Problem Set 12

Problem 1 (binomial and multinomial models). Suppose data $\left(y_{1}, \ldots, y_{J}\right)$ follow a multinomial distribution with parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{J}\right)$. Also suppose that $\boldsymbol{\theta}$ has a Dirichlet prior distribution. Let $\alpha=\frac{\theta_{1}}{\theta_{1}+\theta_{2}}$.
(a) Write the marginal posterior distribution for α.

Solution: The sampling model is

$$
p(\mathbf{y} \mid \boldsymbol{\theta})=\frac{\left(y_{1}+\cdots+y_{J}\right)!}{y_{1}!\cdots y_{J}!} \theta_{1}^{y_{1}} \cdots \theta_{J}^{y_{J}}
$$

and the prior is of the form

$$
p(\boldsymbol{\theta} \mid \mathbf{a}) \propto \theta_{1}^{a_{1}-1} \cdots \theta_{J}^{a_{J}-1}
$$

The posterior distribution thus fulfils

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) \propto \theta_{1}^{y_{1}+a_{1}-1} \cdots \theta_{J}^{y_{J}+a_{J}-1}
$$

which makes it a $\operatorname{Dirichlet}\left(y_{1}+a_{1}, \ldots, y_{J}+a_{J}\right)$ distribution. It follows from the properties of the Dirichlet distribution that the marginal distribution of $\left(\theta_{1}, \theta_{2}, 1-\theta_{1}-\theta_{2}\right)$ is also a Dirichlet distribution

$$
p\left(\theta_{1}, \theta_{2} \mid \mathbf{y}\right) \propto \theta_{1}^{y_{1}+a_{1}-1} \theta_{2}^{y_{2}+a_{2}-1}\left(1-\theta_{1}-\theta_{2}\right)^{y_{s}+a_{s}-1}
$$

where $y_{s}=y_{3}+\cdots y_{J}$ and $a_{s}=a_{3}+\cdots+a_{J}$. This can also be proved directly using induction, by first integrating out θ_{n}, then θ_{n-1} and so on.
Now do a change of variables to $(\alpha, \beta)=\left(\frac{\theta_{1}}{\theta_{1}+\theta_{2}}, \theta_{1}+\theta_{2}\right)$. The Jacobian of this transformation is $\frac{1}{\beta}$, so the transformed density is

$$
\begin{aligned}
p(\alpha, \beta \mid y) & \propto \beta(\alpha \beta)^{y_{1}+a_{1}-1}((1-\alpha) \beta)^{y_{2}+a_{2}-1}(1-\beta)^{y_{s}+a_{s}-1} \\
& =\alpha^{y_{1}+a_{1}-1}(1-\alpha)^{y_{2}+a_{2}-1} \beta^{y_{1}+y_{2}+a_{1}+a_{2}-1}(1-\beta)^{y_{s}+a_{s}-1} \\
& \propto \operatorname{Beta}\left(\alpha \mid y_{1}+a_{2}, y_{2}+a_{2}\right) \operatorname{Beta}\left(\beta \mid y_{1}+y_{2}+a_{1}+a_{2}, y_{s}+a_{s}\right) .
\end{aligned}
$$

Since the posterior density divides into separate factors for α and β, they are independent, and $\alpha \mid y \sim \operatorname{Beta}\left(y_{1}+a_{2}, y_{2}+a_{2}\right)$.
(b) Show that the distribution in (a) is identical to the posterior distribution for α obtained by treating y_{1} as an observation from the binomial distribution with probability α and sample size $y_{1}+y_{2}$, ignoring the data y_{3}, \ldots, y_{J}.
Solution: The $\operatorname{Beta}\left(y_{1}+a_{2}, y_{2}+a_{2}\right)$ posterior distribution can also be derived from a $\operatorname{Beta}\left(a_{1}, a_{2}\right)$ prior and a binomial observation y_{1} with sample size $y_{1}+y_{2}$.

Problem 2 (Poisson models).

(a) Suppose $y \mid \theta \sim \operatorname{Po}(\theta)$. Find Jeffreys' prior density for θ, and then find α and β for which the $\Gamma(\alpha, \beta)$ density is a close match to Jeffreys' density.
Solution: The Poisson sampling density is $p(y \mid \theta)=\theta^{y} e^{-\theta} / y!$, and so
$I(\theta)=-\mathbb{E}\left(\mathrm{d}^{2} \log p(Y \mid \theta) / \mathrm{d} \theta^{2}\right)=\mathbb{E}\left(Y / \theta^{2}\right)$. Thus, $p_{J}(\theta) \propto \sqrt{I(\theta)}=\theta^{-1 / 2}$ which is an (improper) $\Gamma(1 / 2,0)$ density.
(b) Suppose $y \mid \theta \sim \operatorname{Po}(\theta)$ and $\theta \sim \Gamma(\alpha, \beta)$. Then the marginal (prior predictive) distribution of y is negative binomial with parameters α and β. Use the formulas

$$
\begin{aligned}
\mathbb{E}(\theta) & =\mathbb{E}(\mathbb{E}(\theta \mid y)) \\
\operatorname{var}(\theta) & =\mathbb{E}(\operatorname{var}(\theta \mid y))+\operatorname{var}(\mathbb{E}(\theta \mid y))
\end{aligned}
$$

to derive the mean and the variance of this marginal distribution.
Solution: We have $\mathbb{E}(Y)=\theta, \operatorname{Var}(Y)=\theta, \mathbb{E}(\theta)=\alpha / \beta, \operatorname{Var}(\theta)=\alpha / \beta^{2}$. Thus,

$$
\mathbb{E} Y=\mathbb{E}(\mathbb{E}(Y \mid \theta))=\mathbb{E}(\theta)=\alpha / \beta,
$$

and

$$
\operatorname{Var}(Y)=\mathbb{E}(\operatorname{Var}(Y \mid \theta))+\operatorname{Var}(\mathbb{E}(Y \mid \theta))=\mathbb{E}(\theta)+\operatorname{Var}(\theta)=\frac{\alpha}{\beta}+\frac{\alpha}{\beta^{2}}=\frac{\alpha}{\beta(\beta+1)}
$$

Problem 3 (Poisson and binomial distributions). A student sits on a street corner for an hour and records the number of bicycles b and the number of other vehicles v that go by. Two models are considered:

- The outcomes b and v have independent Poisson distributions, with unknown means θ_{b} and θ_{v}.
- The outcome b has a binomial distribution, with unknown probability p and sample size $b+v$.

