression coefficients and σ = (σ1, σ2, σ3)

t,

having independent priors πa and πs, say, show that the posterior distribution becomes

π(α, σ |data) ∝ πa(α)πs(σ) exp{n log |H0(α)|}
3∏

j=1

(1/σj)
n exp{− 1

2Qj(α)/σ
2
j }
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Figure iii.15: (xx polish, with the last details, com34* of nilswork23. xx) Left panel, for

the crucial θ1 parameter: posterior cumulative, with the Simps prior (slanted), and 95

percent interval xxxx; the normal approximation CD (dotted); and the more carefully

computed CD using t-bootstrapping (full curve). The confidence pointmass at θ1 = 0 is

0.989, whereas the Bayesian posterior does not detect that θ1 very likely is zero. Right

panel: similarly, for the γ1 parameter, where Sims uses the upper bound 1.03. The

posterior distribution (slanted) does not detect that there is a considerable probability

that γ1 = 1.03; the CD pointmass there is 0.501. (xx more, round off; see com31* and

com34* of nilswork23. xx)

With independent noninformative priors 1/σj for the σj , show that

π(α |data) ∝ πa(α) exp{n log |H0(α)|}
3∏

j=1

1/Qj(α)
n/2.

With flat priors on α, show that maximising this posterior density, over the regression

coefficients α, is equivalent to finding the ML estimates. Then set up an MCMC to

simulate posterior realisations of α = (β0, β1, θ0, θ1, γ0, γ1), using the prior Sims advocates

here; it is flat, but with built-in constraints θ1 ≥ 0, γ1 ∈ [0, 1.03], and 1−β1(1+ θ1) > 0.

Of particular interest is the posterior π(θ1 |data), which can then be read off from the

MCMC. Construct a version of iii.15, left panel, with the c.d.f. for θ1, alongside the

confidence distribution C(θ1) = Φ((θ1 − θ̂1)/κ̂1). (xx nils needs a bit more care with CD

for θ1. simulate lots of Sims datasets at positions α̂, but with θ1 on a little grid. need to

verify that t = (θ̂1 − θ1)/κ̂1 is approximately a standard normal. xx)

(d) (xx yet other points can be worked with. round off. we use t-bootstrapping methods

of Ex. 7.11 for more accurate CDs for θ1 and for γ1. simulations are a bit expensive, so

we use the isotonic repair trick of Ex. 7.4. perhaps one more parameter. computationally

this is moderately costly. push the view that a quite likely submodel actually holds, a
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significant simplification of the original nine-parameter model:

Ct = β0 + β1(Ct + It +Gt) + σCZ1,t,

It = θ0 + σIZ2,t,

Gt = γ0 +Gt−1 + σGZ3,t.

interpret this simpler model. In the pre-war US economy, investment It was independent

of consumption and of its changes over time, and government spending acted like a

random walk. round off. xx)

(e) (xx to be moved from here to solutions section. we not in passing that Sims is

a bit sloppy with the log-likelihood things. anyway, this is to verify the basic vector

autoregressive structure, with the H0 and H1 matrices. xx)1− β1, −β1, −β1
−θ1, 1, 0

0, 0, 1

Ct

It
Gt

−

 0, 0, 0

−θ1, 0, 0

0, 0, γ1

Ct−1

It−1

Gt−1

 =

Ct − β1(Ct + It +Gt)

It − θ1(Ct − Ct−1)

Gt − γ1Gt−1

 .

Story iii.11 Does winning make you live longer? Being happy is good for you health

and makes you live longer. If you’re a politician, winning elections makes you happy,

and winning elections therefore makes you live longer. This is the hypothesis under

investigation in the article Longevity returns to political office (Barfort et al., 2020).

To test the of winning elections contributing to longevity, Barfort et al. conducted an

impressive data collection effort, and it is the data set accompanying their article, kindly

made openly available, that we are to analyse in this story. The data set is further

described in 2.B [xx fix reference xx]. In the following we denote H1 the hypothesis

that winning elections makes you live longer. It is important here that H1 is a causal

hypothesis: it does not state that politicians winning elections typically live longer (an

association). Rather, it makes the bolder conjecture that winning elections positively

affects the expected life-length of those running for office, everything else held constant.

The challenge when investigating H1 is, as in almost all observational studies, to hold

everything else constant. We do not have data on everything else! Now, ‘everything else’

is really an exaggeration, so let’s be clear about what we must hold constant: We must

hold constant all factors that have an effect on the treatment and on the outcome. Such

factors are called confounders. A factor only affecting the treatment, or only affecting the

outcome, or none of the two, is not a confounder. InH1, the treatment is winning or losing

an election, and the outcome is life-length. There are many things that may affect the

aspiring politician’s chances of winning elections and also affect that aspiring politician’s

expected life-length. Physical form, diet, drinking, smoking, you name it, have an effect

on expected life-length, and being in good or bad form is likely to affect your performance

on the campaign trail. Indeed, in Barfort et al. (2020) many such potential confounders

are discussed. [xx some more on designs xx] Before we analyse the data set of Barfort

et al., we will se what goes wrong when we fail to control for confounders. Then we look

into their strategy for controlling for unobserved confounders, the so-called regression

discontinuity design.
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Figure iii.16: A directed acyclic graph illustrating the model in (iii.2) of Ex. iii.11(a).

(a) Suppose that we observe datan = {(Y1, X1), . . . , (Yn, Xn)}, where Xi and Yi are the

treatment and the outcome of the ith individual, respectively. We are interested in the

effect β of the treatment on the outcome. The Yis stem from the model

Yi = α+ βXi + γUi + εi, for i = 1, . . . , n, (iii.2)

where ε1, . . . , εn are i.i.d. with E ε1 = 0 and Var ε1 = σ2, and independent of the covari-

ates; and (X1, U1), . . . , (Xn, Un) are i.i.d., with the Uis being unobserved confounders.

That they are unobserved entails that we cannot use them in our estimation of the un-

known parameters of the model, and that they are confounders means that γ ̸= 0 and

cov(X1, U1) =: c ̸= 0. The naive thing to do in this case is to use the available data to

estimate β. Let β̂n be the least squares estimator based on datan, and show that

E (β̂n | Xn) = β + γ

∑n
i=1(Xi − X̄n)E (Ui | Xi)∑n

i=1(Xi − X̄n)2
,

where Xn = σ(X1, . . . , Xn), and X̄n = n−1
∑n

i=1Xi. This expression makes it very clear

that it is only when γ ̸= 0 and c ̸= 0 that the unobserved confounder causes the least

squares estimator β̂n to be biased.

(b) Let Z1, . . . , Zn be i.i.d. random variables, and suppose that the treatment Xi in

(iii.2) is binary, more precisely Xi = I{Zi ≥ z0} for all i. To be concrete, suppose that

the covariance beteween Xi and Ui come about because (Z1, U1), . . . , (Zn, Un) are i.i.d.,(
Zi

Ui

)
∼ N

((µZ

µU

)
,

(
σ2
Z σZσUρ

σZσU σ2
U

))
,

and independent of the noise terms ε1, . . . , εn. Show that

E (U1 | X1) = µU + ρσUϕ
(z0 − µZ

σZ

){ X1

1− Φ
(
z0−µZ

σZ

) − 1−X1

Φ
(
z0−µZ

σZ

)}
where ϕ(x) = (2π)−

1
2 exp(− 1

2x
2) and Φ(x) =

∫ x

−∞ ϕ(z) dz, which you might use to

establish that c = cov(X1, U1) = ρσU ϕ{(z0 − µZ)/σZ}, in this case. More importantly,

use it to derive the following expression for the bias of the least squares estimator

E β̂n − β =
γρσU

Φ
(
z0−µZ

σZ

)
{1− Φ

(
z0−µZ

σZ

)
}
.
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(c) The motivation for the regression discontinuity design is to be able to estimate β

in an unbiased manner. The intuition behind the regression discontinuity design is that

the observations with values of Zi in a small interval around the cut-off z0, are alike.

That is, by comparing observations with Zi ∈ (z0 − h, z0) with the observations with

Zi ∈ [z0, z0 + h) for some small h > 0, we are basically holding the confounder constant.

To see how this works, suppose that the data stem from the model in (b), and consider

the estimator

β̂rd(h) = Ȳ+(h)− Ȳ−(h),

where Ȳ+(h) = n+(h)
−1
∑n

i=1 I{Zi ∈ [z0, z0+h)}Yi, Ȳ−(h) = n−(h)
−1
∑n

i=1 I{Zi ∈ (z0−
h, z0)}Yi; with n+(h) =

∑n
i=1 I{Zi ∈ [z0, z0+h)} and n−(h) =

∑n
i=1 I{Zi ∈ (z0−h, z0)}

giving the number of observations in the interval of length h > 0 to the right and to the

left of z0, respectively. Show that,

E β̂rd(h) = β + bias(h),

with bias term

bias(h) = ρσU
{ ϕ( z0−µZ

σZ
)− ϕ( z0−h−µZ

σZ
)

Φ( z0−µZ

σZ
)− Φ( z0−h−µZ

σZ
)
−
ϕ( z0+h−µZ

σZ
)− ϕ( z0−µZ

σZ
)

Φ( z0+h−µZ

σZ
)− Φ( z0−µZ

σZ
)

}
.

Show also that bias(h)/h is bounded as h tends to zero, i.e. that bias(h) = O(h).

(d) The conclusion to (c) is that β̂rd(h) = β + O(h). The rate at which the bias tends

to zero can be improved by fitting higher order polynomial regressions on each side of

the threshold. Let k : [0, 1] → R be a bounded and nonnegative function, zero outside

of [0, 1], and positive and continuous on (0, 1). Set K(u) = Iu<0k(−u) + Iu≥0k(u), and

write Kh(u) = K(u/h)/h. Show, or deduce from what you now about the least squares

estimators (see e.g. Ex. refref), that the maximiser of

m+,p(b0, b1) =

n∑
i=1

IZi≥z0{Yi − a− b(Zi − z0)}2Kh(Zi − z0),

is (â+(h), b̂+(h)), where

â+(h) = Ȳ+(h)− b̂+(h)(Z̄+(h)− z0),

b̂+(h) =

∑n
i=1 IZi≥z0Kh(Zi − z0)(Zi − Z̄+(h))Yi∑n
i=1 IZi≥z0Kh(Zi − z0)(Zi − Z̄+(h))2

,

writing Z̄+(h) =
∑n

i=1 IZi>z0Kh(Zi − z0)Zi/
∑n

i=1 IZi>z0Kh(Zi − z0), and Ȳ+(h) =∑n
i=1 IZi>z0Kh(Zi − z0)Yi/

∑n
i=1 IZi>z0Kh(Zi − z0)

(e)

Story iii.12 Minimum Wages and Employment.

Code & data: minwage analysis.R, minwage.txt

Does an increase minimum wages have a negative effect on employment? This is the
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Figure iii.17: The estimator in Ex. iii.11(c) fitted to the longevity data of Barfort et al.

(2020). The bandwidth was set to h = 9.54 [xx See longevity eas2.R for details xx]

question posed by Card and Krueger (1994) in their classical study of fast-food chains

in the neighbouring states of New Jersey and Pennsylvania. Card and Krueger (1994,

p. 772) writes that ‘the prediction from conventional economic theory is unambiguous: a

rise in the minimum wage leads perfectly competitive employers to to cut employment.’

The question of minimum wages and employment is a causal question: One is in-

terested in comparing what actually happened to employment in a state that imposed

a minimum wage, to what would have happened to that state if it had not imposed a

minimum wage. A natural way to answer this question is to compare the employment

levels in a state before and after the minimum wage was imposed. The problem with

this is that there might be other time varying factors than the treatment affecting the

outcome. Perhaps the economic situation in country is so that employment would have

fallen, irrespective of whether a minimum wage was introduced? This leads us to the

difference-in-differences (DiD) design.

(a) To grasp the basic idea of the DiD-design, and clearly articulate the assumptions

needed to draw causal conclusions based on such a design, we start with two time periods

t = 1, 2, and two units i = e, c. The potential outcomes for unit i will now depend on

the path of treatments for that unit. Let Yi,t(0, 0) denote the potential outcome of unit

i at time t if that unit remains untreated; and Yi,t(0, 1) denote the potential outcome of

unit i if it is untreated in the first period, and treated in the second, and so on. If we

rule out the possibility of treatment in period 1, there are two such paths, and we can

write Yi,t(0) = Yi,t(0, 0) and Yi,t(1) = Yi,t(0, 1). Let Di be an indicator takin the value

1 if the ith unit is treated (in period 2). The estimand of interest in the canonical DiD

setup is the average treatment effect on the treated (att) at time period t = 2, that is

att2 = E {Yi,2(1)− Yi,2(0) |Di = 1}.
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The data are two independent vectors (Di, Yi,1, Yi,2) for i = e, c, where Yi,t = DiYi,t(1)+

(1−Di)Yi,t(0). Suppose that De = 1 and Dc = 0. A naive estimator of att2 is then the

difference δ01 = Ye,2 − Ye,1. Show that

E (δ01 | De = 1) = att2 + trend1 + anticipation,

where trends = E {Yi,2(0) − Yi,1(0) | Di = s}, and anticipation = E {Yi,1(0) − Yi,1(1) |
De = 1}. One of the two key assumptions of the DiD-design is that anticipation = 0.

Give a substantial explanation of what this assumption entails.

If we make this no-anticipation assumption, we still need to get rid of the trend

term. The DiD-idea is to estimate the untreated trend Ye,2(0) − Ye,1(0) with δ00 =

Yc,2(0) − Yc,1(0), and subtract this estimate from δ01. Recall that Dc = 0, so δ00 is an

estimator. This results in the DiD-estimator âtt2 = δ01 − δ00. Show that, under the

no-anticipation assumption,

E (âtt2 | De = 1, Dc = 0) = att2 + trend1 − trend0,

so that âtt2 is (conditionally) unbiased for att2 provided trend1 = trend0, That

trend1 = trend0 is known as the parallel trends assumption. Explain why the paral-

lel trends assumption allows for confounders that are time invariant.

(b) It is instructive to write down some explicit models for the potential outcomes.

For the three models that follow, you are supposed to think of Zi,t and Zi as possible

confounders. Consider Yi,t(Di) = α+ηZi,t+βDiI{t = 2}+εi,t,Di
for i = e, c and t = 1, 2,

where εi,t,Di is independent of Di. Show that att2 = β, but that β is not identified with

a DiD-design. Similarly, consider Yi,t(Di) = α+βt/2Di+εi,t,Di
, with εi,t,Di

independent

of Di, and β > 0. Again, show that att2 = β, and explain why β is not identified with

a DiD-design. What is the bias of δ01 under this model? Finally, for a time varying

covariate Vt, consider the model Yi,t(Di) = α+ ηZi + γVt + βDiI{t = 2}+ εi,t,Di where

εi,t,Di is independent of Di. Show that att2 = β, and explain why it is that under this

model we may estimate β with a DiD-design. In the DiD-literature model of this last

form, are typically just expressed

Yi,t(Di) = αi + γt + βDiI{t = 2}+ εi,t,Di

with αi and γt capturing the unit and time specific effects, respectively.

(c) For each fast-food restaurant in the minwage.txt data set, the outcome is the share

of full time employees. In terms of the variable names in the data set, that is

Yi,1 = fullBefore/(fullBefore + partBefore),

Yi,2 = fullAfter/(fullAfter + partAfter),

for i = 1, . . . , 358. We let Di ∈ {0, 1} be an indicator of New Jersey, and assume that

the the vectors (Di, Yi,1, Yi,2) are independent. Let Ȳt=t′,D=d be the sample mean of the

Yi,t for d = 1 (New Jersey) and d = 0 (Pennsylvania) in period t′. Show that under

the no-anticipation and the parallel trends assumptions, âtt2 = Ȳt=2,D=1 − Ȳt=1,D=1 −



Economics, Political Science, Sociology 531

(Ȳt=2,D=0 − Ȳt=1,D=0) is unbiased for att2. Consider the least squares problem [xx

overparametrised xx]

g(β, α1, . . . , αn, γ1, γ2) =

2∑
t=1

n∑
i=1

(Yi,t − αi − γt + βDiI{t = 2})2.

Show that the least squares estimator β̂ equals âtt2. Estimate att on the minwage.txt

data, and conclude. Does an increase in the minimum wage lead to lower unemployment?

Story iii.13 How many were killed in Srebrenica, 1995? (xx some perestroika and post-

sorting needed here; point to Ex. ??. xx) In dramatic data analysed by Brunborg et al.

(2003), numbers are reported for lists of killed Muslim men in Srebrenica 1995. They

in particular go into the details of List A, by the International Committee of the Red

Cross, and List B, by Physicians for Human Rights. We may draw up a simple Venn

diagram, with 5,712 found on both lists, 1,586 on List A only, 192 on List B only; see

Figure iii.18, left panel. How can we estimate the number of people killed, outside both

lists, i.e. outside the A ∪B set in the Venn diagram?
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Figure iii.18: Left panel: Venn diagram for the number of people killed and accounted

for, for the lists International Committee of Red Cross and Physicians for Human Right;

the task is to estimate the number N0,0 in the hidden box. Right panel: confidence

curve for the number N killed, with ML estimate N̂ = 7543, and 95 percent interval

7528 to 7560.

(a) Consider therefore the setup of Ex. 2.72, with a multinomial model for counts

N0,0, N0,1, N1,0, N1,1 in a 2 × 2 table, but where N0,0 and also the total population

size N = N0,0 +N0,1 +N1,0 +N1,1 are unknown. Construct the Venn diagram. Assum-

ing independence between the two underlying factors, show that the four probabilities

p0,0, p0,1, p1,0, p1,1 can be expressed as (1−p)(1− q), (1−p)q, (1− q)p, pq. In the exercise

pointed to the simple Petersen 1896 estimator N∗ = N1,·N·,1/N1,1 was analysed; in par-

ticular, we found there that (N∗ −N)/N1/2 →d N(0, τ2), with τ2 = (1− p)(1− q)/(pq).
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Presently we use likelihood analysis for estimating N (and hence the hidden N0,0), which

also lends itself more easily to tables of higher order than two.

(b) When N0,1, N1,0, N1,1 are observed, show that the likelihood function can be ex-

pressed as

L(N, p, q) =
N !

(N −R)!
{(1− p)(1− q)}N−R{(1− p)q}N0,1{p(1− q)}N1,0(pq)N1,1 ,

with R = N0,1 +N1,0 +N1,1, so that N0,0 +R = N . Show that this leads to the profiled

log-likelihood

ℓprof(N) = log(N !)− log((N −R)!) +NH(p̂N ) +NH(q̂N ),

in terms of the function H(r) = r log r + (1− r) log(1− r), and where p̂N = N1,·/N and

q̂N = N·,1/N . For the Srebrenica two-lists data, plot the ℓprof(N), finding in the process

the ML estimate N̂ = 7543.

(c) Explain that the theory developed in Ex. ?? may be applied here, and that the

deviance D(N0) = 2{ℓprof(N̂) − ℓprof(N0)} tends to the χ2
1 at the true N0. Draw the

confidence curve cc(N) = Γ1(D(N)), as in Figure iii.18, right panel, and give the 95

percent confidence interval.

(d) In addition to giving the confidence curve, use theory from the exercise pointed to

work out the approximate variance of N̂ , via the following ingrendients. With notation

from that exercise, set up the four log-probability derivatives ψi,j(p, q) for i, j = 0, 1,

verify that
∑

i,j pi,jψi,j(p, q) = 0, and show that M =
∑

i,j pi,jψi,j(p, q)
2 is the diagonal

matrix with elements {p(1− p)}−1, {q(1− q)}−1. Show from this again that

δ = ψ0,0(p, q)
tM−1ψ0,0(p, q) = p/(1− p) + q/(1− q).

From this, show that N1/2(N̂/N − 1) →d N(0, τ2), with τ2 = (1− p)(1− q)/(pq). This is
indeed equal to the limit variance found for N1/2(N∗/N −1) in Ex. 2.72 for the Petersen

estimator N∗. This is no coincidence; show that N∗ and N̂ is at most 1 apart. Note that

these estimates and confidence intervals are found not only without knowing N0,0, but

also not knowing the probabilites p and q of persons being captured on list A or list B.

(e) A Bayesian treatment of the N estimation problem is also feasible here. With inde-

pendent priors π(N), π1(p), π2(q), explain that the posterior π(N |data) is proportional
to

π(N)
N !

(N −R)!

∫ 1

0

π1(p)p
N1,·(1− p)N−R+N0,1 dp

∫ 1

0

π2(q)q
N·,1(1− q)N−R+N1,0 dq.

For the choice of uniform priors for p and q, show that

π(N |data) ∝ π(N)
N !

(N −R)!

N1,·! (N −R+N0,1)!

(N + 1)!

N·,1! (N −R+N1,0)!

(N + 1)!
.

With a flat prior for N , compute and display this Bayesian posterior for N , and compare

it to the frequentist confidence distribution. These are actually amazingly close, for this

application.
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(f) (xx may push 3-lists case to Guatemala. xx) The modelling and analysis here is

similar to what is called capture-recapture, or with more words capture-mark-release-

recapture, for estimating sizes of e.g. fish populations. We use the opportunity to extend

the setting and results above to the situation with three lists, or three independent rounds

of capture-mark-release. The fish population is {1, . . . , N}, with N unknown. We see

these rounds as binomial experiments, with probabilities p, q, r. In this multinomial

setup, with 23 = 8 counts Ni,j,k, show that p0,0,0 = (1−p)(1− q)(1−r), and so on, up to

p1,1,1 = pqr the probability of a fish being caught in each of the threee rounds. Again, the

theory of Ex. ?? applies, so it is a matter of working out the details for this setup. Find

an explicit formula for the profiled log-likelihood function ℓprof(N) = ℓ(N, p̂N , q̂N , r̂N ),

amenable for implementation and for reading off confidence intervals for N via the Wilks

theorem. Set up formulae for the eight ψi,j,ℓ; verify that
∑

i,j,ℓ pi,j,ℓψi,j,ℓ = 0; and show

that M =
∑

i,j,ℓ pi,j,ℓψi,j,ℓψ
t
i,j,ℓ is diagonal, with elements {p(1 − p)}−1, {q(1 − q)}−1,

{r(1− r)}−1. Explain that this also leads to

δ = ψt
0,0,0M

−1ψ0,0,0 = p/(1− p) + q/(1− q) + r/(1− r).

Conclude that (N̂ −N)/N1/2 →d N(0, τ2), with

τ2 =
(1− p)(1− q)(1− r)

1− (1− p)(1− q)(1− r)(1 + δ)
=

(1− p)(1− q)(1− r)

pq + pr + qr − 2pqr
.

Discuss how the variance of N̂ is inflluenced by say small, moderate, and higher values

of p, q, r. In various applications, from fishery sciences to estimating the number of bank

acccount cheaters, these probabilities might tend to be small.

(g) Generalise the above to the case of four independent rounds of capture-mark-release.

Story iii.14 How many were killed in Guatemala, 1978–1996? Starting with a Venn

diagram of numbers for A, B, A∩B, in Story iii.13 we estimated the number in the hidden

box, those outside A ∪ B, in that context the number of persons killed in Srebrenica

1995. The present story concerns similar problems, with three lists A, B, C of dead

persons, attempting to estimate how many individuals were killed in Guatemala, during

the 1978–1995 period. Matters are decidely more complicated here, however, also since

the list independence hypothesis cannot be trusted. The three sources in question are

the Recovery of Historical Memory (REMHI), Commission for Historical Clarification

(CEH), and the International Center for Human Rights Investigations (CIIDH), with

acronyms reflecting project names in Spanish. The data, via careful scrutiny of lists

from these three organisations, can in Venn diagram terms be translated to N1,1,1 = 393,

N1,1,0 = 3943, N1,0,0 = 15955, N1,0,1 = 634, N0,1,1 = 898, N0,1,0 = 19663, N0,0,1 = 6317;

see Lum et al. (2013). This gives rise to the informative Venn diagram in Figure iii.19,

left panel. The task is to estimate the full number N = N0,0,0+ · · ·+N1,1,1 of individuals

killed, hence also in the process the number N0,0,0 of deads not captured on any of the

three lists. Below we shall use the general methods developed in Ex. ?? to estimate the

tragic N for Guatemala. Ball (1999) reports the overall estimate 132,174 for the total

number of killed, with a standard error of 6,568; this agrees reasonably well with our

modelling and likelihood analysis below.



534 Economics, Political Science, Sociology

 

 

393

19663

15955 6317

3943 898

634

N000
outside all:

REMHI CIIDH

CEH

120 130 140 150 160 170 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

thousands killed in Guatemala

co
nf

id
en

ce
Figure iii.19: Left panel: Venn diagram for the number of people killed and accounted

for, for the three lists REMHI, CEH, CIIDH, and with N000 denoting those killed but

not any of these lists. Right panel: confidence curves for N , the total number of people

killed in Guatemala 1978–1996, in thousands, based on list independence, using all three

sources (full black curve), and using pairwise analyses.

(a) Produce a Venn diagram for the three-lists numbers, as in Figure iii.19, left panel.

Assuming for the moment that there is list independence, show that the log-likelihood

function can be expressed as

ℓ(N, p, q, r) = log(N !)− log((N −R)!) +N1,·,· log p+N0,·,· log(1− p)

+N·,1,· log q +N·,0,· log(1− q) +N·,·,1 log r +N·,·,0 log(1− r),

writing R = N0,0,1 + · · · + N1,1,1 for the sum over the seven observed cells, so that

N = N0,0,0 + R. We use ‘·’ notation to indicate summing over the index or indexes in

questions. Show that this leads to the profiled log-likelihood

ℓprof(N) = log(N !)− log((N −R)!) +NH(p̂N ) +NH(q̂N ) +NH(r̂N ),

in terms of the function H(x) = x log x + (1 − x) log(1 − x), and with p̂N = N1,·,·/N ,

q̂N = N·,1,·/N , r̂N = N·,·,1/N .

(b) Use the general likelihood profile theory of Ex. ??, to explain thatD(N0) = 2{ℓprof(N̂)−
ℓprof(N0)} →d χ

2
1 at the true N0, under model conditions, and use this to both estimate

N and give a confidence curve cc(N). Construct a version of Figure iii.19, right panel,

which has both the best estimate, so far, using the three lists, along with the three pair-

wise results. Read off results along these lines, with estimates of N (so the best, so far,

is 138,576), and 95 percent intervals. The pairwise results here relate to 1 and 2, 1 and

3, 2 and 3, with 1, 2, 3 being REMHI, CIIDH, CEH.

1 and 2 1 and 3 2 and 3 overall
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n10 19,898 16,589 6,951

n01 7,215 20,561 23,606

n11 1,027 4,336 1,291

ML 167,916 120,145 158,935 138,576

low 158,918 117,309 151,458 135,794

up 177,681 123,097 166,979 141,453

width 18,763 5,788 15,521 5,659
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Figure iii.20: Left panel: to come. Right panel: confidence distributions for N , the

number of persons killed in Guatemala, using the 4-parametric and 5-paramtric models.

xx give estimates and intervals. xx

(c) It turns out that the list independence hypothesis is not holding up for the Guatemala

situation, so we need better models for fitting the probability vector (p0,0,0, . . . , p1,1,1).

Write R = N0,0,1 + · · · + N1,1,1 = N − N0,0,0 for the number of actually observed

individuals inside the union of the three lists (here equal to 47803). With any parametric

model pi,j,k(θ), of dimension up to 6, show that the log-likelihood can be expressed as

ℓ(N, θ) = log(N !)− log((N −R)!) + (N −R) log p0,0,0(θ) +
∑

outside 000

Ni,j,k log pi,j,k(θ),

valid for N ≥ R. Explain how this for each candidate value N can be numerically

maximised over θ to compute ℓprof(N). Having the ML estimate N̂ , for such a model,
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we also find θ̂. Now consider the four-parameter model

p0,0,0 = (1− p)(1− q)(1− r)/s,

p0,0,1 = (1− p)(1− q)r γ/s,

p0,1,0 = (1− p)q(1− r)/s,

p0,1,1 = (1− p)qr/s,

p1,0,0 = p(1− q)(1− r)/s,

p1,0,1 = p(1− q)r/s,

p1,1,0 = pq(1− r)/s,

p1,1,1 = pqr/s,

where the γ is a parameter associated with cell 001, modifying independence in that

direction, and s is the factor required to give sum 1 over the eight cells. Maximise the

log-likelihood ℓ(N, p, q, r, γ) and show that the Pearson type statistic

K =
∑
i,j,k

(Ni,j,k − N̂ p̂i,j,k)
2

N̂ p̂i,j,k

is much smaller than for the simpler three-parameter independence model; here N̂0,0,0 =

N̂ −R is used for N0,0,0. Carry out the numerics to demonstrate that it is reduced from

487.05 with the 3-parametric model to 220.31 for the 4-parametric model, and that the

log-likelihood max is increased with 156.22. The ML estimates are N̂3 = 138576 and

N̂4 = 122812.

(d) The 4-parametric model above places the extra γ parameter at p0,0,1. There are

clearly 8 different such models. Carry out the numerical work to demonstrate that the

one used, with the push placed at p0,0,1, is actually the clearly best of these 8 model

choices.

(e) Investigate also the following five-parameter model, with push factors γ1 and γ2
placed for p0,0,1 and p1,1,1:

p0,0,0 = (1− p)(1− q)(1− r)/s,

p0,0,1 = (1− p)(1− q)r γ1/s,

p0,1,0 = (1− p)q(1− r)/s,

p0,1,1 = (1− p)qr/s,

p1,0,0 = p(1− q)(1− r)/s,

p1,0,1 = p(1− q)r/s,

p1,1,0 = pq(1− r)/s,

p1,1,1 = pqr γ2/s,

Maximise the log-likelihood function ℓ(N, p, q, r, γ1, γ2) and check K. (xx there are 28

such models, with the one above being the best. estimates 0.1667 0.1987 0.0412 1.8471
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2.3171. p̂0,0,0 = 0.625, pretty big chance of not being detected. nils gives details for the

table below. K dramatically reduced from 3-para to 4-para, and from 4-para to 5-para.

xx)

obs3 obs4 obs5 exp3 exp4 exp5 pear3 pear4 pear5

000 90773 75009 79511 90773.343 75009.236 79511.180 -0.001 -0.001 -0.001

001 6317 6317 6317 5740.222 6316.999 6317.008 7.612 0.000 -0.001

010 19663 19663 19663 19880.337 19606.796 19712.903 -1.541 0.401 -0.355

011 898 898 898 1257.170 954.011 847.908 -10.129 -1.813 1.720

100 15955 15955 15955 16144.568 15819.072 15904.699 -1.491 1.080 0.398

101 634 634 634 1020.932 769.711 684.106 -12.109 -4.891 -1.915

110 3943 3943 3943 3535.834 4134.975 3943.191 6.847 -2.985 -0.003

111 393 393 393 223.595 201.196 393.002 11.329 13.522 -0.001

Story iii.15 Forecasting election results in a multiparty system.

Data: pollsNorway1989 2023.txt

Code: valgstory analyse.R and valgstory skraping.R

In 2008 the statistician Nate Silver successfully predicted the outcomes in 49 of the 50

states in the U.S. Presidential election of that year. Four years later, Silver got it right

in 50 out of 50 states as well as in the District of Columbia, thus setting of somewhat of

a election-prediction craze, and helping his 2012 book The Signal and the Noise (Silver,

2012)) become a best-seller (it is indeed a good read). The U.S. is essentially a two-party

system, has a first-past-the-post system at the state level (apart from two or three states

[xx check which xx]), and both the Democratic and the Republican candidate both

typically receive between 35 and 65 percent of the votes. Predicting who will govern

after an election in a parliamentary system with several and many small political parties,

and an almost proportional system, comes with its own distinct challenges. First, one

difference between a two-party presidential and multiparty parliamentary system is that

between predicting the outcome of a Bernoulli trial versus a multinomial one, the latter

involves more unknowns and is not as amenable to normal modelling (as we will soon

see). Second, in smaller countries, such as Norway, most political polling is conducted

at the national level, but distribution of seats in parliament is determined at the level of

the electoral district (there are 19 such in Norway).

(a)

(b)

(c)

Story iii.16 High-frequency data and volatility estimation.

Data: apple20180102.txt

Code: volatilitystory.R

Below are the first six rows of the data set apple20180102.txt. This data set contains

all the trades of the Apple stock conducted during the opening hours of the New York

Stock Exchange (NYSE) on January 2, 2018. We see that the times at which the trade

occurs are recorded down to the nanosecond (i.e., 10−9 seconds) and that many trades

occur within the same second. These are indeed high-frequency data
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Figure iii.21: All national wide polls posing the question ‘If the parliamentary elections

took place today, who would you vote for?’, conducted in Norway from September 1989

up until March 2023. Party support in percent on the y-axis. The grey dotted lines

indicate the parliamentary elections days.

date time price

1 20180102 9:30:00.030592787 170.07

2 20180102 9:30:00.030600681 170.07

3 20180102 9:30:00.074509381 170.21

4 20180102 9:30:00.086449508 170.20

5 20180102 9:30:00.086478193 170.15

6 20180102 9:30:00.090208265 170.16

Partly due to the high-frequency of observation (the Apple stock is, as we see, observed

almost continuously) it is natural to model the observations, i.e., the prices of the actual

trades, as samples from a continuous time process. Denote the price process St with t

in [0, T ], with [0, T ] being, for example, one trading day at the NYSE. The canonical

model then considers the log-prices Xt = logSt (thus, Xt − Xs ≈ (St − Ss)/Ss =

return on an investment made at s and sold at t > s when t and s are close and the price

not too volatile), and postulates that Xt follows an Itô process

dXt = µt dt+ σt dBt, X0 = x0, (iii.3)

where Bt is a standard Brownian motion (see Ex. 9.3), and the drift µt as well as the

instantaneous variance of the returns σ2
t are themselves stochastic processes. We’ll soon

get to this model, and, in particular, study various estimators of the integrated volatility∫ T

0
σ2
s ds. The challenges we seek to highlight and illustrate solutions to are statistical

and not probabilistic, however, so in order not to let the mathematical details associated
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with continuous time processes overshadow the statistical points we seek to make, we

start with a discrete time cousin of the model in (iii.3).

(a) Let St0 , St1 , . . . , Stn be the price of a stock at times 0 = t0 < t1 < t2 < · · · < tn = 1,

where tj−tj−1 = 1/n =: ∆n is the same for all j = 1, . . . , n. Let ξ1, . . . , ξn be independent

standard normal random variables and define Ztj = ∆
1/2
n
∑j

i=1 σn,iξti . Our model for

the discrete time stock prices St1 , . . . , Stn is

Stj = s0 exp(µtj + Ztj ), for j = 1, . . . , n, (iii.4)

where µ ∈ R is a drift parameter; σ2
n,j is the instantaneous variance of the stock price at

time tj , also called the spot volatility; and St0 = s0 is the price of the stock at the start of

the observational window, assumed fixed and known. Since we will be dealing with finer

and finer partitions of the unit interval, that is ∆n → 0, most of the quantities above

should have been indexed by n, for example ti = tn,i, ξj = ξn,j , and so on. To not clutter

the notation, however, we drop this indexing. The log-price process is Xtj = logStj for

j = 0, . . . , n. Set s0 = 17, µ = 0.123, and σ = 0.02, and simulate one path of the stock

price Stj for j = 1, . . . , 10 000.

(b) A natural estimator for the drift parameter µ is µ̂n =
∑n

j=1(Xtj −Xtj−1
) Show that

µ̂n is unbiased for µ. A problematic thing about µ is that it µ̂n does not approach µ as

n increases: it is not consistent for µ. Show it.

(c) The emblematic estimand in high-frequency econometrics is the integrated volatility,

that is
∫ 1

0
σ2
s ds in the context of the model in (iii.3), and

∑n
j=1 σ

2
j∆n in the discrete time

case we study here. The estimator [X,X]n =
∑n

j=1(Xtj − Xtj−1
)2 is often called the

realised volatility (cf. Ex. 10.6(g)). Assume that maxj≤n σn,j is bounded, and that there

is a function σs > 0 so that
∑n

j=1 σ
p
n,j∆n =

∫ 1

0
σp
t dt + O(∆n) as ∆n → 0 for p = 2, 4.

Show that

[X,X]n = ∆n

n∑
j=1

σ2
n,jξ

2
tj +Op(∆n) =

∫ 1

0

σ2
t dt+Op(∆n),

as ∆n → 0, which is to say that the realised volatility is consistent for the integrated

volatility. To get a central limit result for [X,X]n, you can either use a Lindeberg CLT

or a Martingale CLT, see Ex. 2.33 and 10.9, respectively. Show that

∆−1/2
n ([X,X]n −

∫ 1

0

σ2
t dt)

d→
(
2

∫ 1

0

σ4
t dt
)1/2

U, U ∼ N(0, 1),

as ∆n → 0. This results anticipates its continuous time version, and indeed ‘looks’

identical. Things get more involved, of course, when moving to continuous time, and

even more so when the volatility process is no longer a deterministic function, but a

stochastic process that might even depend on the driving Brownian motion (or the ξtj s

in the discrete case). [xx perhaps point to continuous time version of this result in

Mykland and Zhang (2012) or Aı̈t-Sahalia and Jacod (2014) xx]

(d) There are deep results in mathematical finance that say, very loosely speaking, that

if a market is such that there is not free money, then the log-price process must be
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Figure iii.22: The upper panel

semimartingales (see, e.g., refsrefs, fundamental theorem of asset pricing, and Ch. 10 for

the notion of a semimartingale). For our statistical purposes, the semimartingaleness

of the log-prices implies that the realised volatility is consistent for the true integrated

volatility as the observation frequency tends to infinity (an very special case of which

was shown in (c), but see, e.g., Jacod and Shiryaev (2013, Theorem I.4.47, p. 52) for the

general result). Computed on actual data, however, the realised volatility is often seen

to diverge as the observation frequency gets higher. The lower panel in Figure iii.22 is a

case in point. You might read in the apple20180102.txt data set, compute the realised

volatility at various sampling frequencies (meaning that at low frequencies you throw

away a lot of data), and produce a version of the lower panel in the figure.

This divergence phenomenon was discovered by practitioners long ago, and, due to

the shape of plots such as that in the lower panel of Figure iii.22, the rule-of-thumb in

computing the realised volatility has been to subsample the data at intervals of half a

minute, a minute, five minutes, for example, thus avoding the really high frequencies

where the realised volatility is, empirically, seen to diverge. One statistical way to un-

derstand this conundrum is to say that the observed prices do not equal the so-called

efficient prices (those that follow a semimartingale process), instead we observe noisy

prices

Ytj = Xtj + εtj , (iii.5)

where the εtj are mean zero noise terms. Various explanation for where these noise terms

actually stem from can be found in the literature, see, e.g., Aı̈t-Sahalia and Jacod (2014,

Ch. 2.2.2). Suppose that the Xt0 , Xt1 , . . . , Xtn stem from the model in (iii.4), and assume

the noise terms are independent replicates of ε where E ε2 < ∞. Show that the realised
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volatility [Y, Y ]n =
∑n

j=1(Ytj − Ytj−1)
2 of the observed prices is

[Y, Y ]n = 2nE ε2 +Op(
√
n).

This expression provides a rough explanation of the diverging behaviour visible in the

lower panel of Figure iii.22.

[xx move this xx]From now on we assume that the noise process ε = {εt : t ∈
{t0, . . . , tn}} is independent of the log-price process X = {Xt : t ∈ {t0, . . . , tn}}.

(e) One of the methods for producing consistent estimators of the integrated volatility

when the efficient prices are contaminated by noise, as in (iii.5) is the two-scales approach

(see Zhang et al. (2005) or Mykland et al. (2019)). Let G = {t0, t1, . . . , tn} be the

full grid, as in (a). For some K ≥ 1, but (substantially) smaller than n, let Gk =

{tk−1, tk−1+K , tk−1+2K , . . . , tk−1+nkK} for k = 1, . . . ,K be subgrids of G, where nk is

the integer making tk−1+nkK the biggest element of Gk. In other words, having chosen

K ≥ 1 and 1 ≤ k ≤ K,

Gk = {t : t = tk−1+jK ∈ G for some j ∈ N}.

