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This is the exam project set for STK 4021/9021, autumn semester 2013. It is made

available on the course website as of Friday 6 December 12:00, and candidates must submit

their written reports by Thursday 19 December 14:00 (or earlier), to the reception office

at the Department of Mathematics, in duplicate. The supplementary four-hour written

examination takes placeMonday December 9 (practical details concerning this are provided

elsewhere). Reports may be written in nynorsk, bokmål, riksmål, English or Latin, and

should preferably be text-processed (TeX, LaTeX, Word), but may also be hand-processed.

Give your name on the first page. Write concisely (in der Beschränkung zeigt sich erst

der Meister; brevity is the soul of wit; kratkostь – sestra talanta). Relevant figures

need to be included in the report. Copies of machine programmes used (in R, or matlab,

or similar) are also to be included, perhaps as an appendix to the report. Candidates

are required to work on their own (i.e. without cooperation with any others). They are

graciously allowed not to despair if they do not manage to answer all questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains three exercises and comprises eight pages. Note that the STK 9021

students need to answer also Exercise 4, whereas the STK 4021 students can confine their

attention to Exercises 1–3.

Exercise 1

The first condition of progress is the removal of censorship, claims G.B. Shaw.

In various statistics situations censored data cannot be avoided, however, as illustrated

below. Assume first that certain lifetimes y1, . . . , yn of a type of technical components

are independent and exponentially distributed with parameter θ, i.e. stemming from the

density θ exp(−θy) for y positive.

(a) Write down the log-likelihood function for these data, find the maximum likelihood

estimator, and describe its precise and/or approximate distribution.
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(b) Assume a Bayesian analysis of such data starts out with θ having a Gamma prior with

parameters (a, b), i.e. with density

ba

Γ(a)
θa−1 exp(−bθ)

for θ positive. Derive the posterior distribution of θ. Find explicit formulae for θ̂1 and

θ̂2, the Bayes estimators under loss functions

L1(θ, θ̂) = (θ̂ − θ)2 and L2(θ, θ̂) =
(1
θ̂
−

1

θ

)2

,

respectively. Comment on your results.

(c) Assume now that at the day when a statistical report must be written up not all

lifetimes are actually observed, for the simple and healthy reason that some of the

technical components under scrutiny are still working. Let δi = 1 if yi is observed,

but δi = 0 if what is observed concerning the lifelength of object i is only of the form

yi > zi. The data may then be represented in the form (zi, δi) for i = 1, . . . , n, where

yi = zi if δi = 1 (non-censored data) but yi > zi if δi = 0 (censored data). Explain

that the likelihood takes the form

∏

i:δi=1

θ exp(−θzi)
∏

i:δi=0

exp(−θzi).

Find the posterior distribution for θ, after again having started from a Gamma prior

(a, b), and give the Bayes estimator under squared error loss.

(d) Consider the following little dataset of (zi, δi), having arisen as explained above (with

time-scale being in 1000 hours, though this does not concern us here):

z delta z delta
0.155 1 0.006 0
0.378 1 0.253 0
0.427 1 0.403 0
0.530 1 0.459 0
0.814 1 2.368 0

Starting with a Gamma prior π0 with parameters (0.1, 0.1), give the posterior distribu-

tions πA using only the five first observations; πB using only the last five observations;

and finally the full posterior distribution πAB using all ten observations. Display these

three posterior densities in a diagram. Also compute and display the 0.05, 0.50, 0.95

quantiles for θ, for the prior, for the πA, for the πB , and finally for the πAB distribu-

tions. Comment on your findings.

(e) Assume that there is one more observation, pertaining to technical object no. eleven,

for which it is known that its lifetime is in the interval [1.222, 1.666], but one did

not manage to measure the time more accurately. Compute and display the posterior

distribution πABC based on all eleven pieces of information, and supplement the little

table above with 0.05, 0.50, 0.95 posterior quantiles for θ.
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Exercise 2

Failure is the condiment that gives success its flavor (argues Truman Capote). A

certain type of electronic equipment once in a while experiences a failure, under certain

experimental conditions, which are varied from occasion to occasion in the course of nine

experiments. These counts (taken from a more elaborate failure analysis data set for a

certain Australian technical plant, some years ago) are as follows:

5, 1, 4, 14, 17, 17, 13, 7, 12.

We view these as independent Poisson counts, and our concern here is to estimate the

associated intensity parameters, along with credibility intervals.

(a) Assume y1, . . . , yn are independent Poisson variables with parameters θ1, . . . , θn, and

that these are to be estimated with loss function

L(θ, θ̂) =
1

n

n∑

i=1

(θ̂i − θi)
2.

Show that the maximum likelihood estimators are the raw data themselves, i.e. θ̂i,ml =

yi. Find the risk function (expected loss) R(yml, θ) for this standard estimation strat-

egy.

(b) Take now the parameters to be independent and stemming from a Gamma distribution

prior, with parameters (a, b). Find the posterior distribution for the θi, and show that

the Bayes estimators take the form

θ̂i,B =
a+ yi
b+ 1

for i = 1, . . . , n.

