STK 4021 - Applied Bayesian Analysis and Numerical Methods Thordis L. Thorarinsdottir Fall 2014

Problem Set 5

Problem 1 (sampling from a truncated normal). Let

$$p(z) \propto \frac{1}{\sigma} \varphi\left(\frac{z-\mu}{\sigma}\right) \mathbb{1}\{z \in (a,b)\},\$$

where φ is the density of the standard normal distribution. Prove that the following sampling method generates a sample from the distribution with density p.

- 1. sample $u \sim \mathcal{U}(\left[\Phi((a-\mu)/\sigma), \Phi((b-\mu)/\sigma)\right])$
- 2. set $z = \mu + \sigma \Phi^{-1}(u)$

Here, Φ is the cdf of the standard normal distribution.

Problem 2 (disease rates). The number of occurences of a rare, nongenetic birth effect in a five-year period for six neighboring counties is $\mathbf{y} = (1, 3, 2, 12, 1, 1)$. The counties have populations of $\mathbf{x} = (33, 14, 27, 90, 12, 17)$, given in thousands. The second county has higher rates of toxic chemicals (PCBs) present in the soil samples, and it is of interest to know if this town has a high disease rate as well. We will use the following hierarchial model to analyze these data:

- $Y_i | \theta_i, x_i \sim \operatorname{Po}(\theta_i x_i);$
- $\theta_1, \ldots, \theta_6 | a, b \sim \Gamma(a, b);$
- $a \sim \Gamma(1, 1)$; $b \sim \Gamma(10, 1)$.
- (a) Describe in words what the various components of the hierarchical model represent in terms of the observed and expected disease rates.
- (b) Identify the form of the conditional distribution of $p(\theta_1, \ldots, \theta_6 | a, b, \mathbf{x}, \mathcal{D})$, and from this identify the full conditional distribution of the rate for each county $p(\theta_i | \theta_{-i}, a, b, \mathbf{x}, \mathcal{D})$.
- (c) Write out the ratio of the posterior densities comparing a set of proposal values (a^*, b^*, θ) to values (a, b, θ) . Note that the value of θ , the vector of county-specific rates, is unchanged.
- (d) Construct a Metropolis-Hastings algorithm which generates samples of (a, b, θ) from the posterior. Do this by iterating the following steps:
 - 1. Given the current value (a, b, θ) , generate a proposal (a^*, b^*, θ) by sampling a^* and b^* from a symmetric proposal distribution centered around a and b, but making sure all proposals are positive. Accept the proposal with the appropriate probability.

2. Sample new values of θ_j 's from their full conditional distributions.

Perform diagnostic tests on your chain and modify if necessary.

- (e) Make posterior inference on the infection rates using the samples from the Markov chain. In particular,
 - (i) Compute marginal posterior distributions of $\theta_1, \ldots, \theta_6$ and compare them to $y_1/x_1, \ldots, y_6/x_6$.
 - (ii) Examine the posterior distribution of a/b, and compare it to the corresponding prior distribution as well as to the average of y_i/x_i across the six counties.
 - (iii) Plot samples of θ_2 versus θ_j for $j \neq 2$, and draw a 45 degree line on the plot as well. Also, estimate $\mathbb{P}(\theta_2 > \theta_j | \mathbf{x}, \mathcal{D})$ for each $j \neq 2$ and $\mathbb{P}(\theta_2 = \max\{\theta_1, \dots, \theta_6\} | \mathbf{x}, \mathcal{D})$. Interpret the results of these calculations, and compare them to the conclusions one might obtain if they just examined y_j/x_j for each county j.

Solutions will be discussed in class on October 3.