Convince yourself of the following facts: That nk = |Gk| −1 where |Gk| is the number

of elements in Gk, and that average number of elements in the K subgrids, say n̄, is

n̄ = (n − K + 1)/K. For some K ≥ 1 and k = 1, . . . ,K, and for any two processes

A = {At : t ∈ G} and B = {Bt : t ∈ G} define

[A,B](k) =

nk∑
j=1

(Atk−1+jK
−Atk−1+(j−1)K

)(Btk−1+jK
−Btk−1+(j−1)K

),

and [A,B]avg = K−1
∑K

k=1[A,B](k). Start by showing that

[X,X]avg = [Z,Z]avg +Op(K/n),

Let now σ(X) = σ(Xt : t ∈ G) and show that E ([Y, Y ]avg | σ(X)) = [X,X]avg + 2n̄E ε2

and that Var([Y, Y ]avg | σ(X)) = (n̄/K)4E ε4 + Op(1/K), or if you want, you might

‘open’ the Op(1/K) term and write

Var([Y, Y ]avg | σ(X)) =
4n̄

K
E ε4 − 2

K
Var(ε2)︸ ︷︷ ︸

Var([ε,ε]avg)

+
8

K
[X,X]avg E ε2 + op(1/K)︸ ︷︷ ︸

Var([X,ε]avg|σ(X))

,

where the underbraces indicates what terms stem from where. Argue that, from previous

efforts in this exercise, we have, [xx check details xx]√
K/n̄

(
[X,X]avg − [X,X]avg − 2n̄E ε2

) d→ 2(E ε4)1/2N(0, 1),

as K,n→ ∞ and K/n→ 0.

(f) Combining results of the above exercise we see that [Y, Y ]avg =
∫ 1

0
σ2
t dt + 2n̄E ε2 +

op(1) provided n̄/K → 0 and K/n → 0. Show it. To get rid of the bias term 2n̄E ε2
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we can estimate and substract it. A consistent estimator for E ε2 is (2n)−1[Y, Y ]n =

(2n)−1
∑n

j=1(Ytj − Ytj−1
)2, as we saw in (d). We are then lead to the estimator

[X,X]tsrv = [Y, Y ]avg − n̄

n
[Y, Y ]n,

which is, for natural reasons, called a two-scales estimator. Simulate 1000 sample paths

of St with . . . , and try to quantify how much is lost by observing noisy prices Yt instead

of the efficient ones Xt.

(g) ( xx some clt for the two-scales estimator xx)

(h) ( xx Some Itô integral theory. Could perhaps have this in Ch. 10, if at all xx)

(i) We now proceed continuous time Itô process models of the type given in (iii.3). The

drift term µt will not be of much interest to us, so to not clutter the notation we assume

that it is zero ([xx mention Girsanov here, perhaps xx]). Consequently, our process is

Xt = X0 +
∫ t

0
σs dWs. Suppose that Xt is observed at the the equidistant time points

tj = j/n for j = 0, 1, . . . , n, and that σs = σ for some constant σ > 0. Show that

Xtj =d X0 + σ∆
1/2
n
∑j

i=1 ξi with ξi i.i.d. N(0, 1), meaning we are back to the discrete

time model studied in the above exercises. Next, suppose that σt > 0 is a continuous

function (not a process) on [0, 1], and generalise the results from ??–?? to the present

situation, in particular, show that

(qvavgn (Y )− n̄

n
qv1,n(Y )−

∫ 1

0

σs ds)
d→ Var()N(0, 1),

as . . .

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)

[xx need rus-ukr feb 2022 as datapoint, sadly. we go more quickly for ML in two-

parameter model, but include also briefly moment-matching and quantile-matching. The

Correlates of War story, here with emphasis on waiting times between wars, the wi =

xi − xi−1. They are approximately Expo, point to Lewis Fry Richardson volume editor

Gleditsch, but the mixed expo works better; point to Pinker (2011), Hjort (2018b),

Gleditsch (2020), Cunen et al. (2020a). point to data and description in 2.B. we ought

to include Rus-Ukr too, where the CoW definition would say 2022, i suppose, not 2014.

xx]

(xx mention black swans, Clauset (2018, 2020); Hjort (2018b), clauset, pinker, cunen,

hjort xx)

(xx for Story iii.8, mention that KP thought it should be χ2
3, though Fisher said χ2

1.

he even used simulation, i think, after which KP said ok. point to Baird, and perhaps

one more paper on this. xx)

(xx for Peterson 1896, capture-mark-release, and Stories iii.13, iii.14, mention Bar-

tolucci and Lupparelli (2008), Sanathanan (1972), Goudie and Goudie (2007), who point

back to Laplace and Grant?
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(xx WELL: lots of things to do, as of 12-August-2024. partial todo list for nils includes:

(i) round off Bjoernholt story. changepoint? (ii) for mammals, point to jamtveit Story

iii.1. xx)

Story iv.1 New Haven annual temperatures 1912-1971. Figure iv.1 (left panel) displays

the annual average temperatures at New Haven, Connecticut, in Celcius, for the years

1912 to 1971. (xx point to 2.B, in Ch. B. xx) Our task here is to analyse these data

using first a simple linear normal regression model, to assess whether the upward trend

is significiant, and to construct ‘prediction intervals’ for years a bit before and a bit after

the observation range 1912-1971. We also investigate whether the data support more so-

phisticated modelling, (i) by using t-distributed error terms, with heavier tails than those

implied by the traditional normal assumption, and (ii) by allowing for autocorrelation in

the yearly data.

(a) For simplicity of computation, write ti = xi − 1912, for year xi. With yi the average

temperature in year xi, fit the linear normal regression model yi ∼ N(a+ bti, σ
2). Find

confidence intervals for b and for σ, and show in particular that b is indeed significantly

positive.

(b) For any year x0 outside the 1912-1971 range, form a 90 percent prediction interval

for the average temperature Y0 in that year. In other words and symbols, construct

[L(x0), U(x0)] such that Pr(Y0 ∈ [L(x0), U(x0)]) = 0.95. Construct a version of Figure

iv.1, where the two extra years are 1907 and 1976. Comment on your findings. Try also

with 1897 and 1986.

(c) Compute the estimated residuals ri = (yi − â − b̂xi)/σ̂, and plot these as a func-

tion of year xi. Use this to check aspects of the modelling assumptions, including the

independence.

(d) Sometimes meteorological data like these exhibit heavier tails than those implied by

the normality assumption. Look therefore into the extended four-parameter model which

takes yi = a+bti+σεi, where the εi are i.i.d. tν , the t distribution with degrees of freedom

ν. Compute and display the log-likelihood profile function ℓprof(ν), by maximising for

543
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Figure iv.1: Left panel: annual average temperatures (in Celsius) at New Haven, Con-

necticut, from 1912 to 1971. Also plotted is the linear trend, and 90 percent prediction

intervals for average temperature for the years 1907 and 1976. Right panel: profiled log-

likelihood ℓn,prof(ν) for the degrees of freedom with tν modelling. The ML is ν̂ = 6.07,

and the horizontal line indicates the log-likelihood maximum with the simpler normal-

based model.

each ν over (a, b, σ), and find the ML estimates. This is shown in in Figure iv.1 (right

panel), with ML estimate ν̂ = 6.706, and with maximum value a modest 0.554 above

the maximum for the simpler normal-based three-parameter model, indicated by the

horizontal line. Thus there is no clear evidence pointing to the necessity of using a t

instead of the normal, for the error terms in yi = a + bti + εi; normality, with ν = ∞,

is inside the likely range for ν. Argue that had ν been low, this might not have affected

prediction so much, per se, but would rather have influenced the prediction intervals.

(e) Then attempt another direction of sophistication, allowing autocorrelation. The

model is now yi = a + bti + σεi, with the εi being jointly normal, with variance 1,

and correlations ρ|i−j|, for some ρ. Compute and display the profiled log-likelihood

function ℓprof(ρ), and give a confidence curve for ρ. Conclude that independence is

clearly inside the range of confidence intervals. Argue therefore that the simple standard

three-parameter linear regression model yi = a+ bti + εi, with εi being i.i.d. N(0, σ2), is

fully adequate for these data.

Story iv.2 Where are the snows of yesteryear? (xx nils: check with care here, if models

are nearly the same, or too similar, for New Haven and for Bjørnholt. at least skiing

days has a gap in natural time sequence. also: redo all, with figures, in view of better

dataset from october 2023. xx) Quo vaditis, Norwegians? Figure iv.2 is a potentitally

dramatic one, for core segments of the Norwegian population, displaying the number of

skiing days per year, from 1896 to 2022, at the location Bjørnholt in Nordmarka, a tram

distance and a skiing hour north of central Oslo. A skiing day is defined as there being

at least 25 cm snow on the ground. The data are in (xx in the Ch overview xx). How
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clear is the downward trend, will we still be able to ski, a dozen years from now? (xx

need care and polish. depends on what we say on ACF in Ch. 12. xx)
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Figure iv.2: Left panel: the number of skiing days per year, at the location Bjørnholt

in Nordmarka, from 1896 to 2022, though with a gap in the series, with no records

from 1938 to 1954. The dashed line is the estimated regression from the four-parameter

autoregressive model. Right panel: the log-likelihood profile funcion ℓprof(ρ), for the

four-parameter model, with max value 2.809 above the level achieved by the simpler

three-parameter model, for ρ = 0, indicated by the horizontal line.

(a) Since there is a gap in the time series, with no data from 1938 to 1954, we need a

bit of care both with the notation and the analysis. With data index t = 1, 2, . . . , n,

write zt for yeart − 1900, these running from 1 to 127, though n = 111, due to the

hole in the data. Fit the simple linear regression model to the skiing days data, with

yt = α0+α1zt+σ0ε0,t, where the ε0,t are seen as i.i.d. N(0, 1). Find confidence intervals

for the slope α1, for σ, and for the expected number of skiing days in 2027, given the

available information up to 2022. Check the residuals r0,t = (yt − α̂0 − α̂1zt)/σ̂0, both

for constancy of variance, and for autocorrelation, using the approrpriate acf algorithm.

(b) To investigate whethere is is autocorrelation in the data, with possible consequences

for both slope estimation and prediction, explore the four-parameter model

yt = β0 + β1zt + σεt, where cov(εs, εt) = ρ|s−t|.

Compute the profiled log-likelihood function ℓprof(ρ), as in Figure iv.2, right panel, and

give the associated confidence curve cc(ρ). The max log-likelihood difference is 2.809; ar-

gue that this is big enough to support the four-parameter model over the three-parameter

model. Find ML estimate ρ̂ = 0.148, and 95 percent interval [0.014, 0.277]. (xx point to

Ex. 12.23. and to cc recipe. xx)

(c) Compute AIC scores for the three-parameter and the four-parameter model, and

comment. Also test ρ = 0 using (xx point to Wilks method of Ch3 xx).
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(d) Use the four-parameter model to plot the data along with the estimated mean curve

and a 90 percent pointwise confidence band.

(e) Try out the model which takes yt = β0+β1zt+σtεt, with the εi i.i.d. standard normal,

but now with variance heterogeneity: σt = σ exp(γ1wt+γ2w
2
t ), with wt = (zt− z̄)/sd(z).

Check if γ1 or γ2 are significantly nonzero. Compute also the increase in log-likelihood

maximum, and comment.

(f) (xx can do even more. point to Cunen et al. (2018). xx)

Story iv.3 Mammals and their bodies and brains. How special are You, gentle reader,

among the other mammals on this planet? The dataset mammals gives the average body

weight and average brain weight for 56 mammals, in kg, from tiny short-tailed shrew

(0.005 kg) to the African elephant (6654 kg), and with brain to body ratios ranging from

the cow and Brazilian tapir (about 0.08 percent) to You (with a somewhat modest 2.1

percent) up to the thirteen-lined ground squirrel with the impressive 3.9 percent. Intrigu-

ingly, the (log-body, log-brain) data pairs follow approximately a binormal distribution,

with a relatively high correlation, making it feasible to assess the biological variability

and from this the extent to which You might consider yourself special. (xx point to

academic power laws, Story iii.1. xx)

(a) Plot both (body, brain) and the more statistically informative (log body, log brain).

For the latter, compute the correlation 0.965, and give also a 90 percent confidence inter-

val. Discuss why correlation on this log-log scale might be a more meaningful measure of

association than correlation on the original body-brain scale. Then carry out ordinarly

linear regression for y, log-brain, against x, log-body. In order to assess how different

You are from the rest, remove yourself from the data and do linear regression on the

remaining 55 mammals, ostensibly different from us, constructing a version of the left

panel of Figure iv.3. In addition to the regression line â0 + b̂0x the plot has a 99 percent

prediction band for Y ∼ N(a0 + b0x, σ
2), as a function of x; see Ex. 3.34 and related

exercises. These lower and upper lines are not fully linear, with the band being smallest

in the middle, which here means for mammals with body weight around 2.40 kg. Discuss

what this means for You, with your 1.32 kg brain; You are just outside the 99 prediction

interval, given your body size.

(b) The variance of log-brain is not quite constant across the range of log-body. Via

the machinery of Ex. 5.48, fit two heteroscedastic models, with yi ∼ N(a + bxi, σ
2
i ),

where Model 1 has σi = σ exp(γ1wi) and Model 2 σi = σ exp(γ1wi + γ2w
2
i ), using

wi = (xi − x̄)/sd(x). Show that the AIC prefers Model 2 over both Models 0 and 1, and

with a significantly negative γ2. Using Model 2, therefore, find estimates and confidence

intervals for γ1, γ2, and plot the estimated standard deviation as a function of x. Also,

carry out a log-likelihood-ratio test of the ordinary linear three-parameter model inside

the wider five-parameter model. Using Model 2, reconstruct a version also of the right

panel of Figure iv.3, with a 99 percent confidence band around the fitted linear regression

line.

(c) For both models 0 and 2, estimate the probability that You are precisely as special

as you appear to be, i.e. p = Pr(Y ≥ y0 |x0), with y0 = log 1.320 and x0 = log 62.00.
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Figure iv.3: Plot of log body-weight, log brain-weight, both in log-kg, for 56 mammals,

including You, plotted at (log 62.00, log 1.32). The regression lines and 99 percent bands

are computed based on having You pushed out of the data, i.e. carried out based on the

other 55 mammals. Left panel: regression line and band, based on linear regression with

constant variance. Right panel: regression line and two bands, the curved band based

on the heteroscedastic model with σi = σ exp(γ1wi + γ2w
2
i ), where wi = (xi − x̄)/sx.

(d) A perhaps natural parameter to examine is ρ = brain/body, say in percent, where,

incidentatlly, nine other mammals have a more impressive ratio than You. Find and fit

a good distribution for log ρ, and plot the estimated density both on the log-scale and

then on the original ρ scale.

Story iv.4 Kola temperatures and The Hjort liver index time series 1859-2020. The first

four chapters of Hjort (1914), a classic in fisheries science and marine biology, essentially

pertains to the quantity of fish and the fluctuations of fish populations. Hjort was however

also concerned with what he terms the quality of fish and devotes most of the book’s

chapter 5 to how this can reasonably be defined, also attempting to identify influencing

factors. The liver quality index thus defined was ‘no. of hectolitres of liver per 1000

skrei’ (i.e. the Northeast Arctic cod), leading also to one of the first comprehensive

teleost time series ever published, for the time period 1880–1912; see Smith (1994).

Later efforts, detailed in Kjesbu et al. (2014) and Hermansen et al. (2016), have led to

one of the longest time series in all of fisheries science, the Hjort Liver Index 1859 to the

present. Also historically impressive are the data systematically collected on monthly

Kola temperatures since 1921, by Russian marine biologists, summarised in Boitsov et al.

(2012). Figure iv.4 (left panel) shows the HSI series along with the annual average Kola

temperatures (the HSI in percent, the temperatures in Celcius). In the present story we

study how the HSI series is influenced by the Kola temperatures.

(a) We start with the Kola temperatures, of clear separate interest. To assess whether

the apparent increase, from Figure iv.4 (left panel), is significant, we study the twelve
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Figure iv.4: Left panel: the Hjort liver index, 1859–2013 (percentage of liver in the

skrei, the Northeastern Atlantic cod) with the annual Kola temperature, 1921–2013 (in

Celsius). Right panel: running t tests plot for Kola temperatures 1921 to 2013, one curve

for each month.

temperature series, the January temperatures up to the December temperatures, from

1921 to 2013. For each, compute first the overall mean x̄ and standard deviation σ̂,

and also the autoregressive first order coefficient, i.e. ρ̂ = (1/n)
∑n−1

i=1 ε̂i−1ε̂i, with ε̂i =

(xi − x̄)/σ̂. These turn out to be close, month for month; compute ρ̂ = 0.422 for their

average. Then, month for month, compute running t tests, in the spirit of Ex. 9.37, but

taking also the AR(1) nature of the data into account. This means computing t type

ratios t(τ) = (x̄R− x̄L)/ẑ(L,R), for each τ , with x̄L and x̄R the averages to the left (from

1 to τ) and to the right (from τ + 1 to n), and where the AR(1) details of Ex. 12.26 are

needed in order to have the right denominator. Construct a version of Figure iv.4, right

panel. Explain why this demonstrates that the Kola temperatures have been rising, at

least since 1990.

(b) Still concerned with the Kola temperatures, fit for each month the series x1, . . . , xn,

to models with polynomial trends and AR(1) variability. Specifically, model Mj takes

xi = mj(ti) + σjεi, where mj(ti) = β0 + β1ti + · · ·+ βjt
j
i , in terms of ti = yeari − 1967

(the 1967 being the average of the 93 calendar years 1921 to 2013), and takes the εi to

be zero-mean unit-variance AR(1). For the January series, for example, plot the data

along with the fitted mean curves of model order j = 0, 1, 2, 3, 4. Compute AIC values

to identify the best of these polynomial trends AR(1) variability models.

(c) (xx this needs trying out. xx) Above we studied monthly time series, i.e. with twelve

months between measurements. Now form the longer and more continuous series of all

93× 12 = 1116 temperatures. These exhibit both a stronger autocorrelation and a clear

cyclic component. Writing the data as xi,j , with j = 1, . . . , 12 for each year i, fit the
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model

xi,j = β0 + β1ti + β2t
2
i + β3t

3
i +A cos(γ + 2πj/12) + σεi,j ,

where the series εi,j is another AR(1), but with stronger autocorrelation since measure-

ments are closer in time.

1940 1960 1980 2000

0.
0

0.
5

1.
0

1.
5

years

m
on

ito
rin

g 
lik

el
ih

oo
d 

br
id

ge

1940 1960 1980 2000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

years

pa
ra

m
et

er
 m

on
ito

rin
g 

br
id

ge
s

Figure iv.5: Monitoring bridges for testing whether the five-parameter model yi = β0 +

β1xi−1 + β2xi−2 + σεi, with the εi having autocorrelation ρ, has remained unchanged.

Left panel: log-likelihood maxima bridge, as with Ex. 9.41. Right panel: bridges for each

of the five parameters, as with Ex. 9.36.

(d) We now come to analysing the influence of the Kola temperatures on the Hjort index

series. Taking the skrei’s spawning seasons and behaviour into account, it is argued in

Hermansen et al. (2016) that the most relevant information from the Kola temperatures,

when it comes to the skrei and its liver quality yi for year i, is in terms of xi−1, xi−2,

say, denoting temperatures from previous winters. Specifically, for year i, let xi−1 be

the average temperature taken over October, November, December the previous year

and January, February for the present year. Compute these xi−1, for the n = 93 years

from 1921 to 2013, and fit the model yi = β0 + β1xi−1 + β2xi−2 + σεi, again with the εi
being a unit variance AR(1) series. The Kola series starting in 1921, we need separate

definitions for xi−1 and xi−2 at the start; we let xi−1 for 1921 be as for 1922, and xi−2

for 1921 and 1922 be as for 1923. Find parameter estimates and standard errors, and

discuss implications.

ML se ML/se

beta0 3.9571 1.2683 3.1199

beta1 0.1206 0.1679 0.7185

beta2 0.3626 0.1684 2.1536

sigma 1.2854 0.2487 5.1680

rho 0.8498 0.0915 8.7474
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(e) (xx check with care, and coordinate with Ch9, to see which should be first. xx)

Here we attempt to check whether the five-parameter model used above has remained

essentially unchanged over the long time window, from say 1930 to 2013. We do this

by constructing monitoring bridges, using methods developed in Ex. 9.41 and Ex. 9.36;

each of these behave approximately as Brownian bridges under the assumption of the

model not changing. The upper 0.05 point of the maxt |W 0(t)| is 1.358, as found in

Ex. 9.21. Thus fit the five-parameter model successively, for longer and longer time

windows, starting with 1921–1928 and ending with the full 1921–2013. From the log-

likelihood maxima, say ℓ̂j , form the monitoring bridge Mn,j = (1/
√
n){ℓ̂j − (j/n)ℓ̂n}.

Construct a version of Figure iv.5, left panel. Its maximum value indicates that the five-

parameter model has not remained entirely constant over the long time window 1921

to 2013. Then construct further monitoring bridges Hn,j = (j/
√
n)(θ̂1,j − θ̂1,n)/τ̂ , for

each of the five parameters, as for Figure iv.5, right panel. Here θ̂1,j is the estimator

in question computed based on having observed data up to time j, and τ̂ the estimated

standard deviation for
√
n(θ̂1,n − θ). The plots indicate that none of the five parameters

have undergone serious changes over the full time period.

Story iv.5 How many Clethrionomys glareoli? In work reported on in Blower et al.

(1981, p. 83), a population of the bank vole C. glareolus, inside a certain area of biological

interest, the voles were trapped, then marked and released (and potentially trapped

again), over a six-month period. In total, 53 different voles were caught, in the course of

109 captures. So how many glareoli were there?

This and related problems have a connection to the card collector problem studied

in Ex. 2.69. Consider a version of that setup, with cards X1, X2, . . . being sampled from

{1, . . . , n} with equal probabilities 1/n. In the exercise pointed to we investigated the

full time T1 + · · · + Tn it takes to have the full deck of cards, with Tr time needed to

have seen new card no. r, having started clocking time again after having previously

found r − 1 cards. Here we turn the table and ask how many n cards there are, based

on having seen r different cards after Vr attempts. With many repetitions among the

sampled cards one expects a low n, and if one needs many samples to reach a low r one

expects the opposite.

(a) Via arguments discussed in Ex. 2.69, show that Vr = T1+ · · ·+Tr, with independent

waiting times Ti ∼ geom(pi), and pi = (n− i+ 1)/n = 1− (i− 1)/n. Show that

ξr(n) = En Vr =

r∑
i=1

1/pi =
n

n
+

n

n− 1
+ · · ·+ n

n− r + 1
= n(Hn −Hn−r),

where Hn = 1+1/2+ · · ·+1/n is the harmonic series partial sum. If Vr = 109 captured-

released-recaptured samples from a closed population of an unknown number n of animals

yield r = 53 different animals, use this moment equation to estimate n. Give also a

formula for σr(n)
2, the variance of Vr.

(b) Show that the joint distribution of the observed (T1, . . . , Tr) is

1 ·
( 1
n

)t2−1(
1− 1

n

)
· · ·
(r − 1

n

)tr−1(
1− r − 1

n

)
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Figure iv.6: Confidence analysis for n, the unknown number of Clethrionymus glareolus,

after having trapped r = 53 different animals in the course of Vr = 109 trappings. Left

panel: the carefully constructed CD, based on simulating a high number of Vr, for each

n, along with the simpler normal approximation. The median confidence estimate is 64.

Right panel: confidence curve cc(n), with 90 percent confidence interval from 58 to 73.

with log-likelihood

ℓr(n) =

r∑
i=2

{
(ti − 1) log

( i− 1

n

)
+ log

(1− i− 1

n

)}
.

Conclude also that Vr = T1 + · · · + Tr is sufficient for n. The ML estimator is the

maximiser of ℓr(n), rounded off to nearest integer, if required.

(c) Allowing ourselves taking the derivative with respecct to n, even though it is not a

continuous parameter, show that ∂ℓr(n)/∂n = −Vr/n + Hn − Hn−r. Use this to show

the ML estimator n̂ is the same as the moment estimator. The result is n̂ = 64.

(d) Show that the likelihood function for T1, . . . , Tr may be expressed as

n−Vrar(n) = exp{−(Vr/r) log(n/r) + br(n)},

for suitable ar(n) and br(n). Show that this is an exponential class situation, see Ex. 1.50

(xx check with care, also regarding canonical parameter, and uses in Ch7 xx), with

log(n/r) the canonical parameter and Vr/r the sufficient statistic.

(e) Use theory from Ch. 7, as in Ex. 7.12, to argue that the confidence distribution

Cr(n) = Prn(Vr < Vr,obs) +
1
2Prn(Vr = Vr,obs) for n ≥ Vr,obs

is optimal (modulo half-correction for discreteness). Use first a simple normal approxi-

mation to Vr, based on formulae above for the mean and variance, to give an approximate
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CD for n; see Figure iv.6, left panel. Compare this with the more carefully computed

CD, via a high number of simulations of Vr for each n in question, and make a version of

Figure iv.6, left panel. Find also a 90 percent confidence interval, and compare the ML

estimate with the median confidence estimate.

Story iv.6 Birds on islands outside Ecuador. We may see the broadly useful ML ma-

chinery in practice in Story vii.4, for i.i.d. models, where the central message is that as

long as one can programme the log-likelihood function, one may often apply generic opti-

misation algorithms to find ML estimates, their standard errors, find confidence intervals

for focus parameters, test hypotheses, etc. One of the aims of the present story is to

showcase how essentially the same machinery works also for regression models, whether

these are part of the standard statistical repertoire or are freshly invented with new twists

and ingredients. The main reason for this is that the central parts of ML theory extend

from i.i.d. to regression models, as we have seen in Ex. 5.41 and 5.51.

Our illustration will be in terms of the following relatively simple and small dataset,

pertaining to y, the number of different bird species living on páramos on fourteen islands

outside Ecuador. The task is to attempt to understand how y is influenced by x1,

the distance from Ecuador, in km; and x2, the area, in thousands of square km (and

perhaps on yet other covariates not taken on board here). The grander purposes relate

to understanding biological variation and to prediction of species abundance on other

islands.

x1 x2 y x1 x2 y

1 0.036 0.33 36 8 0.958 0.14 13

2 0.234 0.50 30 9 0.995 0.05 17

3 0.543 2.03 37 10 1.065 0.07 13

4 0.551 0.99 35 11 1.167 1.80 29

5 0.773 0.03 11 12 1.182 0.17 4

6 0.801 2.17 21 13 1.238 0.61 18

7 0.950 0.22 11 14 1.380 0.07 15

(a) For the birds-on-islands dataset, first carry out ordinary Poisson regression, taking

yi ∼ Pois(µi) with µi = exp(β0 + β1xi,1 + β2xi,2). Show indeed that β1 is significantly

negative, that β2 is significantly positive, and give interpretations of these initial findings;

cf. columns 1:3 in the table.

(b) There is potential overdispersion here, compared to the ideal Poisson models, with

variances perhaps being bigger than means; what we learn in points below will confirm

this. Use the model robust machinery of Ex. 5.51 to compute the estimated variances

via the sandwich matrix Ĵ−1K̂Ĵ−1/n, as opposed to the simpler Poisson based Ĵ−1/n.

Check the extent to which confidence intervals for the three parameters become bigger.

(c) We then pass to the extended Poisson regression model introduced in Ex. 4.34, taking

distribution

f(yi, µi, γ) = k(µi, γ)
−1µyi

i /(yi!)
γ for yi = 0, 1, 2, . . . ,

with normalisation constant k(µi, γ) =
∑∞

y=0 µ
y
i /(y!)

γ . Write up a script for the log-

likelihood function ℓ2(β0, β1, β2, γ), in the style of what is carried out in Story vii.4. The
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Figure iv.7: Estimated probability distributions f̂1, f̂2, f̂3, for the number of bird species

on two imagined islands, based on models 1 (simple Poisson), 2 (extended Poisson, with

one γ), 3 (extended Poisson, with γi). Left panel: (x1, x2) taken to be their max values,

i.e. big island, far from Ecuador; right panel: (x1, x2) at the min values, i.e. small island,

close to Ecuador. The full black curves are for the five-parameter f3, the best model.

following works – here we have used X = cbind(one,x1,x2), with one the vector of 1,

and pp = ncol(X); put an aux = 0*(1:n) in preparation; and made an initial script for

k(µ, γ):

logL2 <- function(para)

{

beta = para[1:pp]

gam = para[(pp+1)]

mu = exp(X %*% beta)

for (i in 1:nn)

{aux[i] = -mu[i]+yy[i]*log(mu[i])-gam*lgamma(yy[i]+1) - log(k(c(mu[i],gam)))}

sum(aux)

}

Maximise the log-likelihood, with steps similar to those in Story vii.4, and reproduce

columns 4:6 in the table. Deduce that an approximate 90 percent interval for the γ

parameter is [0.187, 0.949], indicating overdispersion compared to Poisson. Also carry out

log-likelihood-profiling, computing ℓ2,prof(γ), for a somewhat more accurate 90 percent

interval, using (xx point to wilks theorem exercise xx).

model M1 model M2 model M3

estim se ratio estim se ratio estim se ratio

beta0 3.429 0.139 24.597 1.941 0.806 2.410 1.927 0.805 2.393

beta1 -0.814 0.151 -5.400 -0.472 0.216 -2.181 -0.506 0.236 -2.144

beta2 0.312 0.072 4.347 0.181 0.089 2.031 1.567 0.705 2.224

gam 0.568 0.232 2.450 alpha0 -0.232 0.388 -0.597

alpha1 0.320 0.078 4.098
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(d) The dispersion parameter γ is perhaps not quite constant, across the different is-

lands. A finer model worth working through takes γi = exp(α0 + α1wi), with wi =

(xi,2 − x̄2)/sd(x2), i.e. the normalised x2. This helps stable numerics and eases the in-

terpretaion of α0 and α1. Now programme the appropriate log-likelihood function, say

ℓ3(β0, β1, β2, α0, α1). Find ML estimates and their estimated standard deviations, and

produce a version of columns 7:9 of the table. Also, via profiling the log-likelihood func-

tion and using the CD Wilks recipe as in Ex. 7.9, construct a confidence curve for α1, as

in Figure iv.8, left panel. Give an interpretation of these results.

(e) Include also model 4, which is Poisson with gamma overdispersion, as follows. We

take Yi |µi ∼ Pois(µi), with µi ∼ Gam(exp(xtiβ)/τ, 1/τ). Show that µi in such a setup

has mean exp(xtiβ) and variance τ exp(xtiβ), which means that for small τ we’re back

to ordinary Poisson. Give a formula for the Yi distribution, perhaps using Ex. 1.26,

derive the four-parameter log-likelihood function, as in Ex. 5.45. and optimise to find

the ML estimates. Compute the log-likelihood profile ℓn,prof(τ), and construct from this

a confidence curve cc(τ), as in Figure iv.8, right panel.
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Figure iv.8: Left panel: confidence curve for the overdispersion parameter α1, in the

γi = exp(α0+α1wi)model, with ML estimate 0.320 and 90 percent interval [0.141, 0.436].

Right panel: confidence curve for the variance overdispersion parameter τ , with ML

estimate 0.735 and 90 percent interval [0, 2.601].

(f) For the four models, record the attained log-likelihood maxima, say ℓ1,max, . . . , ℓ4,max;

these are found as easy byproducts of the maximisation algorithms in the first place.

Compute also the AIC model selection scores, as per (11.1); you should find the table

here. Also compare Models 1, 2, 3 via Wilks testing, as per Ex. 5.28. Comment on your

findings.

logLmax dim aic

model 1 -45.4170 3 -96.8340
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model 2 -44.1390 4 -96.2779

model 3 -41.7619 5 -93.5238

model 4 -44.3088 4 -96.6177

(g) Compute also Pearson type chi-squared statistics, of the typeW =
∑n

j=1(yj−ŷj)2/ŷj
over the n = 14 islands, where ŷj = nf̂j(yj) is the estimated yj for the model considered.

To check for differences, produce a version of Figure iv.7, with the estimated probabilities

f̂1, f̂2, f̂3, for a few positions (x1,0, x2,0) in the covariate space. This particular figure has

‘big island, far from Ecuador’ to the left and ‘small island, close to Ecuador’ to the right.

Story iv.7 Birds on islands, via square-rooting to normal nonlinear regression. (xx

nils rant so far. idea is to showcase transformations to normal scale with more tools

available there. we consider making this simply continue inside previous story. xx)

In Story iv.6 we analysed bird species data for islands outside Ecuador, using Poisson

models, with certain extensions. There is another route here, via approximations to

normality; a general advantage for such transformations is that the normal toolbox is so

well-developed and versatile.

(a) For Y ∼ Pois(µ), show that Z = 2Y 1/2 − 2µ1/2 tends to the standard normal as µ

grows. Make some figures of the implied c.d.f. F (z, µ) versus the standard normal c.d.f.,

to see how small max |F (z, µ)− Φ(z)| is, with growing µ.

(b) Now consider the traditional Poisson regression model, where Yi ∼ Pois(µi) in terms

of µi = exp(xtiβ). Using the root-transformation, explain that an approximation to the

Poisson model is to take Zi = 2Y
1/2
i ∼ N(2µ

1/2
i , 1), and that ML estimation in that

model corresponds to minimum least squares, minimising Qn(β) =
∑n

i=1(Zi − 2µ
1/2
i )2

with respect to the β. This is a nonlinear regression model. Carry out this for the birds

on islands data of Story iv.6, with µi = exp(β0+β1xi,1+β2xi,2). Compute ML estimates

in the transformation model, and compare these to those from the Poisson. Compute

also approximate standard errors for the ML, and again compare to those computed via

the Poisson model.

(c) Various tools for normality based models make it easier to test aspects of modelling

assumptions and to build certain extensions. One natural task here is to check that the

Zi above really have variance 1, as they ought to have if the Yi are pure Poisson, against

the alternative that the model Zi ∼ N(2µ
1/2
i , σ2) fits better with σ > 1. This is another

way to assess overdispersion. (xx ask for a CD C(σ), for σ ≥ 1. xx) Comment also on

other possibilities for modelling the birds data, using normality tools for the transformed

data.

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)

(xx will come back to this, how to set it up. not many, but some notes, to the stories

told in this chapter. xx)

(xx for Story iv.1, mention also Dagsvik et al. (2020). xx)
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(xx re Poisson, but we either drop it or say something more to the point. about

deaths from horse-kicks in the Prussian army, see von Bortkiewicz (1898, p. 23–25), the

section on ‘Die durch Schlag eines Pferdes im preussischen Heere Getöteten’. perhaps

the poisson should be called the von Bortkiewicz distribution. xx)



II.v

Sports

(xx WELL: lots of things to clean, as of 12-August-2024. a partial nils todo list includes:

(i) set up the iiccff things in Ch7 properly, then do median cc to log-likelihoods and

produce cc for x∗0. (iii) CD for shock probability p(a, σ). (iv) round off inner-outer,

with CD for τ , variation among the dj . (v) could throw in the handball match wathing

poisson things, mostly probability, not much statistics. (vi) the golf story. xx)

Story v.1 Bolt from heaven. On 31 May 2008, Usain Bolt burst upon us, with his first

world record, 9.72. How surprised were we? To approach that question, along with those

which followed as the Bolt From Heaven did 9.69 (August 2008) and then 9.58 (August

2009), we compare the 9.72 performance with the n = 195 sub-10.00 races of 2000–2007;

these are given in data description 2.B (xx check that data description says these are

bona fide races; dopers pushed out of dataset xx).

(a) To readily access a body of literature on extreme values theory, see e.g. Embrechts

et al. (1997), we transform these race times ri to yi = 10.005− ri. Such theory predicts

that the yi should follow the distribution

G(y, a, σ) = 1− (1− ay/σ)1/a for y > 0,

for parameters (a, σ). Show that the log-likelihood function takes the form

ℓ(a, σ) =

n∑
i=1

{− log σ + (1/a− 1) log(1− ayi/σ)}.

Fit the model, which should give ML estimates (â, σ̂) = (0.1821, 0.0701), and produce a

version of Figure v.1. As we see, the model works very well. Via log-likelihood profiling,

produce also confidence curves cc(a) and cc(σ) for the two parameters; see Ex. 7.9.

(b) For a season with N top races, below the Hary threshold 10.00, consider p =

p(a, σ,N) = Pr(max(Y ′
1 , . . . , Y

′
N ) ≥ w). With N being a Pois(λ), show that the prob-

ability of seeing a race r with y = 10.005 − r ≥ w, in the course of a new season,

is

p = p(a, σ) = 1− exp{−λ(1− aw/σ)1/a}.

557
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Figure v.1: Left panel: all the 195 sub-Hary races achieved during the eight seasons

2000 to 2007, along with the new word record 9.72 ran by Bolt in May 2018. Right panel:

the empirical distribution function (black, rugged) for these 195 races, along with the

fitted two-parameter distribution from extreme values theory.

(c) Use λ = 195/8 = 24.375, the rate of top races per year. For each threshold w we may

estimate p(a, σ). With w = 10.005− 9.72 = 0.285, for 31 May 2008, compute p̂ = 0.035;

the estimated probabiity of seeing a 9.72 or better in the course of 2008, as judged from

1 January 2008, was 3.5 percent.

(d) It turns out that the delta metod for assessing the variability of p̂ = p(â, σ̂) here

does not work so well, even though (â, σ̂) is approximately binormally distributed. In

spite of the sample size n = 195, the function p(a, σ) is not well approximated by a linear

function around the ML position. What works better is the Wilks theorem and the

associated CD methods, as with Ex. 7.9. This requires computation of the log-likelihood

profile function

ℓprof(p0) = max{ℓ(a, σ) : p(a, σ) = p0}

for a grid of p0 values. To this end, show that p(a, σ) = p0 entails σ = aw/(1− (α0/λ)
a),

with α0 = − log(1 − p0), leading to an easier one-dimensional optimisation problem,

for each p0. Compute the log-likelihood profile and use the Wilks theorem recipe to

produce the confidence curve cc(p0), as with Figure v.2, left panel. On the percentage

scale, the point estimate is 3.4 and the 90 percent interval is [0, 18.9]; note the skewness.

Carry out similar analysis for Bolt’s 2008 Olympics race of 9.69, and transform estimates

and confidence to the shock barometer scale of 100(1 − p), as with the figure’s right

panel. His 9.58 in Berlin August 2009 really shattered the scale, being very close to

being unbelievable, as seen from January 2008 (but then we had shifted our scales of

expectation).



Sports 559

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p0

co
nf

id
en

ce

75 80 85 90 95 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

shock barometer, 9.72 and 9.69

co
nf

id
en

ce

Figure v.2: Left panel: confidence curve for the probability p of seeing a 100 m race

with 9.72 or better, as judged by the start of the 2008 season. The point estimate is 3.4

percent, but the distribution is rather skewed; the 90 percent interval for p is [0, 18.9] on

the percentage scale. Right panel: the p probability transformed to the shock barometer

scale 100(1−p), with confidence curves both for 9.72 and 9.69; we were even more shocked

by his Olympics 2008 race, with p estimated at 0.7 percent, 90 percent confidence interval

[0, 10.8] percent, and shock barometer 99.2. His Berlin 2009 race of 9.58 is measured to

be perfectly Beamonesque, on this scale.

Story v.2 Golf putting probabilities. You’re golfing, and when closer to the hole than

some twenty feet need to focus on your putting. Drawn from databases of several hun-

dreds of professional tournaments, the data below, from Gelman and Nolan (2002) with

further discussion in Schweder and Hjort (2016, Ch. 14), give the number mj of at-

tempts and the number yj of successful ones from these, at distances xj , in feet, for

say j = 1, . . . , k. Our story concerns estimating the success probability p(xj), and also

modelling the inherent variability at work. See Figure v.3, left panel, which in particular

also displays the raw estimates p̃j = yj/mj , with small vertical 90 binomial confidence

intervals around them. It will be of relevance for a few of these models to factor in the

radii R for the hole and r for the ball, which are respectively 4.252/2 inches and 1.680/2

inches, or 0.0177 and 0.070 on the foot scale.

feet away; number of tries; number of successes

11 237 75

2 1443 1346 12 202 52

3 694 577 13 192 46

4 455 337 14 174 54

5 353 208 15 167 28

6 272 149 16 201 27

7 256 136 17 195 31

8 240 111 18 191 33

9 217 69 19 147 20
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Figure v.3: Left panel: the raw success estimates p̃j = yj/mj at distances 2, 3, . . . , 20

feet from the hole, along with small vertical 90 percent binomial intervals. The full curve

is the fitted p(xj , a, b) with the geometric model, and the dashed curve is the simple

logistic regression curve. Right panel: confidence curves cc(x0), the distance at which

the putting probability is p0 = 0.50, 0.25 (from left to right), with the good two-parameter

geometric x0(a, b) model (full curves, black) and the not so good one-parameter x0(σ)

model (slanted, red).

