Problem Set 10

Problem 1 (categorical data and the Dirichlet distribution). Consider again the data on the number of children of men in their 30s from Problem 3 on Problem Set 2. These data could be considered as categorical data, as each sample Y lies in the discrete set $\{1, \ldots, 8\}$ (8 here actually denotes " 8 or more" children). Let $\boldsymbol{\theta}_{A}=\left(\theta_{A, 1}, \ldots, \theta_{A, 8}\right)$ be the proportion in each of the eight categories from the population of men with bachelor's degrees.
(a) Write in compact form the conditional probability given $\boldsymbol{\theta}_{A}$ of observing a particular sequence $\left\{y_{A, 1}, \ldots, y_{A, 8}\right\}$ for a random sample from the A population. This should be the so-called multinomial model. Explain how it generalizes the binomial model.
(b) Identify the sufficient statistic. Show that the Dirichlet family of distributions, with densities of the form

$$
p(\boldsymbol{\theta} \mid \mathbf{a})=\frac{\Gamma\left(a_{1}+\ldots+a_{K}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{K}\right)} \theta_{1}^{a_{1}-1} \cdots \theta_{K}^{a_{K}-1}
$$

are a conjugate class of prior distributions for this sampling model.
(c) Let X_{1}, \ldots, X_{K} be independent with $X_{j} \sim \Gamma\left(a_{j}, 1\right)$ for $j=1, \ldots, K$. Then the ratios

$$
Z_{1}=\frac{X_{1}}{X_{1}+\cdots X_{K}}, \ldots, Z_{K}=\frac{X_{K}}{X_{1}+\cdots+X_{K}}
$$

follow a Dirichlet distribution with parameter $\mathbf{a}=\left(a_{1}, \ldots, a_{K}\right)$. Show this using the following: If X has density $f(x)$, and $Z=h(X)$ is a one-to-one transformation with inverse $X=h^{-1}(Z)$, then the density of Z is

$$
g(z)=f\left(h^{-1}(z)\right)\left|\frac{\partial h^{-1}(z)}{\partial z}\right|
$$

The function rdir() thus samples from the Dirichlet distribution:

```
rdir <- function(nsamp=1, a) # a is a vector
{
Z <- matrix(rgamma(length(a) * nsamp, a, 1), nsamp, length(a), byrow=T)
Z / apply(Z, 1, sum)
}
```

(d) Using the function in (c), generate 5000 or more samples of $\boldsymbol{\theta}_{A}$ and $\boldsymbol{\theta}_{B}$ from their posterior distributions. Also, obtain samples from the respective posterior predictive distributions.
(e) Obtain comparable samples from the posterior predictive distributions under the model in Problem 3 on Problem Set 2. Compare the results here to the results in (d).

Solutions will be discussed in class on November 7.