(c) Work out an explicit expression for the risk function R(θ̂B, θ) for θ̂B, in terms of the

average and the variance

θ̄ =
1

n

n∑

i=1

θi and V =
1

n

n∑

i=1

(θi − θ̄)2

of the parameters. Try also to characterise the part of the parameter space where θ̂B

performs better than the raw estimator θ̂ml.

(d) For the marginal distribution of yi, with the Gamma prior above, show that

E yi =
a

b
, Var yi =

a

b

(
1 +

1

b

)
.

Argue from an empirical Bayes perspective that

θ∗i =
bȳ + yi
b+ 1

for i = 1, . . . , n

is a natural class of estimators.
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(e) When working with the estimator above,

θ∗i =
bȳ + yi
b+ 1

= wȳ + (1− w)yi for i = 1, . . . , n,

one may choose to view b here, or equivalently w, as merely an algorithmic parameter,

identifying the θ∗ estimator (i.e. θ∗ here makes good sense even without the potential

connection to the parameter of a Gamma prior). Work out an expression for the risk

function R(θ∗, θ) for θ∗, for a given w = b/(b + 1), again in terms of θ̄ and V . Use

this to suggest a data-dependent value for the parameter w (or, equivalently, for b).

(f) Going back to the Gamma prior related use and interpretation of (a, b) in the formula

for θ̂i,B, use suitable empirical Bayes arguments to give a recipe for data-based values

(â, b̂). For the technical component failure data above, compute the resulting empirical

Bayes estimates θ̂i,eB. Give in fact a 9× 5 table, where the five columns contain

(yi, θ̂i,eB, qi(0.05), qi(0.50), qi(0.95)),

where the qi numbers are the relevant quantiles of the estimated posterior distribution

for θi. Also, construct a suitable plot, where I suggest having experiments 1, . . . , 9

along the y-axis, then displaying estimates and intervals horizontally. You may at-

tempt to more or less reconstruct my Figure A (page 7), where the experiments are

also ordered by the size of the yi.

(g) An alternative to the empirical Bayesian analysis above is a full Bayes construction,

involving a background prior for (a, b). Your task now is to carry out such an analysis

for the failure count data, where the setup is (i) taking a flat prior for (a, b); (ii)

for given (a, b), having θ1, . . . , θn independent from the Gamma (a, b); (iii) as above,

for given θ1, . . . , θn, taking y1, . . . , yn independent and Poisson with these parameters.

Use simulation to generate realisations (a, b, θ1, . . . , θn) from the appropriate posterior

distribution. Give another 9×5 table, supplementing the one from the previous point,

containing

(yi, θ̂i,fB, ri(0.05), ri(0.50), ri(0.95)),

where the θ̂i,fB are the associated Bayes estimates, and the ri numbers the quantiles

of the relevant posterior distributions. Make a plot of these results, similar to the one

from the previous point, and comment on similarities and differences.

(h) The Bayes estimates θ̂i,B of point (b) associated with the Gamma (a, b) prior (which

in later points led to certain empirical Bayes estimates) were derived under the loss

function L(θ, θ̂) given in point (a). This loss function penalises errors equally, regard-

less of size; estimating a true parameter of 101.5 with the value 103.3, for example, is

precisely as good as estimating a true parameter 1.5 with the value 3.3. For various

Poisson count contexts, this might not be a satisfactory way of measuring loss. Derive

a formula for the Bayes estimates θ̃i,B for the θi with the alternative loss function

L̃(θ, θ̂) =

n∑

i=1

(θ̂i − θi)
2/θ̄.
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Exercise 3

I have nothing to offer but blood, toil, tears and sweat. The data pairs (x0, y0) given

here relate to n = 17 patients in a study about factors influencing survival chances for a

certain serious type of leukaemia. Here y0 is the survival time after diagnosis, measured

in weeks, and x0 is the log10 white blood cell count. There were certain additional char-

acteristics associated with this particular group of patients, but these do not concern us

here.

x0 y0 x0 y0 x0 y0

3.36 65 4.00 121 4.54 22

2.88 156 4.23 4 5.00 1

3.63 100 3.73 39 5.00 1

3.41 134 3.85 143 4.72 5

3.78 16 3.97 56 5.00 65

4.02 108 4.51 26

(a) Read the data into your computer, and transform weeks to years via y = y0/52. Our

basic model for these survival data will be that they are independent with

yi ∼ Gamma(exp(β0 − β1xi), exp(δ)) for i = 1, . . . , n,

where xi = x0,i − x̄0 and x̄0 = n−1
∑n

i=1
x0,i the average value of the x0. Write down

the log-likelihood function for the data, as a function of the three model parameters

(β0, β1, δ). Find the maximum likelihood estimates, e.g. by programming the log-

likelihood function and using nlm in R. My programme yields estimates (0.367, 1.117,

0.408). Use these estimates to reproduce a version of my Figure B (page 8), which

displays the 17 data pairs (x0,i, yi) along with the estimated curves

F−1(0.05, x0), F−1(0.50, x0), F−1(0.95, x0),

quantiles in the distribution of y given x0, across the range of x0 values. Comment

briefly on this plot and what it conveys.