(a) We start out viewing the data as a sequence of independent binomial experiments,

with Yj ∼ binom(mj , pj) for j = 1, . . . , k. The task is to model p1, . . . , pk, as functions of

the distances x1, . . . , xk to the hole. Show that with any such model, say pj = p(xj , θ),

the log-likelihood function becomes
∑k

j=1[yj log pj(θ) + (mj − yj) log{1− pj(θ)}]. Carry
out logistic regressions, in x (order one); in x, (x− x̄)2 (order two); in x, (x− x̄)2, (x− x̄)3
(order three); in x, (x − x̄)2, (x − x̄)3, (x − x̄)4 (order four). As usual, x̄ is the mean of

the xj . For each of these models, estimate and plot the curves

p1(x) = H(a+ bx) up to p4(x) = H(a+ bx+ c(x− x̄)2 + d(x− x̄)3 + e(x− x̄)4).

This can be achieved in R via glm(cbind(y,m-y) ∼ x + x2 + x3, family=binomial),

and so on; for this standard type of model there is then no need to programme the log-

likelihood function etc. For the four models, find the log-likelihood maxima and AIC

scores, as per Chapter 11. In particular, you should find that the most traditional order

one model does not work well here, and that AIC prefers the order four model among

these.

(b) Considering the population of good golfers, and disregarding other geometric aspects

of these thousands of putting situations, let Z be the angle of the put, from putting

position to the hole. Not all attempts are perfect (Z close to zero), so we can translate



Sports 561

uncertainty and variability to a distribution of the random angle Z. In terms of such a

distribution, show that to a good geometric approximation,

p(x) = Pr(sinZ ∈ (−(R− r)/x, (R− r)/x)) for x ≥ R− r.

A natural model for the random angles is a normal (0, σ2). Fit the resulting model

p(xj , σ) = Pr(σN ∈ (−dj , dj)) for j = 1, . . . , k,

with N denoting a standard normal, and where we write dj = arcsin((R − r)/xj) for

the bounds inside which successful putting angles must land at distance xj . Compute

the log-likelihood maximum, and compare with the logistic regressions above, using the

AIC scores. In particular, demonstrate that this simple geometric one-parameter model

works better than logistic regressions of order one and two.

(c) (xx a little bit more with simple p(xi, σ) model before we go to variable σ. show that

it works much better than standard first order two-parameter logistic regression; see also

Figure v.3. check σ̂1, . . . , σ̂k, fitted at the individual xj . Can the σ̂j reasonably be taken

as constant, across putting distances? can have a simple figure. xx)
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Figure v.4: Left panel: the estimated density for σ, on the scale of ordinary degrees

(i.e. 90/(π/2) times radians). The point estimate 1.53 from the no-variability model is

shown on the horizontal axis. Right panel: the estimated density of putting angles, again

in ordinary degrees.

(d) The simple model above somehow puts all angular uncertainty into one common σ.

It might be better and more informative to view these σ as coming from a distribution,

across golfers. There are several such possibilities, starting with Z |σ ∼ N(0, σ2), but

here we take σ2 to have an inverse gamma distribution, i.e. λ = 1/σ2 ∼ Gam(a, b); the

model is flexible, and we can get through the mathematics to an explicit distribution for
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Z. Writing g(·, a, b) for that gamma density, show that this leads to a density for the

random Z of the form

f̄(z) =

∫ ∞

0

ϕ(λ1/2z)λ1/2g(λ, a, b) dλ =
1

(2π)1/2
Γ(a+ 1

2 )

Γ(a)

ba

(b+ 1
2z

2)a+1/2
.

While this may be worked with directly, it is useful to transform the density to a member

of the well-known distributions, to facilitate computations of probabilities etc. Show

therefore that

V = ( 12Z
2/b)/(1 + 1

2Z
2/b) ∼ Beta( 12 , a),

and express the c.d.f. of Z in terms of the c.d.f. Be of this Beta distribution. Demonstrate

that all this leads to the model

p(xj , a, b) = Pr(|Z| ≤ dj) = Be(( 12d
2
j/b)/(1 +

1
2d

2
j/b),

1
2 , a) for j = 1, . . . , k.

Fit this model numerically, maximising the log-likelihood function; you should find

(â, b̂) = (2.8498, 0.00154). Compute also the log-likelihood maximum, and demonstrate

that this two-parameter model has the best AIC score of the four plus two models con-

sidered (so far).

(e) Compute and display the estimated densities for σ, the variable normal scale for the

putting angle, and for Z, the putting angle itself. Since most golfers prefer standard

angular degrees to radians, present these densities on the degree scale z′ = 90/(π/2) z =

(180/π) z. Construct versions of the plots in Figure v.4. With Z the random angle,

use these fitted densities to demonstrate that 95 percent of all putting angles are inside

±3.30 degrees, and 99 percent are inside ±5.05 degrees. Note that this signifies rather

heavier tails than for the normal; in a fair proportion of cases, the shot is off with more

than say 4 degrees, which is enough to not hit the hole.

(f) It does perhaps not appear likely, but we may check statistically whether this popu-

lation of players might have some systematic angular bias in their putting. The simplest

check on this is to use the two-parameter normal Z ∼ (ξ, σ2). Compute and display

the profiled log-likelihood ℓprof(ξ). It will indeed be seen to be very flat at the top,

around zero, with no indication of such a bias. (xx point to previous stuff perhaps in

Ch1 regarding noise in ξ being picked up in the σ. xx)

(g) We have models for p(x), the putting probability at distance x feet. This may be

turned around to estimate the x0 distance at which p(x0) equals some fixed p0, along with

its uncertainty; for the right panel of Figure v.3, we’ve used p0 = 0.25, 0.50. For the one-

parameter geometric model, show that p(x, σ) = Γ1(d(x)
2/σ2), with d(x) = arcsin((R−

r)/x), and derive the expression x0(σ) = (R − r)/ sin(a0σ), where a0 = Γ−1
1 (p0)

1/2.

The task is then to compute ℓn,prof(x0), for conversion to a confidence curve cc(x0),

via the Wilks theorem based recipe of Ex. 7.9. Carry out this. The two-parameter

geometric model is more involved, but should be better, by the discussion above. Solve

p(x, a, b) = p0 to find

x0(a, b) =
R− r

sin(ω1/2)
, with ω = 2b

Be−1(p0,
1
2 , a)

1− Be−1(p0,
1
2 , a)

.



Sports 563

5 10 15 20

−
4

−
2

0
2

distance in feet

m
od

el
 r

es
id

ua
ls

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

probability of ball in hole

de
ns

iti
es

Figure v.5: Left panel: model residuals (yj−mj p̂j)/{mj p̂j(1− p̂j)}1/2, for two-parameter

geometric model (full black), simple geometric model (dotted), and for the third-order

logistic model (dashed). These indicate good fit, but overdispersion. Right panel: at

distances x equal to 3, 10, 20 feet, the Beta-binomial model leads to probability densities,

centred around respectiely 0.701, 0.322, 0.165. The strict binomial models take these

probabilities as fixed, for all golfers at a fixed distance from the holw.

To compute the confidence curve, via the Wilks based recipe, we need the log-likelihood

profile function, ℓn,prof(x0) = max{ℓn(a, b) : x0(a, b) = x0}. Show how this can be done

my reducing the maximisation to a one-dimensional task, by expressing b in terms of a:

b(a) = 1
2

{arcsin((R− r)/x0)}2

Be−1(p0,
1
2 , a)/(1− Be−1(p0,

1
2 , a))

.

Carry out all this, for p0 = 0.25, 0.50, to arrive at a version of Figure v.3, right panel,

and comment on in which ways the two-parameter model gives different results from the

one-parameter one. With your code, you may also experiment with lower probabilities,

like 0.10 or 0.05, to see how far away the professional golfers are, where only one in ten

or one in twenty succeed.

(h) (xx we do one more thing. binomial overdispersion. point to Story i.2. xx) There is

another tool for assessing and comparing model adequacy, with such data for a collection

of tables, which is to monitor the model residuals r̂j = (yj − p̂j)/{mj p̂j(1 − p̂j)}1/2
for j = 1, . . . , k, with p̂j that model’s implied estimates of the pj . If the model is

adequate, explain why these should be distributed approximately as standard normals;

also, the residual sum of squares Q =
∑k

j=1 r̂
2
j should roughly have a χ2

df distribution,

with df = n− p, where p is the number of parameters estimated. Compute and display

these residuals, for the models entertained so far; see the left panel of Figure v.5. It will

be seen that even when the fitted p̂j manage to be close to the raw estimates yj/mj ,

there is binomial overdispersion; the (yj −mj p̂j)
2 tend to be bigger than mj p̂j(1− p̂j).
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(i) The modelling and analyses above rest on the binomial assumption, for each yj and

position xj , which means relying on all shots having the very same success probability

pj . This is not entirely realistic, as seen via the model residuals in the previous point.

This invites modelling an extra little layer of uncertainty in pj around some central value

pj,0. A natural way for this is the Beta-binomial setup, see Ex. 1.21, with yj | pj ∼
binom(mj , pj), but pj ∼ Beta(cpj,0, c(1 − pj,0)). In other words, we use one of the

parametric models for pj,0, but then estimate the additional variability via c. Show that

the log-likelihood becomes

k∑
j=1

log
[ Γ(c)

Γ(cp0,j(θ)) Γ(c(1− p0,j(θ)))

Γ(cp0,j(θ) + yj) Γ(c(1− p0,j(θ)) +mj − yj)

Γ(mj + c)

]
.

Analyse this binomial overdispersion model, for the case of the simple geometric pj(σ) =

2Φ(dj/σ) − 1 model, by maximising the log-likelihood over (σ, c). Show that the log-

likelihood maximum increases very significantly, from the one-parameter binomial based

to the two-oarameter overdispersion model. This does not necessarily influence the es-

timated overall curve p(x), but aims at describing the probability mechanisms much

better, e.g. for prediction. (xx can ask for a figure to complent the first. instead of

binomial based 90 percent intervals around yj/mj , give 90 percent intervals induced by

the estimated beta-binomial model. xx) (xx we might give a little table, for models 1, 2,

3, 4, then 5, 6, 7, with logLmax, AIC, Q. xx)

dim logLmax aic Q

1 2 -3020.155 -6044.309 258.968 logistic order 1

2 3 -2929.041 -5864.082 74.356 logistic order 2

3 4 -2912.873 -5833.745 40.743 logistic order 3

4 5 -2904.889 -5819.778 25.288 logistic order 4

5 6 -2904.365 -5820.731 24.337 logistic order 5

6 1 -2922.639 -5847.279 62.436 one-para geometric

7 2 -2911.589 -5827.178 36.741 geometric with extra

8 2 -2910.926 -5825.852 71.528 two-para Beta-binomial

Story v.3 NBA three point shooting averages. The last few years have seen a revolution

in basketball, where teams depend more and more on the three point shot. This has

been due to an analytics revolution in professional basketball, and also the impact of

Stephen Curry, the three point expert and point guard for the Golden State Warriors of

the National Basketball Association (NBA). NBA-players are regularly traded between

different teams, both during the season (up until the trade deadline), and during the off-

season. If you are looking to add a player to your team that can deliver from behind the

arc, as they say, you would naturally base your decision on the past shooting of various

players. In this story we investigate various ways of predicting future shooting based on

past shooting. In particular, we are going to consider the 2018-2019 season, and use the

shooting percentages from the first half of the season, to predict shooting percentages in

the second half of the season. The dataset NBAthrees20182019wdate.txt contains the

three point attempts, the three points made, and the minutes played, in each game, for

each of the 530 players active during the 2018-2019 NBA season. Many thanks to the

excellent website basketball-reference.com/ for making these data available!

https://www.basketball-reference.com/
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Figure v.6: Game-to-game three point shooting percentages of eight NBA players during

the 2018–2019 season. The dark green lines indicate the three point percentage of the 41

first games of the season, while the bright green lines indicates the three point percentage

of the 41 latter games of the season. The playoffs are not included. The games at which

there is no blue line are games in which the player did not play, or did not attempt a

single three point field goal.

An NBA regular season (usually) consists of each team playing 82 games. We split

the season in the first 41 and the last 41 games of the season, and refer to these as the

first and second half of the season. For player i, let H1,i and H2,i be the total number of

three point makes in the first and second half of the season, respectively, and similarly,

let N1,i and N2,i be the total number of three point attempts in the two halves of the

season.

We restrict our analysis to the players with 100 or more three point attempts in the

two halves of the season. Therefore, let Sj = {i : Nj,i ≥ 50} for j = 1, 2.

Conditionally on Nj,i ≥ 1, we take Hj,i ∼ binom(Nj,i, pi). This means that for the

ith player the true three point hit rate pi is taken as constant over the entire season.

(a) The estimators we develop are going to be based on theory for normally distributed

data, as worked with in Ex. 8.17, for example. Our first task is therefore to find a decent

variance stabilising transformation. Show that 2 arcsin
√
Hj,i/Nj,i is one such.

(b) A class of variance stabilising transformations is given by

Y (c) = 2arcsin
( H + c

N + 2c

)1/2
, for c > 0.
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Figure v.7: Simulation estimates of the bias EY (c) − 2 arcsin
√
p for c0, c = 1/4, and

c = 3/8.

Show that VarY (c) = 1/N +O(1/N2) and that

EY (c) = 2arcsin
√
p+

1− 2p√
p(1− p)

N2(4c− 1)

4(N + 2c)3
+O(1/N2).

From this expression we see that c = 1/4 gives us good control of the bias, in that

EY (1/4) = 2arcsin
√
p+O(1/N2).

(c) Show that with c = 3/8, the variance is VarY (3/8) = 2/(4N + 2) + O(1/N3). [xx

point to Anscombe 1948 xx].

(d) Reproduce the plot in Figure v.3. [xx more text xx]

(e) In view of Figure v.3 we choose c = 1/4 as our transformation, write Y = Y (1/4), and

proceed as if Yj,i ∼ N(θi, σ
2
j,i) are independent random variables, where θi = 2arcsin

√
pi,

and σ2
j,i = 1/Nj,i. The sum of squared prediction error of the estimator δ = {δi : i ∈ S1}

is defined by

sspe(δ) =
1

|S1 ∩ S2|
∑

i∈S1∩S2

(δi − Y2,i)
2.

where |S1 ∩ S2| is the number of i in S1 ∩ S2. Show that

r̂isk(δ) = sspe(δ)− E sspe(θ),

is an unbiased estimator of risk(δ) = E
∑

i∈S1∩S2
(δi−θi)2. In the following, all estimators

are compared with the näıve estimator δ0(Y1) = Y1, using

r̂r(δ) =
r̂isk(δ)

r̂isk(δ0)
(v.1)
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(f) An estimator that is even more simple than δ0 is the overall mean Ȳ1 = |S1|−1
∑

i∈S1
Y1,i.

This is also the estimator that, in a sense, gives the maximal shrinkage. Find an expres-

sion for risk(Ȳ1, θ), and compute r̂r(Ȳ1).

(g) A parametric Bayes model is the one where θi ∼ N(µ, τ2) are independent, and

Y1,i | θi ∼ N(θi, σ
2
1,i), for i = 1, . . . , |S1|,

are independent. Show that the Bayes solution under squared error loss is

θi,Bayes = µ+
τ2

τ2 + σ2
1,i

(Y1,i − µ). (v.2)

This is the pure Bayes solution in the sense that the hyper-parameters µ and τ2 are sub-

jectively chosen, hopefully by a basketball connoisseur. If you are no such, an empirical

Bayes approach might be a more viable option.

(h) The empirical Bayes approach consists of estimating µ and τ2 from the data, then

replacing µ and τ in (v.2) with these estimates. There are several sensible estimators for

these parameters. In the following we consider three such. Show that the marginal of

Y1,i is N(µ, τ2 + σ2
1,i), and solve the system of equations,

EY1,i =
1

|S1|
∑
i∈S1

Y1,i,
1

|S1|
∑
i∈S1

EY 2
1,i =

1

|S1|
∑
i∈S1

Y 2
1,i,

to find the method of moments estimators µ̃ and τ̃2, say. Compute r̂r(δmom), where

δmom,i = µ̃+
τ̃2

τ̃2 + σ2
1,i

(Y1,i − µ̃).

(i) The method of moments type estimators µ̃ and τ̃2 that you derived above might

not be the most clever ones. First, µ̃ weighs the data points equally, even though their

variances differ. Second, the estimator τ̃2 might be negative. Another set of estimators

are those that solves the system of equations given by

µ̆ =

∑
i∈S1

Y1,i/(τ̆
2 + σ2

1,i)∑
i∈S1

1/(τ̆2 + σ2
1,i)

, τ̆2 =
1

|S1|
∑
i∈S1

(Y1,i − µ̆)2 − 1

|S1|
∑
i∈S1

σ2
1,i.

You can find the estimates by implementing an iterative procedure in you programming

language. Implement such a procedure, and compute rr(δ̆), where δ̆ is the estimator

in (v.2) with µ̆ and τ̆2 inserted.

(j) The final estimator we consider is also an empirical Bayes estimator, but this time

starting with a non-parametric prior for the θi. Let θi ∼ F be independent, where F is

a distribution on the real line. Show that the Bayes solution under squared error loss is

θF,i =

∫
θiϕ((Y1,i − θi)/σ1,i)F (dθ)∫
ϕ((Y1,i − θi)/σ1,i)F (dθ)

,
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Estimator r̂r(δ)

deltabar 0.4820

MoM0 0.3020

MoM1 0.3286

MoM2 0.3285

ML 0.3169

JS 0.3276

JShet 0.2957

Table v.1: Risk reduction relative to the estimator δ0 for xyz estimators. The statistic

r̂r(δ) is defined in (v.1).

where ϕ(z) = exp(−z2/2)/
√
2π is the standard normal density. Show also that the Bayes

solution can be expressed as

θF,i = Y1,i + σ2
1,i

∂g(y)/∂y
∣∣
y=Y1,i

g(Y1,i)
,

where g(y) is a density function, a fact of which you should convince yourself.

(k) [xx something about estimating g using Ch. 12 nonparametric density estimation

methods xx]

(l) [xx Simulations. xx]

(m) [xx predict three point shooting in the second half of the season. Fix Table v.1

below xx]

Story v.4 Olympic Unfairness I: Inner and outer for 1000 m speedskating. (xx again,

nils-emil need to finetune balance between what is in dataoverview and what counts as

intro here. Data in 2.B. analysis of the olympic unfairness parameter d, in a sequence of

World Championships. cc(dj), and combined, using Schweder and Hjort (2016); Cunen

and Hjort (2022). nils ranting on before polish and editing. aiming towards Figure v.9,

left and right panels. from sporskating18 com9* and com10*. Obviously the xxxx seconds

estimated advantage is an overall figure across both events and skaters, and different

skaters handle the challenges differently. Among those having already commented on the

potential difference between inner and outer conditions are four Olympic gold medallists

in their autobiographies (Holum, 1984; Jansen, 1994; Le May Doan, 2002; Friesinger,

2004). Dianne Holum, op. cit. page 225, rather clearly blames starting in the outer on

her Sunday 1000 m for losing the world championship to Monika Pflug. xx) This story

concerns the 1000-m speedskating race, raced in Winter Olympics since 1976, as part

of the annual World Sprint Championships since 1970, and in the annual World Single

Distances Championships since 1996. (xx point to: only one race in Olympics, but two

races in World Sprint. medals easily change necks, so d̂ = 0.12 is a significant figure.

travelling 15 m per second means 1.5 m difference if your opponent has a 0.1 second

advantage. xx) As one either knows, via correct cultural upbringing, or by studying the
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geometry of Figure v.8, this two-and-a-half-lap race is more asymmetric than for the

other Olympic distances (500-m, 1500-m, 5000-m, 3000-m for ladies, 10000-m for men).

If you start in inner, you’ll have in in out out in before you cross the finishing line,

whereas your compatriot in the race will have out out in in out. Ideally, of course, there

should be no noticeable difference between starting in inner or outer, as 1000 m is 1000

m. There are two reasons casting some doubt on this Fairness Hypothesis, however: (i)

a start in inner gives a longer straight stretch when building up to maximum speed of

above, 55 km/h; and (ii) the last outer is a heavier burden on an athlete’s aching body,

after nearly a minute at such top speed.

Figure v.8: The rink, where we in this story focus on the two-and-a-half lap 1000-m

race.

So, though an Olympic or World Championship 1k certainly can be won by a top

skater starting in the outer lane, many prefer and hope for being blessed by starting in

the inner lane. That’s the Olympic Question we’ll be addressing below, whether there is

a perhaps slight but statistically and Olympically significant difference at work. In that

case, it should not and cannot be expected to work in the same way, for all skaters, from

occasion to occasion. Rather, we’re after a statistical average-across-skaters parameter,

say

d = average time lost by starting outer compared to if you could have started inner,

which by its nature is small, i.e. close to zero; if it had not been small, it would have been

detected and agreed upon since the 1970ies. To make such a d parameter well defined,

and identifiable and estimable from data, we need relevant good-quality data, along with

a proper statistical model. Again, the d looks a bit counterfactual, and can’t easily be

assessed from results for one given race; also, its value (when we find it, below) doesn’t

apply to all skaters; rather, it’s an average-across-top-skaters value (in well executed

races without falls or mishaps).

(a) (xx nils decides on one particular WCh Sprint dataset to work through first, before

becoming meta. before we come to the full mixed-effects model, we do simple things.
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Figure v.9: Left panel: estimated unfairness parameters d̂j , along with 95 percent confi-

dence intervals, for the World Championships 2001 to 2022 (with no such event for 2021).

The y scale is in seconds, and the overall estimate (xx checkit xx) d̂ = 0.156 is a big

one on the Olympic scale. Right panel: confidence curves for the individual unfairness

parameters dj , along with a meta-analysis confidence curve cc(d0) for the overall mean

of all the dj .

simple regression y1 on z1 and y2 on z2, show that this is about the same as t-testing the

inner vs. the outer group; not powerful. better with the pretty informative differences,

Di = y2,1 − y1,i, regress on zi, or on easy covariates like ui,2 − ui,1, vi,2 − vi,1, and inner-

outer. this works, but is less precise than using the seven-parameter model. also do

wilcoxon, or even wilcoxon with parameter. xx) i think i for WCh Sprint 2020, Hamar,

Feb 28-29:

day one day two

200 600 finish 200 600 finish

1 T Shinhama o 16.12 41.30 68.28 i 16.12 41.46 68.71

2 L Dubreuil o 16.42 41.33 68.79 i 16.29 41.21 68.39

3 MK Cha i 16.44 41.60 69.26 o 16.24 41.09 68.73

4 K Verbij o 16.71 42.04 68.96 i 16.81 42.09 68.75

5 HH Lorentzen o 16.79 42.18 68.95 i 16.74 42.05 68.84

6 Y Matsui i 16.44 41.77 68.69 o 16.51 41.98 69.89

and onwards

(xx still ranting on, will be shortened and cleaned. xx) We may do better, how-

ever, by building a coherent statistical model for the (y1, y2), incorporating all relevant

information, from 200- and 600-passing times to the variability structure (which should

encompass both day-to-day variation and skater-to-skater variation), and, crucially, the

inner-outer-information. Our considered model takes this form, for 1st race and 2nd race
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results (yi,1, yi,2) for skater no. i:

yi,1 = a1 + bui,1 + cvi,1 +
1
2dzi,1 + δi + εi,1,

yi,2 = a2 + bui,2 + cvi,2 +
1
2dzi,2 + δi + εi,2,

(v.3)

with (ui,1, ui,2) passing times after 200 m, (vi,1, vi,2) passing times after 600 m; δi a

parameter following skater i, modelled as from a N(0, κ2) distribution, and (εi,1, εi,2)

are independent error terms, from a N(0, σ2) distribution. Crucially, the inner-outer

information is taken care of via (zi,1, zi,2), with z = −1 if start in inner and z = 1 if start

in outer. If d = 0.08, for example, it means a time adjustment of −0.04 seconds for the

inner guy (good) but +0.04 for the outer guy (bad).

The race-to-race variation is in the εi,j , identified with the σ, whereas the skater-

to-skater variation is in the δi, identified with the κ. A splendid skater has a negative δi
(and a not-so-splendid skater has a positive δi), though we do not attempt to estimate

it directly, for each skater, only through the variation among skaters. It is furthermore

practical to slightly modify the variables here, by subtracting overall means for ui,1
and ui,2 in their definitions, and similarly for the vi,1 and vi,2; this eases interpretation

and also helps stabilise numerics. In particular, a1 and a2 may now be seen as the

overall expected levels on the 1st and 2nd day of the competitions. Parameters b, c, d

are regression structure parameters, signalling the effect of u and v and z on the overall

results, whereas κ and σ relate to variability and inter-skater correlation.

(b) (xx building the mixed effects model; interpreration of parameters. xx) The model

has both fixed effects, related to the a1, a2, b, c, d parameters, and random effects, via

the skater-parameter δi. We use a1 for race 1 and a2 for race 2, since racing conditions

might differ, in terms of temperature, humidity, etc. (and wind, if outdoor). The model

thus have seven parameters, and may also be represented as

yi =

(
yi,1
yi,2

)
∼ N2(xiβ,

(
σ2 + κ2, κ2

κ2, σ2 + κ2

)
)

for skaters i = 1, . . . , n, with β = (a1, a2, b, c, d)
t and with the appropriate 2×5 covariate

matrix

xi =

(
1, 0, ui,1, vi,1,

1
2zi,1

0, 1, ui,2, vi,2,
1
2zi,2

)
(c) Given the combined considerable efforts of the skaters sprinting away in a World

Sprint event, we can now fit and assess the model, and, in particular, learn whether the

world was unfair then, by seeing if d was close to zero or not. (xx below: direct difference

estimator, which is ok, but not the sharpest precision. then full seven-parameter model,

used even though our primary interest lies with only one of these, the d. its precision.

profiling for ρ = κ2/(σ2 + κ2), the interskater correlation, of separate interest. then

cc()., for one championships event at the time, followed by meta-analysis, combining

cc(dj) across several championships. include our wilcoxon ranksum model. xx) With

ρ = κ2/(σ2 + κ2) the intraskater correlation, write

Σ =

(
σ2 + κ2, κ2

κ2, σ2 + κ2

)
=

σ2

1− ρ

(
1, ρ

ρ, 1

)
,
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and show via the binormal model that the log-likelihood function may be written

ℓ(β, σ, ρ) = −2n log σ − 1
2n log

1 + ρ

1− ρ
− 1

2

1

σ2

Q(β)

1 + ρ
,

with

Q(β) =

n∑
i=1

(yi − xtiβ)
t

(
1, −ρ
−ρ, 1

)
(yi − xtiβ) = Q1(β) +Q2(β)− 2ρQ3(β),

in which Q1(β) =
∑n

i=1(yi,1 − xti,1β)
2, Q2(β) =

∑n
i=1(yi,2 − xti,2β)

2, and Q3(β) =∑n
i=1(yi,1 − xti,1β)(yi,2 − xti,2β). Show also that there is an explicit minimiser of Q(β),

for a given ρ, namely

β̂(ρ) = {M1,1 +M2,2 − ρ(M1,2 +M2,1)}−1{S1,1 + S2,2 − ρ(S1,2 + S2,1},

where Mu,v = (1/n)
∑n

i=1 xi,ux
t
i,v are 5× 5 matrices and Su,v = (1/n)

∑n
i=1 xi,uyi,v are

5-vectors, for u, v = 1, 2.

(d) Regarding σ, show also that the log-likelihood for given ρ is maximised by

σ̂2(ρ) =
1

1 + ρ

Q(β̂(ρ))

2n
.

Explain how all of this reduces the numerical optimisation to a one-parameter problem,

that of maximising the profiled log-likelihood

ℓprof(ρ) = ℓ(β̂(ρ), σ̂(ρ), ρ) = −n log{Q(β̂(ρ))/2n}+ 1
2 log(1− ρ2)− n.

The main focus of the story is to reach inference for the d parameter, for each event

with ensuing meta-analysis for a list of events, but take time to explain how the profiled

log-likelihood gives rise to estimates and confidence curves for ρ. (xx also mention: can

maximise the seven-parameter log-likelihood numerically, but numerics work better via

this profiling over ρ and then reading off the rest via formulae; also, we get cc(ρ) via

wilks etc. xx)

(e) We spend a few extra efforts on estimating σ precisely, since this matters when

assessing the precision of the main regression coefficients a1, a2, b, c, d. Assume for a

minute that ρ is known. Show that β̂(ρ) is normal, unbiased, and with covariance matrix

(1/n)σ2(1 + ρ)M−1
ρ , where Mρ =M1,1 +M2,2 − ρ(M1,2 +M2,1). Show also that in fact

2nσ̂2(ρ)/(1 + ρ) = Q(β̂(ρ))/(1 + ρ) ∼ 2σ2χ2
2n−p,

with p the number of parameters in the β, with Q(β̂(ρ)) independent of β̂(ρ). Argue

that this invites the unbiased estimator

σ̂2
un =

1

1 + ρ̂

Q(β̂(ρ̂))

2n− p
=

2n

2n− p
σ̂2.

It is slightly larger than σ̂2, to take estimation variability of the p regression coefficients

into account. We similarly use κ̂2un = σ̂2
unρ̂/(1− ρ̂) as a sample-sized adjustment for the

ML estimator. These arguments are not disturbed by the insertion of ρ̂ for ρ, since ρ̂ is

approximately independent of β̂ = β̂(ρ̂), as we show next.
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(f) We already have a clear strategy for estimating d, and are now closing on the required

extra pieces of knowledge and algorithms required to assess its precision (and yes, we need

to work with the full seven-parameter model in order to reach precise inference for this

tiny focus parameter). Show that the Fisher information matrix for the seven-parameter

model becomes

J =

Mρ/{σ2(1 + ρ)}, 0, 0

0, 4/σ2, 2/{σ(1− ρ2)}
0, 2/{σ(1− ρ2)}, 2/(1− ρ2)2

 .

Explain that all of this, via general likelihood theory of Ch. 5, leads to approximate

normality Np(β, (σ
2/n)(1 + ρ)M−1

ρ ) for β̂, and, in particular, that

d̂ ≈d N(d, (1/n)σ2(1 + ρ)k(ρ)),

say, with k(ρ) the lower-right element of Mρ. Use all of this to go through some or all

of the World Sprint Championships 2001 to 2022, producing estimates and confidence

intervals, leading to Figure v.9. (xx round off sentence. xx)

(g) (xx then need to tend to outlier identification too, to make our Olympic level results

statistically robust. motivate these outlier tests. xx)

ti,1 = {yi,1 − (â1 + b̂ui,1 + ĉvi,1 +
1
2 d̂zi,1)}/(σ̂

2
un + κ̂2un)

1/2,

ti,2 = {yi,2 − (â2 + b̂ui,2 + ĉvi,2 +
1
2 d̂zi,2)}/(σ̂

2
un + κ̂2un)

1/2.

These should be like realisations from an approximate standard normal. We judge a

skater to have a result above normal bounds, and exclude him or her from the final

analysis, if either of these two are above 2.50. We do however allow unusually good

results to remain, so an exceptional result associated with an unusually low ti,1 or ti,2 is

kept in the analysis.

(h) (xx on to final primary interest analysis. first simple, assuming all dj are the same

d, across events, with each d̂j having a N(d, σ2
j ). then straight meta-analysis. xx) Do all

of this, event for event, including care with outliers. Set up a table of d̂, with estimated

standard deviation, for each event. do also cc(ρ), since this is of contextual relevance,

the relative stability from day one to day two for the skaters.

(i) (xx then more complex meta-analysis, taking on board that the underlying dj may

not be identical, but exhibit a certain variation across events. so this is dj ∼ N(d0, τ
2),

leading to d̂j ∼ N(d0, τ
2 + σ2

j ). first do a CD for τ . then arrive at Figure v.9 (right

panel), with many individual ccj(dj), along with the final cc∗(d0). xx)

Story v.5 Olympic Unfairness II: From semifinals to finals. (xx to come. point to

Hjort (2017b). balance intro here with the brief description we go for in dataoverview.

data: of the type A A B B A A, for about twenty different events, then go for rank

sums. nils ranting on before cleaning and editing. sum of many small wilcoxons. check

that data are described in dataoverview. check balance between dataoverview and here.
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xx) The Formula One event for cross-country skiers is the sprint, where the very best

athletes need to go through four strenuous three-minute Olympic-intensity competitions

in a row: prologue, quarterfinals, semifinals, finals. So after three already quite gruelling

tasks, each demanding top manouevring skills and split-second tactical decisions, at

barely imaginable speeds of 30 km/hour and more, over about 1.5 km distances in highly

varying terrain, the six finalists are ready. If the Olympic World is fair, it will not matter

whether they come from Semifinal A or Semifinal B. There is evidence that the world is

not fully fair, however, as we are to demonstrate and assess here.

The two best from each semifinal are qualifified for the final, along with the two

so-called lucky losers, those with best time among the remaining four + four. Our

semifinals-finals dataset, compiled over 63 top events (Olympics 2022, 2018, 2014,

2010, World Champiponships 2021, 2019, 2017, 2015, 2013, 2011, and various World Cup

events), has the final ranks for the Semifinal A skiers, hence involving three different cases:

case (2,4), with 2 A and 4 B; case (3,3), with 3 A and 3 B; and case (4,2), with 4 A and

2 B.

From 2022 Winter Olympics: From 2018 Winter Olympics:

1 J.H. Klaebo A 1 J. Sundling A 1 J.H. Klaebo A 1 S. Nilsson A

2 F. Pellegrino A 2 M. Dahlqvist A 2 P. Pellegrino A 2 M.C. Falla A

3 A. Terentyev B 3 J. Diggins B 3 A. Bolshunov A 3 Y. Belorukova B

4 J. Maeki B 4 R. Brennan A 4 P. Golberg A 4 N. Nepryayeva B

5 A. Maltsev B 5 N. Faehndrich A 5 O. Svensson B 5 H. Falk A

6 O. Svensson B 6 E. Ribom B 6 R. Hakola B 6 J. Diggins B

(a) Introduce the rank sums ZA =
∑

iXi and ZB =
∑

j Yj , where Xi and Yj are the rank

positions for A skiers and B skiers, respectively. For the 2022 Zhangjiakou ski-stadion

races, we have (ZA, ZB) equal to (3, 18) for the men and (12, 9) for the women; we always

have ZA + ZB = 21 and may hence restrict attention to the ZA. Explain that under

the fairness hypothesis, ZA is the sum of 2 numbers randomly drawn from {1, . . . , 6}, in
case (2,4), and similarly the sum of 3 random numbers for case (3,3), and the sum of

4 random numbers, for case (4,2). Work out that ZA has mean 7.0, 10.4, 14.0, for these

cases, along with variances 4.67, 5.25, 4.67 (xx from Wilcoxon test exercise, if we include

such a thing, perhaps in Ch4; (1/12)(n+ 1)m(n−m). xx)

(b) To test the Olympic fairness, consider the overall ranksum test statistic

Z =

63∑
j=1

ZA,j =
∑

two A

ZA,j +
∑

three A

ZA,j +
∑

four A

ZA,j ,

with sums taken over the (2,4), (3,3), (4,2) cases. For the 63 events for the men, use

the semifinals-finals dataset to learn that there are 17, 9, 37 events of the three

types, with total ranksum Zmen,obs = 88 + 68 + 495 = 651. Show similarly that there

are 23, 17, 23 events of the three types, for the ladies, with total ranksum Zwomen,obs =

151 + 173 + 302 = 626.

(c) The question is then how relatively unlikely it is, under fairness, to have Z as low

as 651 or lower, for 17 + 9 + 37 events, and as low as 626 or lower, for 23 + 17 +
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Figure v.10: Left panel: histogram of 104 realisations of the combined ranksum ZA, for

the ladies skiers, taken over 23 cases with 2 A and 4 B, 33 cases with 3 A and 3 B, and

23 cases with 4 A and 2 B, simulated under the null hypothesis of fairness. The observed

Zobs = 626 is indicated, with p-value 0.022. A corresponding figure for men shows much

more dramatic evidence against the fairness assumption, with Zobs to the left of almost

all of 104 realisations. Right panel: confidence curve cc(pA) for the probability that the

winner is from Semifinal A, for the men. The 95 percent interval is from 0.613 to 0.757.

The corresponding 95 percent interval for the ladies is from 0.504 to 0.658.

23 events. Explain why the null distribution for Z must be approximately normal. (xx

pointer here to what is soon a wilcoxon exercise in Ch4 with formulae for variances etc.

xx) Give such normal approximations, and test the fairness hypothesis, for men and for

ladies separately. Carry out this testing also via direct simulation, bypassing the need

for means and variances and normal approximations. Construct a version of Figure v.10

(left panel), ending with a p-value of 0.022 for the ladies. Carry out the same work for

the men, where the evidence against fairness is much more dramatic, with a p-value close

to zero; almost zero of 104 null simulated Z are as small as 651.

(d) The efforts above demonstrate that male skiers from Semifinal A have a very clear

advantage over those from Semifinal B; the evidence is also there, but less pronounced,

for the ladies. This statistical null hypothesis testing does not tell us the degree of

unfairness, however. To assess the relevant pA = Pr(winner is from A) we need a more

nuanced framework. Such a model is the following, concerned only with ranks 1 to 6,

not with time differences:

f2,4(i, j, θ) = eθ(i+j)/K2,4(θ),

f3,3(i, j, k, θ) = eθ(i+j+k)/K3,3(θ),

f4,2(i, j, k, θ) = eθ(i+j+k+l)/K4,2(θ),

for ranks (i, j) for the (2,4) cases, for ranks (i, j, k) for the (3,3) cases, and ranks (i, j, k, l)

for the (4,2) cases. Here K2,2(θ) is a sum over all 15 terms for picking two results for



576 Sports

two A skiers, and similarly for K3,3(θ) and K4,2(θ), with respectively 20 and 15 terms.

Explain that if θ = 0, the world is fair, whereas a negative θ means an advantage for the

A skiers. Show that the log-likelihood function can be written

ℓ(θ) =
∑

two A

{θ(X1 +X2)− logK2,4(θ)}+
∑

three A

{θ(X1 +X2 +X3)− logK3,3(θ)}

+
∑

four A

{θ(X1 +X2 +X3 +X4)− logK4,2(θ)},

with X1 +X2 notation for the two ranks, for all events of type (2,4), etc. For the men,

the sums are over 17, 9, 37 events of the three types, and the K2,4(θ), K3,3(θ), K4,2(θ)

are themselves sum over 15, 20, 15 terms. Carry out ML estimation and inference. In

particular, construct a confidence curve cc(θ), for the men and for the ladies. Explain

why these confidence curves are actually optimal, under the assumed model.

(e) We now attempt to estimate and assess uncertainty not merely for the model param-

eter θ, but for relevant implied quantiies, like the probability that the winner is from A.

Express this is pA = Prθ(winner is from A) as

pA = q2 Prθ(one of X,X2 is 1) + q3 Prθ(one of X,X2, X3 is 1)

+q4 Prθ(one of X,X2, X3, X4 is 1),

where e.g. (X1, X2, X3) in the middle term are the three ranks drawn from the f3,3(i, j, k, θ)

model. Show that under neutrality the probability weights (q2, q3, q4), associated with

landing skiers in the (2,4), (3,3), (4,2) categories are (0.25, 0.50, 0.25) (xx check this xx),

but they may also be adjusted to reflect other purposes. Programme the pA(θ) function

and plot it.

(f) Use all of this to construct confidence curves for the pA probability, for mean and for

ladies. Construct in particular a version of Figure v.10 (right panel), showing how far

the Olympic reality is from its fairness ideal of 0.50, for the men.