Show that the two models have the same likelihood if we define $p=\frac{\theta_{b}}{\theta_{v}+\theta_{b}}$.
Solution: The likelihood under the binomial model is

$$
p\left(b \left\lvert\, \frac{\theta_{b}}{\theta_{v}+\theta_{b}}\right., b+v\right)=\binom{b+v}{b}\left(\frac{\theta_{b}}{\theta_{v}+\theta_{b}}\right)^{b}\left(1-\frac{\theta_{b}}{\theta_{v}+\theta_{b}}\right)^{v}=\binom{b+v}{b} \frac{\theta_{b}^{b} \theta_{v}^{v}}{\left(\theta_{v}+\theta_{b}\right)^{b+v}} .
$$

As b and v and independent, we have $b+v \sim \operatorname{Po}\left(\theta_{v}+\theta_{b}\right)$ under the Poisson model. Now,

$$
\begin{aligned}
p\left(b=k \mid \theta_{v}, \theta_{b}, b+v=n\right) & =\frac{P\left(b=k, b+v=n \mid \theta_{v}, \theta_{b}\right)}{P\left(b+v=n \mid \theta_{v}, \theta_{b}\right)}=\frac{P\left(b=k \mid \theta_{v}, \theta_{b}\right) P\left(v=n-b \mid \theta_{v}, \theta_{b}\right)}{P\left(b+v=n \mid \theta_{v}, \theta_{b}\right)} \\
& =\frac{e^{-\theta_{b}} \theta_{b}^{k} / k!e^{-\theta_{v}} \theta_{v}^{n-k} /(n-k)!}{e^{-\left(\theta_{v}+\theta_{b}\right)}\left(\theta_{v}+\theta_{b}\right)^{n} / n!}=\binom{n}{k} \frac{\theta_{b}^{k} \theta_{v}^{n-k}}{\left(\theta_{v}+\theta_{b}\right)^{n}} .
\end{aligned}
$$

Problem 4 (discrete mixture models).

(a) If $p_{m}(\theta)$, for $m=1, \ldots, M$ are conjugate prior densities for the sampling model $p(y \mid \theta)$, show that the class of finite mixture prior densities given by

$$
p(\theta)=\sum_{m=1}^{M} \lambda_{m} p_{m}(\theta)
$$

is also a conjugate class, where the λ_{m} 's are nonnegative weights that sum to 1 .
Solution: For each m, denote by $p_{m}(\theta \mid y)$ the posterior density corresponding to the prior $p_{m}(\theta)$, that is, $p_{m}(\theta \mid y)=p(y \mid \theta) p_{m}(\theta) / p_{m}(y)$, where $p_{m}(y)=\int p(y \mid \theta) p_{m}(\theta) \mathrm{d} \theta$ is the marginal density of y. If $p(\theta)=\sum_{m} \lambda_{m} p_{m}(\theta)$, then the posterior is proportional to $\sum_{m} \lambda_{m} p_{m}(\theta) p(y \mid \theta)=\sum_{m} \lambda_{m} p_{m}(y) p_{m}(\theta \mid y)$. This is a mixture of the posterior densities $p_{m}(\theta \mid y)$ with weigths proportional to $\lambda_{m} p_{m}(y)$. Since each $p_{m}(\theta)$ is a conjugate prior, each posterior $p_{m}(\theta \mid y)$ is from the same family as $p_{m}(\theta)$. The posterior mixture is thus from the same family of finite mixtures as the prior mixture.
(b) Use the mixture form to create a bimodal prior density for a normal mean, that is thought to be near 1 , with a standard deviation of 0.5 , but has a small probability of being near -1 , with the same standard deviation. If the variance of each observation y_{1}, \ldots, y_{10} is known to be 1 , and their observed mean is $\bar{y}=-0.25$, derive your posterior distribution for the mean.

Solution: Consider e.g. $p_{1}(\theta) \sim \mathcal{N}\left(1,0.5^{2}\right)$, $p_{2}(\theta) \sim \mathcal{N}\left(-1,0.5^{2}\right)$ with $\lambda_{1}=0.9$ and $\lambda_{2}=0.1$. We then obtain $p_{1}(\theta \mid y) \sim \mathcal{N}(1.5 / 14,1 / 14)$ and $p_{2}(\theta \mid y) \sim \mathcal{N}(-6.5 / 14,1 / 14)$. The marginal distributions are $p_{1}(y) \sim \mathcal{N}\left(1,0.5^{2}+1 / 10\right)$ and $p_{2}(y) \sim \mathcal{N}\left(-1,0.5^{2}+1 / 10\right)$ such that $p_{1}(-0.25)=0.072$ and $p_{2}(-0.25)=0.302$. The posterior weights are thus

$$
\frac{0.9 \cdot 0.072}{0.9 \cdot 0.072+0.1 \cdot 0.302}=0.68 \text { and } \frac{0.1 \cdot 0.302}{0.9 \cdot 0.072+0.1 \cdot 0.302}=0.32
$$

