STK 4021 - Applied Bayesian Analysis and Numerical Methods Thordis L. Thorarinsdottir Fall 2014

Problem Set 12

Problem 1 (binomial and multinomial models). Suppose data (y_1, \ldots, y_J) follow a multinomial distribution with parameters $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_J)$. Also suppose that $\boldsymbol{\theta}$ has a Dirichlet prior distribution. Let $\alpha = \frac{\theta_1}{\theta_1 + \theta_2}$.

(a) Write the marginal posterior distribution for α .

Solution: The sampling model is

$$p(\mathbf{y}|\boldsymbol{\theta}) = \frac{(y_1 + \dots + y_J)!}{y_1! \cdots y_J!} \theta_1^{y_1} \cdots \theta_J^{y_J}$$

and the prior is of the form

$$p(\boldsymbol{\theta}|\mathbf{a}) \propto \theta_1^{a_1-1} \cdots \theta_J^{a_J-1}.$$

The posterior distribution thus fulfils

$$p(\boldsymbol{\theta}|\mathbf{y}) \propto \theta_1^{y_1+a_1-1} \cdots \theta_J^{y_J+a_J-1},$$

which makes it a Dirichlet $(y_1+a_1, \ldots, y_J+a_J)$ distribution. It follows from the properties of the Dirichlet distribution that the marginal distribution of $(\theta_1, \theta_2, 1 - \theta_1 - \theta_2)$ is also a Dirichlet distribution

$$p(\theta_1, \theta_2 | \mathbf{y}) \propto \theta_1^{y_1 + a_1 - 1} \theta_2^{y_2 + a_2 - 1} (1 - \theta_1 - \theta_2)^{y_s + a_s - 1}$$

where $y_s = y_3 + \cdots + y_J$ and $a_s = a_3 + \cdots + a_J$. This can also be proved directly using induction, by first integrating out θ_n , then θ_{n-1} and so on.

Now do a change of variables to $(\alpha, \beta) = (\frac{\theta_1}{\theta_1 + \theta_2}, \theta_1 + \theta_2)$. The Jacobian of this transformation is $\frac{1}{\beta}$, so the transformed density is

$$p(\alpha,\beta|y) \propto \beta(\alpha\beta)^{y_1+a_1-1}((1-\alpha)\beta)^{y_2+a_2-1}(1-\beta)^{y_s+a_s-1}$$

= $\alpha^{y_1+a_1-1}(1-\alpha)^{y_2+a_2-1}\beta^{y_1+y_2+a_1+a_2-1}(1-\beta)^{y_s+a_s-1}$
 $\propto \text{Beta}(\alpha|y_1+a_2,y_2+a_2)\text{Beta}(\beta|y_1+y_2+a_1+a_2,y_s+a_s)$

Since the posterior density divides into separate factors for α and β , they are independent, and $\alpha | y \sim \text{Beta}(y_1 + a_2, y_2 + a_2)$.

(b) Show that the distribution in (a) is identical to the posterior distribution for α obtained by treating y_1 as an observation from the binomial distribution with probability α and sample size $y_1 + y_2$, ignoring the data y_3, \ldots, y_J .

Solution: The Beta $(y_1 + a_2, y_2 + a_2)$ posterior distribution can also be derived from a Beta (a_1, a_2) prior and a binomial observation y_1 with sample size $y_1 + y_2$.

Problem 2 (Poisson models).

(a) Suppose y|θ ~ Po(θ). Find Jeffreys' prior density for θ, and then find α and β for which the Γ(α, β) density is a close match to Jeffreys' density.
Solution: The Poisson sampling density is p(y|θ) = θ^ye^{-θ}/y!, and so
I(θ) = F(d² log p(V|θ)/dθ²) = F(V/θ²). Thug p(θ) = e^ye^{-θ}/y!, and so

 $I(\theta) = -\mathbb{E}(\frac{d^2 \log p(Y|\theta)}{d\theta^2}) = \mathbb{E}(Y/\theta^2)$. Thus, $p_J(\theta) \propto \sqrt{I(\theta)} = \theta^{-1/2}$ which is an (improper) $\Gamma(1/2, 0)$ density.

(b) Suppose $y|\theta \sim \text{Po}(\theta)$ and $\theta \sim \Gamma(\alpha, \beta)$. Then the marginal (prior predictive) distribution of y is negative binomial with parameters α and β . Use the formulas

$$\mathbb{E}(\theta) = \mathbb{E}(\mathbb{E}(\theta|y))$$
$$\operatorname{var}(\theta) = \mathbb{E}(\operatorname{var}(\theta|y)) + \operatorname{var}(\mathbb{E}(\theta|y))$$

to derive the mean and the variance of this marginal distribution. Solution: We have $\mathbb{E}(Y) = \theta$, $\operatorname{Var}(Y) = \theta$, $\mathbb{E}(\theta) = \alpha/\beta$, $\operatorname{Var}(\theta) = \alpha/\beta^2$. Thus,

$$\mathbb{E}Y = \mathbb{E}(\mathbb{E}(Y|\theta)) = \mathbb{E}(\theta) = \alpha/\beta,$$

and

$$\operatorname{Var}(Y) = \mathbb{E}(\operatorname{Var}(Y|\theta)) + \operatorname{Var}(\mathbb{E}(Y|\theta)) = \mathbb{E}(\theta) + \operatorname{Var}(\theta) = \frac{\alpha}{\beta} + \frac{\alpha}{\beta^2} = \frac{\alpha}{\beta(\beta+1)}$$