(g) (xx round off. cc for the probability that both gold and silver are from A. other

weights than 1 for winner 0 for the rest. mention Z sufficient and complete under the

model used. is there a use for such a model for ranks, for Wilcoxon, where the sum of

ranks is sufficient, and suddenly informative outside the null hypothesis? explore this,

briefly. point to Hjort (2017a), and to explanations, related to recuperation time, even

more necessary for the men due to more strenuous courses. and also tactics. find out

about schemes for landing in A and B. xx)

(h) (xx this to be moved to exercise in Ch2, a little Wilcoxon thing, to illustrate CLT,

to get a nonpara test, etc. xx) We follow m individuals, competing with n −m others.

When ranking all n, from 1 to n, our group has ranks X1, . . . , Xm. Under the null

assumption that our guys are just as good as the others, the ranks are a random subset

of {1, . . . , n}. Show that this in particular means Pr(X1 = k) = 1/n for k = 1, . . . , n and
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Pr(X1 = k,X2 = ℓ) = 1/{n(n− 1)} for k ̸= ℓ. Show that

EXi = ξ = 1
2 (n+ 1),

VarXi = σ2 = (1/12)(n2 − 1),

cov(Xi, Xj) = (1/12){(n+ 1)/(n− 1)}(3n2 − n− 2)− ξ2,

for j ̸= i. Then, needing some algebraic pattience for verification, show that for the full

rank-sum Z = X1 + · · ·+Xm we have

EZ = 1
2m(n+ 1), VarZ = mσ2 +m(m− 1) cov(X1, X2) = (1/12)(n+ 1)m(n−m).

for semifinals-story, for n = 6, for m = 2, 3, 4, for normal approximations to ZA. testing

that our guys are from the same distribution as the others. check Lehmann (1975),

Lehmann (1950). we invent a parametric model which has Z as sufficient statistic:

f(x1, . . . , xm, θ) = exp{θ(x1 + · · ·+ xm)}/Km(θ),

for ranks x1, . . . , xm inside {1, . . . , n}, and with Km(θ) the very big sum of all exp{θ(x1+
· · · + xm)}, with

(
n
m

)
terms. can do this via simulation, even when that constant is too

impractical to compute. make a separate story on this, with a good dataset. rather than

merely testing F = G, we give optimal inference for θ, confidence curve for probabilities

of interest, etc. xx)

Story v.6 Who wins? Computing probabilities as a function match time. (xx this ought

to be good stuff, composed the day after Nor-Den 27-25 November 2022. data1: time

points for goals; data2: 117 match results, for correlated Poissons. need to calibrate

with what we write elsewhere on Poisson processes. xx) Watching a handball match,

the two teams have at time t scored A(t) and B(t) goals. In our continuous excitement

we speculate perhaps perplexidly about the final outcome, i.e. A(60) = A(t) + A′ and

B(60) = B(t) + B′. Below we find the dynamically evolving probabilities for team A

winning and for team B winning, as a function of time t; see Figure v.11 for how these

dramatically panned out for the women’s European Championship 2022, with Denmark

taking an early lead but Norway prevailing in the end.

(a) Assume the teams are about equally strong, and that goals are scored according to

independent Poisson processes with rate λ = 27.00; this is close to the average number

of goals scored by teams in women’s Olympic, World, European tournaments. What is

the pre-match probability of a draw? What is the most likely result at halftime?

(b) Show that the relevant probabilities, at time t during the match, where A(t) and

B(t) have just been observed, are

pA(t) = Pr(A(t) +A′ > B(t) +B′) = Pr(A′ −B′ > B(t)−A(t)),

pB(t) = Pr(A(t) +A′ < B(t) +B′) = Pr(A′ −B′ < B(t)−A(t)),

pD(t) = Pr(A(t) +A′ = B(t) +B′) = Pr(A′ −B′ = B(t)−A(t)),

in which A′ and B′ are independent Poissons with means λ(60 − t). Find formulae for

these probabilities, in terms of sums. Then compute and plot these, from the beginning
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Figure v.11: Left panel: probabilities that Norway will win, that Denmark will win, or

that it will be a draw, as a function of match time, in the women’s European Finals

November 2022. Right panel: confidence curve cc(a) for the dependent Poisson process

correlation parameter a, with point estimate 0.218 and 90 percent interval [0.046, 0.365].

to the end of the match, for the case of Norway–Denmark in the European 2022 finals;

produce indeed a version of Figure v.11, left panel.

(c) When A(t) is a Poisson process with constant rate λ, show that A(t) given A(60) = m

is a binomial (m, t/60). Show more generally that with match time [0, 60] split into dis-

joint intervals C1, . . . , Ck, with lengths ℓ1, . . . , ℓk, then the goal counts (A(C1), . . . , A(Ck))

for these intervals have a multinomial distribution m, (ℓ1/60, . . . , ℓk/60). For a finished

handball match, having observed the A(t) process, explain how a Pearson chi-squared

test (see Story vii.1) can be put up to test the constant rate Poisson modelling hypoth-

esis. Carry out such a test, for Norway and for Denmark, in the European 2022 finale,

counting the number of goals scored in the six time windows [0, 10], . . . , [50, 60].

(d) Another view of the scoring-of-goals processes is as follows. If team A has scored

A(60) = m goals, show that the time points T1 < · · · < Tm at which goals have been

scored follows the joint density m!/60m on the set t1 < · · · < tm. Explain that this also

means that (T1, . . . , Tm) behaves as an ordered sample from the uniform distribution on

[0, 60]. Use this again to argue that with Fm(t) the empirical c.d.f. for the data, the

process Zm(t) = m1/2{Fm(t)− t/60} is close in distribution to that of Z(t) =W 0(t/60),

with W 0 a Brownian bridge; see Ex. 9.21. To check the constant rate Poisson process

assumption, therefore, compute and display these Zm processes, for Norway and Denmark

in their 27–25 European finals match. Construct a version of Figure v.12.

(e) There is perhaps a feeling among spectators and handball followers that the top

teams to a high degree follow each other during matches; the final scores A(60), B(60) are

often close. This motivates Poisson models with positive dependence. For a parameter
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Figure v.12: Two summary views of the Norway–Denmark European finals 2022. Left

panel: the number of goals scored, as a function of match time. Right panel: bridge

plots, to assess the Poisson constant rate hypohtesis. These will under that modelling

assumption be inside ±1.358 in 95 percent of all cases.

a ∈ [0, 1], consider A = C + A0 and B = C + B0, where A0, B0, C are independent

Poissons, with parameters aλ, a(1 − λ), a(1 − λ), and where only (A,B) are observed.

Show that A and B are Pois(λ), but dependent, with correlation a. Show that

Pr(A = a,B = b) =
∑

c≤min(a,b)

g(c, aλ) g(a− c, (1− a)λ) g(b− c, (1− a)λ),

in terms of the point mass function g(x, θ) for the Poisson with parameter θ. Now

access the table of results (y1, y2) from 117 top-level women’s handball matches (xx

described in dataoverview xx). Plot the differences y1−y2 divided by standard deviation

to argue that matches 33 (Norway vs. Slovenia, 41-18) and 54 (Greece vs. China, 13-

33) are clear outliers, and work then with the resulting cleaned table of 115 match

results. Programme and graph the profiled log-likelihood function for the a parameter,

say ℓprof(a) = maxall λ{ℓ(a, λ)}. Estimate the correlation parameter a, and construct

a confidence curve cc(a), as with Figure v.11, right panel. This should give the ML

estimate â = 0.218, with 90 percent interval [0.046, 0.365]. Thus handball matches at the

top international level are positively correlated Poisson processes.

(f) (xx round off. more sophisticated plots for pA(t), pB(t), pD(t), using this dependence

model. probably not very different. xx)

Story v.7 The turn-around operation: from 0-2 to 3-2. In a properly exciting round-

of-16 match during the World Cup 2018, Belgium managed to turn 0-2 against Japan

into a 3-2 win. This was heralded in media as almost a miracle, the breaking of a 48

year curse, etc.; this had not happened in the World Cup since England saw her 2-0

lead disappear into a 2-3 loss against West Germany in Mexico 1970. Here we shall
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neutrally assess just how spectacular such an event might be. Consider a match between

two essentially equally strong teams A and B. The score at time t is (X(t), Y (t)), with

independent Poisson processes with the same rate λ. In a detailed story in Claeskens

and Hjort (2008b, Ch. 6), analysing 254 matches to see how FIFA ranking scores may

influence these Poisson rates, 627 goals were scored, which means an average of 2.468

goals per match, which we here translate to a common rate of λ = 1.234/90 per minute,

up to match length T = 90 minutes (sometimes extended with a few extra minutes for

so-called injury time). This little story aims at assessing how small the probability is,

for experiencing a match with first has 0-2 and then is turned around to a 3-2 or even

better.

(a) What is the probability that the score is still 0-0 after five minutes, and after time

t? Plot this probability, for t ∈ [0, T ].

(b) What is the probability that B some time during the match will be leading 2-0 over

A? Show that this is

p0 =

∫ T

0

g2(s, λ) exp(−λs) ds,

with g2(s, λ) = λ2s exp(−λs) the Gam(2, λ) density, a sum of two Expo(λ). Carry out

the integration to find p0 = (1/4){1− (1 + 2λT ) exp(−2λT )}. This is 0.177. Argue that

the frequency of matches where a 2-0 lead will occur, some time during the event, is 2p0 =

0.353. – Note that if the teams had been allowed to play on, with T increasing beyond

the 90 minutes, the p0 tends to 1/4, the chance that when observing two independent

undisturbed Poisson processes X(t) and Y (t) over time, with the same intensity, the two

first events will occur in the Y process.

(c) Show that in games where team A experiences a 0-2 situation against team B, the

random timepoint S where this occurs has probability density,

h2(s, λ) = g2(s, λ) exp(−λs)/p0 =
λ2s exp(−2λs)

(1/4){1− (1 + 2λT ) exp(−2λT )}

for s ∈ [0, T ]. Show that it peaks at s0 = 1/(2λ), here in about 36 and a half minute.

Construct a figure showing this.

(d) Team B now leads 2-0, at time point S, and team A better hurry up. Show that the

probability that team A will actually accomplish the 3-2 feat, given that there is a 0-2

time point in the first place, may be expressed as

p∗ =

∫ T

0

P (hurry up from s to T |S = s)h2(s, λ) ds

=

∫ T

0

G3(T − s, λ) exp{−λ(T − s)}h2(s, λ) ds,

with G3(T −s, λ) the cumulative gamma (3, λ) distribution function for the sum of three

exponential waiting times, evaluated at match time minus s, and exp{−λ(T − s)} the

probability that team B doesn’t score during this remaining time.
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(e) Show first that the probability that a Poisson with mean λ(T − s) is less than or

equal to 2 is Q(2, λ(T − s)) = exp{−λ(T − s)}{1+ λ(T − s) + 1
2λ

2(T − s)2}. Use this to

show that the probabiity of experiencing a 0-2 followed by a 3-2 operation is

p∗ =

∫ T

0

{1−Q(2, λ(T − s))} exp{−λ(T − s)}h2(s, λ) ds.

(xx check. we find p∗ = 0.014. xx)

(f) When Belgium see Genki Haraguchi and Takashi Inui score, in the 48th and 52nd

minute, they ought to be forgiven for being merely moderately interested in the overall

p∗ = 0.014, but more concerned with the imminent chance that they can still manage,

given that they face 0-2 after precisely s = 52 minutes. Show that this probability is

p∗(s) = G3(T − s, λ) exp{−λ(T − s)}.

Plot that probability curve, as a function of 0-2 occurrence time s. At time s = 0, this is

the chance of winning 3-0 or more, namely 3.7 percent, and after 52 minutes, it is about

1.0 percent.

(g) (xx could round off with one or two supplementing questions, using the fifa scores

database nils built up for gerda-nils Ch6, to make it statistical too. there λi,j =

h(xi/xj , θ), in terms of pre-tournament fifa scores. point finally to magne aldrin and

anders løland, their prediction machines at NR, during tournaments. xx)

Story v.8 The hot hand in basketball. [xx the code for this story is in hothandstory.R

xx] Anyone who has ever set foot on a basketball court or watched a few basketball

games, have noticed that players sometimes go on streaks, hitting several shots in a row:

She or he has the hot hand! There is even a saying in basketball, ‘feed the hot hand’,

meaning that one ought to pass the ball to the player who has the hot hand, and let her

or him make an attempt at the basket. During a time out in a game in the 2014–2015

NBA regular season, LeBron James changed the design of plays in order to get the ball

to Kevin Love. When a reporter asked James about this change after the game, he James

replied: “He had the hot hand, and I wanted to keep going to him.” (The Love’s-got-

the-hot-hand incident is reported in the article Miller and Sanjurjo (2021), which much

of the present story builds upon.) The consensus outside of the gym, however, among

the allegedly cool headed data crunchers of this world, has for a long time been that the

belief in a hot hand is clear evidence of a “massive and widespread cognitive illusion”,

as stated in Daniel Kahnemann’s bestselling book Thinking Fast and Slow (Kahneman,

2011). [xx Key articles ‘debunking’ the hot hand myth are Gilovich et al. (1985), Tversky

and Gilovich (1989), and Koehler and Conley (2003). but see also the it’ okay in Larkey

et al. (1989) and Wardrop (1995). May also point to and use stuff from Story i.3 on

Markovian children xx]. (Miller and Sanjurjo, 2018) [xx might also use puzzles from

Wissner-Gross (2020) xx]

(a) You make or miss a basket. LetX1, . . . , Xn denote n shot attempts by a single player,

with Xi = 1 indicating a made basket, and Xi = 0 a miss. The first difficulty measuring
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a hot hand is how to define it. The common hot hand intuition of any basketball player

and fan is that the probability of making the next shot is higher than what it normally

is if all of ones previous k ≥ 1 shots went in. A sequence of k made shots is called a hot

streak. This means that if we let Hk
i = I{

∑k
j=1Xi−j = k} be a hot streak indicator and

p0 be the probability of a make under normal circumstances, the hot hand hypothesis

says that phot := Pr(Xj = 1 | Hk
j = 1) > p0. Some players and fans also think that the

hot hand hypothesis implies a cold hand hypothesis according to which the probability of

making a basket is lower after k consecutive misses than what it would otherwise be. Let

Ck
i = I{

∑k
j=1Xi−j = 0} with Ck

1 = · · · = Ck
k = 0 be cold hand indicators, then the cold

hand hypothesis says that pcold := Pr(Xj = 1 | Ck
j = 1) < p0. Though it is less clearly

stated, the hot and cold hand hypotheses also say that Pr(Xj = 1 | X1 = x1, . . . , Xj−1 =

xj−1) = Pr(Xj = 1 | Hk
j = hj , C

k
j = cj) for hj , cj ∈ {0, 1}, and that a player starts a

game neither cold nor hot, so Hk
1 = · · · = Hk

k = 0 and Ck
1 = · · · = Ck

k = 0. Finally,

because it is convenient and we have no weighty reason not to, the streak lengths k will

be the same for both type of streaks. Based on the above one can device separate hot

hand and cold hand hypotheses, and also test the null hypothesis phot = pcold vs. the

hot-and-cold alternative pcold < phot. This latter hypothesis is perhaps the canonical one

to test.

To get going, program a function that takes shots X1, . . . , Xn as its input, and

returns the hot hand and cold hand indicators Hk
1 , . . . ,H

k
n and Ck

1 , . . . , C
k
n, respectively;

find expression for the maximum likelihood estimators for pcold, p0, and phot; and simulate

shooting data for some parameter values phot ≥ p0 > pcold, n and k of your choosing,

and, peeking ahead, look at the statistic p̂hot − p̂cold. What do you notice?

(b) In the classical hot hand study Gilovich et al. (1985), the authors, among other

things, asked Cornell University basketball players to participate in a controlled shooting

experiment, [xx described on pp. 304–305 in their article xx]. Download the data set

GVT1985 CornellData.csv, reproduce the plot in Figure (b), and test the null hypothesis

phot > pcold for each shooter to see why the hot hand was described as a myth. [xx rewrite

xx]

(c) (xx continue (b), something on multiple testing, Bonferroni corrections, etc.. xx)

(d) As a start of trying to understand what goes on in (a), suppose that X1, X2, X3, X4

are i.i.d. Bernoulli trials with success probability p. We can think of this as the null

hypothesis pcold = p0 = phot =: p. Suppose that k = 1 and that the estimator p̂hot
from (a) is used to estimate phot. Look at Table v.2 and explain what’s going on. Can

you find an expression for the bias of p̂hot as an estimator of p?

(e) We will now see that p̂hot undershoots phot for any of n ≥ 2 and k ≥ 1. Let

X1, . . . , Xn Bernoulli random variables with success probability p. Let Ik(x) = {i ∈
{1, . . . , n} : Hk

i (x1, . . . , xn) = 1} ⊂ {k + 1, . . . , n} be the hot streak indices, and let

F = {(x1, . . . , xn) : Ik(x) is not empty} be all sequences that contains at least one shot

attempted when on a hot streak. In order to show that E (phot | F ) < p, suppose

that you sample a sequence (x1, . . . , xn) from F according to the distribution Pr(X1 =

x1, . . . , Xn = xn | F ), and then, given X1 = x1, . . . , Xn = xn, sample an index J uni-

formly on Ik(x1, . . . , xn), that is Pr(J = j | X1 = x1, . . . , Xn = xn, F ) = 1/|Ik(x1, . . . , xn)|



Sports 583

5 10 15 20 25

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Shooter

p
h
o
t
−

p
c
o
ld

Figure v.13: The differences p̂hot− p̂cold for each player, along with 95 percent confidence

intervals. The estimators are p̂hot and p̂cold are the estimators from Story v.8(b).

seq shot1 shot2 shot3 shot4
∑4

i=1H
4
i p̂hot

1 0 0 0 0 0 -

2 1 0 0 0 1 0.000

3 0 1 0 0 1 0.000

4 1 1 0 0 2 0.500

5 0 0 1 0 1 0.000

6 1 0 1 0 2 0.000

7 0 1 1 0 2 0.500

8 1 1 1 0 3 0.666

9 0 0 0 1 0 -

10 1 0 0 1 1 0.000

11 0 1 0 1 1 0.000

12 1 1 0 1 2 0.500

13 0 0 1 1 1 1.000

14 1 0 1 1 2 0.500

15 0 1 1 1 2 1.000

16 1 1 1 1 3 1.000

E p̂hot 0.405

Table v.2: All sequences of length four along with p̂hot and E p̂hot computed under the

assumption that X1, X2, X3, X4 are i.i.d. Bernoulli(1/2).
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for j ∈ Ik(x1, . . . , xn), where |Ik(x1, . . . , xn)|=
∑n

i=1H
k
i (x1, . . . , xn) is the number of el-

ements in Ik(x1, . . . , xn). Show that Pr(Hk
JXJ = 1 | F ) = E (p̂hot | F ).

(f) In view of the above, in order to show that p̂hot is biased for p, it suffices to show that

Pr(Hk
JXJ = 1 | F ) < p. To do so, first write Pr(Hk

JXJ = 1 | F ) =
∑n

j=k+1 Pr(H
k
jXj =

1 | J = j, F )Pr(J = j | F ), and convince yourself that Pr(Hk
jXj = 1 | J = j, F ) =

Pr(Xj = 1 | J = j, Fj) where Fj = F ∩ {Hk
j = 1}. Second, apply Bayes’ theorem to the

numerator and denominator of the ratio Pr(Xj = 1 | J = j, Fj)/Pr(Xj = 0 | J = j, Fj),

and you will see that Pr(Hk
JXJ = 1 | F ) < p is implied by the inequality Pr(J = j |

Xj = 1, Fj) < Pr(J = j | Xj = 0, Fj) for at least one j ∈ {k + 1, . . . , n}.

(g) Modify your proof from (f) to show that E p̂cold > p, where p̂cold is the cold hand

probability estimator from (a).

(h) In (f) and (g), can you do without the i.i.d. assumption? In particular, can you

show that E p̂hot < phot and E p̂cold > pcold when the X1, . . . , Xn stem from the process

described in (a) and pcold < p0 < phot?

(i) Find the expectation of p̂hot when k = 1. [xx here we need some more hints, I think

xx]. [xx notes xx]

(j) (xx more notes xx) Try to show that the estimator

p̃hot =

∑n
i=k+2(1−Hk

i−1)H
k
i Xi∑n

i=k+2(1−Hk
i−1)H

k
i

,

is unbiased for p in the i.i.d. case. [xx well, it is almost unbiased I now see xx].

(k) (xx notes xx) . With independent Beta-priors with parameters (α, β) = (aθ, a(1 −
θ)), with (a0, θ0), (acold, θcold), (ahot, θhot), the posterior expectations (for ith player

attempting mi shots) are

E (phot | x1, . . . , xmi
) =

ahot
ahot +

∑mi

j=1H
k
j

θhot +
(
1− ahot

ahot +
∑mi

j=1H
k
j

)∑mi

j=1H
k
jXj∑mi

j=1H
k
j

.

Try empirical Bayes and compare to p̂hot.

(l) (xx Try these findings on the three point contest data threepointcontests.txt xx)

Story v.9 BMI for Olympic speedskaters. Along with other speedskating history enthu-

siasts, NLH has gathered height and weight data for Olympic speedskating participants,

from 1952 to 2018 for nM = 1274 men, and from 1960 to 2018 for nW = 907 women.

These give rise to BMI scores.

(a) (xx first: cc(µq) for quantiles 0.2, 0.5, 0.8, for men and women separately. see Figure

v.14. xx)

(b) (xx then on to the II-CC-FF story, partly taken from Cunen and Hjort (2022). first

ccj(µj) for the Olympics no. j. then log-likelihood conversion and a parabola and the

max-point. xx)

(c) xx

(d) xx
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Figure v.14: Confidence curves for the three deciles F−1(q), for levels 0.2, 0.5, 0.8,

for the BMI distributions for men (upper panel) and women (lower panel); see Story

v.9. 95 percent confidence intervals for the 3 + 3 quantities are indicated with the blue

horizontal lines.

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)

(xx for Bolt: mention Einmahl and Smeets (2011), Schweder and Hjort (2016, some-

where). xx)





II.vi

Simulated stories

(xx WELL: lots of things to round off and to do, as of 12-August-2024. a partial nils todo

list includes: (i) do the beer foam decay processes well and round off. (ii) check if we can

invent a simple understandable model for polarisation, with people being pushed from

ok pluralism to the boundaries, e.g. inside a [−1, 1] scale. try exp(βh(x))/Z(β) things.

xx)

Story vi.1 Checking out the CLT. The Central Limit Theorem, dealt with at length

in Ch. 2, says that with X1, X2, . . . i.i.d., with mean µ and standard deviation σ, the

distribution of

Zn = (X1 + · · ·+Xn − nµ)/(
√
nσ) =

√
n(X̄n − µ)/σ (vi.1)

becomes close to the standard normal as n increases. We should wonder how close Zn

is to the normal, for different distributions and sample sizes, and such questions may be

answered both by mathematics and by simulations.

(a) To illustrate closeness-or-not of Zn to the standard normal, make the Beta distribu-

tion the start distribution, with parameters (a, b) = (1, 5); see Ex. 1.18. Display the den-

sity of this distribution and compute its mean, variance, and skewness γ3 = E(X−ξ)3/σ3.

Show also that skew(Zn) = γ3/
√
n.

(b) Your task is now to simulate the high number sim = 104 realisations of the variable

Zn, for small to moderate sample size n, which we for Figure vi.1 have taken to be

10, 11, . . . , 100. The idea is to see if natural goodness-of-fit tests are able to see that

the big simulated dataset, drawn from the exact distribution of Zn, are not from the

standard normal (though close, for growing n). For each n, and for each such simulated

dataset Z∗
n,1, . . . , Z

∗
n,sim, compute the Kolmogorov–Smirnov and Pearson test statistics

Dsim =
√
nmax

i≤n
|i/n− Φ(Z∗

n,(i))|, Ksim =

m∑
j=1

(Nj − sim p0,j)
2

sim p0,j
.

Here Z∗
n,(i) is the i-th order statistic, Nj the number of datapoints landing in cell j,

and p0,j the standard normal probability for that cell; see Story vii.1. The cells can be

587
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Figure vi.1: For each n = 10, 15, 20, . . . , 295, 300, we have simulated 104 realisations of

Zn of (vi.1), and then computed the Kolmogorov–Smirnov (left panel) and the Pearson

chi-squared test statistic Kn =
∑20

j=1(Nj − 104 p0,j)
2/(104 p0,j) (right panel). The red

horizontal lines are at 1.358 (left panel) and 30.144 (right panel), the the 0.95 points of

these statistics under standard normality.

constructed as one pleases, but here we have taken (Φ−1((j− 1)/m),Φ−1(j/m)), so that

each of these have probability p0,j = 1/m under standard normality.

(c) Construct a version of Fig. vi.1, where we have used m = 20 cells for the Pearson test

(right panel). It appears that for n as big as around 75, the exact distribution of Zn is

so close to the standard normal that normality tests will typically not pick up the small

difference, even with samples of size 10000. You may play with your code using even

bigger samples, to check that the goodness-of-fit tests do pick up the tiny differences,

requiring even bigger n to pass muster.

(d) Try to answer the same type of questions as above, but with yet another goodness-

of-fit test for standard normality.

(e) With the code you have written up to carry out the tasks pointed to above, it should

be easy to change to other start distributions than the Beta, with other and perhaps larger

simulation sizes sim with different sequences of n, etc. Try to find a start distribution

for the Xi for which the convergence Zn →d N(0, 1) is rather slow.

Story vi.2 An infinite weighted sum of Bernoullis. We start out this story with pieces

of clear probability theory, regarding ways of constructing random numbers on the unit

interval. Versions of such schemes lead to clear construction recipes, but where it becomes

too difficult to determine the precise distributions involved. The generally valid point,

illustrated below, is then that simulations are sometimes simple and often useful.

(a) Let X1, X2, . . . be i.i.d. Bernoulli variables with probabilities 1
2 ,

1
2 for 0, 1. Form from

these Y =
∑∞

j=1Xj/2
j ; in other words, the Xj are the decimals in the binary expansion.

Show from this definition that Y has mean 1
2 and variance 1/12.
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Figure vi.2: Densities for V (left panel) and for Y = exp(V )/{1+ exp(V )} (right panel),

for the model (xx below xx), with a = 0.40, 0.50, 0.60 (black, blue, red), using kernel

density estimation with half a million simulated outcomes.

(b) Show that the moment-generating function (m.g.f.) for the partial sum Yn =
∑n

j=1Xj/2
j

can be written

Mn(t) =

n∏
j=1

{ 1
2 + 1

2 exp(t/2
j)} = (1/2)n

n∏
j=1

{1 + exp(t/2j)}.

(c) Verify that for any positive x, we have

(x1/16 − 1)(x1/16 + 1)(x1/8 + 1)(x1/4 + 1)(x1/2 + 1) = x− 1.

Generalise to (x1/2
n − 1)

∏n
j=1(x

1/2j +1) = x− 1. Going back to Yn and its m.g.f., show

that

Mn(t) =
exp(t)− 1

2n{exp(t/2n)− 1}
.

Prove from this that the infinite sum Y has a uniform distribution on the unit interval.

Attempt to demonstrate Yn →d unif also in another way, by viewing Y as a random

number inside the unit interval, with the X1, X2, X3, . . . being its binary digits.

(d) It is clear from the representation above that a uniform Y may be represented as a

sum of two independent variables, in several different ways. For any n, show that if Y ∗ ∼
unif[0, 1], and X1, . . . , Xn are i.i.d. symmetric Bernoulli, then Y =

∑
j≤nXj/2

j+( 12 )
nY ∗

is also uniform on [0, 1]. Also, write Y =
∑∞

j=1Xj/2
j as a sum Yodd + Yeven, summing

over odd and even numbers. Simulate a high number of Yodd and Yeven to see their

densities.

(e) Some formulae become simpler or more illuminating when turning to the uniform on

[−1, 1]. Let Xj be i.i.d. with values ±1 with probabilities 1
2 ,

1
2 ; such are sometimes called
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Rademacher variables. Show that Y =
∑∞

j=1Xj/2
j is uniform on [−1, 1]. Working with

characteristic functions, show that

sin t

t
=

∞∏
j=1

cos
( t
2j

)
.

(f) Another take on the problem of demonstrating that Y is uniform is as follows. Use

Y = X1/2 +
∑∞

j=2Xj/2
j to show that we have the representation

Y =

{
0 + 1

2Y1 with probability 1
2 ,

1
2 + 1

2Y2 with probability 1
2 ,

where Y1 and Y2 have the same distribution as Y . Deduce from this that for the m.g.f.M ,

we must have M(t) = { 1
2 + 1

2 exp(
1
2 t)}M( 12 t). This agrees with M(t) = {exp(t) − 1}/t

(xx but can we also prove that this must be the only solution xx).

(g) An extension of the uniform distribution is now to allow the binary digits to be

dependent. For some probability parameter a, assume that X1, X2, . . . forms a symmetric

Markov chain on {0, 1}, with transition probabilities(
p0,0 p0,1
p1,0, p1,1

)
=

(
1− a a

a, 1− a

)
.

We take the first binary digit X1 in Y =
∑∞

j=1Xj/2
j to have probabilities 1

2 ,
1
2 for 0, 1;

this is also the equilibrium distribution of such a chain, see Ex. 12.4. Show that

EY = 1
2 and VarY =

1

12
+

1

6

1− 2a

1 + 2a
.

(h) It appears difficult to give a clear formula for this generalisation of the uniform

distributiom. Before turning to simulations, show the following. LetM0(t) = E exp(tY0)

andM1(t) = E exp(tY1) be the m.g.f.s for Y , given that the X1, X2, . . . chain has started

in respectively X0 = 0 and X1 = 1. Show that

Y =

{
0 + 1

2Y0 with probability 1
2 ,

1
2 + 1

2Y1 with probability 1
2 ,

where Y0 and Y1 have distributions reflecting X0 = 0 and X1 = 1. Use this to show that

the m.g.f. of Y can be written

M(t) = 1
2M0(

1
2 t) +

1
2 exp(

1
2 t)M1(

1
2 t).

(i) To learn about M0 and M1, show that

M0(t) = (1− a)M0(
1
2 t) + a exp( 12 t)M1(

1
2 t),

M1(t) = aM0(
1
2 t) + (1− a) exp( 12 t)M1(

1
2 t).

Express M0(
1
2 t) and M1(

1
2 t) in terms of M0(t) and M1(t).
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(j) For Y having a density f(y) on the unit interval, consider the logistic representation

Y = exp(V )/{1 + exp(V )}. Show that V has density

g(v) = f
( exp(v)

1 + exp(v)}

) exp(v)

{1 + exp(v)}2
,

and that if we start with g(v) for V , then f(y) = g(log{y(/1 − y)})/{y(1 − y)} is the

density for Y . Work in particular this through for the case of Y having the uniform

distribution.

(k) For the non-uniform case of a ̸= 1
2 it appears too difficult to squeeze out clear

formulae for the distribution of Y . It is then fruitful to produce versions of Fig. vi.2, by

simulating say half a million realisations of Y , for given values of a; that figure shows

the result, for a = 0.40, 0.50, 0.60. For this purpose we use kernel density estimation

techniques from Ch. 13. To avoid the boundary problem, the difficulty of estimating the

density fa(y) for Y coming close to 0 and 1, it pays off to estimate the density ga(v) for

V separately first, using the Y = exp(V )/{1 + exp(V )} representation of the previous

point. Construct a version of Fig. vi.2.
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Figure vi.3: Simulated (Y1, Y2) from the (vi.2) model, with 104 pairs, with a positive

parameter b (left panel) and a negative parameter (right panel). The marginals have

uniform distributions.

(l) We round off this story by using the infinite Bernoulli sum representation to create

a distribution for two dependent uniforms. For some b ∈ [− 1
4 ,

1
4 ], let (X,X ′) have the

distribution with probabilities 1
4+b,

1
4−b,

1
4−b,

1
4+b for outcomes (0, 0), (0, 1), (1, 0), (1, 1).

Show that X and X ′ both have 1
2 ,

1
2 probabilities for 0, 1, and that corr(X,X ′) = 4b.

Then form

Y =

∞∑
j=1

Xj/2
j and Y ′ =

∞∑
j=1

X ′
j/2

j , (vi.2)
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where the (Xj , X
′
j) are independently drawn from the distribution described. Draw say

104 realisations from this joint distribution with uniform marginals, and plot them in

a diagram, for a few different values of b. Also show that corr(Y, Y ′) = 4b. From the

examples of Figure vi.3 (left and right panels), can you estimate b?

Story vi.3 Finding magic squares by MCMC. “Thirty-four”, she said. “Every direction

adds up to thirty-four.” “Exactly”, Langdon said. “But did you know that this magic

square is famous because Dürer accomplished the seemingly impossible?” He quickly

showed Katherine that in addition to making the rows, columns, and diagonals add up

to thirty-four, Dürer had also found a way to make the four quadrants, the four center

squares, and even the four corner squares add up to that number. “Most amazing,

though, was Dürer’s ability to position the numbers 15 and 14 together in the bottom

row as an indication of the year in which he accomplished this incredible feat!”

5000 10000 15000 20000

0
2

4
6

8
10

12

long magical chain is running

Q
 s

co
re

Figure vi.4: Left panel: part of Dürer’s Melancolie I, from 1514. Right panel: the scores

Q(x) from the Markov chain of squares, having used λ = 1.234. It hits zero after 11830

steps, having then found the first of many magic squares.

This is from Dan Brown’s symbolic 2009 thriller The Lost Symbol, and the Dürer’s

Melencolia 1 from 1514 is seen in Figure vi.4, left panel. How can we construct, or sample

our ways to finding, magic squares, of the Dürer type, with sums of rows, columns,

diagonals equal to 34? We may attempt to be clever in other ways than Dürer (1457–

1528), exploiting specially designed probability distributions and then ingenious sampling

from these. The first task is to set up probability distributions, on the set of all 4 × 4

squares with the numbers 1-to-16, which favour realisations close to being magic. The

second task is to simulate squares, from such a distrribution, hoping that sooner or later

we will see fully magic squares. (xx to be edited and cleaned, with references to relevant

mcmc exercises, in Ch6 and in ch12. point to Hjort (2019a,b). xx)

(a) Show first that if a 4× 4 square is to be magic, with the same sum for all rows and

columns, then that sum needs to be 34. Next, argue that there are 16!
.
= 2.0923 · 1013



Simulated stories 593

different ways of placing the 1-to-16 numbers in a 4 × 4 square. For squares x in this

enormous sample space, consider f(x, λ) = k(λ)−1 exp{−λQ(x)}, where

Q(x) =

4∑
i=1

|Ri(x)− 34|+
4∑

j=1

|Cj(x)− 34|+
2∑

d=1

|Dd(x)− 34|,

writing Ri(x), Cj(x), Dd(x) for sums over rows i, columns j, diagonals d. Show that this

becomes a genuine probability distribution, with the right choice of k(λ). For a positive

λ, what are the outcomes with highest probability?

(b) (xx here we point suitably to relevant mcmc exercises in Ch6 and Ch12. and take

a bit of care to match notation for the MH things. xx) The idea is to choose a λ and

then to sample squares from the f(x, λ) distribution. Direct sampling algorithms are

unfeasible since the sample space is so enormous. Instead, set up a MCMC, a Markov

chain x0, x1, x2, . . . of squares, in the following fashion. For x0, start anywhere. To

go from xt−1 to xt, choose row-and-column positions (i, j) and (i′, j′) at random. The

proposal xprop for xt is to switch values, at these two positions; xprop[i
′, j′] = xt−1[i, j]

and xprop[i, j] = xt−1[i
′, j′]. Then accept this proposed change with probability

pr = min(1, exp[−λ{Q(xprop)−Q(xt−1)}]).

That is, we let xt = xprop, if accepted, and xt = xt−1 otherwise. Show that this works,

in the sense that the equilibrium distribution for the chain is exactly that of f(x, λ).

(c) Implement such a Markov chain of squares, run it for perhaps 105 steps. Construct a
version of Figure vi.4, right panel, and record a few magic squares found in this fashion.
In the actual run associated with this figure, having used λ = 1.234, the Q(x) first hits
zero after 11830 steps, and then yielded

11 2 15 6

14 4 3 13

8 12 9 5

1 16 7 10

(d) Play a bit with your code, perhaps attempting different fine-tuning parameters λ.

This is a balancing game; describe what happens if λ is set too low, or too large. Modify

your code to respect Dürer’s choice of having 15 14 in the middle of the last row, and to

having sums over the four 2 × 2 blocks also equal to 34. Produce in this fashion a few

other magic Dürer squares.

(e) Benjamin Franklin (1706–1790), statesman, inventor, scientist, inventor, philosopher,

economist, printer, and musician (he played the guitar, the harp, the viola da gamba,

and for good measure invented his own glass armonica), had the talent to be creatively

inventive when he was bored. He must have been a clever doodler and droodler and

riddler. Once upon a time he constructed a rather beautiful 8 × 8 square, with lots of

sums equal to 260. As he rather modestly writes in his autobiography (published 1793),

“I was at length tired with sitting there to hear debates, in which, as clerk, I could take

no part, and which were often so unentertaining that I was induc’d to amuse myself
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with making magic squares or circles.” – We might not be quite as creative or musical

as Franklin (1793), but we may construct special probability models and sampling from

them, in ways pointed to above. Consider the sample space of all 8 × 8 squares, filled

with numbers 1-to-64; show that the number of elements in this sample space is bigger

than the number of atoms in the known universe. Set up an MCMC of squares, running

in this space, which succeeds in finding a magic square, with all rows and columns and

diagonals summing to 260, and with the four main 4× 4 blocks summing to 520.

(f) (xx point to such models being used also in other and more statistical applications.

find ML estimate for λ, exponential family theory, by solving ξ(λ) = Q̄, where ξ(λ) =

EλQ(X). simulate 106 realisations from the Markov chain above, using say λ = 1.234;

sample every 1000th from this chain, taking these 1000 as independent; find the ML. xx)

(g) (xx make a simple addendum, after having set up things in the kortstokkproblemet,

in Ch5 and Ch7. a statistician runs an algorithm, taking about 1 minute each time, to

find 4 × 4 squares. how many such magic squares are there in total? need cc(N) from

having found r different such in a total of n runs. true answer is perhaps 880, but no

precise answer is known for sizes 6× 6 and above. xx)

Story vi.4 Reconstructing allegedly exponential decay beer foam processes. In his alleged

spare time, German physicist professor Arndt Leike studied the alleged exponential decay

over time of beer foam, for as many as 7 + 4 + 4 beer mugs, for beer makes A, Erdinger

Weißbier, B, Augustinerbräu München, and C, Budweiser Budvar. This involved record-

ing the decreasing volume of froth over time (proportional to height, for the cylindrical

mugs used), and fitting the observed averages to exponential decay curves. Very notably,

his paper Leike (2001) summarising these efforts won him the Ig Nobel Prize of Physics

for 2002. Here we actually raise doubts over his claims, and argue that the decay pro-

cesses have not stayed quite exponential over time. For beer froth scientists it would have

been best if Leike had given the individual decay observations over time; he gave only the

means and standard deviations over time, however, for the three makes A, B, C (and has

informed us, in private communication, that the individual 7 + 4 + 4 decay-over-time

numbers have been lost). Presenting our arguments therefore involves the non-trivial

task of reconstructing these individual decay processes.

