Problem Set 12

Problem 1 (binomial and multinomial models). Suppose data $\left(y_{1}, \ldots, y_{J}\right)$ follow a multinomial distribution with parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{J}\right)$. Also suppose that $\boldsymbol{\theta}$ has a Dirichlet prior distribution. Let $\alpha=\frac{\theta_{1}}{\theta_{1}+\theta_{2}}$.
(a) Write the marginal posterior distribution for α.
(b) Show that the distribution in (a) is identical to the posterior distribution for α obtained by treating y_{1} as an observation from the binomial distribution with probability α and sample size $y_{1}+y_{2}$, ignoring the data y_{3}, \ldots, y_{J}.

Problem 2 (Poisson models).

(a) Suppose $y \mid \theta \sim \operatorname{Po}(\theta)$. Find Jeffreys' prior density for θ, and then find α and β for which the $\Gamma(\alpha, \beta)$ density is a close match to Jeffreys' density.
(b) Suppose $y \mid \theta \sim \operatorname{Po}(\theta)$ and $\theta \sim \Gamma(\alpha, \beta)$. Then the marginal (prior predictive) distribution of y is negative binomial with parameters α and β. Use the formulas

$$
\begin{aligned}
\mathbb{E}(\theta) & =\mathbb{E}(\mathbb{E}(\theta \mid y)) \\
\operatorname{var}(\theta) & =\mathbb{E}(\operatorname{var}(\theta \mid y))+\operatorname{var}(\mathbb{E}(\theta \mid y))
\end{aligned}
$$

to derive the mean and the variance of this marginal distribution.

Problem 3 (Poisson and binomial distributions). A student sits on a street corner for an hour and records the number of bicycles b and the number of other vehicles v that go by. Two models are considered:

- The outcomes b and v have independent Poisson distributions, with unknown means θ_{b} and θ_{v}.
- The outcome b has a binomial distribution, with unknown probability p and sample size $b+v$.
Show that the two models have the same likelihood if we define $p=\frac{\theta_{b}}{\theta_{a}+\theta_{b}}$.

Problem 4 (discrete mixture models).

(a) If $p_{m}(\theta)$, for $m=1, \ldots, M$ are conjugate prior densities for the sampling model $p(y \mid \theta)$, show that the class of finite mixture prior densities given by

$$
p(\theta)=\sum_{m=1}^{M} \lambda_{m} p_{m}(\theta)
$$

is also a conjugate class, where the λ_{m} 's are nonnegative weights that sum to 1 .
(b) Use the mixture form to create a bimodal prior density for a normal mean, that is thought to be near 1 , with a standard deviation of 0.5 , but has a small probability of being near -1 , with the same standard deviation. If the variance of each observation y_{1}, \ldots, y_{10} is known to be 1 , and their observed mean is $\bar{y}=-0.25$, derive your posterior distribution for the mean.

Solutions will be discussed in class on December 5 .

