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Final Exam Part 1: Written Project

This is the written project for STK 4021/9021, fall semester 2014. It is made available on the
course website on Sunday, November 23 at 9:00 and candidates must submit their written
reports by Thursday, November 27 at 10:00. Reports can be submitted to the reception
office at the Department of Mathematics in duplicate, or via email to thordis@nr.no. Reports
may be written in Norwegian or English and should preferable be text processed (e.g. in
LaTeX or Word), though handwritten reports will also be accepted. Relevant figures should
be included in the report and computer code (such as R or matlab code) should also be
included, e.g. in an appendix. Give your student number on the first page and state any
references you use. Candidates are required to work independently.

The exam set contains three problems and comprises 3 pages. STK 9021 students need to
solve all three problems, while STK 4021 students need to solve (any) two out of the three
problems.

The data sets needed to solve the problems are available for download at http://www.uio.
no/studier/emner/matnat/math/STK4021/h14/eksamen/.

Problem 1 (hierarchical modeling). The files school1.dat through school8.dat give
weekly hours spent on homework for students sampled from eight different schools. We model
the data using a hierarchical normal model

Yi|θi ∼ N (θi, σ
2), i = 1, . . . , 8 iid

θi|µ, τ 2 ∼ N (µ, τ 2), i = 1, . . . , 8 iid.

(a) Using the prior distributions
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with parameters

µ0 = 7, γ20 = 5, τ 20 = 10, η0 = 2, σ2
0 = 15, ν0 = 2,

obtain posterior distributions for the parameters {θ, σ2, µ, τ 2}.

(b) Run a Gibbs sampling algorithm to approximate the posterior distributions in (a).
Assess the convergene of the Markov chain, and find the effective sample sizes for
{σ2, µ, τ 2}. Run the chain long enough so that the effective sample sizes are all above
1000.



(c) Compare the posterior densities to the prior densities and discuss what was learned
from the data.

(d) Calculate the pooled sample variance of the data. Fix σ2 as this empirical estimate.
Use the empirical Bayes method to estimate µ and τ 2. Find the estimated posterior
distribution for θi, i = 1, . . . , 8, under this framework.

(e) Plot the prior and the posterior density of ω = σ2

σ2+τ2
under the framework in (a) as well

as the empirical Bayes estimate obtained in (d). Compare these quantities and describe
the evidence for between-school variation.

(f) Obtain the posterior probability that θ7 is smaller than θ6, as well as the posterior
probability that θ7 is the smallest of all the θ’s both under the framework in (a) as well
as the empirical Bayes framework. Compare the results.

Problem 2 (imputation). The file interexp.dat contains data from an experiment that
was interrupted before all data could be gathered. Of interest was the difference in reaction
time of experimental subjects when they were given stimulus A versus stimulus B. Each
subject is tested under one of the two stimuli on their first day of participation in the study,
and is tested under the other stimulus at some later date. Unfortunately, the experiment was
interrupted before it was finished, leaving the researchers with 26 subjects with both A and
B responses, 15 subjects with only A responses and 17 subjects with only B responses.

We model the data using a bivariate normal sampling model,
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and assume that the lacking responses are missing at random.

(a) Calculate the empirical estimates of θA, θB, ρ, σ2
A, σ

2
B from the data. Use all the A

responses to get θ̂A and σ̂B, and use all the B responses to get θ̂B and σ̂B. Use only
the complete data cases to get ρ̂.

(b) For each person i with only an A response, impute a B response as

ŷi,B = E(YB|YA = yi,A),

where the expectation is taken with respect to the bivariate normal distribution with
parameters equal to the estimates from (a). For each person i with only a B response,
impute an A response in the same manner.

(c) Using Jeffreys’ prior for the parameters, implement a Gibbs sampler that approximates
the joint distribution of the parameters and the missing data. Assess the convergence of
your algorithm. Compare the posterior distributions for the parameters to the estimates
in (a). Compute the posterior mean for θA − θB as well as a 95% posterior confidence
interval for θA − θB.

(d) Using the same parameter prior as in (c), obtain samples from the posterior distribution
of the parameters using the imputed values in (b). Compute the posterior mean for
θA − θB as well as a 95% posterior confidence interval for θA − θB. Compare with the
results in (c).



Problem 3 (linear regression). The file crime.dat contains crime rates and data
on 15 explanatory variables for 47 U.S. states, in which both the crime rates and the
explanatory variables have been centered and scaled to have variance 1. A description
of the data can be obtained by typing
> library(MASS)
> ?UScrime
in R.

(a) Fit a normal linear regression model

y = Xβ + ε

using the g-prior with g = n, ν0 = 2 and σ2
0 = 1. Obtain marginal posterior means

and 95% confidence intervals for β, and compare to the least squares estimates.

(b) Describe the relationships between crime and the explanatory variables. Which
variables seem strongly predictive of crime rates?

(c) Randomly divide the crime data roughly in half, into a training set {ytr,Xtr} and
a test set {yte,Xte}. Using only the training set, obtain least squares regression
coefficients β̂ols. Obtain predicted values for the test data by computing ŷols =
Xteβ̂ols. Plot ŷols versus yte and compute the mean squared prediction error.

(d) Now obtain the posterior mean β̂Bayes = E(β|ytr) using the g-prior described
above and the training data only. Obtain predictions for the test set ŷBayes =

Xteβ̂Bayes. Plot the predictions versus the data, compute the mean squared pre-
diction error and compare to the OLS prediction error. Explain the results.

(e) Repeat the procedures in (b) and (c) many times with different randomly generated
test and training sets. Plot the mean squared prediction errors in (b) versus those
in (c). Compute the average prediction error for both the OLS and the Bayesian
methods. Discuss your results.