In more detail, for beer mug i, let Ui(t) be the volume of froth after time t, for

i = 1, . . . ,m (with m equal to 7, 4, 4, for the three makes). Leike (2001) gives the

mean and standard deviation for these, say Ū(t) and s(t), at the start t0 = 0 seconds,

and then after t1 = 15, . . . , t14 = 360 seconds. Our statistical interest lies with the

decay, not the actual volume, so it would have been best to have had the individual

Vi(t) = Ui(t)/Ui(0), or at least means and standard deviations for these. With Leike

not having kept his original data, we translate his summary data to the table given here,

with v(t) = Ū(t)/Ū(0), starting at 1, and the similarly scaled σ̂(t) = s(t)/Ū(0) for t > 0.

time VtA sigmatA VtB sigmatB VtC sigmatC

0 0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

1 15 0.9471 0.0176 0.8429 0.0176 0.8643 0.0235

2 30 0.8765 0.0235 0.7500 0.0176 0.7786 0.0235
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3 45 0.8235 0.0235 0.6643 0.0294 0.7143 0.0235

4 60 0.7765 0.0235 0.6071 0.0353 0.6643 0.0235

5 75 0.7353 0.0353 0.5500 0.0353 0.6143 0.0235

6 90 0.7000 0.0235 0.5071 0.0412 0.5714 0.0176

7 105 0.6588 0.0235 0.4643 0.0471 0.5357 0.0176

8 120 0.6294 0.0235 0.4286 0.0471 0.5000 0.0176

9 150 0.5706 0.0235 0.3786 0.0647 0.4429 0.0176

10 180 0.5235 0.0176 0.3143 0.0706 0.3929 0.0235

11 210 0.4882 0.0235 0.2500 0.0529 0.3214 0.0235

12 240 0.4412 0.0235 0.2071 0.0647 0.2500 0.0294

13 300 0.3706 0.0294 0.0929 0.0412 0.1429 0.0294

14 360 0.3059 0.0294 0.0500 0.0294 0.0643 0.0235

(a) Since the σ̂(t) do not differ very much, we may at least initially view the v(t) data

as stemming from the model with independent v(tj) ∼ N(g(tj), σ
2/m), with perhaps

different parametric forms for the mean function g(t). Show that fitting the data to

some g(t, θ), via maximum likelihood, is then equivalent to ordinary least squares, min-

imising
∑k

j=1{v(tj) − g(tj , θ)}2. Do this, for the three beer makes, for the exponential

exp(−λt), and construct versions of Figure vi.5 (xx left panel xx). This is essentially

what Leike (2001) did. Carry out also related weighted least squares fitting, minimising∑k
j=1m{v(tj)− g(tj , θ)}2/σ̂(tj)2, and comment.
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Figure vi.5: Decay process v(t) over time, for beer makes A (left panel) and B

(right panel), with 95 percent intervals, along with the fitted exponential decay curves

exp(−λ̂At) and exp(−λ̂Bt).

(b) The simple exponential exp(−λt) model assumes that the λ is constant, for different

beer mugs of the same make. Show that if λ is allowed to vary, across mugs, according to

a Gam(a, b) distribution, then the decay function becomes rather exp{−a log(1 + t/b)}.
Fit these curves to the three sequences of v(tj) too. Compare the two-parameter (straight
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exponential) and three-parameter (gamma influenced curve) normal regression models

using the AIC of Ch. 11, and comment on your findings.

(c) Before we come to more complicated models, and to the beer foam decay process

reconstruction, answer the following. For beer make A, for example, use the normal

non-linear regression model with the two-parameter gamma-influenced decay curve to

estimate t∗, the time at which precisely half of the initial beer froth has evaporated,

along with a 95 percent confidence interval.
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Figure vi.6: Left panel: R(t) over time, the estimated acceleration of z(t) = − log v(t),

for beer makes A (full curve), B (slanted), C (dotted). Right panel: exp{−R(t)} over

time, the estimated fraction kept, per minute.

(d) Model selection arguments, via e.g. AIC, indicate that there might be better decay

models for the beer foam than the simple exponential. In order to come closer to clear

alternatives, let us represent the decay processes as Vi(t) = exp{−Zi(t)}, where Zi(t)

needs to be nondecreasing over time. Argue that ‘exponential decay’, for such random

processes, could be reasonably defined by demanding that increments Zi(t + h) − Zi(t)

ought to have the same distribution, for each time window [t, t + h] of the same length

h. In that case the random fraction Vi(t + h)/Vi(t) kept has the same distribution,

whether at the start, or middle, or near the end of the decay. Again, since Leike has

not given us more than the v(t) and σ̂(t), consider z(t) = − log v(t), and from these

compute R(tj) = c{z(tj+1)− z(tj)}/(tj+1 − tj), for j = 0, . . . , 14. We choose the factor

c = 60 here, for ease of interpretation; argue that exp{−R(t)} is the fraction of foam

kept per minute. If R(t) is about 0.75, for example, then 0.753 = 0.422 is kept after 3

minutes and 0.756 = 0.178 is kept after 6 minutes. Explain that under the exponential

decay hypothesis, the R(tj) ought to stay approximately constant over time. Construct

versions of Figure vi.6, with R(tj) and exp{−R(tj)}, for the three beer makes, and

comment.
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(e) What we find via the R(tj) and exp{−R(tj)} plots indicates that the Zi(t+h)−Zi(t)

increments are not constant over time, which again means that the decay processes are

of a more complicated nature than with exponential decay (more so for beer makes B, C

than for A). This motivates reconstruction of the decay processes from Leike’s summary

data. As an introduction question, before we attempt reconstructing Zi(t) and then

exp{−Zi(t)}, assume Y1, . . . , Y7 stem from the normal (ξ, σ2) model, and that you learn

the mean 5.55 and standard deviation 2.22 for these. Reconstruct the seven data points,

in the sense of drawing them from the normal model, conditional on knowing these two

summary numbers. Argue also that in a statistical sense, no vital information has been

lost. – Explain next that this normal reconstruction procedure cannot be used for the

Leike data, however; attempting to draw normal realisations V1(tj), . . . , Vm(tj) from the

known v(tj) and σ̂(tj) will lead to ‘wrong values’. They might not be monotone in tj ,

and they may fall outside the (0, 1) range.
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Figure vi.7: Reconstructed beer foam volume decay processes V (t) = exp{−Z(t)}, from
seven glasses of Erdinger Weißbier, based on the incomplete data information in Leike

(2001). Left panel: on the Z(t) scale; right panel: on the decaying volume scale. The fat

full curves are the averages, from Leike’s data, whereas the seven individual paths have

been reconstructed through conditional simulation. The simulated paths are such that

the Vi(tj) for i = 1, . . . ,m have the given mean and standard deviation, at each time

point tj .

(f) Explain that modelling Zi(t) = − log Vi(t) as independent increments processes, with

Zi(u) − Zi(s) ∼ Gam(a(u − s), b) over time intervals [s, u], is a coherent construction,

in the sense that different binnings of the time axis give the same probabilistic results

for Zi(t). This motivates using Vi = exp(−Zi) with gamma increments for the Zi, and

leads to the following reconstruction problem. Consider ratio type data v1, . . . , vm in

(0, 1), where a document has reported mean v0 and standard deviation σ0 but not the

dataset. We wish to model the observations as Vi = exp(−Di), with Di, . . . , Dm coming
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from a Gam(a, b) distribution. How can we reconstruct versions of the original dataset,

matching these characteristics? Show first that

f1(a, b) = E exp(−Di) = {b/(b+ 1)}a,
f2(a, b) = Var exp(−Di) = {b/(b+ 2)}a − {b/(b+ 1)}2a.

Solving f1(a, b) = v0 and f2(a, b) = σ2
0 sometimes involves rather large values of a, b,

and it is numerically safest to find the solutions (a0, b0) in two steps. Show first that

solving f1(a, b) = v0 gives a(b) = log(1/v0)/ log(1 + 1/b), which then leads to the vari-

ance formula g(b) = {b/(b + 2)}a(b) − {b/(b + 1)}2a(b). Show that g is decreasing, from

top value g(0) = v(1 − v) (xx check this xx) down to zero. Let this be Step 1 of a

data reconstructing strategy, finding (a0, b0) matching mean and standard deviation, the

solution to E exp(−Di) = v0 and Var exp(−Di) = σ2
0 through the numerical scheme

pointed to above, by solving g(b) = σ2
0 and then computing a0 = a(b0). Step 2 is to

simulate D1,0, . . . , Dm,0 from the Gam(a0, b0), and then stretch or fine-tune these, via

the two-parameter transformation D1 = cDd
i,0, . . . , Dm = cDd

m,0, to achieve mean and

empirical standard deviation equal to the given v0 and σ0. With acceptable start vari-

ables, (c0, d0) is not far from (1, 1). Carry this out for beer A, after t = 15 seconds,

i.e. for (v0, σ0) = (0.9471, 0.0176) with m = 7.

(g) For the beer foam processes, write again Vi(t) = exp{−Zi(t)}, with the Zi(t) increas-

ing in t. The reconstruction recipe above gives us Vi(t1) = exp(−Di) at time t1, based on

the reported mean and standard deviation v(t1) and σ(t1). Next consider the follow-up

reconstruction question, where we need V1(tj+1), . . . , Vm(tj+1), after having successfully

reconstructed the V1, . . . , Vm processes up to time tj , as Vi(tj) = exp(−Di), say. We

are then after Vi(tj+1) = exp(−Di − Ei) = Vi(tj) exp(−Ei), say, to match mean v(tj+1)

and standard deviation σ(tj+1). Explain how the reasoning above leads to the following

required extension recipe. First find a new Gamma distribution parameter pair (a0, b0)

to match

1

m

m∑
i=1

exp(−Di)f1(a, b) = v(tj+1), or f1(a, b) = v(tj+1)/v(tj),

1

m

m∑
i=1

exp(−2Di)f2(a, b) = σ(tj+1)
2, or f2(a, b) = σ(tj+1)

2/
{ 1

m

m∑
i=1

exp(−2Di)
}
.

Finding this (a0, b0) hence involves the same numerical procedure as for the first time

point. Then go on to Step 2: simulate E1, . . . , Em from Gam(a0, b0), and then stretch

these to c0E
d0
1 , . . . , c0E

d0
m to in the end match v(tj+1) and σ(tj+1) for V1(tj+1), . . . , Vm(tj+1).

(h) Reconstruct the m = 7 beer foam processes from the summary statistics v(tj) and

σ(tj) given in the table, for t1 < · · · < tk, for beer make A, leading to a version of Figure

vi.7. Carry out this also for beer makes B, C.

(i) For your reconstructed decay processes Vi(t) = exp{−Zi(t)}, for i = 1, . . . ,m, as

in Figure vi.7, fit these via maximum likelihood to the model where the Zi(t) have

independent gamma distributed increments, with Zi(tj+1) − Zi(tj) ∼ Gam(aj(tj+1 −
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tj), bj). Under the exponential decay hypothesis, the (aj , bj) parameters should not be

unreasonably different. Plot the estimated gamma means aj/bj , or perhaps medians

G−1(0.50, aj , bj), over time. Explain, after repeating all of this several times, for beer

makes A, B, C, that the exponential decay hypothesis cannot hold.

Story vi.5 From falling ill to having recovered. Mr Jones has fallen ill. Thanks to a

clear diagnosis and correct medicine, along with his own good constitution, he’ll soon

enough have fully recovered, however. In fact he reports that every day he is about ten

percent better than the day before. When asked to make this optimistic statement a bit

more precise, he explains that on his scale of wellbeing, normal health corresponds to

level 2.0, and this particular illness to level 1.0. His health index is H0 = 1.0 on the day

when he fell ill, but then Hm = (1 + δ1) · · · (1 + δm) after m days, where he experiences

the δj as i.i.d. with mean 0.10 and standard deviation 0.03. So when will he have fully

recoverd?

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0
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ns
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Figure vi.8: The densities for Mr Jones’s health index, after 2, 4, 6 days; he has fully

recovered when this index reaches 2.0.

(a) Clearly precise answers, about the dayM where Hm first exceeds 2.0, depends on the

particularities of the distribution of the δj . One modelling possibility, which captures

the essence of the setup here, is to take 1 + δj = exp(yj), with the yj i.i.d. from an

appropriate Gam(a, b). Show that

E δj =
( b

b− 1

)a
− 1, Var δj =

( b

b− 2

)a
−
( b

b− 1

)2a
.
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(b) Find the Gamma distribution parameters to match E δj = 0.10 and Var δj = 0.032.

(xx check this with care: Answer: (12.151, 127.991). xx) Produce a version of Figure

vi.8, displaying densities for his health index after 2, 4, 6 days.

(c) Find and present the full distribution for M , the number of days it takes Mr Jones

to be fully recovered. What is the most probable number of days needed for his recovery,

based on the ‘about ten percent better each new day’ starting assumption?

(d) Investigate a few other possibilities, regarding the distribution of the δj , but still

keeping the E δj = 0.10 and Var δj = 0.032 starting information. Are the gamma-based

results reached fairly robust?

(e) (xx then generalised to a full log-gamma process. do the ProcMod selling point.

pointer to Ch. 15. and be specific about simulation to illustrate and to check plausibility

of assumptions. xx)

Story vi.6 Causal inference and potential outcomes.

Code & Data: someRfile.R, somePyfile.py

Many if not most empirical questions posed and claims made in economics, political

science, sociology, medicine, and epidemiology are causal. A recent example is, ‘Boys

should start school a year later than girls’, as argued by the economist Richard Reeves

(Reeves, 2022b,a). Reeves’ argument is causal. Notice that Reeves does not merely

make the descriptive claim that ‘boys starting school a year later do better than the boys

starting school with kids their age’, which would just be a statement about a empirical

association. Rather, Reeves’ normative and thefore causal claim is that a boy starting

school a year later (called redshirting) would do better in life than if that same boy were to

start school with children his age. For a reasearcher intending to test Reeves’ hypothesis,

the challenge is that we don’t observe the counterfactual, that is, we never observe a boy

both being redshirted and not being redshirted.

One way of resolving the fundamental problem of causal inference is to conduct a

randomised experiment. The random assignment of treatment would assure that dif-

ferences in the outcome can be attributed to the effects of the treatment. Randomised

experiments are, however, perhaps more often than not, not feasible. Who will ran-

domly redshirt their child?, for example. This is where the theory of causal inference for

observational data comes in (or the ‘credibility revolution‘, as it is called (Angrist and

Pischke, 2010; Ashworth et al., 2021)). At the heart of the theory of causal inference lies

an intense scrutiny of various ways of exploiting sources of random or as-good-as-random

variation in the treatment. The point is to leverage so-called natural experiments, that

is, empirical settings where the observational data – looked at and used the right way –

may mimic or approximate a bona fide randomised experiment. The theory of causal in-

ference consists of a language for talking about causality, and of statistical tools tailored

to help tease out causal information from observational data. In this story we introduce

this language, which is the theory of potential outcomes (Rosenbaum and Rubin, 1983;

Holland, 1986; Imbens and Rubin, 2015); and, by way of simulations, we aim to get a

feel for when and why some of the more popular research designs work.
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(a) All notions of causality involves the notion that by changing the treatment, we can

change the likely value of the outcome. The potential outcomes theory formalises this

idea in that there, for one and the same unit, exists parallel worlds, where each world

corresponds to a value of the treatment. When treatment, say Xi = {0, 1}, is binary, one
associates two random variables Yi(0) and Yi(1) to each unit. Here, Yi(0) is the outcome

in the world where the ith unit is not treated, while Yi(1) is the outcome in the world

where the ith unit is treated. The individual level causal effect of treatment is then some

contrast of the two potential outcomes, of which the most obvious and common one is

Yi(1)− Yi(0),

Since we, the data collectors, only live in one of the two parallel worlds, we only get to

see Yi = Yi(Xi) = XiYi(1)+ (1−Xi)Yi(0). Inference on the difference above is therefore

impossible, a fact known as the fundamental problem of causal inference (Holland, 1986,

p. 947). With a sample of units, however, we do observe the potential outcome under

treatment for some units, and the potential outcome under control for others. This may

make it possible to say something about various averages of the difference above. For

example, the average treatment effect att = E(Yi(1) − Yi(0)); the average treatment

effect on the treated att = E(Yi(1) − Yi(0) |Xi = 1); or the other conditional average

treatment effects, cate(z) = E (Yi(1) − Yi(0) |Zi = z), for some covariate (vector) Zi.

Describe situations where the ate, the att, or the cate might be the estimand of

interest.

(b) The ubiquitous challenge with causal inference is confounders. A confounder is a

variable that affects both the treatment and the outcome, thereby inducing a correlation

between the treatment and the outcome that may not be due changes in the treatment

causing changes in the outcome. This is where the correlation-is-not-causation adage,

uttered in every stat101 course, comes from. A small example of confounding is given in

the R-script below.

n <- 10^3

z <- rnorm(n) # the confounder

x <- 1*(z >= 0) # the treatment

a <- 1.23; b <- 2.34

y <- a + b*z + rnorm(n,0,1) # the outcome

summary(lm(y ~ x)) # coeff on x is significant

summary(lm(y ~ x + z)) # coeff on x is zero

In this script, changing the treatment x by one unit does not lead to any change in

the outcome y. Nevertheless, as the first regression of this R-script illustrates, x and y

are highly correlated. As the second regression of this R-script illustrates, however, the

problem of confounding dissappers if all confounders are observed and can be controlled

for. With observational data, however, it is rather bold to confidently assume that all

confounders are observed, and thus can be controlled for.

Now that we have used the terms observational and experimental, we should be

more precise about what we mean with these terms. It all comes down to the assignment

mechanism. The assignment mechanism is, roughly, the mechanism by which treatment
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and control (assuming a binary treatment) is allocated, or choosen, or determined, in

a population. For example, in the R-script above, Pr(xi = 1 | zi) = Pr(zi ≥ 0) =

1 − Φ(zi) for i = 1, . . . , n, completely describes the assignment mechanism. The key

difference between the two types of studies, is that in a randomised experiement the

assignment mechanism is controlled by the researcher, thus fully known to her; while in

an observational study the assignment is unknown.

Suppose that we have independent data (Y1, X1, Z1), . . . , (Yn, Xn, Zn) for some out-

come Yi, treatment indicators Xi, and vectors of covariates Zi. The potential outcomes

theory tells us to regard these observed outcomes as Yi = XYi(1) + (1 − Xi)Yi(0) for

i = 1, . . . , n. This means that, in the background, there are independent replicates

{Yi(0), Yi(1), Xi, Zi}i≤n of a vector (Y (0), Y (1), X, Z). Can we, with these data, make

inference on any causal estimand? Suppose that these data stem from an experimental

setup where it is decided that nt units will undergo treatment, and nc = n − nt will be

assigned to the control group. We draw balls from a hat containing nt red balls and

nc blue balls. If the first ball is red, the unit with label 1 is assigned to treatment, of

the second ball is blue, the unit labelled 2 is assigned to the control group, and so on.

Describe the assignment mechanism of the experiment, explain that

{Y (0), Y (1)} ⊥⊥ X and X ⊥⊥ Z, (vi.3)

and show that âttn = n−1
t

∑n
i=1XiYi − n−1

c

∑n
i=1(1 − Xi)Yi is unbiased for the ate.

Show also that

Var(âten) =
1

n

{VarY (1)

p
+

VarY (0)

1− p

}
,

where p = nt/n is the shared of treated units. The take away here, which you probably

knew already, is that with a randomised experiment of this kind, we don’t need to control

for anything. Practically, the Zis do not enter into our estimation of the ate.

(c) With observational data the assumption in (vi.3) is quite unrealistic. Think of a

sociological study where the treatment is X = I{higher education} and the outcome

is Y = salary There are certainly innumerable background variables confounding this

relationship. In other words, the treated units may differ systematically from the units

that are not treated. Okay, so suppose that Z is a vector containing all these background

variables. Then, comparing like with like, all else equal, ceteris paribus, etc., means that

for a given value of Z = z, the world is basically performing a randomised experiment of

X on Y . More formally, if Z really contains all confounders of the X–Y relationship, it

is reasonable to assume that

{Y (0), Y (1)} ⊥⊥ X |Z. (vi.4)

If we couple this with the assumption Pr(X = 1 | Z = z) > 0 for all z, then treatment

assignment is said to be strongly ignorable. Let {Yi(0), Yi(1), Xi, Zi}i≤n be independent

replicates of (Y (0), Y (1), X, Z), and assume that (vi.4) holds. The following R-script

provides an example.

n <- 10^3

z <- rnorm(n,1,1); u <- 0.5*(z - 1) + sqrt(1 - 0.5^2)*rnorm(n)
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x <- 1*(u >= 0) # the treatment indicator

a <- 1.23; b <- 2.34; gamma0 <- 3.45 ; gamma1 <- 4.56

# The potential outcomes

y0 <- a + gamma0*z + rnorm(n,0,1)

y1 <- a + b + gamma1*z + rnorm(n,0,1)

# We observe x,z and

y <- x*y1 + (1 - x)*y0

What is the ate in this example? What is the att? More generally, suppose the following

model for the potential outcomes

Y (0) = Ztγ0 + σ0ε(0), and Y (1) = β + Ztγ1 + σ1ε(1), (vi.5)

where ε(0) and ε(1) are independent of X (so that (vi.4) holds). Find an unbiased

estimator for the ate, and compute its variance.

(d) Trouble arises because we seldom observe all confounders. If Z are the confounders

we observe and U are the unobserved confounder, then a common state of affairs is that

{Y (0), Y (1)} ⊥⊥ X |Z,U. (vi.6)

How may we then draw causal conclusions about the causal effect of X? This is where

various natural experiments might, if we are lucky, come to the rescue. We first look at

the instrumental variable design in a simple setting. Suppose that the following model

for the potential outcomes

Y (0) = α+ γ0U + ε(0), and Y (1) = α+ β + γ1U + ε(1),

where U ∈ R, and ε(0), ε(1) ⊥⊥ U , so (vi.6) is satisfied. Suppose that U is a confounder

related to the treatment X by X ∼ Bernoulli(p(a+ bU)), where p(η) = 1/{1 + exp(η)}.
Find expression for the ate, the att, and the cate(z).

In the R-script below we simulate data {(Yi(Xi), Xi)}1≤i≤n from this model, giving

U a standard normal distribution. [xx fix this xx]

(e) In (a) we made a subtle assumption: The potential outcomes of the ith unit does

not depend on the treatment status of any other unit. In the causality literature, this is

known as the stable unit treatment value assumption, or SUTVA. A potential outcomes

model that does not make this assumption is one in which, in a population of n units, all

2n different assignments of treatment amount to potential worlds. For example, if n = 2

we have the potential outcomes Yi(0, 0), Yi(0, 1), Yi(1, 0), and Yi(1, 1), corresponding to

both units being treated, unit 1 not being treated and unit 2 being treated, and so on,

for i = 1, 2. Situations where the potential outcome of one unit might depend on the

treatment status of other units are known as spillover effects. Give an example of an

empirical situation where such spillover effects might be more likely than not to occur

(i.e., a situation where SUTVA does not hold). We’ll make the stable unit treatment

value assumption throughout this story.

Story vi.7 Finding your counterfactual cousin. (xx polish and round off. choose perhaps

a different figure, where the angles are more clearly not orthogonal. use only one n, but
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invent a different right panel figure, with different push factors ĉ. xx) You’re part of life’s

multitude of logistic regressions. You hope to achieve A, for which there are relevant

data for a flock of other individuals, associated with the probability

Pr(A |x) = H(xtβ), with H(u) =
exp(u)

1 + exp(u)
,

in terms of the individual’s covariate vector x = (x1, . . . , xp)
t. Your current estimate,

since you are equipped with your own covariate vector x0, is p̂(x0) = H(xt0β̂), with β̂ the

standard maximum likelihood (ML) estimate obtained from logistic regression analysis

of the available dataset. In the case of p̂(x0) being disappointingly low, the question is

how to change, getting from your x0 to a better xnew, with say Pr(A |xnew) ≥ p0 = 0.90

.
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Figure vi.9: The logistic regression model H(β0 + β1x1 + γ1z1 + γ2z2) is used, with

parameters 0.25, 0.44, 0.66, 0.22. The covariates are centred, with means zero, and are

here taken as independent standard normals. For a sample of size n = 500, the left panel

shows the (z1, z2), with arrows indicating how five individuals with estimated Pr(A |x, z)
in the range [0.80, 0.85] need to move in order to attain the 0.90 probability. The right

panel shows confidence curves cc(puj) for the five push factors.

(a) Show that the formal answer to this question is to achieve xtnewβ ≥ d0, with d0 =

H−1(p0) = log{p0/(1− p0)}, like 2.197 for a hoped for p0 = 0.90.

(b) God, give us grace to accept with serenity the things that cannot be changed, courage

to change the things which should be changed, and the wisdom to distinguish the one

from the other. We therefore change the notation slightly, sorting covariates into a set of

xj which cannot be changed and another set of zj which at the outset can be changed.

We write the regression model as p(x, z) = H(xtβ + ztγ), with regression coefficients β

and γ of dimensions p and q. When (x0, z0) is changed to (xnew, znew) = (x0, z0 + u),
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explain that this leads to new predictor xt0β + (z0 + u)tγ. Then use Cauchy–Schwarz to

show that the best you can do is to take u = pu γ proportional to γ, yielding

xtnewβ + ztnewγ = xt0β + zt0γ + pu γtγ;

you are to push z0,j up if the γj coefficient is positive, and push it down if it is negative.

(c) If you need Pr(A |x, z) ≥ 0.90, explain that your strategy should be to push your zj
(well, if possible) until (z0 + pu γ)tγ̂ is high enough, and that this means

p̂u = (d0 − xt0β̂ − zt0γ)/∥γ̂∥2.

Hence (xnew, znew) = (x0, z0+p̂u γ̂) is your estimated counterfactual cousin, an inspiring

individual hopefully not too far away from yourself in the space of covariates, and who

has the envisaged alluring 0.90 chance of achieving A in her life. Indeed show that

p̂(x̂new, znew) = 0.90.

(d) The practical ẑnew is really an estimate of the correct underlying

znew = z0 + puγ, with pu = (d0 − xt0β − zt0γ)/∥γ∥2.

To assess how precise p̂u is, write α = (β, γ) for the true parameter vector, and start

from (√
n(β̂ − β)√
n(γ̂ − γ)

)
→d Z =

(
Zb

Zc

)
∼ Nr(0, J

−1),

as per standard theory for logistic regressions; see Ex. 5.43. Here J is the probability

limit of Ĵ , the normalised Fisher information matrix. We shall also need Q̂, the q × q

lower-right submatrix of Ĵ−1. Explain first that

√
n(xt0β̂ + zt0γ̂ − xt0β − zt0γ) →d x

t
0Zb + zt0Zc,

and show also that

√
n(∥γ̂∥2 − ∥γ∥2) →d

q∑
j=1

2γjZc,j = 2γtZc.

Then apply the delta method to show that there is zero-mean limiting normal distribution

√
n
(d0 − xt0β̂ − zt0γ̂

∥γ̂∥2
− d0 − xt0β − zt0γ

∥γ∥2
)
→d L.

Work further with the limit variable to reach

L =
1

∥γ∥2
(−xt0Zb − zt0Zc)−

d0 − xt0β − zt0γ

∥γ∥4
2γtZc = − 1

∥γ∥2
(xt0Zb + zt0Zc + 2pu γtZc).

Show that this limit distribution variance is

τ2 =
1

∥γ∥4

(
x0

z0 + 2pu γ

)t

J−1

(
x0

z0 + 2pu γ

)
,

and explain how this quantity can be estimated from the data.
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(e) (xx writing out the Wald tests, W = ĉ/(τ̂ /
√
n). xx)

(f) The distribution of ratios ρ̂ = â/b̂ are often skewed, making delta method type

normal approxmations vulnerable. It is often better to construct confidence intervals

and confidence distributions for the underlying ratio ρ = a/b by working with â − ρb̂,

particularly when (â, b̂) is close to having a binormal distribution, as with the Fieller

problem exercises in Ch. 7 (xx point to exercises xx). To this end, write first β̂ =

β + Zn,b/
√
n and γ̂ = γ + Zn,c/

√
n, where (Zn,b, Zn,c) →d (Zb, Zc) defined above. For

any candidate value pu, work with

An(pu) =
√
n
{
d0 − xt0β̂ − zt0γ̂ − pu

q∑
j=1

(γ̂2j − κ̂2j/n)
}

= −xt0Zn,b − zt0Zn,c − 2 pu

q∑
j=1

γjZn,c,j − pu

q∑
j=1

(Z2
n,c,j − κ̂2j )/

√
n,

writing κ̂2j for the diagonal elements of Q̂. Explain that An(pu) is approximately normal

with mean zero, and variance close to

Vn(pu) = V ar {xt0Zb + (z0 + 2pu, γ)tZc} =

(
x0

z0 + 2pu γ

)t

J−1

(
x0

z0 + 2pu γ

)
.

Inserting γ̂ and Ĵ for γ and J gives the variance estimator V̂n(pu). Now explain that all

of this leads to the statement that An(pu)
2/V̂n(pu) is approximately a χ2

1, and to the

confidence curve

ccn(pu) = Γ1(An(pu)
2/V̂n(pu)).

(g) Your task is now to use the following description to construct a version of Figure

vi.9 (and you may use set.seed(11) for making an exact replicate). The data are

generated with centred covariates x1, z1, z2, here taken as independent and standard

normal, and with logistic regression models H(β0 + β1x1 + γ1z1 + γ2z2), with true val-

ues 0.25, 0.44, 0.66, 0.22, and sample size n = 500. The left panel shows (z1, z2), with

five individuals selected from the segment of those with estimated p(x1, z1, z2) inside

[0.80, 0.85]. Estimate their pushes p̂uj , and construct arrows, as shown, indicating how

they need to move from current positions (x0, z0) to (x0, znew), in order to have estimated

p(x, znew) = 0.90. For the right panel, construct confidence curves ccn(puj) for the push

factors.

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)
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Miscellaneous stories

Story vii.1 Karl Pearson 1900: goodness-of-fit and the chi-squared. In 1900, Karl

Pearson (1857–1936) published On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that it can be reasonably

supposed to have arisen from random sampling in Philosophical Magazine, Series 5. This

is indeed a remarkably elaborate and informative title for a journal article, and rightly so.

(i) He invents a very useful general test, to check whether a probability vector is equal

to a set of specified values; (ii) he shows that the test statistic can be approximated

with a new distribution, which is the first-ever published chi-squared distribution, which

conveniently does not depend on the specified probability vector, but only the number

of boxes under consideration; and (iii) he develops logically sound arguments for when

should keep one’s theory, and when one should reject it. In yet other words, he invents the

notion of statistical testing, via a test statistic, which he shows has a limit distribution,

and he almost touches on p-values. In one of perhaps several nutshells, Pearson (1900)

builds a full apparatus to test a given theory.

Here we go through the ideas and details for the Pearson statistic. Let N =

(N1, . . . , Nk) be a multinomial vector, with n independent draws for k given boxes, and

probability vector p = (p1, . . . , pk); see Ex. 1.5. A simple example to point to is to roll

your die n times, count the numbers (N1, . . . , N6) of the different outcomes 1, 2, 3, 4, 5,

6; if your die is fair, this is a multinomial vector with p = (1/6, . . . , 1/6). The Pearson

statistic is

Kn =

k∑
j=1

(Nj − npj)
2

npj
=

k∑
j=1

(obsj − expj)
2

expj
=

k∑
j=1

n(p̂j − pj)
2

pj
,

with the familiar estimators p̂j = Nj/n and squared ratios rj = (obsj − expj)/exp
1/2
j ,

involving ‘observed’ and ‘expected’ numbers. If the die you roll many times is not a

completely fair one, the Pearson statistic may be used to detect this, i.e. that some of

the rj deviate too much from zero, and that the real p is not equal to (1/6, . . . , 1/6). As

part of what goes on in Story vii.2 we use the Pearson statistic, and relatives, to check

whether the first million digits of π have a uniform distribution on 0, 1, . . . , 9.

607



608 Miscellaneous stories

(a) We have seen in Ex. 2.44 that there is full vector convergence in distribution Xn =√
n(p̂− p) →d X ∼ Nk(0,Σ), with k× k variance matrix Σ = D− ppt, writing D for the

diagonal matrix with p1, . . . , pk in its diagonal. Show that indeed
∑k

j=1Xj = 0. For any

linear combination ϕ = atp =
∑k

j=1 ajpj , with estimator ϕ̂ = atp̂ =
∑k

j=1 aj p̂j , show

that
√
n(ϕ̂− ϕ) →d N(0, τ2), where τ2 = atΣa =

∑k
j=1 a

2
jpj − (

∑k
j=1 ajpj)

2.

(b) Show that Kn =
∑k

j=1X
2
n,j/pj →d K =

∑k
j=1X

2
j /pj , with the X ∼ Nk(0,Σ) above.

This is ‘the main job’ (now accomplished); the rest of the story is to demonstrate that

this K has a χ2
k−1 distribution. Show, directly, that EK = k − 1.

(c) For the (k− 1)× (k− 1) submatrix Σ0 of Σ, corresponding to the first k− 1 elements

X0 = (X1, . . . , Xk−1)
t of X, show that Σ0 = D0 − p0p

t
0, where D0 is diagonal with p0 =

(p1, . . . , pk−1)
t on its diagonal. Use algebraic results from Ex. 1.39 to demonstrate that

K may be expressed as X−1
0 Σ−1

0 X0, and explain that this proves that Pearson reached

more than a hundred years ago, but with other words and symbols, that K ∼ χ2
k−1.

(d) An alternative to the classic Kn is

K ′
n =

k∑
j=1

(Nj − npj)
2

Nj
=

k∑
j=1

(obsj − expj)
2

obsj
=

k∑
j=1

n(p̂j − pj)
2

p̂j
,

i.e. using observed and not expected in the denominator. Show that K ′
n and Kn must

have identical limit distributions; hence K ′
n →d χ

2
k−1 too.

(e) Another option for testing a given value p for a multinomial is to use maximum

likelihood and Wilks testing, from Ch. 5. With ℓn(p) the log-likelihood function, with

ℓn,max its maximum and ℓn,0 the value at the null hypothesis, show that Dn = 2(ℓn,max−
ℓn,0) = 2n

∑k
j=1 p̂j log(p̂j/pj). Explain that Wilks theory from Ch. 5 implies Dn →d

χ2
k−1 at the fixed p. To show that there is a close connection between Dn and Kn, start

from the Kullback–Leibler distance

k∑
j=1

pj log
pj
p̂j

=

k∑
j=1

−pj log
(
1 +

p̂j − pj
pj

)
.
=

k∑
j=1

{
−pj

p̂j − pj
pj

+ 1
2pj

( p̂j − pj
pj

)2}
,

and show that Dn −Kn →pr 0.

(f) When usingKn =
∑k

j=1(Nj−npj,0)2/(npj,0) to test the hypothesis p = p0, study also

the local power, at nearby alernative position pj = p0,j + δj/
√
n. Show that Xn →d X ∼

Nk(δ,Σ), and that Kn →d χ
2
k−1(λ

2), a noncentral chi-squared with λ2 =
∑k

j=1 δ
2
j /pj .

Check Story vii.2 to see this applied. (xx just a bit more, making CD, similar for Story

iii.8. testing λ = 0, C(λ) = Prp0+δ/
√
n(Kn ≥ Kn,obs)

.
= 1− Γk−1(Kn,obs, λ

2). pointmass

at zero. may read off 95 percent interval for λ. xx)

(g) (xx one more theme rounding this off. closeness to ML, estimator determined by∑k
j=1(Nj/pj(θ))uj(θ) = 0. use this in Geissler data stories. xx)

(h) (xx check and point to Story ii.7. xx) Consider two multinomial vectors M =

(M1, . . . ,Mk) andN = (N1, . . . , Nk), with comparable probability vectors p = (p1, . . . , pk)
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and q = (q1, . . . , qk). How can we naturally test the hypothesis H0 that p = q? Writing

n1 and n2 for the two sample sizes, with sum n, write p̂j = Mj/n1 and q̂j = Nj/n2.

Explain first that

√
n(p̂− p) →d (1/c

1/2
1 )X ∼ Nk(0,Σ1),

√
n(q̂ − q) →d (1/c

1/2
2 )Y ∼ Nk(0,Σ2),

where Σ1 = D1 − ppt, Σ2 = D2 − qqt, with diagonal matrices D1 and D2 having p

and q on their diagonals. Here c1 = n1/n and c2 = n2/n, meant to stay stable for

growing sample sizes. Under H0, then, show that
√
n(p̂− q̂) →d (1/c1 +1/c2)

1/2Z, with

Z ∼ Nk(0, D − ppt). Deduce that

Kn1,n2
=

n1n2
n1 + n2

k∑
j=1

(p̂j − q̂j)
2

r̂j
→d χ

2
k−1,

as long as r̂j →pr pj for each j; it is natural to take r̂j = c1p̂j+c2q̂j = (n1Xj+n2Yj)/(n1+

n2).

Story vii.2 Decimals of π. The decimals of π have fascinated mathematicians and am-

ateurs endlessly (and some can recite several thousands of decimals faultlessly). One in-

triguing perspective is that the digits really appear to behave fully randomly, as i.i.d. vari-

ables with probabilities 0.1, . . . , 0.1 for the ten digits 0, 1, . . . , 9.

(a) Here are the decimal counts among the first million such digits of π, not including

the 3. start, alongside what we term Pearson residuals, from Story vii.1, which you are

asked to compute below. These are rj = (Nj − npj,0)/(npj,0)
1/2 = (Nj − 105)/105/2,

here with n = 106 and pj,0 = 0.10. Plot them, and carry out goodness-of-fit tests, in

particular using the Pearson test Kn =
∑9

j=0 r
2
j . Find corresponding tables on the net,

with bigger sample sizes than a million, and carry out similar analyses.

0 99959 -0.1297 5 100359 1.1353

1 99758 -0.7653 6 99548 -1.4293

2 100026 0.0822 7 99800 -0.6325

3 100229 0.7242 8 99985 -0.0474

4 100230 0.7273 9 100106 0.3352

(b) Imagine that the creation of π really involved i.i.d. digits with probabilities pj =

0.10 + δj , for some conceivably very small but non-zero δj (summing to zero). Show

that the Pearson test statistic Kn is then close to a χ2
9(nλ), with λ =

∑9
j=0 δ

2
j /pj,0 =

10
∑9

j=0 δ
2
j . Suppose now that a person sneaks into your π laboratory in the middle of

the night, switiching for every 2000th decimal 0, 1, 2, 3, 4 with 5, 6, 7, 8, 9. Show that the

Pearson test is actually able to detect this departure from plain 0.10, . . . , 0.10, at the

0.01 testing level.

(c) If the grand hypothesis of i.i.d. uniform digits holds, show using Ex. 2.69 that the

waiting times V10 required to have seen all ten decimals (where one starts counting again

after having found one such complete cycle), must follow the distribution

g10(v) = Pr(V10 = v) =

9∑
j=1

(−1)j−1

(
9

j − 1

)
(1− j/10)v−1 for v ≥ 10
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We can get hold of these decimals, starting with

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164

and then counting away to get to the V10; the first few are 32, 18, 19, 27, 15 ... We

have actually managed to get hold of the first 109 decimals of π (!), and have written

up a simple code to extract from these the first half million of the cycle lengths V10.

Compute the exact mean ξ and standard deviation σ for the V10 distribution, using

the formula above or other results from Ex. 2.69; you should find ξ = 29.2897 and

σ = 11.2367. Compute also the skewness and the kurtosis kurt. From the data file

V10counts, with all these V10 variables x1, x2, . . ., compute successive means x̄n and

standard deviations σ̂n. Produce a version of Figure vii.1 (left panel for means, right

panel for standard deviayions). The left panel has ξ±1.96σ/
√
n as a band (here displayed

for n = 1001 to our upper limit). Explain how this illustrates both the Law of Large

Numbers and the Central Limit Theorem. The right panel similarly has σ ± 1.96κ/
√
n

lines, with κ = ( 12 + 1
4kurt)σ; check with Ex. 2.46, and compute the kurt number in

question. Supplement this with a plot of
√
n(σ̂/σ − 1)/( 12 + 1

4γ4)
1/2, also of the running

tn =
√
n(x̄n − ξ)/σ as a function of n, and comment.
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Figure vii.1: Decimals of π: computing the first half million successive means (left panel)

and standard deviation (right panel), based on some 15 million decimals, for the V10
cycle lengths. They are in convergence towards ξ = 29.28979 and σ = 11.2367, indicated

with horizontal lines. The bands represent ±1.96 τ/
√
n lines, with τ = σ for the means

and τ = ( 12 + 1
4kurt)

1/2σ for the standard deviations.

