STK 4021 - Applied Bayesian Analysis and Numerical Methods Thordis L. Thorarinsdottir Fall 2014

Problem Set 7

Problem 1 (Jeffreys' prior for the multivariate normal model). For the multivariate normal model, Jeffreys' rule for generating a prior distribution on $(\boldsymbol{\theta}, \Sigma)$ gives $p_J(\boldsymbol{\theta}, \Sigma) \propto |\Sigma|^{-(p+2)/2}$.

- (a) Explain why the function p_J cannot actually be a probability density for $(\boldsymbol{\theta}, \boldsymbol{\Sigma})$.
- (b) Let $p_J(\boldsymbol{\theta}, \Sigma | \mathcal{D})$ be the probability density that is proportional to $p_J(\boldsymbol{\theta}, \Sigma) \times p(\mathcal{D} | \boldsymbol{\theta}, \Sigma)$. Obtain the form of $p_J(\boldsymbol{\theta}, \Sigma | \mathcal{D}), p_J(\boldsymbol{\theta} | \Sigma, \mathcal{D})$ and $p_J(\Sigma | \boldsymbol{\theta}, \mathcal{D})$.

Problem 2 (Australian crab data). The files bluecrab.dat and orangecrab.dat contain measurements of body depth (Y_1) and rear width (Y_2) , in millimeters, made on 50 male crabs from each of two species, blue and orange. We will model these data using a bivariate normal distribution.

(a) For each of the two species, obtain posterior distributions of the population mean $\boldsymbol{\theta}$ and covariance matrix Σ as follows: Using the semiconjugate prior distributions for $\boldsymbol{\theta}$ and Σ ,

 $\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\mu}_0, \Lambda_0), \quad \Sigma^{-1} \sim \text{Wishart}(\nu_0, \mathbf{S}_0^{-1}),$

set $\boldsymbol{\mu}_0$ equal to the sample mean of the data, Λ_0 and \mathbf{S}_0 equal to the sample covariance matrix and $\nu_0 = 4$. Obtain 10000 posterior samples of $\boldsymbol{\theta}$ and Σ .

- (b) Plot values of $\boldsymbol{\theta} = (\theta_1, \theta_2)^{\top}$ for each group and compare. Describe any size differences between the two groups.
- (c) From each covariance matrix obtained from the Gibbs sampler, obtain the corresponding correlation coefficient. From these values, plot posterior densities of the correlations ρ_{blue} and ρ_{orange} for the two groups. Evaluate differences between the two species by comparing these posterior distributions. In particular, obtain approximation to $\mathbb{P}(\rho_{blue} < \rho_{orange} | \mathcal{D})$. What do the results suggest about differences between the two populations?

Solutions will be discussed in class on October 17.