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Problem Set 12

Problem 1 (binomial and multinomial models). Suppose data (y1, . . . , yJ) follow a mul-
tinomial distribution with parameters θ = (θ1, . . . , θJ). Also suppose that θ has a Dirichlet
prior distribution. Let α = θ1

θ1+θ2
.

(a) Write the marginal posterior distribution for α.

Solution: The sampling model is

p(y|θ) =
(y1 + · · ·+ yJ)!

y1! · · · yJ !
θy11 · · · θ

yJ
J

and the prior is of the form

p(θ|a) ∝ θa1−1
1 · · · θaJ−1

J .

The posterior distribution thus fulfils

p(θ|y) ∝ θy1+a1−1
1 · · · θyJ+aJ−1

J ,

which makes it a Dirichlet(y1+a1, . . . , yJ+aJ) distribution. It follows from the properties
of the Dirichlet distribution that the marginal distribution of (θ1, θ2, 1− θ1− θ2) is also
a Dirichlet distribution

p(θ1, θ2|y) ∝ θy1+a1−1
1 θy2+a2−1

2 (1− θ1 − θ2)ys+as−1,

where ys = y3 + · · · yJ and as = a3 + · · · + aJ . This can also be proved directly using
induction, by first integrating out θn, then θn−1 and so on.

Now do a change of variables to (α, β) = ( θ1
θ1+θ2

, θ1 + θ2). The Jacobian of this transfor-
mation is 1

β
, so the transformed density is

p(α, β|y) ∝ β(αβ)y1+a1−1((1− α)β)y2+a2−1(1− β)ys+as−1

= αy1+a1−1(1− α)y2+a2−1βy1+y2+a1+a2−1(1− β)ys+as−1

∝ Beta(α|y1 + a2, y2 + a2)Beta(β|y1 + y2 + a1 + a2, ys + as).

Since the posterior density divides into separate factors for α and β, they are indepen-
dent, and α|y ∼ Beta(y1 + a2, y2 + a2).

(b) Show that the distribution in (a) is identical to the posterior distribution for α obtained
by treating y1 as an observation from the binomial distribution with probability α and
sample size y1 + y2, ignoring the data y3, . . . , yJ .

Solution: The Beta(y1 + a2, y2 + a2) posterior distribution can also be derived from a
Beta(a1, a2) prior and a binomial observation y1 with sample size y1 + y2.



Problem 2 (Poisson models).

(a) Suppose y|θ ∼ Po(θ). Find Jeffreys’ prior density for θ, and then find α and β for which
the Γ(α, β) density is a close match to Jeffreys’ density.

Solution: The Poisson sampling density is p(y|θ) = θye−θ/y!, and so
I(θ) = −E( d2 log p(Y |θ)/ dθ2) = E(Y/θ2). Thus, pJ(θ) ∝

√
I(θ) = θ−1/2 which is an

(improper) Γ(1/2, 0) density.

(b) Suppose y|θ ∼ Po(θ) and θ ∼ Γ(α, β). Then the marginal (prior predictive) distribution
of y is negative binomial with parameters α and β. Use the formulas

E(θ) = E(E(θ|y))

var(θ) = E(var(θ|y)) + var(E(θ|y))

to derive the mean and the variance of this marginal distribution.

Solution: We have E(Y ) = θ, Var(Y ) = θ, E(θ) = α/β, Var(θ) = α/β2. Thus,

EY = E(E(Y |θ)) = E(θ) = α/β,

and

Var(Y ) = E(Var(Y |θ)) + Var(E(Y |θ)) = E(θ) + Var(θ) =
α

β
+
α

β2
=

α

β(β + 1)
.

Problem 3 (Poisson and binomial distributions). A student sits on a street corner for
an hour and records the number of bicycles b and the number of other vehicles v that go by.
Two models are considered:

• The outcomes b and v have independent Poisson distributions, with unknown means θb
and θv.

• The outcome b has a binomial distribution, with unknown probability p and sample
size b+ v.

Show that the two models have the same likelihood if we define p = θb
θv+θb

.

Solution: The likelihood under the binomial model is

p

(
b

∣∣∣∣ θb
θv + θb

, b+ v

)
=

(
b+ v

b

)(
θb

θv + θb

)b(
1− θb

θv + θb

)v
=

(
b+ v

b

)
θbbθ

v
v

(θv + θb)b+v
.

As b and v and independent, we have b+ v ∼ Po(θv + θb) under the Poisson model. Now,

p(b = k|θv, θb, b+ v = n) =
P (b = k, b+ v = n|θv, θb)

P (b+ v = n|θv, θb)
=
P (b = k|θv, θb)P (v = n− b|θv, θb)

P (b+ v = n|θv, θb)

=
e−θbθkb /k!e−θvθn−kv /(n− k)!

e−(θv+θb)(θv + θb)n/n!
=

(
n

k

)
θkb θ

n−k
v

(θv + θb)n
.



Problem 4 (discrete mixture models).

(a) If pm(θ), for m = 1, . . . ,M are conjugate prior densities for the sampling model p(y|θ),
show that the class of finite mixture prior densities given by

p(θ) =
M∑
m=1

λmpm(θ)

is also a conjugate class, where the λm’s are nonnegative weights that sum to 1.

Solution: For each m, denote by pm(θ|y) the posterior density corresponding to the
prior pm(θ), that is, pm(θ|y) = p(y|θ)pm(θ)/pm(y), where pm(y) =

∫
p(y|θ)pm(θ) dθ is

the marginal density of y. If p(θ) =
∑

m λmpm(θ), then the posterior is proportional to∑
m λmpm(θ)p(y|θ) =

∑
m λmpm(y)pm(θ|y). This is a mixture of the posterior densities

pm(θ|y) with weigths proportional to λmpm(y). Since each pm(θ) is a conjugate prior,
each posterior pm(θ|y) is from the same family as pm(θ). The posterior mixture is thus
from the same family of finite mixtures as the prior mixture.

(b) Use the mixture form to create a bimodal prior density for a normal mean, that is
thought to be near 1, with a standard deviation of 0.5, but has a small probability of
being near -1, with the same standard deviation. If the variance of each observation
y1, . . . , y10 is known to be 1, and their observed mean is ȳ = −0.25, derive your posterior
distribution for the mean.

Solution: Consider e.g. p1(θ) ∼ N (1, 0.52), p2(θ) ∼ N (−1, 0.52) with λ1 = 0.9 and
λ2 = 0.1. We then obtain p1(θ|y) ∼ N (1.5/14, 1/14) and p2(θ|y) ∼ N (−6.5/14, 1/14).
The marginal distributions are p1(y) ∼ N (1, 0.52+1/10) and p2(y) ∼ N (−1, 0.52+1/10)
such that p1(−0.25) = 0.072 and p2(−0.25) = 0.302. The posterior weights are thus

0.9 · 0.072

0.9 · 0.072 + 0.1 · 0.302
= 0.68 and

0.1 · 0.302

0.9 · 0.072 + 0.1 · 0.302
= 0.32.