(d) The π decimals give us the rare chance of testing whether a given hypothesised (and

perhaps esoteric) distribution is fully correct, with an enormous sample size. Use the

m = 5 ·105 cycle lengths V10 to count N(v), the number of times V10 = v is observed, and

compare N(v)/m with the hypothesised g(v), for v ≥ 10. Produce a version of Figure

vii.2 (right panel), which has the Pearson residualsm1/2{N(v)/m−g(v)}/g(v)1/2. Argue

that these Pearson residuals should be approximately independent and standard normal.
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Carry out a Pearson chi-squared test, and comment. Inspecting these numbers and tables

(xx check with com69d xx), we have N(93) = 51 sightings of V10 = 93, in this first half

a million times, creating a Pearson residual of 3.628. Is this too big?

(e) (xx it may take your laptop many minutes, but go on to an even higher number of

V10 cycle lengths than our half a million. point to a website where decimals may be

round. xx)
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Figure vii.2: Left panel: plots of running consecutive tests, for ξ = 29.2897 (black) and

for σ = 11.2110 (red), with values of n from 1001 to the max number half a million. Right

panel: Pearson residuals m1/2{N(v)/m− g(v)}/g(v)1/2, comparing observed frequencies

N(v)/m with the hypothesised g(v) distribution, for the half a million cycle lengths.

(f) (xx edit and polish this. xx) For v ≥ 50, say, show that the N(v) counts must be

close to independent Poissons, with parameters λv = mg(v). Work with Z =
∑

v{N(v)−
mg(v)}2/{mg(v)}, summing over an index set in this terrain of v ≥ 50. Show that

EZ = 2k+
∑

v 1/{mg(v)}. Use this to test whether the N(v) counts behave suspiciously.

Story vii.3 Random integers via prime numbers. The first few prime numbers are

of course 2, 3, 5, 7, 11, . . .; denote these p1, p2, p3, . . .. Every integer N can be uniquely

represented as N =
∏∞

j=1 p
Xj

j , with finitely many non-zero Xj . One may hence create

models for random integers by placing probability distributions on the Xj .

(a) Let X1, X2, . . . be independent random variables, with values in {0, 1, 2, . . .}. Show

using the Borel–Cantelli Lemma that the infinite product N is a well-defined random

integer variable if and only if
∑∞

j=1 Pr(Xj ≥ 1) =
∑∞

j=1{1−Pr(Xj = 0)} is finite. Show

that the division here is sharp: if the sum diverges, then not only is N = ∞ with positive

probability, but with probability one.

(b) Let first Xj ∼ Pois(dj); show that N is finite if and only if
∑∞

j=1 dj is finite. Then let

the Xj be independent Bernoulli variables with Pr(Xj = 1) = rj , and with rj = 1/j1.5,
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say. Show that this leads to a well-defined probability distribution on the set of modest

integers, those where all exponents xj ∈ {0, 1}. Simulate say 1000 random modest

integers from this distribution. Find the mean of both N and logN .

(c) Now suppose we give Xj independent geometric distributions, of the form Pr(Xj =

x) = (1− cj)cxj for x = 0, 1, . . .. Explain that (xx check with care xx) EXj = cj/(1− cj),
and that N is well-defined if and only if

∑∞
j=1 cj is finite.

(d) Study in particular the case of cj = 1/pαj . Explain that this leads to a well-defined

random integer N , provided α > 1, with EXj = 1/(pαj − 1). Show indeed that

Pr(N = n) =
1

ζ0(α)

1

nα
for n = 1, 2, 3, . . . , where ζ0(α) =

∏
primes

pα

pα − 1
.

Explain that this ζ0(α) must be identical to the famous Riemann zeta function, ζ(α) =∑
n≥1 1/n

α. We have hence reached a simple probabilistic proof of the zeta function

representation in terms of products over all primes (proven first by Euler in 1737, though

via very different means). In particular,

π2

6
=

∞∑
j=1

p2j
p2j − 1

=
4

3

9

8

25

24

49

48
· · · , π4

90
=

∞∑
j=1

p4j
p4j − 1

=
16

15

81

80

625

624

2401

2400
· · · .

You know that π is irrational. Prove, as Euclid did about three hundred years b.C., that

there is an infinitude of primes. Prove also from this that ζ(α) → ∞ as α→ 1.

(e) Let N be such a random natural number, drawn from what we may term the zeta

distribution, with probabilities proportional to 1/nα, for some α > 1. Prove the following.

(i) N is odd with probability 1 − ( 12 )
α, e.g. 3/4 for α = 2. (ii) N is a square with

probability ζ(2α)/ζ(α), e.g. π2/15 for α = 2. (iii) The number 100 will be a factor in N

with probability (1/100)α. Generalise.

(f) Consider the Möbius function from number theory, defined by setting µ(1) = 1 and

µ(pj1 · · · pj,r) = (−1)r if the number is a product over distinct primes; for all other n,

µ(n) = 0. Show that µ(n) is nonzero precisely for what we termed modest integers above.

Now prove the intriguing number theory formula

∞∑
n=1

1

nα

∞∑
n=1

µ(n)

nα
≡ 1,

by working with the mean of µ(N) in different ways.

(g) Let N1, . . . , Nm be independently drawn from the zeta distribution with α = 2. Find

the probability limit of (N1 · · ·Nm)1/m.

(h) We’ve drawn m = 25 numbers from the zeta distribution, for a particular value of α:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 5 5 10 11 12 12 36 47 63 234 464

Estimate the α we have used, with a 95 percent confidence interval.
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Story vii.4 Time-to-failure for machine components. (xx polish. check with other place

we use nlm. xx) Among the aims of the present story is to showcase how the general

maximum likelihood theory of Ch. 5 can be applied also in new situations, perhaps with

models outside the usual repertoire. Even with a freshly invented model one may fit

parameters, read off approximate standard deviations, construct confidence intervals,

test hypotheses, as long as the log-likelihood can be programmed. The machinery also

applies to any interest functions of the model parameters, via the delta method. It is to be

noted that general-purpose numerical optimisation methods and algorithms, along with

routines for computing gradients and Hessians, i.e. first and second order derivatives, are

wondrously helpful here, essentially with only modest extra efforts needed beyond having

programmed the log-likelihood.

Of course methods also apply for standard models, where there might be pack-

ages or established routines accomplishing the fitting and testing, but the spirit for the

modern statistician should be that of building and trying out also new models for new

purposes. This might be even more important for regression type models, where similar

programming and implementation schemes work; see e.g. Story iv.6.

We build our present illustrations around the following dataset, with n = 201 time-

to-failure measurements for certain machine parts, taken from the SAS User’s Guide

Ch. 44. We shall fit the data to the gamma and Weibull models, and also to a three-

parameter extension of these, which we call the gamma-Weibull model.

[1] 620 470 260 89 388 242 103 100 39 460 284 1285 218 393 106

[16] 158 152 477 403 103 69 158 818 947 399 1274 32 12 134 660

[31] 548 381 203 871 193 531 317 85 1410 250 41 1101 32 421 32

[46] 343 376 1512 1792 47 95 76 515 72 1585 253 6 860 89 1055

[61] 537 101 385 176 11 565 164 16 1267 352 160 195 1279 356 751

[76] 500 803 560 151 24 689 1119 1733 2194 763 555 14 45 776 1

[91] 1747 945 12 1453 14 150 20 41 35 69 195 89 1090 1868 294

[106] 96 618 44 142 892 1307 310 230 30 403 860 23 406 1054 1935

[121] 561 348 130 13 230 250 317 304 79 1793 536 12 9 256 201

[136] 733 510 660 122 27 273 1231 182 289 667 761 1096 43 44 87

[151] 405 998 1409 61 278 407 113 25 940 28 848 41 646 575 219

[166] 303 304 38 195 1061 174 377 388 10 246 323 198 234 39 308

[181] 55 729 813 1216 1618 539 6 1566 459 946 764 794 35 181 147

[196] 116 141 19 380 609 546

(a) Consider the three-parameter density function

f(y, a, b, c) = k(a, b, c)ya−1 exp(−byc) for y > 0.

Prove that the normalisation constant must be k(a, b, c) = cba/c/Γ(a/c). Show that

c = 1 gives the Gam(a, b) distribution, and that the special case a = c corresponds to

c.d.f. F (y) = 1− exp(−byc), which is a Weibull (though with a different parametrisation

than with Ex. 1.54). Due to these special cases we may call this three-parameter family

the gamma-Weibull distribution. Prove also the mean formula

EY =
Γ(a/c+ 1/c)

Γ(a/c)

1

b1/c
,

and verify that mean formulae for the gamma and the Weibull indeed are special cases.

(xx nils notes: a/b for c = 1 and Γ(1 + 1/c)/b1/c for a = c, the weibull case. xx)
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Figure vii.3: For the time-to-failure data, left panel: log-likelihood profile functions for

the mean µ, via the Gam(a, b) model, the Weibull (b, c) model, and the three-parametric

(a, b, c) model. Right panel: these are transformed to confidence curves via the Wilks

theorem, see Ex. 7.9, where e.g. 95 percent intervals can be read off. These are in essential

agreement here.

(b) First read the data into your computer suitably. It helps accurate numerics to scale

them with a factor of e.g. 1/100; in the scripts below this is what we call yy. Show

that the following little script succeeds in computing the log-likelihood for the Gam(a, b)

model:

logL1 = function(para)

{

a = para[1]

b = para[2]

aux = (a-1)*log(yy)-b*yy + a*log(b) - lgamma(a)

sum(aux)

}

To maximise the log-likelihood, along with the Fisher information matrix Ĵ = −∂2ℓn(θ̂)/
∂θ ∂θt, it is practical to use the general-purpose non-linear minimisation algorithm nlm

in R. Define the function minuslogL1 as -logL1, and then use

starthere1 = c(1,1)

fit1 = nlm(minuslogL1,starthere1,hessian=T)

ML1 = fit1$estimate

Jhat1 = fit1$hessian

se1 = sqrt(diag(solve(Jhat1)))

show1 = cbind(ML1,se1)

Carry out this scheme, and explain what the different steps involve and achieve; some-

times a bit of fiddling might be required with the start point starthere1 to secure con-

vergence of the numerical iterative minimisation procedure. Read off both ML estimates
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(â, b̂) and approximate 95 percent confidence intervals for them. Test the hypothesis that

the data are actually from the simpler exponential model.

(c) For any focus parameter µ = µ(θ) of the model parameters, the delta method says

that the approximate variance of µ̂ml = µ(θ̂ml) is κ̂2 = d̂tĴ−1d̂, with d̂ = ∂µ(θ̂)/∂θ.

To illustrate the general machinery, consider the mean µ = EY , which for the gamma

model is the simple a/b. Here partial derivatives etc. are easily found, but to explain the

general practical principle start by defining the function mu1 = function(para) as a/b,

and then carry out

mu1hat = mu1(ML1)

der1 = grad(mu1,ML1)

kappa1 = sqrt( t(der1) %*% solve(Jhat1) %*% der1 )

where grad is available via the library numDeriv. Construct a 95 percent interval for the

mean using this. Modify your code to similarly find estimate and interval for the median.

(d) Having accomplished the above for the gamma model, modify your code to handle

also the Weibull model, with F (y) = 1− exp(−byc). Find ML estimates, their estimated

standard deviations, test exponentiality; then find estimates and intervals for the mean

and the median. Part of the intended experience here is that passing from one model to

another often does not take many extra efforts, as results flow from having programmed

the log-likelihood.

(e) There are packages and routines available handling the gamma and Weibull models,

but perhaps not our three-parameter extension. Programme the appropriate ℓn(a, b, c),

then find ML estimates (â, b̂, ĉ), along with estimates and confidence intervals for the

mean and median. For these tasks it is indeed helpful to have an explicit formula for

the normalisation constant k(a, b, c), but it is useful for other models and situations to

learn that one may manage without, via numerical integration routines, typically in the

format of integrate(g,0,Inf)$value. For the learning experience, redo the fitting of

the (a, b, c) model without using the k(a, b, c) formula.

(f) The methods and programmes above lead to confidence intervals of the first-order

large-sample approximation type, say µ̂ ± 1.96 κ̂. Supplement your efforts by program-

ming also the log-profile-likelihood functions, ℓn,prof(µ) = max{ℓn(θ) : µ(θ) = µ}, for

the three models. Here you are helped by having explicit formulae for the µ. Con-

struct a version of Figure vii.3, left panel. The profiles are in good agreement hee, and

the three-parameter model does not lead to any significant increase over the two two-

parameter models. Then construct a version of the confidence curves in the right panel,

as follows. With D(µ) = 2{ℓn,max − ℓn,prof(µ)} the deviance, explain that D(µ) ≈d χ
2
1,

at the true position in the parameter space, via the Wilks theorem. Deduce as with

Ex. 7.9 that cc(µ) = Γ1(D(µ)) has the uniform distribution, and that the random set

{µ : cc(µ) ≤ 0.95} has probability 0.95 of covering the true value.

(g) On this particular occasion the different models produce rather similar confidencec

intervals for the mean µ, also when it comes to comparing direct µ̂±1.96 κ̂/
√
n, say, with

the Wilks theorem based ones, with {µ : Γ1(D(µ)) ≤ 0.95}. Go through the required
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calculations, yielding the following little table, with direct symmetric intervals to the left

and Wilks based on the right.

low up low up

gamma(a,b) 3.931 5.342 3.996 5.421

weibull (b,c) 3.923 5.368 3.992 5.459

three-para (a,b,c) 3.964 5.321 4.019 5.382

(h) Use the occasion to check one or two more models. For each, programme the log-

likelihood function, find ML estimates and their estimated standard deviations. Compute

also the log-likelihood maxima and the associated AIC scores, as per (11.1). One par-

ticular model is what we may term the Beta envelope around the exponential, with

c.d.f. F (y, θ, a, b) = Be(1 − exp(−θy), a, b). The exponential model then corresponds to

(a, b) = (1, 1). We learn that the two-parameter Gamma model is the best.

logLmax dim aic

-509.3245 1 -1020.649 expo

-506.7866 2 -1017.573 gamma

-507.1344 2 -1018.269 weibull

-506.6254 3 -1019.251 gamma-weibull

-506.5368 3 -1019.074 beta envelope

Story vii.5 Speed of light in 1882, and BHHJ estimation. Impressively, Simon Newcomb

managed to estimate the speed of light after audacious experiments in 1882. These

amounted in part to measuring the time ti, in 10−6 seconds, it took light to travel 7442.42

m. He then transformed these to observations yi, via the equation yi = 103(ti − 24.8).

His 66 yi data were as follows, with two conspicuous outliers:

28 22 36 26 28 28 26 24 32 30 27 24 33 21 36 32 31 25 24 25

28 36 27 32 34 30 25 26 26 25 -44 23 21 30 33 29 27 29 28 22

26 27 16 31 29 36 32 28 40 19 37 23 32 29 -2 24 25 27 24 16

29 20 28 27 39 23

Translating the 1882 experiments and intentions to data analysis, we formulate the es-

sential task being to estimate the correct mean of the underlying distribution, along with

its spread. We take this to mean fitting a N(ξ, σ2) to the data. Using the direct mean

ȳ and standard deviation s will produce a very biased view, since the two outliers ex-

ert very notable influence. Below we repair these estimates using the BHHJ method of

Ex. 5.9. Incidentally, the true speed of light value 299856.2 km/s translates to ξ0 = 33.2

on Newcomb’s y scale.

(a) Compute and display a nonparametric kernel-type estimate f̂(y) of the underlying

density f , along with direct N(ξ̂ml, σ̂
2
ml), using ML estimates, as in Figure vii.4, left panel.

We see that the ML estimates are far off, as is the estimated normal density.

(b) We therefore turn to the likelihood robustification BHHJ method, worked with in

Ex. 5.9, 5.18. Show that this for the normal model amounts to minimising

Hn(ξ, σ) = (2π)−1/2(1 + a)−1/2σ−a − (1 + 1/a)
1

n

n∑
i=1

{
ϕ
(yi − ξ

σ

) 1
σ

}a

.
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Figure vii.4: Left panel: nonparametric estimate f̂ of the underlying density, with two

bumps for the two outliers, along with two fitted normal densities. The lower one, which

is considerably off, is from ML estimation, and the upper one, providing a very good

fit, is from using BHHJ with a = 0.20. Right panel: relative efficiency of the BHHJ

method, in terms of standard deviation divided by optimal standard deviation, under

normal model conditions, as a function of the BHHJ tuning parameter a ∈ [0, 0.50]; for

ξ (smooth curve) and for σ (dashed curve).

The a is a positive tuning parameter, with a small corresponding to coming close to the

ML method, and bigger a yielding more robustness. Carry out BHHJ estimation with

the Newcomb data, for a grid of a values over say [0, 0.50], with a = 0 being the ML

method. Construct versions of the plots of Figure vii.5, with ξ̂a and σ̂a as functions of a.

These start at the ML values 26.212, 10.745, and then become gradually less influenced

by the outliers as a increases. The horizonal lines indicate ML values for the cleaned

dataset, with the two outliers removed.

(c) Using a positive a rather than a = 0 means gaining robustness, as seen here, but sac-

rificing a certain amount of efficiency under model circumstances. The limiting variance

matrix is of the form J−1
a KaJ

−1
a , see Ex. 5.18, which can be compared to J−1

0 for the

optimal-under-model method. Use this occasion to investigate r1(ξ, a), the limit stan-

dard deviation for ξ̂a divided by that for the ML for ξ, and r2(σ, a), the limit standard

deviation for σ̂a divided by that for the ML for σ. Construct a version of Figure vii.5,

right panel. The efficiency loss is small, for a small; for a = 0.20, for example, show

that one loses 2.2 percent for ξ estimation and 5.5 percent for σ estimation, in terms of

widths of confidence intervals. We have used this a = 0.20 value to display the associated

estimated normal density in Figure vii.4, left panel; the density comes very close to the

nonparametric one, for the relevant range of data.

(d) Newcomb did a good job, in 1882: show that the true value ξ0 = 33.2 is well inside

relevant confidence intervals for ξ, based on the BHHJ analysis of his 66 datapoints.
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Figure vii.5: BHHJ method estimates ξ̂a (left panel) and σ̂a (right panel), for the N(ξ, σ2)

model, based on Newcomb’s 66 measurements, as a function of tuning parameter a. ML

estimates (26.212, 10.745) are at a = 0. The horizontal lines at ξ = 27.75 and σ = 5.083

indicate the ‘best’ estimates, computed for the cleaned dataset with the outliers removed.

The BHHJ estimates chosen for Figure vii.4, left panel, are for a = 0.20.

(e) It might not be necessary for the data analysis here, but carry out similar analysis,

with both ML and BHHJ for a range of a, with the three-parameter t model, i.e. using

yi = ξ + σεi with εi ∼ tν .

Story vii.6 How many of those born now will become at least 90? (xx nilsdemography

rant, so far; will be matched with emil life expectancy Story i.16; human mortality

databases; need serious sttructuring and polish. xx) will calibrate notation and methods

with that emil story. F (t) = 1−
∏

i≤t(1−αi). Figure vii.6 displays the quantiles, at level

0.1, 0.3, 0.5, 0.7, 0.9, for Norwegian women and men. then do modelling and prediction.

xx)

(a) Consider a time to event random variable T , on the continuous scale, with cumulative

hazard rate A(t) =
∫ t

0
α(s) ds and survival function S(t) = exp{−A(t)}. If data are

observed on a discrete grid of intervals [j, j + 1), for j = 0, 1, . . ., show that the chance

for an individual still at risk at time j of surviving also j + 1 is S(j + 1)/S(j). Deduce

that the time-discrete hazards are

αj = Pr(T ∈ [j, j + 1) |T ≥ j)

= 1− S(j + 1)/S(j) = 1− exp[−{A(j + 1)−A(j)}]. (vii.1)

In particular, any parametric model for the continuous survival function, or for the

cumulative hazard, translates to a parametric model for the αj . If increments are small,

or the time grid fine, we have αj
.
= A(j + 1)−A(j)

.
= α(j), but when data are observed

on the discrete grid we need in general to work with the αj in their [0, 1] space.

(b) Suppose survival data are available of the form Nj ∼ binom(Yj , αj), with Yj at risk

at the start of [j, j + 1), of whom Nj die inside that time window. We view the data as
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Figure vii.6: A demographic view of Norwegian history, 1846–2020: 0.1, 0.3, 0.5, 0.7,

0.9 quantiles of lifelength distribution, for women (full curves, above) and men (broken

curves, below).

a chain of binomials. (xx will give the right asymptotics, with martingale argument. xx)

The direct binomial estimator, without further modelling assumptions, is α̂j = Nj/Yj .

With a parametric model, say αj(θ), show that the log-likelihood function can be written

ℓn =

m∑
j=0

[
Nj logαj(θ) + (Yj −Nj) log{1− αj(θ)}

]
=

m∑
j=0

Yj
[
α̂j logαj(θ) + (1− α̂j) log{1− αj(θ)}

]
.

Write down the basic first-order properties of the maximum likelihood estimator θ̂. (xx

can we have a very simple illustration? can ask for αj constant. xx)

(c) When working with parametric hazards models it might be important to have better

fit for e.g. the higher values than the lower. Suppose this is translated to weights wj

reflecting such relative importance. Define the weighted log-likelihood function as

ℓn =

m∑
j=0

wjYj
[
α̂j logαj(θ) + (1− α̂j) log{1− αj(θ)}

]
.

(xx a bit more. but wish to do norway with gompertz and skewed gompertz before

coming to large-sample theory. xx)
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Figure vii.7: For the skewed Gompertz model, with parameters (a, b, c), the men to

women parameter ratios are computed as a function of birth year. Left panel: âm/âw,

with a clear peak around 1980; right panel: b̂m/b̂w, becoming stable at around 0.85, and

ĉm/ĉw, becoming stable at around 1.00.

(d) Using F̂t = 1 −
∏

j≤t(1 − α̂j), with α̂j = dN(j)/Y (j), implement, and read off the

quantiles, and construct a version of Figure vii.6. The 0.90 quantile, for example, for a

given year 1960, is found by checking where the F̂1960(t) line crosses 0.90, where we use

linear approximation to have a smoother plot than if we merely compute the cumulatives

as constant inside each year.

(e) For Norway data we shall use the time-continuous Gompertz model, which is A(t) =

(a/b){exp(bt) − 1}. Show that this via (vii.1) implies αj = 1 − exp{−d exp(bj)}, with
d = (a/b){exp(b)− 1}. Nils will also try out a three-parameter skewed generalisation of

the Gompertz, using

A(t) = (a/b){exp(bt)− 1}c, again with αj = 1− exp[−{A(j + 1)−A(j)}]

The plan is to fit a couple of these models to Norwegian demographic data, men and

women, 1846 to 2020, with weights reflecting interest in the higher ages. We then find

(ât, b̂t), year for year, and may then meta-model the underlying (at, bt) over time.

(f) (xx then nils does gompertz, birth year by birth year, finding smooth changes in

the parameters. this is then used to track the 0.90 quantile and also to estimate F (90)

over time. xx) can estimate the Gompertz parameters in A(t) = β{exp(γt)− 1}, S(t) =
exp{−A(t)}. (i) can work with this, for fixed t0, e.g. 90 years; how may born in 2025

will be alive in 2135? (ii) time point t∗ where F (t∗) = 0.90, or S(t∗) = 0.10.

(g) (xx to come here, with suitable things to monitor, based on fitting the three-

parameter skewed Gompertz model (a, b, c) to the men and women year groups. xx)

So A(t) = a[(1/b){exp(bt) − 1}]c. Show that F (t) = q means A(t) = z = − log(1 − q),
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which means quantile t∗ = (1/b) log(1 + b(z/a)1/c). Figure vii.7 shows parameter ratios

âm/âw, with a clear peak around 1980, b̂m/b̂w, becoming stable at around 0.85 ĉm/ĉw,

becoming stable at around 1.00. this has consequences for longer lives and prediction.

further: (i) plot log âm and log âw, approximately linear with downward trend, and pre-

dict to 2030, 2040, 2050. (ii) plot b̂m and b̂w, to see that these have become about stable.

(iii) plot ĉm and ĉw, approximately linear with a small upward trend. then use all of

this to fremskrive (a, b, c) to 2030, 2040, 2050, for men and women. via a little set of

monitoring functions M(a, b, c), prediction of these will imply evolution of (a, b, c).

(h) We need to understand the behaviour of the maximum weighted likelihood estimator

θ̂. Show first that with α∗
j (θ) = ∂αj(θ)/∂θ, we have

Un =
∂ℓn
∂θ

=

m∑
j=0

wj
Nj − Yjαj(θ)

αj(θ){1− αj(θ)
α∗
j (θ),

and that we at the true parameter value have Un ≈d Np(0,Kn), with

Kn =
m∑
j=0

w2
j

Yj
αj(1− αj)

α∗
j (α

∗
j )

t.

Show further via Taylor expansion arguments (xx pointer to Ch4-Ch5 things xx) that

θ̂ ≈d Np(θ0,Σn), with the sandwich matrix Σn = J−1
n KnJ

−1
n , where

Jn =

m∑
j=0

wj

{Nj

α2
j

+
Yj −Nj

(1− αj)2

}
α∗
j (αj)

t .=

m∑
j=0

wj
Yj

αj(1− αj)
α∗
j (α

∗
j )

t.

Here we may also use Ĵn = −∂2ℓn(θ̂)/∂θ ∂θt, the Hessian at position θ̂.

(i)

Story vii.7 Stout’s physician and the last n. In his book Almost Sure Convergence,

Stout (1974, p. 9) draws up a little scenario, which we here re-tell with a bit of notation

and soon enough additional comments. It involves a physician who treats patients with

a drug having the same unknown cure rate p for each patient, and who will be using the

same drug as long as no superior alternative is found. From time to time he estimates

p, using the binomial proportion p̂n after n patients. Now suppose the physician wishes

to estimate p within a tolerance ε > 0. He asks whether he will ever reach a point in

time such that with high probability, all subsequent estimates will fall in the [p− ε, p+ ε]
interval. Is there a finite N such that

Pr(max
n≥N

|p̂n − p| ≤ ε) ≥ 0.95, (vii.2)

say? The point conveyed, later echoed by Serfling (1980, p. 49), who essentially repeats

this story, is that this question is not answered by the convergence in probability state-

ment Pr(|p̂n − p| ≤ ε) → 1. But the strong law of large numbers [xx pointer to Ch. 2

xx] comes to the partly informative rescue, essentially saying that since Pr(p̂n → p) = 1,
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there is such a finite N , with probability one. Such theorems, and the basic literature

concerning strong convergence, say nothing about its expected size, or indeed distribu-

tion (nobody knows the future, so nobody can know its precise size), however. In this

story we reach precise limit distributions results for

Nε = max{n ≥ 1: |p̂n − p| ≥ ε},

‘the last n in the SLLN’, also for rather more general cases than for the binomial setup.

(a) To understand the sample sizes we need to encounter, start with the classic approx-

imate 0.95 interval p̂n ± 1.96 σ̂n/
√
n, consider nε, the size needed for such an interval to

have size 2ε or smaller. Show that this is the same as requiring Prp(|p̂n − p| ≤ ε) ≥ 0.95,

and that indeed
√
nε

.
= 1.96 σ̂n/ε, or nε

.
= 1.962 σ̂2

n/ε
2.

(b) For the case of Stout’s physician, with the variance formula σ̂2
n = p̂n(1 − p̂n), how

large must n be, in order for the 0.95 interval to be of length less than 2 · 0.05, and less

than 2 · 0.01?

(c) With y > 0, let m = ⟨y/ε2⟩ be the smallest integer greater than of equal to y/ε2.

Then y0 = mε2 is close to y; show that y0 − ε2 < y ≤ y0. Then show that

Pr(ε2Nε ≥ y) = Pr(Nε ≥ m) = Pr(
√
mmax

n≥m
|p̂n − p| ≥ y

1/2
0 ).

(d) This leads to investigating the closeness of a sequence of sample means to its target,

which we can do via a different perspective on the Donsker theorem of Ch. 9. Let

U1, U2, . . . be i.i.d. with mean zero and standard deviation σ, with sample averages

Ūm, Ūm+1, . . ., for suitably high m. Consider the process Zm(t) = m1/2Ū[mt] for t ≥ 1,

to be worked with in the space D[1, c] of all right-continuous functions with left-hand

limits, as per a natural extension of Ex. 9.9. Show that there is finite-dimensional con-

vergence of Zm(t) to the process Z(t) = σW (t)/t, where W (t) is Brownian motion on

[1, c]. Demonstrate also tightness of Zm, implying full process convergence Zm →d Z in

each D[1, c].

(e) Deduce from this that for each c > 1, Mm,c = m1/2 max1≤t≤c |U[mt]| tends in

distribution to Mc = max1≤t≤c σ|W (t)|/t = σmax1/c≤s≤1 |W ∗(s)|, where W ∗(s) =

sW (1/s) is the time-transformed Brownian motion of Ex. 9.27. Show furthermore that

maxt≥c |W (t)|/t→pr 0 as c→ ∞.

(f) We are close to establishing that Mm = m1/2 maxn≥m |Ūn| tends to M = σWmax,

where Wmax = max0≤s≤1 |W (s)| is maximum absolute Brownian motion on the unit

interval. We have Mm,c →d Mc for each c, and Mc →d M , and see via the two-step

method laid out in Ex. 2.24 that a probability bound is needed for Mm −Mm,c. To this

end, we shall in the following point establish that

pm(a) = Pr(m1/2 max
n≥m

|Ūn| ≥ a) ≤ 6.75σ2/a2.

Show that this implies

Pr(|Mm −Mm,c| ≥ δ) ≤ Pr(m1/2 max
m≥cm

|Ūn| ≥ δ) ≤ 6.75σ2/(cδ2),

and that this secures the intended Mm →d σWmax.
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(g) Let q > 1, and for given m find the k with qk ≤ m < qk+1. Writing Ūn = Sn/n and

using the Kolmogorov inequality of Ex. 9.6, show that

pm(a) ≤
∞∑
i=k

Pr( max
qi≤n<qi+1

|Sn| ≥ aqi/m1/2) ≤
∞∑
i=k

qi+1σ2

(aqi/m1/2)2
=
σ2

a2
q3

q − 1
,

and establish the bound above.

(h) (xx need polish; round off. perhaps we don’t include the Wmax distribution directly

in Ch10. xx) Going back to Nε, show via results above that εN
1/2
ε →d σWmax, and hence

also ε2Nε →d σ
2W 2

max, as ε → 0. We know the latter’s distribution, as per Ex. 9.46.

The 0.95 point in the distribution of Wmax is 2.241. Show that an approximate answer

to Stout’s physician’s question (vii.2) is N0
.
= 2.2412σ2/ε2, with σ2 = p(1− p).

(i) There are various generalisations and extensions of the result derived here for Nε, the

last ε. In particular, Hjort and Fenstad (1992) demonstrate that for classes of estimators

for which
√
n(θ̂n − θ0) →d N(0, σ2), we also have ε2Nε →d σ

2Wmax. Show this, for the

case of θ̂n being a smooth function of averages. The setup is θ̂n = h(Ā1,n, . . . , Āk,n), a

smooth function of Āj,n = (1/n)
∑n

i=1Aj,i, where (A1,i, . . . , Ak,i)
t has mean ξ, variance

matrix Σ, and h(ξ) = θ0. Show first that
√
n(θ̂n − θ0) →d N(0, σ2), with σ2 = ctΣc,

in which c = ∂h(ξ)/∂a; this is the delta method and the multidimensional CLT. Then

prove ε2Nε →d σ
2Wmax. See Hjort and Fenstad (1992); Grønneberg and Hjort (2012)

for further results.

Story vii.8 Boys, girls, and mathematics scores. PISA (Programme for International

Student Assessment) is an international study of the competence level of 15-year olds,

in reading, mathematics, and other fields, for member nations of the Organisation for

Economic Co-operation and Development (OECD). Here we will not attempt to access

more accurate PISA data, but learn how to squeeze out valuable information from very

brief and partial information, given in a 2023 Norwegian newspaper story. It concerned

results from the mathematics tests, and reported that for the lower score box there were

33 percent boys and 30 percent girls, compared to 8 percent boys and 5 percent girls

for the very high score box. Our operating assumptions are (i) that there are underlying

continuous scale normal distributions for the pupils’ mathematics skills; and (ii) that the

lower score and very high score categories correspond to X ≤ 2.50 and X ≥ 5.50, on the

common scale 1-2-3-4-5-6 used in Norwegian schools.

(a) Consider such a math skills distribution, say X ∼ N(µ, σ2). Under the assumptions

made, show that the probabilities of landing in the two categories are p1 = Φ((2.5−µ)/σ)
and p2 = 1− Φ((5.5− µ)/σ). With estimates for or knowledge of p1 and p2, show that

(2.5− µ)/σ = a1 = Φ−1(p1), (5.5− µ)/σ = a2 = Φ−1(1− p2).

Solve these, with c = a2/a1 to find

µ = (2.5 c− 5.5)/(c− 1), σ = (5.5− µ)/a2.
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Figure vii.8: Left panel: estimated math skills densities for Norwegian boys and for girls,

age 15, where the Norwegian school mark scale is 1-6. The low score and high score

categories are ≤ 2.50 and ≥ 5.50. Right panel: estimated boys/girls ratio, along the

skills scale, under the normality presumption.

(b) With (p1, p2) equal to the given (0.33, 0.08) for boys and (0.30, 0.05) for girls, solve

the equations, and give a plot of the implied normal densities fB and fG, as in Figure

vii.8, left panel. Note that σB = 1.626 is substantially bigger than σG = 1.383, whereas

the mean parameters are very close.

(c) In order to discuss confidence and significance, assume that the numbers have arisen

as (p̂1, p̂2) = (N1/N,N2/N), in a trinomial setup, with (N1, N2) the counts in categories

1, 2, based on the full sample size N . Explain how the above corresponds to formulae

for estimators µ̂ and σ̂, in terms of (p̂1, p̂2). Via the delta method and the CLT for

multinomials, see Ex. 2.44, show that σ̂ ≈d N(σ, τ2/N), with τ2 = ctΣc. Here Σ is

the trinomial covariance matrix, with p1(1 − p1) and p2(1 − p2) on the diagonal and

−p1p2 outside, and c is the gradient of σ(p1, p2). Using perhaps numerical methods for

computing this estimated gradient, compute τB and τG for the boys and the girls.

(d) For the Norwegian PISA data, behind the numbers (0.33, 0.08) and (0.30, 0.05) above,

it is reported that there were about 3000 boys and 3000 girls in this particular study.

Give 99 percent intervals for σB and σG, and also a 99 percent interval for the ratio

ρ = σB/σG. Construct aalso a confidence curve for ρ. Comment on your findings.

(e) (xx something a bit more, with reference to perhaps more PISA data. connect

carefully to variability hypothesis. under the normality presumption, show that the

boys-to-girl ratio, as a function of skill level x, takes the form r(x) = fB(x)/fG(x).

construct a version of the Figure vii.8, right panel. somewhere we also have an instructive

thing with f2(x)/f1(x) for normal distributions with the same σ. if f1 = N(µ, σ2) and

f2 = N(µ+ d, σ2), then

r(x) = f2(x)/f1(x) = exp{ 1
2 (d/σ

2)(x− 1
2d)}.
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find the threshold c with the property that if x ≥ c, then one expects 10 times as many

type 2 compared to type 1. xx)

Story vii.9 Lean body mass, percent body fat, and correlations. We consider a dataset

pertaining to n = 37 Australian rowers, giving in addition to gender the values of x, lean

body fat, and y, percent body fat (xx point to ais dataset in data overview xx). The left

panel of Figure vii.9 indicates perhaps that the two rowers with smallest x are to be seen

as outliers. Below we shall care about robust assessment of the correlation ρ between

x and y, and shall learn in the process that the direct correlation might be misleading.

These endeavours also have consequences for regressing y on x, e.g. for the purposes of

predicting y from x.
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Figure vii.9: Left panel: lean body fat and percent body fat, for 37 Australian rowers,

with two apparent outliers. The two regression lines are for the full dataset (slope

−0.371) and for the cleaned dataset with the two outliers removed (slope −0.472). Right

panel: robustly estimated correlation ρ̂(a), along with pointwise 90 percent intervals,

computed via the BHHJ methods. The estimated correlation goes from the ML value

−0.790 to values close the the curated dataset correlation ρ̂r = −0.915, indicated with

the horizontal line.

(a) Find from the data that the two individuals with smallest x are no. 16 (with 41.54)

and no. 30 (with 48.00). Show first that the usually estimated correlation is ρ̂ = −0.790,

for the full dataset, and a sharper ρ̂r = −0.915 when these two are removed. Using linear

regression for y on x, show that these two are indeed outliers, with too extreme values

of {yi − (â+ b̂xi)}/σ̂. Then run linear regression for y on x for the reduced dataset, and

argue that none of the 35 thus included are outliers. Construct a version of Figure vii.9,

left panel, with the full-data and reduced-data regression lines.

(b) In order to estimate ρ robustly, without necessarily pointing to or indeed knowing

about the two rowers with smallest x, fit the 37 (xi, yi) points to the binormal distri-

bution, using the robust machinery of BHHJ, see Ex. 5.9. Explain that this for given
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balance parameter a amounts to minimising the criterion function

Hn(θ) = (2π)−a(1 + a)−1|Σ|−a/2 − (1 + 1/a)n−1
n∑

i=1

f(xi, yi, θ)
a + 1/a,

where θ = (ξ1, ξ2, σ1, σ2, ρ) and f indicates the binormal density. Carry out such minimi-

sation, for a = 0.01, . . . , 0.40 (the limiting case of a = 0 corresponds to ML estimation),

and plot the resulting ρ̂(a). Note how this curve starts at the ML value −0.790 and then

glides towards values compatible with ρ̂r = −0.915, without having used any knowledge

or speculation about the two alleged outliers, rowers 16 and 30.

(c) Using theory and tools from Ex. 5.18, 5.27, compute the associated approximate stan-

dard deviation τ̂(a)/
√
n for ρ̂(a), and construct a version of Figure vii.9, right panel, with

90 percent intervals. This requires computing the matrices Ĵa, K̂a, Σ̂a = Ĵ−1
a K̂aĴ

−1
a for

each a, where Ka estimation benefits from numerical derivation. Compare the usual

ML theory, which gives estimate −0.790 and interval [−0.927,−0.654], with the ro-

bust BHHJ for balance parameter a = 0.25, which gives estimate −0.915 and interval

[−0.970,−0.861], and comment.
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Figure vii.10: Left panel: the same 37 datapoints as in Figure vii.9, left panel, but

now sorted into 15 boys (correlation −0.480) and 22 girls (correlation −0.173). The two

separate regression lines are plotted, in addition to the overall regression line, which does

not capture what goes on in the two groups. Right panel: curves of robustly estimated

ρ̂(a) for girls and for boys, starting at respectively −0.173 and −0.480, using binormal

fitting with BHHJ.

(d) We now bring gender into the picture, sorting the data into nb = 15 boys and ng = 22

girls, and find a different picture. Construct a version of Figure vii.10, left panel, with

regression lines for the two groups. Show that correlations inside the two groups are

much smaller in size than for the full dataset, with −0.480 for boys and −0.173 for girls.
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Carrying out linear regressions, show that all values of {yi − (â+ b̂xi)}/σ̂ are inside the

normal range, i.e. there are no outliers per se. Spin this substory as a cautionary tale

about correlations.

(e) From a linear regression perspective, individuals 16 (a girl, with x = 41.54) and 30

(a boy, with x = 48.00) are not necessarily to be judged as outliers, though they are as

seen from their respective x distributions. Carry out BHHJ binormal fitting, to compute

ρ̂(a), for the two groups. Construct a version of Figure vii.10, right panel. Note that

there for the boys is a sharp discontinuity in the BHHJ estimates, at around a = 0.079,

even though the minimum criterium values Hn(θ̂(a)) is continuous. Investigate what is

happening and why.