Problem 3 (Poisson and binomial distributions). A student sits on a street corner for an hour and records the number of bicycles b and the number of other vehicles v that go by. Two models are considered:

- The outcomes b and v have independent Poisson distributions, with unknown means θ_b and θ_v .
- The outcome b has a binomial distribution, with unknown probability p and sample size b + v.

Show that the two models have the same likelihood if we define $p = \frac{\theta_b}{\theta_w + \theta_b}$.

Solution: The likelihood under the binomial model is

$$p\left(b\bigg|\frac{\theta_b}{\theta_v+\theta_b},b+v\right) = \binom{b+v}{b}\left(\frac{\theta_b}{\theta_v+\theta_b}\right)^b \left(1-\frac{\theta_b}{\theta_v+\theta_b}\right)^v = \binom{b+v}{b}\frac{\theta_b^b\theta_v^v}{(\theta_v+\theta_b)^{b+v}}.$$

As b and v and independent, we have $b + v \sim Po(\theta_v + \theta_b)$ under the Poisson model. Now,

$$p(b=k|\theta_v,\theta_b,b+v=n) = \frac{P(b=k,b+v=n|\theta_v,\theta_b)}{P(b+v=n|\theta_v,\theta_b)} = \frac{P(b=k|\theta_v,\theta_b)P(v=n-b|\theta_v,\theta_b)}{P(b+v=n|\theta_v,\theta_b)}$$
$$= \frac{e^{-\theta_b}\theta_b^k/k!e^{-\theta_v}\theta_v^{n-k}/(n-k)!}{e^{-(\theta_v+\theta_b)}(\theta_v+\theta_b)^n/n!} = \binom{n}{k}\frac{\theta_b^k\theta_v^{n-k}}{(\theta_v+\theta_b)^n}.$$

Problem 4 (discrete mixture models).

(a) If $p_m(\theta)$, for m = 1, ..., M are conjugate prior densities for the sampling model $p(y|\theta)$, show that the class of finite mixture prior densities given by

$$p(\theta) = \sum_{m=1}^{M} \lambda_m p_m(\theta)$$

is also a conjugate class, where the λ_m 's are nonnegative weights that sum to 1.

Solution: For each m, denote by $p_m(\theta|y)$ the posterior density corresponding to the prior $p_m(\theta)$, that is, $p_m(\theta|y) = p(y|\theta)p_m(\theta)/p_m(y)$, where $p_m(y) = \int p(y|\theta)p_m(\theta) d\theta$ is the marginal density of y. If $p(\theta) = \sum_m \lambda_m p_m(\theta)$, then the posterior is proportional to $\sum_m \lambda_m p_m(\theta)p(y|\theta) = \sum_m \lambda_m p_m(y)p_m(\theta|y)$. This is a mixture of the posterior densities $p_m(\theta|y)$ with weights proportional to $\lambda_m p_m(y)$. Since each $p_m(\theta)$ is a conjugate prior, each posterior $p_m(\theta|y)$ is from the same family as $p_m(\theta)$. The posterior mixture is thus from the same family of finite mixtures as the prior mixture.

(b) Use the mixture form to create a bimodal prior density for a normal mean, that is thought to be near 1, with a standard deviation of 0.5, but has a small probability of being near -1, with the same standard deviation. If the variance of each observation y_1, \ldots, y_{10} is known to be 1, and their observed mean is $\bar{y} = -0.25$, derive your posterior distribution for the mean.

Solution: Consider e.g. $p_1(\theta) \sim \mathcal{N}(1, 0.5^2)$, $p_2(\theta) \sim \mathcal{N}(-1, 0.5^2)$ with $\lambda_1 = 0.9$ and $\lambda_2 = 0.1$. We then obtain $p_1(\theta|y) \sim \mathcal{N}(1.5/14, 1/14)$ and $p_2(\theta|y) \sim \mathcal{N}(-6.5/14, 1/14)$. The marginal distributions are $p_1(y) \sim \mathcal{N}(1, 0.5^2 + 1/10)$ and $p_2(y) \sim \mathcal{N}(-1, 0.5^2 + 1/10)$ such that $p_1(-0.25) = 0.072$ and $p_2(-0.25) = 0.302$. The posterior weights are thus

$$\frac{0.9 \cdot 0.072}{0.9 \cdot 0.072 + 0.1 \cdot 0.302} = 0.68 \text{ and } \frac{0.1 \cdot 0.302}{0.9 \cdot 0.072 + 0.1 \cdot 0.302} = 0.32.$$