(b) We are to carry out Bayesian analysis based on this data set and the Gamma model

above, and need a prior for (β0, β1, δ). You are now to try out a few simple priors, as

part of the initial ‘get to know your model’ exercising before we attack the data. Make

them simple, and to check whether they make sense (or perhaps not), generate sur-

vival times, for imaginary patients with x0 equal to respectively x0,min = mini≤n x0,i

and x0,max = maxi≤n x0,i. (It will not be necessary or required here to carry your

investigations very far; the point is to learn which areas of the parameter space are

reasonable and which are not.)

(c) Regardless of your investigations of the previous point, let now the prior for (β0, β1, δ)

be essentially flat over the full parameter range (if insisting on a proper prior, one

may take it as flat on [−100, 100]3). Set up a Markov Chain Monte Carlo scheme to

simulate realisations from the posterior distribution of (β0, β1, δ), and report on 0.05,

0.50, 0.95 quantiles for each parameter.
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(d) For a patient with white blood cell count corresponding to x0 = 3.33, use the MCMC

simulations to display the distribution of (low, high), where

low = F−1(0.05, x0) and high = F−1(0.95, x0)

are quantiles of that person’s survival distribution, and summarise this information in

a suitable way. Compare this with the result of applying a ‘lazy Bayesian’ approxima-

tion, starting with the approximate normal distribution for (β0, β1, δ) obtained from

the maximum likelihood procedure. Comment briefly on what you find.

(e) For this patient, with x0 = 3.33, use posterior simulation to generate say 104 sur-

vival times after diagnosis. Display this distribution in a suitable plot, perhaps using

plot(density(lives)) or a fine histogram. Do the same for another patient, with

x0 = 4.44, and comment on your findings.

(f) The leukaemia data above have been used by several statisticians to illustrate vari-

ous aspects of modelling techniques, methodological development, etc. In particular,

other models than the one worked with above (which I have invented for the present

purposes) have been used. D.R. Cox, for example, once used these data to illustrate

the two-parameter model that takes the yi to be independent and exponentially dis-

tributed, with parameters θi = exp(γ0 − γ1xi). Assume that the model used above

and Cox’s model are a priori equally likely, and use the so-called Bayesian information

criterion (BIC) to approximate the posterior probabilities for the two models. Which

of the two models is more likely to be correct, the one you have worked with here, or

Sir David’s?

– I note here that R has preprogrammed various algorithms related to the gamma distri-

bution, like dgamma, pgamma, qgamma, rgamma, which of course may be used when

programming a log-likelihood function, finding quantiles, simulating realisations, etc.,

without having to start from scratch, so to speak. It may also be practical to be able

to simulate realisations from the multinormal distribution, which may be done in R

by first writing library(MASS) and then using mvrnorm.

Exercise 4 – for the PhD students taking STK 9021 only

The number of PhD candidates in the kingdom of Norway has more than doubled

over the past ten years (from 4124 in 2002 via 7883 in 2008 to 9532 in 2012, actually).

This is mindboggingly spellbindingly fantastic.

By the general rules of the Faculty of Mathematics and Natural Sciences those taking

the PhD STK 9021 version of this course are required to be examined and evaluated in a

somewhat more extensive manner from those taking the STK 4021 version. We solve this

here by demanding that the STK 9021 candidates work also with the present Exercise 4

(those among the STK 4021 students eager to work with this exercise too are however

welcomed to do so). This exercise is as follows.

Exam STK 4021/9021, page 6 6.–19.xii.2013



I have uploaded Bradley Efron’s 1986 article Why Isn’t Everyone a Bayesian? to

the course website, taken from the American Statistician journal, along with discussion

contributions by Herman Chernoff, Dennis Lindley, Carl Morris, S. James Press, Adrian

Smith, and Efron’s rejoinder. Read through the Efron 1986 paper and ensuing discussion,

and write up a short essay (perhaps two or three pages) where you (a) briefly sum up

just a few points from this discussion and (b) choose one or two of these themes for

further elaboration from your side. You are very much invited to present your own views

as relevant for your own work (ongoing or prospective). I emphasise that you are not

necessarily required to care about all of the details or aspects of the Efron 1986 discussion;

you are instead supposed to find something concerning Bayes there worth discussing further

from your own views or tastes, and of reasonable relevance for the STK 9021 course.
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Figure A: The nine experiments reported on in Exercise 2 are ordered according

to the size of the failure count yi (with this value indicated by a small circle). The

figure displays certain empirical Bayes estimates θ̂i,eB (the black, dotted line in

the middle) along with 90% empirical Bayes credibility intervals and the posterior

median estimates (red, dotted lines). The green vertical line corresponds to the

overall average estimate ȳ. There are several viable empirical Bayes constructions,

and the figure above reflects one of these schemes, which might not be identical

to the one chosen by the exam candidate.
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Figure B: The plot shows the data pairs (x0, y) for the n = 17 patients, with

x0 the log10 white blood cell count and y the survival time after diagnosis, in

years. Also displayed are the 0.05, 0.50, 0.95 quantiles of the estimated survival

distribution, as a function of x0.
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