Story vii.10 Estimating the normal scale: Sir Arthur Eddington vs. Sir Ronald Fisher,

1920. Suppose Y1, . . . , Yn are i.i.d. from the normal (ξ, σ2). How should one estimate

and carry out inference for the σ? We know the familiar answers, at least if the normality

assumption can be trusted, namely to use the minimum sum of squares Q0 =
∑n

i=1(Yi−
Ȳ )2 ∼ σ2χ2

m, with m = n− 1 degrees of freedom. The canonical unbiased estimator for

σ2 is σ̂2 = Q0/(n − 1), we can test, put up a full confidence distribution, etc. Matters

were not so clear a hundred years ago, however, and there is an interesting clash of

views and personalities between Sir Arthur Eddington and Sir Ronald Fisher. In his

book Eddington (1914), about the structure of the universe, no less, Eddington claimed

using sum of absolute deviations, i.e. n−1
∑n

i=1 |Yi− Ȳ |, is best, whereas Fisher correctly
calculated that sum of squares fares better, reported on in Fisher (1920). In interesting

historical studies, Stigler (1973, 2006) explains the background and the details, also

arguing that this particular problem paved the way for Fisher to both develop sufficiency

and to become the ultrainfluential mathematical statistician posterity sees him as. We

use the opportunity here to go through various details and related follow-up questions.

(a) We start sorting out matters for the case of the mean parameter ξ being known,

which we for analysis purposes then can take to be zero. Using results from Ex. 1.29,

show that E |Yi|p = cpσ
p, with cp = ( 12 )

p/2Γ(p+1)/Γ( 12p+1). Here p can be any positive

power parameter, not necessarily an integer. Explain that this makes

σ̂p = (Mn,p/cp)
1/p, with Mn,p = n−1

n∑
i=1

|Yi|p,

a consistent estimator for σ. Two natural cases would be σ̂1 = Mn,1/c1 and σ̂2 =

(Mn,2)
1/2, with c1 = (2/π)1/2.

(b) Use the CLT to show that
√
n(Mn,p/cp−σp) →d N(0, τ2p ), with τ

2
p = (c2p/c

2
p−1)σ2p.

Then use the delta method to establish that
√
n(σ̂p − σ) →d N(0, κ2pσ

2), with κ2p =

(c2p/c
2
p − 1)/p2. Compute and graph the κp function, as with Figure vii.11, left panel,

and verify that its minimum is for p = 2.

(c) Assume one needs to test σ = σ0 against σ ̸= σ0. Show that the test statistic

Zn,p =
√
n(σ̂p − σ0)/(κpσ̂p) tends to the standard normal under the null hypothesis.

One therefore rejects σ0 if |Zn,p| ≥ 1.96, say, the upper 0.025 quantile of the standard



628 Miscellaneous stories

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

0.
84

p

ka
pp

a

0.8 0.9 1.0 1.1 1.2

0.
8

0.
9

1.
0

1.
1

1.
2

sigmahat1

si
gm

ah
at

2
Figure vii.11: Left panel: limiting standard deviation κp, for the σ̂p estimator of

Ex. vii.10; the best value is Fisher’s p = 2, but the differences are not big. Right

panel: 500 simulated realisations of (σ̂1, σ̂2), for n = 100 and true value σ = 1. The

correlation is 0.936.

normal. For alternatives σ = σ0 + δ/
√
n, use techniques and arguments from Ex. 4.15 to

show that the power function converges to πp(δ) = Pr(χ2
1(δ

2/(σ2
0κ

2
p)) ≥ 1.962). Compute

and graph a few of these, for σ0 = 1, say for p = 1.0, 1.5, 2.0, 2.5, 3.0. The power curves

are close, since the κp values are not much bigger than the optimal value κ2.

(d) Find the joint limit distribution for Eddington’s σ̂1 and Fisher’s σ̂2, and show that

their correlation is high, equal to 0.936. Fisher developed the concept of sufficiency in

connection with solving the σ estimation problem; show that
∑n

i=1 Y
2
i is sufficient, in

the setting above, implying that p = 2 is the best value.

(e) The analyses above actually contain the essence also for the more realistic case with

unknown ξ, basically since the difference between n−1
∑n

i=1 |Yi− ξ̂|p and n−1
∑n

i=1 |Yi−
ξ|p is small enough, for both p = 1 and p = 2. To see this for p = 2 we are helped by

simple algebra; show that n−1
∑n

i=1(Yi − ξ)2 = n−1
∑n

i=1(Yi − Ȳ )2 + (Ȳ − ξ)2. Writing

σ̂2
2 = n−1

∑n
i=1(Yi − Ȳ )2 and σ̂2

2,0 = n−1
∑n

i=1(Yi − ξ)2, show that this implies

√
n(σ̂2

2 − σ̂2
2,0) =

√
n(Ȳ − ξ)2 ∼ σ2χ2

1/
√
n.

Explain that this leads to
√
n(σ̂2 − σ) →d N(0, κ22σ

2), the same limit as reached above,

for known ξ.

(f) The parallel case of p = 1 is more delicate, however. To learn a bit more, we go via

the median Mn, the minimiser of
∑n

i=1 |Yi − ξ| over all ξ. With notation and results

from Ex. 5.34, in particular using D(y) equal to 1 for y ≤ ξ and −1 for y > ξ, consider



Miscellaneous stories 629

the random convex function

An(s) =

n∑
i=1

{|Yi − (ξ + s/
√
n)| − |Yi − ξ|}

=

n∑
i=1

{D(Yi)s/
√
n+R(Yi, s/

√
n)} = Uns+ (f0/σ)s

2 + opr(1),

where Un =
√
nD̄ →d U ∼ N(0, 1), in terms of D̄ = n−1

∑n
i=1D(Yi), and f0/σ = ϕ(0)/σ

the value of the model density at zero. Use theory developed in Ex. 5.34 to show that

under the true value of ξ, we have Qn(ξ) =
∑n

i=1(|Yi − ξ| − |Yi −Mn|) →d
1
4U

2σ/f0.

Explain that this means that σ̂1 = n−1
∑n

i=1 |Yi−Mn|/c1 and σ̂1,0 = n−1
∑n

i=1 |Yi−ξ|/c1
have the same limit distributions, with

√
n(σ̂1 − σ) →d N(0, κ21σ

2).

(g) So Fisher wins the argument, σ̂2 being more precise than σ̂1. The difference is

not very decisive, however; show that confidence intervals for σ, using the Eddington

estimator σ̂1, tend to be 1.068 times wider than for those based on the Fisher estimator

σ̂2. Show furthermore that the limiting correlation is as high as 0.936. Create a version of

Figure vii.11 (right panel), with simulated realisations of (σ̂1, σ̂2) for sample size n = 100.

(h) Above we used results for random convex functions to prove thatGn = n−1/2
∑n

i=1(|Yi−
Mn|−|Yi−ξ|) →pr 0; indeed we learned that

√
nGn has a limit distribution, proportional

to a χ2
1. The Gn →pr 0 was a technical necessity for showing that

√
n(σ̂1 − σ) and the

simpler
√
n(σ̂1,0 − σ) have the same limit distributions. Eddington’s 1914 estimator was

in reality n−1
∑n

i=1 |Yi − Ȳ |/c1, however, not the median based n−1
∑n

i=1 |Yi −Mn|/c1.
To prove that the limit distribution is not affected by the particular choice of centre

estimator, consider Gn = n−1/2
∑n

i=1(|Yi − ξ̂)| − |Yi − ξ|), with ξ̂ any estimator with a

limit distribution for
√
n(ξ̂ − ξ). For the following, aiming to show Gn →pr 0, let for

simplicity ξ = 0. Use terminology and details from Ex. 5.34 to show that

|yi − ε| − |yi| = D(yi)ε+R(yi, ε),

where R(yi, ε) = 0 for the many cases where |yi| > |ε|, and for the remaining cases we

have

R(yi, ε) =

{
2(ε− yi) if 0 ≤ yi ≤ ε, if ε > 0,

2(yi − ε) if ε < yi ≤ 0, if ε < 0.

Explain that Gn =
√
nD̄ξ̂ + n−1/2

∑n
i=1R(Yi, ξ̂), where the first term is Opr(1/

√
n), so

it remains to show that also the second term goes to zero. By going through the cases

ξ̂ > 0 and ξ̂ < 0 separately, establish that n−1/2|
∑n

i=1R(Yi, ξ̂)| ≤ 4(Cn/
√
n)|ξ̂|, where

Cn counts the number of times |Yi| ≤ |ξ̂|. Argue that since
√
n|ξ̂| has a limit distribution,

the remaining detail is to establish that Cn/n→pr 0. Prove this.

(i) Use the theory of influence functions, as with (5.14), to establish that the σ̂p estimator

has influence function IFp(F, y) = σ(1/p)(|y|p/E |Y |p − 1). Draw these, for p = 1 and

p = 2, and discuss why this indicates that the Eddington estimator is more robust than

the Fisher estimator.
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Story vii.11 Do the data come from f0 or from f1? The Elo rating system, named

after Hungarian-American chess player and physics professor Élö Árpád (1903–1992), is

used by the World Chess Federation for giving players ratings on a well-defined scale.

The system works with databases of pairwise matches, ending with ‘A wins’, ‘draw’, ‘B

wins’, and is used also for other sports with similar data outcomes, and even in Large

Language Models. In its simplest form, one imagines that when players A and B are

about to meet, there are associated random variables X and Y , centred at their current

ratings a and b, and that the difference can be expressed as Z = X − Y = a − b + V ,

with V having a continuous distribution symmetric around zero. With H the c.d.f. for

V , one furthermore assumes

Pr(A loses) = Pr(Z ≤ −c) = H(−c− (a− b)),

Pr(draw) = Pr(−c < Z < c) = H(c− (a− b))−H(−c− (a− b)),

Pr(A wins) = Pr(Z ≥ c) = 1−H(c− (a− b)),

with c set such that the draw probability H(c) − H(−c) is a reasonable number, like

1/3, if a = b. The system also uses formulae to update a and b after each new match,

etc. We do not go into the details here, but note that earlier rating system versions

were constructed using a normal distribution for X − Y . It was seen that this led to

inaccurate predictions for weaker players meeting stronger players, however, and the

current Elo system instead uses the logistic distribution, see Ex. 1.57. The difference

between a normal and a logistic density, with equal means and variances, is very slight,

though. This motivates a study of methods for determining whether data come from

density f0 or density f1, when perhaps the two are rather close.

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

quantile level

qu
an

til
e 

fu
nc

tio
ns

, n
or

m
al

 a
nd

 lo
gi

st
ic

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size n

po
w

er
, f

0 
ag

ai
ns

t f
1,

 f1
 a

ga
in

st
 f0

1 200 400 600 800

Figure vii.12: Left panel: the quantile functions F−1
0 (q) and F−1

1 (q), for the logistic

(full curve) and the scaled normal (slanted); they are very close. Right panel: power

functions, for testing f0 against f1 (full curve, starting lower) and for testing f1 against

f0 (slanted, starting higher), as a function of sample size, 1 to 800.

Suppose i.i.d. data Y1, Y2, . . . are observed, these coming from a density f which is
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either f0 or f1, two specified densities on the same domain. We may use the Neyman–

Pearson theory of Ch. 4 to test f0 against f1, and also vice versa. Below we assume that

the two variances

τ20,1 = Varf0 log{f0(Y )/f1(Y )} =

∫
f0{log(f0/f1)− d0,1}2 dy,

τ21,0 = Varf1 log{f1(Y )/f0(Y )} =

∫
f1{log(f1/f0)− d1,0}2 dy

are finite, involving the two Kullback–Leibler distances

d0,1 = KL(f0, f1) =

∫
f0 log(f0/f1) dy and d1,0 = KL(f1, f0) =

∫
f1 log(f1/f0) dy.

These distances are positive; see Ex. 5.6 for details.

(a) Let Rn =
∑n

i=1 log{f1(Yi)/f0(Yi)}. Show that the optimal test for H0 : f = f0
against f = f1 is to reject when Rn is large enough, say Rn ≥ bn, with Prf0(Rn ≥
bn) = 0.05. Conversely, show that the optimal strategy for testing f = f1 against

f = f0 is to reject if Rn is small enough, say Rn ≤ an, with Prf1(Rn ≤ an) = 0.05.

The thresholds an and bn may be found from the distribution of Rn under respectively

f0 and f1 circumstances, e.g. via simulations, for each given n; below we use normal

approximations.

(b) Show that

Rn/n→pr

{
−d0,1 = −KL(f0, f1) if data are from f0,

d1,0 = KL(f1, f0) if data are from f1.

So a plot of Rn, as a function of growing sample size, will end up positive under f1 but

negative under f0.

(c) Before we come to the more complicated situation of testing the normal against the

logistic, analyse the simple setup with f0 = N(0, 1) and f1 = N(θ, 1), where θ is fixed

and positive. Show that Rn =
∑n

i=1(θYi −
1
2θ

2); find the limits of Rn/n under f0 and

f1; find the precise rejection thresholds an and bn; and find the power functions, i.e. the

probability of rejection at f1 when testing f = f0 and at f0 when testing f = f1.

(d) Returning to the general setup, explain that with data from f0, we have
√
n(Rn/n+

d0,1) →d N(0, τ20,1), whereas
√
n(Rn/n−d1,0) →d N(0, τ21,0) if data are from f1. From this,

explain that good approximations to the rejection thresholds above are (i) to reject f0 for

f1 if
√
n(Rn/n+ d0,1) ≥ τ0,1z0 and (ii) to reject f1 for f0 if

√
n(Rn/n− d1,0) ≤ −τ1,0z0,

with z0 the relevant upper quantile of the standard normal, like 1.645 for significance

testing level 0.05.

(e) Next we investigate the detection power for these two tests. A crucial component

here is the sum of distances δ = d0,1 + d1,0; the bigger the δ, the easier for the tests. For

testing f0 against f1, show that

Prf1(reject f0) = Prf1(
√
n(Rn/n− d1,0 + δ) ≥ τ0,1z0)

.
= Pr(τ1,0N ≥ τ0,1z0 −

√
nδ) = Φ(

√
nδ/τ1,0 − (τ0,1/τ1,0)z0),
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writing N for a standard normal. Similarly, show that

Prf0(reject f1) = Prf0(
√
n(Rn/n+ d0,1 − δ) ≤ −τ1,0z0)

.
= Pr(τ0,1N ≤ τ1,0z0 +

√
nδ) = Φ(

√
nδ/τ0,1 − (τ1,0/τ0,1)z0).
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Figure vii.13: Left panel: plot of Rn, with 400 data points from f1 (irregular full curve),

and with 400 data points from f0 (irregular slanted curve). Also plotted are the rejection

limits, as a function of sample size: Rn needs to be above the full regular curve in order

to reject f0 and claim f1; and similarly needs to be below the slanted regular curve in

order to reject f1 and claim f0. Right panel: for the same two datasets, the Bayesian

probability of data having come from f1, as a function of sample size; the upper curve is

for f1 data, the lower for f0 data.

(f) Consider now Model 0, with f0 the logistic density, see Ex. 1.57, and Model 1, with

f1 the N(0, τ2), where we take variance τ2 = π2/3 to match that of the logistic. The two

distributions are rather close, making it a hard challenge to identify which data come

from which source. Compute the KL distances and associated variances numerically; one

finds d0,1 = 0.01436, d1,0 = 0.01049, τ0,1 = 0.22046, τ1,0 = 0.13309. Construct versions

of Figure vii.12, with quantile functions to the left and the two power functions to the

right. One needs a fair amount of data from f1 to have a high probability of claiming that

f0 is not correct, and similarly a fair amount of data from f0 to have a high probability

of caliming that f1 is not correct. Verify in fact that one needs n = 365 data from f1 to

be 80 percent sure of detecting that they are not from f0, and correspondingly n = 265

data from f0 to be 80 percent sure of detecting that they are not from f1. Also generate

400 data from f1, leading to an Rn plot, to see when f = f0 is rejected, and similarly

400 data from f0, to see when f = f1 is rejected; create a version of Figure vii.14, left

panel.

(g) The problem of classifying incoming data as coming from f0 or f1 might also be
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handled in a Bayesian fashion. Suppose f0 and f1 are equally likely a priori. Show that

Pr(f1 |data) =
f1(y1) · · · f1(yn)

f0(y1) · · · f0(yn) + f1(y1) · · · f1(yn)
=

exp(Rn)

1 + exp(Rn)
.

For the same data points generated above, compute these probabilities, as a function of

incoming data, i.e. sample size; construct a version of Figure vii.14, right panel.

(h) Your code for analysing the classifiers and their detection chances ought to be some-

what generic, making it easy to try out other pairs of f0, f1. As an illustration, find f0
and f1, respectively a Gam(a, b) and a Weibull (c, d), with the property that the 0.10

and 0.90 quantiles for both are 2.00 and 8.00. Draw the two c.d.f.s in a diagram to see

how close they are. Then numerically compute the Kullback–Leibler distances d0,1 and

d1,0, along with the standard deviations τ0,1 and τ1,0. Run the code to learn the power

functions, and reflect on how hard it is to see the difference between Gamma and Weibull

data.

Story vii.12 Do the data come from logistic or from probit regression? In Story vii.11

we used the Elo rating system change, from normal to logistic, as motivation for a

careful study of how a statistician may be able to optimally classify incoming data as

coming from density f0 or density f1, and we learned that this is a tall order, requiring

many datapoints, if the two densities are close. For the Elo rating system the challenge

is actually significantly harder, as we do not observe the underlying ability differences

Z = X − Y , merely their thresholded outcomes in the three boxes ‘left’, ‘in the middle’,

‘right’. This motivates studying how well we may spot the difference between logistic

and probit regression (and where we know before starting that the answer will be ‘it is

hard and requires much data’, since the normal and logistic c.d.f.s are close).

(a) Suppose 0-1 regression data (xi, yi) are obtained, with pi = Pr(Zi ≤ a0 + b0xi) =

Pr(Yi = 1 |xi), with two possibilities for these, in terms of distributions for underlying

variables Zi. We have either Model 0, Zi following the logistic, corresponding to classical

logistic regression and p
(0)
i = H(a0 + b0xi); or Model 1, a scaled normal (0, τ2), as with

p
(1)
i = Φ((a0 + b0xi)/τ), corresponding to probit regression; the scaling is there to have

equal variances, τ2 = π2/3. To make this concrete, suppose (a0, b0) are known, and let

Rn = ℓ(1)n − ℓ(0)n =

n∑
i=1

{
yi log

p
(1)
i

p
(0)
i

+ (1− yi) log
1− p

(1)
i

1− p
(0)
i

}
Show that the optimal test for logistic model M0, against the probit model M1, is to

reject if Rn is big enough, and correspondingly that the optimal test for M1, against the

alternative M0, is to reject if Rn is small enough.

(b) Suppose the xi are i.i.d. from some covariate distribution Q. With ptrue(x) the real

Pr(Yi = 1 |x), show that

Rn/n→pr

∫ [
ptrue(x) log

p(1)(x)

p(0)(x)
+ {1− ptrue(x)} log

1− p(1)(x)

1− p(0)(x)

]
dQ(x).
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Figure vii.14: Left panel: the sequence of log-likelihood maxima difference ℓL,max−ℓP,max,

as a function of sample size, for a dataset drawn from the logistic model (upper curve,

ending positive) and from another dataset drawn from the normal probit model (lower

curve, ending negative). Right panel: for the same two datasets, BIC approximation to

Pr(logistic |data), as a function of sample size.

If the data come from the logistic model M0, show that the limit is negative, say −d0,1,
and if the data are from the probit model M1, show that the limit, say d1,0, is positive.

Argue therefore that for large enough n, the Rn will be negative under M0 and positive

under M1. To make this concrete, compute these average KL distances d0,1 and d1,0, for

the case of (a0, b0) = (−0.33, 0.66), with Q being a normal N(0, τ2); answers: very tiny

d0,1 = 0.000742, d1,0 = 0.000758.

(c) Similar behaviour can be expected, exhibited, and analysed for the case of unknown

parameters in logistic and probit regression. For 0-1 regression data (xi, yi), one may fit

the logistic model pi = H(a + bxi) and the probit normal model pi = Φ((a + bxi)/τ).

The main message will be that it is difficult to spot a clear difference between them; that

the fitted regression curves H(â+ b̂x) and Φ((ã+ b̃)/τ) will be close; and that one needs

a big data volume in order to see that one of the schemes is better than the other. Using

L and P subscripts for the logistic and probit models, and in the terminology of Ch. 11,

show that

aicL − aicP = 2(ℓn,L,max − ℓn,P,max), bicL − bicP = 2(ℓn,L,max − ℓn,P,max),

hence equal, here, since the parameter dimension is the same for both models. Run a

simulation experiment, taking xi i.i.d. N(0, τ2), and then creating dataset 0, of big size

nmax = 5000, with H(a0 + b0xi), and dataset 1, with Φ((a0 + b0xi)/τ), using (a0, b0) =

(−0.33, 0.66). Then compute for each n ≤ nmax the ML estimators in the two models; the

log-likelihood maxima ℓn,L,max and ℓn,P,max; plot the difference Dn = ℓn,L,max− ℓn,P,max

(which should eventually become positive for logistic generated data but negative for
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probit generated data); and the associated BIC probability the data stem from the logistic

model. Show that the latter is

Pr(logistic |data) =
exp( 12bicL)

exp( 12bicL) + exp( 12bicP )
=

exp(Dn)

1 + exp(Dn)
.

Construct versions of Figure vii.14, left and right panels. You may also plot (â, ã) and

(̂b, b̃) as a function of increasing sample size, to see their similarity, and indeed plot

H(a0 + b0x) vs. Φ((a0 + b0x)/τ). You may of course also run your code up to an even

bigger nmax, like 25000, to see how much data it takes for the AIC or BIC to be convinced

about which of the two data generating mecanisms is at work.

Notes and pointers

(xx notes and follow-up things for the stories in this chapter. xx)

(xx For Story vii.5, see Stigler (1977). xx)
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III.B

Overview of stories and data

A generous number of real datasets are used in this book to illustrate aspects

of the methodology being developed, and hence also a correlated generous list of

Statistical Stories. Here we provide brief descriptions of each of these real data

examples, along with key points to indicate which substantive questions they relate

to. Some of these datasets are small, partly meant for simpler demonstrations of

certain methods, whereas other are bigger, allowing also more ambitious modelling

for reaching inference conclusions. Key words are included to indicate the data

sources, the types of model we apply and for what inferential goal, along with

pointers to which stories the datasets are analysed.

nils emil notes to themselves, as of 12-August-2024

Not yet well organised, as of 12-August-2024, but we’ll get to things and have a clearer

overview.

This part of Kioskvelter needs of course serious working-over and polish near the

end of the process, and we need to achieve the right level of ‘oi!, this might be interesting’

and conciseness. Each entry needs (a) brief description of what the data are about, with

a source or two; (b) description of which questions arise naturally; (c) briefly worded

pointers to which Stories touch these data.

The 2.A list will be updated and polished during autumn 2023. We get the cross-

referencing to work for data:listofstories etc.

(xx So, rough estimate of magical story number as of 12-August-2024: 17 + 13 +

15 + 7 + 11 + 8 + 11 = 82, but some of those listed 12-August-2024 might not come

to fruition. nils pushes mothers babies I and mothers babies II from Demography Eip

Medicine to Biology. we’re not shying away from StoryX Part I and StoryX Part II to

avoid having them too long, etc. our Final Number was meant to be 77 but could even

become 88 if several of these are decently short. xx)

List of All Stories

(xx annotated as we proceed. as of 12-August-2024, meant to be helpful for the authors.

it will become a better kept list later on, along with brief key words and pointers. the

683
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list of these brief dataset descriptions should follow our stories. we also need to monitor

the lengths of the stories, though we do accept some shorter ones and some longer ones.

which stories have points more than from (a) to (h)? as of 12-August-2024, there are ok

plans for how many stories, in the separate chapters? xx)

I Demography, Epidemiology, Medicine (approx 14)

(1) Cooling of newborns. (nils, 0.90 ferdig)

(2) Overdispersed children. (nils, 0.90 ferdig)

(3) Markovian children. (nils, 0.90 ferdig)

(4) IDU expulsion. (nils, 0.90 ferdig, maa koples til Beta process)

(5) Boys are born slightly bigger than girls. (nils, 0.90 ferdig)

(6) Mothers, babies, birthweights, factors. (nils, 0.90 ferdig)

(7) Mothers, babies, birthweights, birth order. (nils, 0.90 ferdig)

(8) Time to 2nd child after stillborn (nils, 0.90 ferdig)

(9) A third child? (emil, 0.60 ferdig)

(10) PCI and confidence fusion from thirteen studies. (nils, 0.80 ferdig)

(11) Suicide attempt rates for Paroxetine vs. placebo. (nils, 0.85 ferdig)

(12) Pedro og Elvira (emil, 0.50 ferdig)

(13) Onset of menarche (nils, 0.90 ferdig)

(14) Eye retinopathy, FIC for logistic regressions. (nils, 0.85 ferdig)

(15) Cigarette consumption and lung cancer. (nils, 0.85 ferdig)

(16) Norwegian women and men of the future (nils, 0.10 ferdig)

(17) A cure model (emil, 0.20 ferdig)

II Art, History, Literature, Music (approx 11)

(1) Game of Thrones and the Wars of the Roses. (nils, 0.80 ferdig)

(2) Stride towards your bookshelves. (nils, 0.90 ferdig, kan gjoere noe mer)

(3) Tirant lo Blanc: When did Author B take over for Author A? (nils, 0.90 ferdig, maa deales

med, linkes til Ch9 monitoring for change)

(4) The children of Odin. (nils, 0.90 ferdig)

(5) How many Abel first-day cover envelopes from 1929? (nils, 0.90 ferdig.)

(6) Markov and Pushkin. (nils, 0.85 ferdig, henter ting fra CLP, med modifikasjoner)

(7) And Quiet Does Not Flow the Don. (nils, 0.90 ferdig)

(8) Republic, Laws, Critias, Philebus, Politicus, Sophist, Timaeus. (nils, 0.85 ferdig, maa stelles

med og forkortes og synches med Ch12)

(9) Presidents of the First Republic. (nils, 0.90 ferdig)

(10) Dangerous job assignment: Roman emperor. (nils, 0.90 ferdig)

(11) Lifelengths in Roman Era Egypt, 2100 years ago. (nils, 0.90 ferdig)

(12) Bach, Reger, organ fugues, and Wohltemperierte I und II. (nils, 0.80 ferdig, maa avrundes)

(13) How many piano tuners in Oslo? (nils, 0.75 ferdig)

III Economy, Political Science, Sociology (approx 10)

(1) Power law scaling for academics and support staff. (nils, 0.85 ferdig)

(2) Poisson overdispersion for British mining. (nils, 0.90 ferdig)
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(3) Changepoints for British mining. (nils, 0.90 ferdig)

(4) War and Peace and War and Peace, I. (nils, 0.80 ferdig, linkes til boundary parameter things

in Ch5, Ch11)

(5) War and Peace and War and Peace, II. (nils, 0.50 ferdig, trenger mer om changepoints,

Bayes too)

(6) War and Peace and War and Peace, III. (nils, 0.60 ferdig, men tre angels stories er kanskje

en for meget)

(7) Psychiatric disorders and body type. (nils, 0.90 ferdig)

(8) Galton and 111 husbands and wives. (nils, 0.40 ferdig)

(9) Terbeschikkingstelling. (nils, 0.80 ferdig)

(10) Tore Sims Sveriges Riksbank, (nils, 0.90 ferdig)

(11) Does winning make you live longer? (emil, 0.75 ferdig)

(12) Minimum Wages and Employment. (emil, 0.75 ferdig)

(13) How many were killed in Srebrenica, 1991? (nils, 0.80 ferdig)

(14) How many were killed in Guatemala, 1978–1996? (nils, 0.80 ferdig)

(15) Volatility estimation from noisy financial data. (emil, 0.02 ferdig. Har data og vet omtrent

hva som skal skrives)

IV Biology, Climate, Ecology (approx 6)

(1) New Haven annual temperatures 1912-1971. (nils, 0.80 ferdig)

(2) Where are the snows of yesteryear? (nils, 0.80 ferdig)

(3) Mammals and their bodies and brains. (nils, 0.80 ferdig, need a a little link til Jamtveit

story)

(4) Kola temperatures and the Hjort liver index time series 1859-2020. (nils, 0.75 ferdig)

(5) How many Clethrionomys glareoli? (nils, 0.80 ferdig, venter paa Ch7 polishing)

(6) Birds on islands outside Ecuador. (nils, 0.90 ferdig)

(7) Birds on islands, via square-rooting to normal nonlinear regression. (nils, 0.90 ferdig; may

be subsumed in previous story)

V Sports (approx 11)

(1) Bolt from heaven. (nils, 0.90 ferdig, venter paa litt Ch7 avrunding)

(2) The random angles of golf putting. (nils, 0.90 ferdig)

(3) NBA three point shooting averages. (emil, 0.80 ferdig)

(4) Olympic Unfairness I: Inner and outer for 1000 m speedskating. (nils, 0.80 ferdig, skal ha

CD(τ) med punktmasse m.m.

(5) Olympic Unfairness II: From semifinals to finals. (nils, 0.75 ferdig)

(6) Who wins? Computing probabilities as a function match time. (nils, 0.85 ferdig)

(7) The turn-around operation: from 0-2 to 3-2. (nils, 0.85 ferdig, kan kaste inn fotballdata fra

Nils-Gerda til sist)

(8) The hot hand in basketball. Myth or not? (emil, 0.05 ferdig. har data og har plottet litt)

(9) When to shoot? An optimal stopping problem in basketball. (emil, 0.02 ferdig. Har et

datasett med hvilket dette sporrsmaalet kan besvares)

(10) Winning streaks in chess. (nils-emil, 0.03 ferdig; need book-keeping scripts from Alamaty

2022)

(11) BMI for Olympic speedskaters. (nils, 0.10 ferdig, tas fra II-CC-FF pluss litt mer)
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VI Simulated stories (approx 7)

(1) Checking out the CLT. (nils, 0.85 ferdig)

(2) An infinite weighted sum of Bernoullis. (nils, 0.85 ferdig)

(3) Finding magic squares by MCMC. (nils, 0.85 ferdig)

(4) Reconstructing exponential decay beer foam. (nils, 0.85 ferdig)

(5) From falling ill to having recovered. (nils, 0.65 ferdig, vi maa ha noe simulation)

(6) Causal inference and potential outcomes. (emil, 0.33 ferdig, haaper noe kan skrives rundt

dette)

(7) Identifying your counterfactual cousin. (nils, 0.80 ferdig)

(8) Law, evidence, and Bayes (emil, 0.01 ferdig. Ideen er der. Noe basert paa Calina sin master.

Bayesianske nett og noen simuleringer)

VII Miscelannea (approx 6)

(1) The Pearson goodness-of-fit statistic. (nils, 0.85 ferdig, vil ha link til Brownian bridge, og

til ML)

(2) Decimals of pi. (nils, 0.75 ferdig, flikker inn dette med aa jukse for hver 1000ende desimal,

for aa se om pearson oppdager det, local power)

(3) Random integers via prime numbers. (nils, 0.75 ferdig, gjoer noe mer)

(4) Time-to-failure for machine components. (nils, 0.90 ferdig, taken from Ch6)

(5) Speed of light in 1882, with BHHJ estimation. (nils, 0.85 ferdig)

(6) Stout’s physician and the last n. (nils, 0.90 ferdig)

(7) Boys, girls, and mathematics scores (nils, 0.90 ferdig)

(8) Lean body mass, percent body fat, and correlations. (nils, 0.80 ferdig)

(9) Eddington versus Fisher, 1920. (nils, 0.85 ferdig)

(10) Elo rating and how to classify data as f0 or f1. (nils, 0.90 ferdig)

(11) Elo rating and logistic versus probit regression. (nils, 0.90 ferdig)

Description of datasets for stories

(xx needs careful work and checking, with crossref. also regarding the order in which we

present these datasets. as of 12-August-2024, nils attempts to put these in the order of

appearance through the chapters of stories, but this will be modified later. nils tentatively

gives numbers to the stories too, perhaps to be take away later. xx)

I (i) The cooling of newborns

[xx Laptook study, point to two smaller papers by Walløe, Thoresen, Hjort, and the

Hjort blogpost. Laptook (2017), Walløe et al. (2019a,b). basically: inference for p1/p2.

return to this in the Bayes chapter, with informative priors on p1, p2. basically: y0 ∼
binom(m0, p0) for the noncooled group, 22 of 79 cases; and y1 ∼ binom(m0, p1) for the

cooled groups, 19 of 68 cases. xx]

I (ii) Suicide attempt rates, drug vs. placebo

(xx describe data, two Poisson, in to round, from Aursnes et al. (2005, 2006). suicide

rates for users of a certain antidepressant, vs. a placebo group. for Story i.11. xx)
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I (iii) and (iv) Overdispersed and Markovian children

[xx data from Geißler (1889), on the number of girls in 8-children-families. we demon-

strate extra-binomial variability, and assess this degree of overdispersion. see Hjort

(2018a). in later chapter also the Markovian model. xx]

y N E1 pear1 E2 pear2

0 264 192.325 5.168 255.621 0.524

1 1655 1445.384 5.514 1657.032 -0.050

2 4948 4752.364 2.838 4909.686 0.547

3 8498 8928.902 -4.560 8683.213 -1.988

4 10263 10484.952 -2.168 10024.863 2.378

5 7603 7879.792 -3.118 7735.975 -1.512

6 3951 3701.205 4.106 3896.509 0.873

7 1152 993.421 5.031 1171.238 -0.562

8 161 116.655 4.106 160.865 0.011

(xx In this version of our manuscript we also give the girl-boy data for 195 families

worked with in i.3, from Klotz (1972, 1973). In the Real Book we might be content

with having only summary statistics. i.e. give our readers M = 85, n − M = 110,

(N0,0, N0,1, N1,0, N1,1) = (345, 298, 287, 333), not bother readers with the full dataset.

here 1 is girl and 0 is boy. nei, forresten, nils ombestemmer seg, det tar for meget plass

i pdf-en og det hele, so the 195 families can be found here, by nils and emil, but they’ve

been commented away. xx)

I (v) IUD expulsion

(xx describe data, 100 women using IUD, (i, ti, δi), from Peterson (1975). frailty model.

check Aalen1978 sjs. used in Story i.4. xx)

I (vi) The 73 French presidents of France 1792–1795

(xx drama following the French Revolution. 73 presidents, some with short lives after

elections. two covariates. data from Céline Cunen. Story: ii.9. xx)

Data, for 73 presidents: id, birth, death, presistart, presiend, v, giro,

vip. Here v is indicator for having experienced a violent death of not (so δ = 1 − v is

indicator for non-censoring, in survival analysis language); giro is indicator for belonging

to the Gironde party or not; and vip is a proxy for fame, counted here as the number of

languages for which there is wikipedia pages about the president in question (recorded,

by Cunen, in October 2017).

I (vii) Boys and girls born in Oslo in 2001-2008

In the larger context of identifying and exploring factors that may influence the chances

of babies being born too large, Voldner et al. (2008) examined a certain cohort of 1028

mothers and children (548 boys, 480 girls), all of whom born at Rikshospitalet, Oslo,

in the 2001–2008 period. We have had access to the birthweight data in question (via

N. Voldner and K.F. Frøslie, personal communication), and use these to illustrate non-

parameetric confidence curves for quantiles.

(xx here: too much to show all the 548 + 480 data points, but we point to files, and

the figures. xx)
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(xx nota bene: will use these data also for other chapters. xx)

I (viii) Lifelengths in Roman era Egypt

In Spiegelberg (1901) the age at death has been recorded for 141 Egyptian mummies, 82

men and 59 women, dating from the Roman period of ancient Egypt from around year

100 B.C. These life-lengths vary from 1 to 96 years, and Pearson (1902) argued that these

can be considered a random sample from one of the better-living classes in that society, at

a time when a fairly stable and civil government was in existence. Interestingly, Pearson

wrote “in dealing with [these data] I have not ventured to separate the men from the

women mortality, the numbers are far too insignificant”. That did not stop Claeskens

and Hjort (2008b, p. 33–35) from establishing partly different parametric hazard rate

models for the two sexes, and where incidentally Gompertz type models were found to

be better than e.g. Weibull and gamma models.

(xx then pointers to where we do what. Story i.5 for ratio of quantiles. xx)

1.5 1.8 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 6.0

10.0 11.0 14.0 14.0 16.0 17.0 17.0 19.0 20.0 20.0 21.0 22.0 22.0 23.0 24.0

24.0 25.0 25.0 25.0 25.0 25.0 26.0 26.0 26.0 26.0 27.0 29.0 30.0 32.0 33.0

33.0 36.0 36.0 37.0 40.0 40.0 40.0 46.0 48.0 48.0 50.0 50.0 50.0 50.0 50.0

52.0 52.0 52.0 55.0 55.0 59.0 60.0 60.0 60.0 60.0 62.0 63.0 65.0 65.0 68.0

68.0 70.5 72.0 72.0 72.0 84.0 90.0 1.5 3.0 3.0 4.0 4.0 4.0 6.0 6.0

9.0 10.0 11.0 14.0 16.0 17.0 17.0 17.0 18.0 18.0 19.0 19.0 20.0 20.0 20.0

21.0 21.0 21.0 21.0 21.0 21.0 22.0 22.0 23.0 23.0 25.0 25.0 25.0 25.0 26.0

27.0 28.0 29.0 30.0 30.0 33.0 35.0 35.0 35.0 36.0 36.0 40.0 40.0 40.0 50.0

52.0 54.0 55.0 60.0 70.0 96.0

I (ix) PCI and confidence fusion from meta-analyses

(xx from Schömig et al. (2008). thirteen two-by-two tables. rare events. xx)

I (xi) Terbeschikkingstelling

(xx from Hjort and Koning (2002), Dutch ombudsman. poisson with changing rates.

xx)

I (xii) Brazilian kids

Data from Borgan et al. (2007), come in the three files prevdat.txt, atprevrisk.txt,

and covariates.txt. Across these three files, the children are identified by their row

number. The first file, prevdat.txt, contain sequences of zero and ones, a one indicat-

ing the the child on the given row was observed with diarrhoea on the day in question,

and zero otherwise. The data file atprevrisk.txt contains indicators for noncensoring,

1 indicates that the child was observed on the day in question, 0 indicating that no

observation was made (i.e., censoring). The third file contain the covariates:

sexcat: Gender of child (0-female , 1-male);

age.beg: Age of child in the begining of the study (month);

dens2: Number of people/beroom (0-one or two people, 1- >= three people);
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pavcat: Quality of the street (0- good , 1- bad);

resagcat: Type of drinking water-reserve (0-good , 1- bad);

tipagcat: Quality of drinking water (0-good, 1-bad);

valacat: Presence of holes with dirty water-30m (0-no, 1-yes);

corrcat: Presence of small rivers with dirty water-30m (0-no , 1-yes);

chovecat: Condition of accomodation during rain (0-good , 1-bad);

age.mcat: Age of the mother 0- >= 25 years old, 1- < 25 years old;

socec2: Social economic class ( 0-medium or high, 1- poor);

no.age5: Number of other children less and equal 5 (0=none, 1- more than 1).

