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Problem Set 2

Problem 1 (Galenshore distribution). An unknown quantity Y has a Galenshore(a, θ)
distribution if its density is given by
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for y > 0, θ > 0, and a > 0. Assume for now that a is known. For this density,
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(a) Identify a class of conjugate prior densities for θ. Plot a few members of this class of
densities.

(b) Let Y1, . . . , Yn ∼ Galenshore(a, θ) be conditionally i.i.d. Find the posterior distribution
of θ given D = {Y1, . . . , Yn}, using a prior from your conjugate class.

(c) Write down p(θa|D)/p(θb|D) and simplify. Identify a sufficient statistic.

(d) Determine E[θ|D].

(e) Determine the form of the posterior predictive density p(ỹ|D).

Problem 2 (unit information prior). Let X1, . . . , Xn ∼ p(x|θ) be conditionally i.i.d. For
observations D = (x1, . . . , xn), the log likelihood is given by l(θ|D) =

∑
log p(xi|θ), and

we denote by θ̂ the maximum likelihood estimate (MLE). The Fisher information, J(θ) =
−∂2l(θ|D)/∂θ2, describes the precision of the MLE θ̂. For situations in which it is difficult
to quantify prior information in terms of a probability distribution, some have suggested
that the “prior” distribution be based on the likelihood, for example, by centering the prior
distribution around the MLE θ̂. To deal with the fact that the MLE is not really prior
information, the curvature of the prior is chosen so that it has only “one nth” as much
information as the likelihood, so that −∂2 log p(θ)/∂θ2 = J(θ)/n. Such a prior is called
unit information prior, as it has as much information as the average amount of information
from a single observation. The unit information prior is not really a prior distribution, as it is
computed from the observed data. However, is can be roughly viewed as the prior information
of someone with weak but accurate prior information.

(a) Let X1, . . . , Xn ∼ Bernoulli(θ) be conditionally i.i.d. Obtain the MLE θ̂ and J(θ̂)/n.

(b) Find a probability density pU(θ) such that log pU(θ) = l(θ|D)/n + c, where c is a
constant that does not depend on θ. Compute the information −∂2 log p(θ)/∂θ2 of this
density.



(c) Obtain a probability density for θ that is proportional to pU(θ)× p(D|θ). Can this be
considered a posterior distribution for θ?

Problem 3 (Poisson population comparison). Let θA and θB be the average number
of children of men in their 30s with and without bachelor’s degrees, respectively. Such data
is given in the files menchild30bach.dat and menchild30nobach.dat which are available
on the course website. We’ll assume Poisson sampling model for the two groups, with the
parameterization θA = θ and θB = θ × γ. In this parameterization, γ represents the relative
rate θB/θA. Let θ ∼ Γ(aθ, bθ) and let γ ∼ Γ(aγ, bγ).

(a) Obtain the form of the full conditional distribution of θ given DA, DB, and γ.

(b) Obtain the form of the full conditional distribution of γ given DA, DB, and θ.

(c) Set aθ = 2 and bθ = 1. Let aγ = bγ ∈ {8, 16, 32, 64, 128}. For each of these five values,
run a Gibbs sampler of at least 5,000 iterations and obtain E[θB−θA|DA,DB]. Describe
the effects of the prior distribution for γ on the results.

Solutions will be discussed in class on September 12.