II (i) The Game of Thrones and the Wars of Roses

[xx via Cunen (2015) blog post and story (bringing her international fame). full dataset:

(ti, xi,1, xi,2, δi, oi), with ti the age at death if δi = 1 and the last known age for the

person if δi = 0; xi,1 indicator for nobility; xi,2 concerns gender, and is 1 for women

and 0 for men; indicator for nobility; and oi is 1 for GoT and 0 for WoR. also with

violent-death-or-not, from two worlds. see Story ii.1]. xx]

II (iii) Stride towards your bookshelves

[xx student books oblig story for chapter1: wordlengths. metaanalysis modelling, chap-

ter2, simple analysis in chapter1, and we return to the dataset later, in chapter6. xx]

xNor xEng sdNor sdEng xNor xEng sdNor sdEng

1 4.45 2.88 4.53 2.77 33 4.76 3.10 4.10 2.02

2 4.82 2.88 4.87 2.94 34 4.58 2.79 4.03 1.81

3 4.39 2.24 3.94 2.04 35 6.32 4.02 4.49 2.41

4 4.44 2.65 4.02 1.90 36 3.94 1.96 5.30 2.78

5 4.79 3.11 4.56 2.24 37 3.54 1.77 4.73 2.86

6 4.91 3.12 4.05 1.86 38 4.41 2.15 4.16 2.20

7 4.61 2.42 4.64 3.01 39 4.57 2.98 4.28 1.95

8 3.91 1.94 4.48 2.18 40 4.34 2.24 4.31 2.17

9 4.42 2.52 3.94 2.09 41 5.12 3.16 4.33 2.26

10 4.86 2.61 5.21 2.86 42 4.47 2.69 3.81 2.00

11 6.18 4.62 5.43 2.89 43 4.29 2.33 4.08 1.95

12 5.04 3.47 4.97 2.86 44 3.87 2.06 4.72 2.26

13 3.99 2.71 4.33 2.52 45 3.96 2.19 4.20 2.49

14 4.35 2.64 4.82 2.36 46 4.43 2.40 4.74 2.53

15 4.56 2.93 5.23 3.35 47 5.01 2.88 4.47 2.35

16 5.27 3.10 5.16 3.20 48 4.10 1.98 3.69 1.69

17 4.88 3.07 4.17 2.25 49 4.98 2.99 4.15 2.06

18 4.33 2.42 4.58 2.60 50 4.17 2.21 4.15 2.43

19 3.90 1.80 4.80 2.61 51 5.26 3.80 4.92 2.32

20 4.19 2.04 4.37 2.35 52 4.13 2.25 3.74 1.92

21 4.41 2.43 4.20 2.11 53 4.65 3.07 4.57 2.55

22 4.10 2.06 4.35 1.73 54 5.68 3.92 4.79 2.38

23 3.84 1.80 4.92 2.55 55 4.60 2.44 4.61 2.42

24 3.82 1.83 3.88 1.77 56 4.18 2.10 4.88 2.78

25 4.61 3.18 3.96 2.41 57 4.55 3.18 4.32 1.87

26 4.44 2.60 4.24 2.03 58 4.40 2.74 4.39 2.15
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27 4.26 2.44 3.99 2.31 59 4.81 2.82 4.76 2.42

28 5.11 3.10 4.45 2.55 60 5.11 3.26 4.68 2.40

29 4.38 2.74 4.33 2.44 61 4.29 2.48 4.38 2.57

30 4.18 2.65 4.97 2.40 62 4.27 2.35 4.07 2.16

31 4.41 2.42 3.56 1.70 63 4.84 2.73 4.21 2.29

32 5.52 3.14 4.83 2.67 64 4.17 2.30 4.07 1.81

As part of the obligatory exercises work for an introductory course on statistical

methodology at the Department of Mathematics, University of Oslo, we made our stu-

dents carry out the following task. Each student was told to stride towards her or his

bookshelves, to pick one book in Norwegian and one in English, then record the lengths

of the first 100 words on page 51. The books could be novels, collections of short stories,

poetry, or prose in general, but not technical material (as with matematics or statistics);

and the students were instructed to use page 52 if page 51 didn’t have enough words. Do

Fløgstad, Kjærstad, Solstad tend to use words with more or less the same lengths as do

Miller, Lessing, Munro? What about Askeladden and Winnie Pooh?

The students were asked to summarise information and to compare their own two

datasets in terms of means and standard deviations. This was expected to involve tests for

equality of means and of variances, confidence intervals for differences, perhaps comments

on skewnesses, etc. But the experiment also gave us an interesting combined data set,

where we recorded the empirical mean and standard deviation for each dataset, for

the two languages, for each student. In other words, we have summary statistics data

(xi, κ̂1,i, yi, κ̂2,i) for i = 1, . . . , n, for the n = 64 students, with

xi = average word-length for 100 Norwegian words for student i,

yi = average word-length for 100 English words for student i,
(B.1)

along with

κ̂1,i = standard deviation for the 100 Norwegian word-lengths for student i,

κ̂2,i = standard deviation for the 100 English word-lengths for student i,
(B.2)

Figure [xx nemlig xx] displays the word-length averages (xi, yi), with grand averages

x̄ = 4.549 for Norwegian and ȳ = 4.436 for English words (so these are both averages

over 6400 words).

There are at least four notable aspects of these data, each rather non-trivial when

it comes to their precise assessments and analyses. We point to and briefly explain these

aspects or features now, and come back to precise inference methods and results in later

sections.

The first and second aspects we wish to call attention to and analyse is that the

overall means are reasonably similar, for Norwegian and English, but that the over-

all variability measures, related to the sizes of the (κ̂1,i, κ̂2,i) of (B.2), are significantly

different.

The third feature is that there is positive correlation between word-lengths; if xi is

small, for student i, then yi also tends to be small, etc. Indeed we find ρ = corr(x, y)

estimated in the usual fashion as 0.283. This is a deflated correlation, however, in that

there is an undiluted correlation, say ρ0 = corr(x0, y0), in which we would be more
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interested, where (x0,i, y0,i) are the real word-length averages for student i, across all

sentences in all books on her or his bookshelves. This ρ0, if we may estimate it, despite

the (x0, y0) not being visible, gives a better measure of the extent to which long-worded

books in Norwegian tend to be coupled with long-worded books in English (and similarly,

for short-worded texts), for a given student (and her or his bookshelves). To arrive at

estimates and inference for the ρ0 we need to accept that the directly observed (x, y) are

proxies for (x0, y0), not the real thing, and we need to model them. We shall learn that

the real ρ0 is notably bigger than ρ.

Finally the fourth aspect worth serious examination is the level of differences in

average word-lengths, across students. There is sufficient variation from student to stu-

dent, as we shall see, that neither the (xi, yi) of (B.1) nor the underlying and not visible

(xi,0, yi,0) alluded to above can be seen as samples from the same homogeneous normal

distribution. The statistical task becomes how to model and assess the level of variability,

among the xi,0 and the yi,0.

II (iv) Platon: from Republic to Laws

(xx to come. 25 = 32 different clausulae, the five last syllables in Platon’s sentences,

corpus for corpus. here ‘0’ and ‘1’ indicate ‘short’ and ‘long’ (or ‘light’ and ‘stressed’),

for these last five syllables. data from Cox and Brandwood (1959). this is about ordering

the last five works, Crit, Phil, Pol, Soph, Tim, on the timeline from corpus A, Republic

(nA = 3778 sentences), to corpus B, Laws (nB = 3783 sentences). Sample sizes for Crit,

Phil, Pol, Soph, Tim are smaller, 150, 958, 770, 919, 762 sentences. Story ii.8 in Ch 4.

xx)

0 0 0 0 0 1.1 2.4 3.3 2.5 1.7 2.8 2.4

1 0 0 0 0 1.6 3.8 2.0 2.8 2.5 3.6 3.9

0 1 0 0 0 1.7 1.9 2.0 2.1 3.1 3.4 6.0

0 0 1 0 0 1.9 2.6 1.3 2.6 2.6 2.6 1.8

0 0 0 1 0 2.1 3.0 6.7 4.0 3.3 2.4 3.4

0 0 0 0 1 2.0 3.8 4.0 4.8 2.9 2.5 3.5

1 1 0 0 0 2.1 2.7 3.3 4.3 3.3 3.3 3.4

1 0 1 0 0 2.2 1.8 2.0 1.5 2.3 4.0 3.4

1 0 0 1 0 2.8 0.6 1.3 0.7 0.4 2.1 1.7

1 0 0 0 1 4.6 8.8 6.0 6.5 4.0 2.3 3.3

0 1 1 0 0 3.3 3.4 2.7 6.7 5.3 3.3 3.4

0 1 0 1 0 2.6 1.0 2.7 0.6 0.9 1.6 2.2

0 1 0 0 1 4.6 1.1 2.0 0.7 1.0 3.0 2.7

0 0 1 1 0 2.6 1.5 2.7 3.1 3.1 3.0 3.0

0 0 1 0 1 4.4 3.0 3.3 1.9 3.0 3.0 2.2

0 0 0 1 1 2.5 5.7 6.7 5.4 4.4 5.1 3.9

1 1 1 0 0 2.9 4.2 2.7 5.5 6.9 5.2 3.0

1 1 0 1 0 3.0 1.4 2.0 0.7 2.7 2.6 3.3

1 1 0 0 1 3.4 1.0 0.7 0.4 0.7 2.3 3.3

1 0 1 1 0 2.0 2.3 2.0 1.2 3.4 3.7 3.3

1 0 1 0 1 6.4 2.4 1.3 2.8 1.8 2.1 3.0

1 0 0 1 1 4.2 0.6 4.7 0.7 0.8 3.0 2.8

0 0 1 1 1 2.8 2.9 1.3 2.6 4.6 3.4 3.0
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0 1 0 1 1 4.2 1.2 2.7 1.3 1.0 1.3 3.3

0 1 1 0 1 4.8 8.2 5.3 5.3 4.5 4.6 3.0

0 1 1 1 0 2.4 1.9 3.3 3.3 2.5 2.5 2.2

0 1 1 1 1 3.5 4.1 2.0 3.3 3.8 2.9 2.4

1 0 1 1 1 4.0 3.7 4.7 3.3 4.9 3.5 3.0

1 1 0 1 1 4.1 2.1 6.0 2.3 2.1 4.1 6.4

1 1 1 0 1 4.1 8.8 2.0 9.0 6.8 4.7 3.8

1 1 1 1 0 2.0 3.0 3.3 2.9 2.9 2.6 2.2

1 1 1 1 1 4.2 5.2 4.0 4.9 7.3 3.4 1.8

II (v) Tirant lo Blanc: the world’s first novel

(xx the 425 chapters. sentence lengths as well as relative frequencies of words of lengths

1, 2, 3, 4, 5, 6, 7, 8, 9, 10. too much to give all data here, btu we give a figure and

point to a data file. xx) [xx describe data. used in Cunen et al. (2018). word length

frequencies, (p̂1, . . . , p̂10), for 420 chapters. when did Author B take over for Author A?

xx]

II (vi) Sons of Odin

Odin had six sons (though sources are not entirely clear on the matter): Thor, Balder,

Vitharr, Váli (cf. the Eddic poems and the Snorri Edda), Heimdallr, Bragi (cf. Snorri’s

kennings). In Story [xx nemlig xx] we construct a confidence distribution for the number

of all of Odin’s children. In some of the Snorri kennings there are also references to

Týr and Höd as sons of Odin (and yet other names are mentioned in the somewhat

apocryphical Skáldskaparmál). [xx pointer to brief stories about this, one CD, one Bayes,

which prior fits the CD answer. xx]

II (vii) Markov and Pushkin

(xx describe data, versions of which used also in Hjort and Varin (2008); Schweder

and Hjort (2016). vowels and consonants in Pushkin’s classic 1833 epic poem Evgeniĭ
Onegin. point to Markov (1906, 1913). analysed in Story ii.6. So Heedless of the proud

world’s enjoyment becomes

0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0

i t.d. xx)

II (viii) And Quiet Does Not Flow the Don

[xx describe data, Hjort (2007), mention Kjetsaa et al., Kjetsaa et al. (1984); Lessing

(1997). Is it Sholokhov, or is it Kruikov? Grandest scandal in all of Nobel Prize history?

analysed in Story ii.7. data are sentence lengths, sorted into window 1-5, 6-10, 11-15, and

so on, for three text corpora: Sh (known to be Sholokhov), Kr (known to be Kriukov),

TD (the apple of discord, Tikhij Don).
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from to Sh Kr TD

1 5 799 714 684

6 10 1408 1046 1212

11 15 875 787 826

16 20 492 528 480

21 25 285 317 244

26 30 144 165 121

31 35 78 78 75

36 40 37 44 48

41 45 32 28 31

46 50 13 11 16

51 55 8 8 12

56 60 8 5 3

61 65 4 5 8

II (ix) Bach and the others

A fugue, whether for a piano, an organ, or an ensemble of instruments, starts with the

principal fugue theme itself, before it is imitated and varied, perhaps in complex ways,

in other voices; typical Bach fugues have from three to five voices. Rydén (2020) has

studied fugue subjects in organ compositions of Bach and other composers, and has

defined certain features, say x1, . . . , x6, which can be worked out for each given organ

fugue. In brief, x1 is the length; x2 the range; x3 the number of unique notes; x4 the start

interval; x5 the number of unique intervals betweem successive notes; and x6 the max

interval. These are described in a bit more detail in Story ii.12, where we investigate

differences between the fugues of J.S. Bach (1685–1750) and Max Reger (1873–1916),

using data from J. Rydén (personal communciation).

One of the present authors has also played through all 24 preludes and fugues from

Bach’s Das Wohltemperierte Klavier, part I (from the Anhalt-Köthen period, c. 1722),

carefully recording x1, . . . , x6 for each fugue, and similarly for all the 24 preludes and

fugues from part II (from Bach’s rather different Leipzig years, c. 1742). As part of

Story ii.12 we investigate whether there are any notable differences between these Bach

collections, or between the Clavier fugues and those for organ. (xx decide later whether

we go for two consecutive stories. xx)

WTK I, c. 1722 WTK II, c. 1743

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

1 C 14 9 6 2 4 7 1 C 29 9 6 2 6 9

2 c 20 11 7 1 7 9 2 c 9 7 5 3 5 7

3 Ciss 20 15 11 2 10 12 3 Ciss 12 7 5 4 5 7

4 ciss 5 5 4 1 3 5 4 ciss 22 12 8 1 3 7

5 D 13 9 6 2 4 9 5 D 9 10 6 0 6 7

6 d 20 9 7 2 4 9 6 d 24 12 9 2 3 5

7 Diss 24 14 10 3 7 10 7 Diss 20 9 6 7 6 7

8 diss 13 8 6 7 5 7 8 diss 13 8 6 0 3 5

9 E 21 12 7 2 4 5 9 E 6 5 4 2 3 3

10 e 26 13 12 3 7 9 10 e 42 13 9 2 8 10

11 F 21 10 7 2 3 8 11 F 21 13 8 1 6 7
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12 f 11 12 9 1 5 7 12 f 28 11 9 7 5 8

13 Fiss 16 10 7 5 4 5 13 Fiss 24 14 8 1 7 12

14 fiss 18 7 7 2 3 3 14 fiss 15 12 7 4 7 8

15 G 31 14 8 2 5 10 15 G 42 17 11 3 7 7

16 g 12 8 7 1 4 8 16 g 24 8 7 4 5 5

17 Giss 7 9 5 7 5 9 17 Giss 24 14 7 3 7 12

18 giss 12 12 9 1 5 9 18 giss 27 13 8 2 7 12

19 A 15 13 10 5 6 8 19 A 19 9 6 2 5 5

20 a 31 13 8 1 6 9 20 a 12 13 10 4 7 11

21 B 38 15 8 2 8 9 21 B 24 14 9 2 5 5

22 b 10 13 6 6 4 13 22 b 27 9 7 2 5 6

23 H 14 10 7 1 3 7 23 H 12 12 7 4 6 9

24 h 21 15 12 3 6 9 24 h 27 13 8 4 5 12

III (i) Power law scaling for academics and support staff

(xx from Jamtveit et al. (2009), Jamtveit et al. (2018). xx)

III (ii) Statistical Sightings of Better Angels

[xx Correlates of War data. several stories. Story I, iii.4, for Ch. 3: about the wi =

xi − xi−1. Story II, iii.5, and also Story III, iii.6, for Chs. 2: estimates and intervals for

ρq = µL,q/µR,q, ratio of quantiles, using direct large-sample theory. here we take Korea

1950 as change-point, with nL = 60 wars to the left and nR = 35 wars to the right.

story III, for Ch. 7: the ρq again, but now via II-CC-FF, more precise nonparametric

confidence. story IV, finding the change-point, in Ch. 9. Pinker (2011), Cunen et al.

(2020a), Gleditsch (2020) volume on the work of Lewis Fry Richardson. we examine the

between-war times wi = xi−xi−1, fit both the simple exponential, as per Poisson process

assumption, and a two-parameter model extension. later briefly in Bayes chapter. xx]

(xx here is the full data matrix, for wars i = 1, . . . , 95, with onset time xi, the

between-onset times wi = xi − xi−1, the battle deaths count zi, and its logarithm log zi.

from com26 of nilswork21. xx)

i x w z log z i x w z log z

1 1823.269 -- 1000 6.908 49 1932.458 0.489 92661 11.437

2 1828.322 5.053 130000 11.775 50 1934.222 1.764 2100 7.650

3 1846.319 17.997 19283 9.867 51 1935.758 1.536 20000 9.903

4 1848.247 1.928 7527 8.926 52 1937.519 1.761 1000000 13.816

5 1848.278 0.031 6000 8.700 53 1938.581 1.061 1726 7.454

6 1849.333 1.056 2600 7.863 54 1939.364 0.783 28000 10.240

7 1851.553 2.219 1300 7.170 55 1939.917 0.553 151798 11.930

8 1853.814 2.261 264200 12.484 56 1940.919 1.003 1400 7.244

9 1856.819 3.006 2000 7.601 57 1941.492 0.572 16634907 16.627

10 1859.331 2.511 22500 10.021 58 1947.822 6.331 3500 8.161

11 1859.811 0.481 10000 9.210 59 1948.375 0.553 8000 8.987

12 1860.697 0.886 1000 6.908 60 1950.825 2.450 910084 13.721

13 1860.792 0.094 1000 6.908 61 1954.675 3.850 2370 7.771

14 1862.294 1.503 20000 9.903 62 1956.836 2.161 3221 8.077

15 1863.894 1.600 1000 6.908 63 1956.844 0.008 2426 7.794

16 1864.086 0.192 4481 8.408 64 1958.111 1.267 1122 7.023
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17 1865.181 1.094 310000 12.644 65 1958.647 0.536 1800 7.496

18 1865.736 0.556 1000 6.908 66 1962.806 4.158 1853 7.525

19 1866.472 0.736 44100 10.694 67 1965.103 2.297 1021442 13.837

20 1870.553 4.081 204313 12.227 68 1965.597 0.494 7061 8.862

21 1876.242 5.689 4000 8.294 69 1967.431 1.833 19600 9.883

22 1877.317 1.075 285000 12.560 70 1968.036 0.606 13866 9.537

23 1879.122 1.806 13868 9.537 71 1969.183 1.147 5368 8.588

24 1882.531 3.408 10079 9.218 72 1969.539 0.356 1900 7.550

25 1884.458 1.928 12100 9.401 73 1970.231 0.692 6525 8.783

26 1885.244 0.786 1000 6.908 74 1971.925 1.694 11223 9.326

27 1894.569 9.325 15000 9.616 75 1973.767 1.842 14439 9.578

28 1897.125 2.556 2000 7.601 76 1974.556 0.789 1500 7.313

29 1898.311 1.186 3685 8.212 77 1975.814 1.258 2700 7.901

30 1900.464 2.153 3003 8.007 78 1977.564 1.750 10500 9.259

31 1900.547 0.083 4000 8.294 79 1977.733 0.169 8000 8.987

32 1904.106 3.558 151831 11.931 80 1978.828 1.094 3000 8.006

33 1906.408 2.303 1000 6.908 81 1979.131 0.303 21000 9.952

34 1907.136 0.728 1000 6.908 82 1980.728 1.597 1250000 14.039

35 1909.519 2.383 10000 9.210 83 1982.236 1.508 1001 6.909

36 1911.747 2.228 20000 9.903 84 1982.308 0.072 1655 7.412

37 1912.797 1.050 82000 11.314 85 1986.875 4.567 8000 8.987

38 1913.542 0.744 60500 11.010 86 1987.014 0.139 4000 8.294

39 1914.581 1.039 8578031 15.965 87 1990.589 3.575 41466 10.633

40 1918.894 4.314 11750 9.372 88 1992.269 1.681 5240 8.564

41 1918.936 0.042 13246 9.491 89 1993.100 0.831 14000 9.547

42 1919.122 0.186 100000 11.513 90 1995.025 1.925 1500 7.313

43 1919.294 0.172 11000 9.306 91 1998.350 3.325 120000 11.695

44 1919.347 0.053 50000 10.820 92 1999.233 0.883 5002 8.518

45 1919.836 0.489 40000 10.597 93 1999.356 0.122 1172 7.066

46 1920.542 0.706 1000 6.908 94 2001.875 2.519 4002 8.295

47 1929.631 9.089 3200 8.071 95 2003.219 1.344 7173 8.878

48 1931.969 2.339 60000 11.002

III (v) The assortative mating according to temper

In his classic Natural Inheritance, Galton (1889) gives a fascinating and entertaining

analysis of ‘temper’, coupled with the general theme of inheritance, and courageously

classifies husbands and wives as ‘bad-tempered’ or ‘good-tempered’. We use these data

in Story iii.8 to not merely test for independence of these character traits, but to provide

confidence distributions and curves for relevant parameters. Are bad-tempered men

better at finding good-tempered women than the good-tempered men are?

wife:

good bad

husband: good 24 27

bad 34 26

Galton, 1887: “We can hardly, too, help speculating uneasily upon the terms that

our own relatives would select as most appropriate to our particular selves.”

III (vi) Sims and Sveriges Riksbank

(xx perhaps, the Tore story on Sims. xx)
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III (vii) Does winning make you live longer?

(xx emil story with RDD. xx)

III (viii) Minimum wages and employment

(xx emil story. xx)

III (ix) How many were killed in Guatemala?

(xx Lum et al. (2013) and Urdal. xx)

III (x) Volatility and estimation from noisy data

(xx emil story. xx)

IV (i) New Haven annual temperatures 1912–1971

(xx annual temperatures at New Haven, Connecticut, for the years 1912 to 1971, as

follows. xx)

9.94 11.28 9.67 10.61 9.67 8.83 9.89 10.50 9.61 11.06 10.44 9.78

9.61 10.33 9.11 10.39 10.50 10.33 10.83 11.56 11.00 10.61 9.89 10.11

10.22 10.89 11.00 10.50 9.33 10.94 10.56 10.33 10.94 10.83 11.17 10.72

10.56 12.22 10.78 11.50 11.72 12.56 11.11 11.11 10.50 11.44 10.11 11.44

10.89 11.06 10.28 10.50 10.94 10.78 10.94 10.44 11.06 11.00 11.06 11.67

IV (ii) Skiing days at Bjørnholt 1897–2012

The table gives the number of skiing days at the location Bjørnholt in Nordmarka, a

tramride and a skiing hour away downtown Oslo, from 1896 to 2022. A skiing day is

defined as there being at least 25 cm snow on the ground. Note the ‘hole’ in the time

series, with no counting of skiing days for the time window 1938 to 1954. Data from

rimfrost.no. See Heger (2011), Cunen et al. (2018).

1896 25 1916 155 1936 151 1972 120 1992 39 2012 95

1897 147 1917 139 1937 108 1973 114 1993 70 2013 108

1898 169 1918 115 1954 37 1974 146 1994 119 2014 81

1899 135 1919 175 1955 135 1975 129 1995 123 2015 97

1900 135 1920 141 1956 111 1976 150 1996 116 2016 84

1901 137 1921 110 1957 82 1977 165 1997 69 2017 55

1902 131 1922 129 1958 125 1978 152 1998 39 2018 115

1903 147 1923 164 1959 143 1979 182 1999 121 2019 125

1904 185 1924 135 1960 141 1980 156 2000 57 2020 34

1905 127 1925 91 1961 141 1981 157 2001 150 2021 110

1906 116 1926 130 1962 152 1982 148 2002 129 2022 96

1907 165 1927 163 1963 150 1983 128 2003 113

1908 170 1928 127 1964 92 1984 121 2004 108

1909 176 1929 75 1965 150 1985 138 2005 37

1910 182 1930 122 1966 162 1986 139 2006 120

1911 149 1931 140 1967 142 1987 127 2007 58

1912 174 1932 65 1968 125 1988 141 2008 131

1913 125 1933 55 1969 153 1989 5 2009 101

1914 128 1934 110 1970 191 1990 27 2010 144

1915 190 1935 117 1971 178 1991 97 2011 117
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IV (iii) British coal-mining disasters, 1851 to 1962

[xx for chapter1: when data length is stretched, at which time point is it too much for

the homogeneous Poisson assumption? in later chapters too. story us treated in Cunen

et al. (2018), but then with a change-point perspective. xx]

1851 4 1871 5 1891 2 1911 0 1931 3 1951 1

1852 5 1872 3 1892 1 1912 1 1932 3 1952 0

1853 4 1873 1 1893 1 1913 1 1933 1 1953 0

1854 1 1874 4 1894 1 1914 1 1934 1 1954 0

1855 0 1875 4 1895 1 1915 0 1935 2 1955 0

1856 4 1876 1 1896 3 1916 1 1936 1 1956 0

1857 3 1877 5 1897 0 1917 0 1937 1 1957 1

1858 4 1878 5 1898 0 1918 1 1938 1 1958 0

1859 0 1879 3 1899 1 1919 0 1939 1 1959 0

1860 6 1880 4 1900 0 1920 0 1940 2 1960 1

1861 3 1881 2 1901 1 1921 0 1941 4 1961 0

1862 3 1882 5 1902 1 1922 2 1942 2 1962 1

1863 4 1883 2 1903 0 1923 1 1943 0

1864 0 1884 2 1904 0 1924 0 1944 0

1865 2 1885 3 1905 3 1925 0 1945 0

1866 6 1886 4 1906 1 1926 0 1946 1

1867 3 1887 2 1907 0 1927 1 1947 4

1868 3 1888 1 1908 3 1928 1 1948 0

1869 5 1889 3 1909 2 1929 0 1949 0

1870 4 1890 2 1910 2 1930 2 1950 0

IV (iv) Mammals and their bodies and brains

[xx 56 mammals, table gives average weight of body and average weight of brain, in kg.

you are no. 25. how special are you? (log-body, log-brain) follow a binormal, more or

less. for Story iv.3. xx]

1 0.480 0.0155 20 10.000 0.1150 39 60.000 0.0810

2 0.019 0.0003 21 3.300 0.0256 40 3.600 0.0210

3 600.000 0.4230 22 0.200 0.0050 41 0.320 0.0019

4 14.000 0.0700 23 85.000 0.3250 42 0.743 0.0200

5 14.800 0.0982 24 2.625 0.0123 43 0.075 0.0012

6 33.500 0.1150 25 62.000 1.3200 44 0.148 0.0012

7 0.728 0.0055 26 6654.000 5.7120 45 0.122 0.0030

8 0.420 0.0064 27 6.800 0.1790 46 0.920 0.0057

9 0.060 0.0010 28 0.120 0.0010 47 0.101 0.0040

10 1.000 0.0066 29 0.022 0.0004 48 0.048 0.0003

11 0.005 0.0001 30 0.010 0.0002 49 86.250 0.1800

12 3.500 0.0108 31 1.400 0.0125 50 4.500 0.0250

13 2.950 0.0123 32 2.500 0.0121 51 207.501 0.1690

14 1.700 0.0063 33 55.500 0.1750 52 0.900 0.0026

15 2547.000 4.6030 34 52.200 0.4400 53 0.104 0.0025

16 0.023 0.0003 35 100.000 0.1570 54 2.000 0.0175

17 521.000 0.6550 36 25.235 0.1800 55 3.380 0.0445

18 187.000 0.4190 37 0.550 0.0024 56 4.230 0.0504

19 0.770 0.0035 38 1.620 0.0114

IV (v) Kola temperatures and The Hjort liver index time series 1859–2020
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[xx The Hjort liver index. comes in two forms, the hlibulk and hliperfish. from Hermansen

et al. (2016). one story on the five-parameter model with gamma marginals, Story iv.4,

with ML. xx]

IV (vi) How many Clethrionomys glareoli?

(xx fill in basic reference. xx)

Bolt from heaven

Bolt (2013) is an interesting book, but the author restrains most of his attention to

himself and his own achievements, so to find relevant data for our measure of surprise

analyses for track and field events in Story v.1 we have needed to track down and organise

our own files. Our analyses in particular utilise all sub-10.00 100 metre races from 2000

to 2008, and on the technical side involve Bartletting the deviance function derived from

the extreme value distribution.

(xx Bolt did 9.72 in June 2008. how surprising ought we to have been? data: during

the eight seasons 2000 to 2007, there were 20, 27, 29, 14, 38, 21, 29, 17 races clocked at

10.00-or-better, a total of 195 such. Story v.1. xx)

9.86 9.87 9.91 9.93 9.94 9.95 9.96 9.97 9.97 9.97 9.98 9.98

9.98 9.99 9.99 10.00 10.00 10.00 10.00 10.00 9.82 9.84 9.85 9.88

9.88 9.90 9.90 9.90 9.91 9.92 9.94 9.95 9.96 9.96 9.96 9.96

9.97 9.97 9.97 9.98 9.98 9.98 9.99 9.99 9.99 10.00 10.00 9.78

9.87 9.89 9.91 9.93 9.94 9.94 9.94 9.94 9.94 9.95 9.95 9.96

9.97 9.97 9.97 9.98 9.98 9.98 9.98 9.98 9.98 9.99 9.99 9.99

9.99 9.99 10.00 10.00 9.93 9.94 9.95 9.97 9.97 9.97 9.97 9.98

9.99 9.99 10.00 10.00 10.00 10.00 9.85 9.86 9.87 9.87 9.88 9.89

9.90 9.90 9.91 9.91 9.91 9.92 9.93 9.93 9.93 9.93 9.93 9.93

9.94 9.94 9.95 9.95 9.96 9.96 9.97 9.97 9.97 9.97 9.98 9.98

9.99 9.99 9.99 9.99 10.00 10.00 10.00 10.00 9.77 9.84 9.85 9.88

9.89 9.94 9.96 9.96 9.98 9.99 9.99 9.99 9.99 9.99 9.99 9.99

10.00 10.00 10.00 10.00 10.00 9.77 9.84 9.85 9.85 9.85 9.86 9.86

9.86 9.87 9.88 9.88 9.88 9.89 9.91 9.91 9.92 9.92 9.95 9.95

9.96 9.96 9.97 9.97 9.98 9.99 9.99 9.99 9.99 10.00 9.74 9.78

9.83 9.84 9.85 9.90 9.91 9.93 9.94 9.95 9.96 9.97 9.97 9.98

9.98 9.99 10.00

Height, weight, BMI for Olympic speedskaters

(xx speedskaters taking part in Olympics, 1274 men, from 1952 to 2018, 907 women,

from 1960 to 2018. we have height, weight, and hence BMI data for these, from files

gathered by NLH and fellow speedskating history enthusiasts Jeroen Heijmans and Arild

Gjerde. see Story v.9, with overall confidence curves for the 0.2, 0.5, 0.8 quantiles of the

BMI distributions; there is also a more complex story for the II-CC-FF story of medians,

partly from Cunen and Hjort (2022). xx)

(xx the 1274 + 907 BMI scoes are available at the kioskvelter website. mean and

standard deviation are 23.706, 1.445 for the males, and 22.050, 1.412 for the females. The

data ranges are from 18.365 to 28.965 for the men and 17.647 to 26.675 for the women.
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Figure v.14 shows how clearly the bulk of women’s BMI distribution is situated to the

left of the men’s. xx)

Inner and outer

[xx describe data, inner and outer starts for World Championships 1000 m speedskating.

manually collected and curated by NLH over the years, via ISU protocols. analysed in

Story v.4. xx]

From semifinals to finals

(xx describe data. type A A B B B A, skiers coming from Semifinal A or Semifinal

B, their ranks in the final, for lots of events, Olympics 2022, 2018, 2014, 2010, World

Championships 2021, 2019, 2017, 2015, 2013, 2011, and various FIS World Cup events.

analysed in Story v.5. xx)

Golf putting

(xx fill in. Gelman and Nolan (2002), Schweder and Hjort (2016, Ch. 14). xx)

Who wins: Real Time Real Excitement Plots

(xx fill in. data I, that particular Nor-Den match; data II, some 75 matches and their

scores, for correlated Poissons. xx)

Abelian envelopes

How many Abel commemorative envelopes were issued, in 1929? Prior to 2011, five such

envelopes were known in the international community of stamp collectors, with so-called

R numbers 280, 304, 308, 310, 328. We derive in Story ii.5 a confidence distribution for

the number N of envelopes originally issued. (xx on the Bayesian version in Ch. 6. xx)

Story ii.5 concerns reaching Bayesian inference for this unknown number of envelopes,

based in these five R numbers. Story ii.5. are also about how these inerence summaries,

the posterior for the Bayesian and the CD for the frequentist, can be updated, in the

light of three more 1902 envelopes discovered in 2012, carrying R numbers 314, 334, 389.

The data, along with the facsimile shown in Figure ii.9, are from colleagues Y. Reichelt

and N.V. Johansen of the authors. (xx nils moves the facisimile to the story itself. xx)

Mixed effects for doughnuts

The table below provides data for eight different fats used for six consecutive working

days in connection with doughnut mixing; specifically, yi,j given there displays the grams

of fat absorbed for fat i = 1, . . . , r = 8 across days j = 1, . . . , s = 6. The data are from

Scheffé (1959, p. 137); cf. also McCloskey (1943). (xx then point to where we have a

little story about this, with mixed effects, relative influence of days, etc. xx)

Mon Tue Wed Thu Fri Sat means

1 164 177 168 156 172 195 172.00

2 172 197 167 161 180 190 177.83

3 177 184 187 169 179 197 182.17

4 178 196 177 181 184 191 184.50
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5 163 177 144 165 166 178 165.50

6 163 193 176 172 176 178 176.33

7 150 179 146 141 169 183 161.33

8 164 169 155 149 170 167 162.33

means 166.38 184.00 165.00 161.75 174.50 184.88 172.75

State-wise cigarette consumption and cancers

For each of 44 US states (actually, 43 states and the District of Columbia), the table

below, dating from 1960, gives cig, number of cigarettes smoked (hundreds per capita);

blad, deaths per 100k population from bladder cancer; lung, deaths per 100k population

from lung cancer; kid, deaths per 100k population from kidney cancer; leuk, deaths per

100k population from leukemia. (xx used in Ch. 6. can also be used for regression stories

in other chapters. the same x acts on four regressions. outliers? what happens with the

verbatim, first line? xx)

cig blad lung kid leuk

AL 18.20 2.90 17.05 1.59 6.15

AZ 25.82 3.52 19.80 2.75 6.61

AR 18.24 2.99 15.98 2.02 6.94

CA 28.60 4.46 22.07 2.66 7.06

CT 31.10 5.11 22.83 3.35 7.20

DE 33.60 4.78 24.55 3.36 6.45

DC 40.46 5.60 27.27 3.13 7.08

FL 28.27 4.46 23.57 2.41 6.07

ID 20.10 3.08 13.58 2.46 6.62

IL 27.91 4.75 22.80 2.95 7.27

IN 26.18 4.09 20.30 2.81 7.00

IO 22.12 4.23 16.59 2.90 7.69

KS 21.84 2.91 16.84 2.88 7.42

KY 23.44 2.86 17.71 2.13 6.41

LA 21.58 4.65 25.45 2.30 6.71

ME 28.92 4.79 20.94 3.22 6.24

MD 25.91 5.21 26.48 2.85 6.81

MA 26.92 4.69 22.04 3.03 6.89

MI 24.96 5.27 22.72 2.97 6.91

MN 22.06 3.72 14.20 3.54 8.28

MS 16.08 3.06 15.60 1.77 6.08

MO 27.56 4.04 20.98 2.55 6.82

MT 23.75 3.95 19.50 3.43 6.90

NB 23.32 3.72 16.70 2.92 7.80

NE 42.40 6.54 23.03 2.85 6.67

NJ 28.64 5.98 25.95 3.12 7.12

NM 21.16 2.90 14.59 2.52 5.95

NY 29.14 5.30 25.02 3.10 7.23

ND 19.96 2.89 12.12 3.62 6.99

OH 26.38 4.47 21.89 2.95 7.38

OK 23.44 2.93 19.45 2.45 7.46

PE 23.78 4.89 12.11 2.75 6.83

RI 29.18 4.99 23.68 2.84 6.35

SC 18.06 3.25 17.45 2.05 5.82

SD 20.94 3.64 14.11 3.11 8.15

TE 20.08 2.94 17.60 2.18 6.59
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TX 22.57 3.21 20.74 2.69 7.02

UT 14.00 3.31 12.01 2.20 6.71

VT 25.89 4.63 21.22 3.17 6.56

WA 21.17 4.04 20.34 2.78 7.48

WI 21.25 5.14 20.55 2.34 6.73

WV 22.86 4.78 15.53 3.28 7.38

WY 28.04 3.20 15.92 2.66 5.78

AK 30.34 3.46 25.88 4.32 4.90

Mothers and babies

(xx describe the data, from Hosmer and Lemeshow (1999), 189 newborns, their weights,

along with information about their mothers, including weight before pregnancy, age, an

indicator for smoking, and also information about three ethnic groups. used for nonpara-

metric confidence intervals for quantiles, and nils plans to have a fic. also something for

comparing distribution of weight at birth for smoking and non-smoking mothers. xx)

Longevity returns to political office

[xx describe the data set of Barfort et al. (2020), that is analysed in Story iii.11. xx]

Onset of menarche

(xx clean and polish text, with pointer to exercise. xx) Data pertain to 3918 Warszawa

girls and onset of menarche. The data have three columns, giving respectively (i) age x

(or rather the midpoint in the appropriate age interval); (ii) the number m of girls in this

age window; (iii) the number y among the of girls in this age window who have had their

first menstruation. Thus yj in age window j is seen as a realisation of a binom(mj , pj)

distribution, with pj = p(xj) the probability of onset having taken place at age xj or

earlier.

x m y x m y x m y

9.21 376 0 12.33 93 29 14.58 120 113

10.21 200 0 12.58 100 39 14.83 102 95

10.58 93 0 12.83 108 51 15.08 122 117

10.83 120 2 13.08 99 47 15.33 111 107

11.08 90 2 13.33 106 67 15.58 94 92

11.33 88 5 13.58 105 81 15.83 114 112

11.58 105 10 13.83 117 88 17.58 1049 1049

11.83 111 17 14.08 98 79

12.08 100 16 14.33 97 90

Decimals of π

For our Story vii.2 we have first gathered the first 6,537,216 digits of π and then via some

coding found the first 223,157 values of V10, the lengths of cycles required to have seen

all decimals 0, 1, . . . , 9. These are gathered in our file V10counts.

Australian rowers
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(xx to be edited and clarified. for Story vii.9. data from www.statsci.org/data/oz/ais.txt.

Telford, R. D. and Cunningham, R. B. (1991) Sex, sport, and body-size dependency of

hematology in highly trained athletes. Medicine and Science in Sports and Exercise,

23(7):788-794. gender is 11 for girls and 12 for boys. x is lean body mass, y is percent

body fat. do we know or merely guess that no 16 and no 30 are coxswains? xx)

gender x y bmi

1 11 66.24 17.71 25.436

2 11 57.92 18.77 22.630

3 11 56.52 19.83 21.856

4 11 54.78 25.16 22.270

5 11 56.31 18.04 21.275

6 11 62.96 21.79 23.470

7 11 56.68 22.25 23.190

8 11 62.39 16.25 23.174

9 11 63.05 16.38 24.536

10 11 56.05 19.35 22.955

11 11 53.65 19.20 19.763

12 11 65.45 17.89 23.363

13 11 64.62 12.20 22.666

14 11 60.05 23.70 24.236

15 11 56.48 24.69 24.212

16 11 41.54 16.58 20.464

17 11 52.78 21.47 20.810

18 11 52.72 20.12 20.168

19 11 61.29 17.51 23.060

20 11 59.59 23.70 24.402

21 11 61.70 22.39 23.974

22 11 62.46 20.43 22.617

23 12 78.00 9.00 23.566

24 12 75.00 12.61 25.839

25 12 78.00 9.03 24.057

26 12 87.00 6.96 23.850

27 12 78.00 10.05 25.090

28 12 79.00 9.56 23.844

29 12 79.00 9.36 25.314

30 12 48.00 10.81 19.690

31 12 82.00 8.61 26.069

32 12 82.00 9.53 25.503

33 12 82.00 7.42 23.688

34 12 83.00 9.79 26.795

35 12 88.00 8.97 25.615

36 12 83.00 7.49 25.055

37 12 78.00 11.95 24.928

Other Stuff, and references to be used

(xx we mention and point to things here, not yet on board as of 12-August-2024, but
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probably to be factored in. we also point to references that we sooner or later will have

on board. xx)

Aalen (1992), Aalen and Gjessing (2004), Cunen et al. (2020c), Frigessi and Hjort

(2002), Gjessing et al. (2003), Hjort (1990b), Hjort (1990a), Hjort and Stoltenberg (2021),

... when we mention Breiman (2001), we also point to the Special Issue of Observational

Studies (vol. 7, 2021), e.g. Bickel’s comments, in muse.jhu.edu/issue/45147. also

Gelman et al. (2022).
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