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Exercise	3:	The	mulGvariate	normal	distribuGon	
	

The	bivariate	Normal	distribuGon	for	two	dependent	variables	should	be	
known.	If	x1	has	mean	μ1	variance	σ12,	and	x2	has	mean	µ2,	variance	σ22,	and	
the	correlaGon	between	x1	and	x2	is	ρ,	then(x1,	x2)	has	the	bivariate	normal	
distribuGon	if	the	joint	density	of	x1	and	x2	is	
	
	



First	we	calculate	the	determinant	of	Σ	
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We	can	rewrite	(1)	now.	

For	clarity,	let	f(x1,	x2)	=	A	exp{B}	where	A	=	1/2πσ1σ2√(1-ρ2)		
and	B	is	the	term	inside	the	exp{}	part	of	(1)	
Then,	A	can	be	rewri]en	as	
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And	the	inverse	of	Σ	is		
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Next	we	rewrite	B	
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Exercise	2.10		
Discrete	sample	spaces:	suppose	there	are	N	cable	cars	in	San	Francisco,	numbered		
sequenGally	from	1	to	N.	You	see	cable	car	at	random;	it	is	numbered	203.	You	wish	to		
esGmate	N.	
a)  Assume	your	prior	distribuGon	on	N	is	geometric	with	mean	100.	What	is	your		
posterior	distribuGon	for	N?	

p(N ) = (1 /100)(99 /100)N−1

Since	we	observed	car	203	we	can	only	conclude	that	there	are	at	least	203	cars.	For	
any	N>202	we	can	assume	it	has	the	same	probability	to	be	the	number	of	the	last	car.	
So	the	likelihood	is	given	by:	

p(y | N ) = 1
N

for	N>202,	else	0	
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b)	What	are	the	posterior	mean	and	standard	deviaGon	of	N?	
	
In	order	to	be	a	proper	probability	distribuGon	the	posterior	probability	needs	to		
sum	to	1.	We	need	to	find	a	normalizing	constant	such	that:	
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We	will	approximate	numerically	the	series	in	the	denominator	with	an	error	
err	<	10-7.	We	iteraGvely	sum	the	elements	in	the	series	and	for	each	N	we	calculate		
an	upper	limit	of	the	error	with	the	formula:	

err = 1
N
(0.99)N

N=n

∞

∑ <
1
n+1

(0.99)N
N=n+1

∞

∑ =
1
n+1

(0.99)n+1

1− 0.99



The	calculaGon	is	derived	from	the	formula	for	finite	and	infinite	geometric	series:	
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The	python	script	that	does	the	calculaGon	is:	
s=0	
n=203	
while	True:	
								s=s+(1.0/n)*(0.99**n)	
								err	=	1.0/(n+1)*((0.99**(n+1))/(1-0.99))	
								if	err	<	0.0000001:	
																print	"n:	",	n	
																print	"s:	",	s	
																break	
								n	=	n+1	
	
ResulGng	in	the	output:	
n:		1345	
s:		0.0465802355607	

C=1/0.0465802355607	
	
C=21.46833	



The	expected	value	then	is:	
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For	the	standard	deviaGon	we	calculate	the	variance	first:	
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AddiGonally	to	the	previous	observaGon	y1	=	203,		we	also	observe	
	y2	=	157	and	y3	=	222	
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Output	from	the	python	script:	
n:		330	
s:		4.08361192509e-07	
	
C3=2448812.5178	
	
E(N|y1,	y2,	y3)	=	255.7372	
	
Var(N|y1,	y2,	y3)	=	770.3968	
	
sd(N|y1,	y2,	y3)	=	27.756	



Exercise	3.7	Poison	and	binomial	distribuGons:	a	student	sits	on	a	street	corner	for	an		
hour	and	records	the	number	of	bicycles	b	and	the	number	of	other	vehicles	v	that	go	
by.		Two	models	are	considered:	
•	The	outcomes	b	and	v	have	independent	Poisson	distribuGons,	with	unknown	means	
θb	and	θv.	
•	The	outcome	b	has	a	binomial	distribuGon,	with	unknown	probability	p	and	sample	
size	b	+	v.	
Show	that	the	two	models	have	the	same	likelihood	if	we	define	p	=	θb/(θb+θv)	.	
	
Model	1:		
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Since	the	sum	of	two	independent	Poisson	distributed	variables	is	also	Poisson		
distributed,	i.e.	b+v	~	Po(θb+θv),	we	have	
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Exercise	3.15:	Joint	distribuGons:	The	autoregressive	Gme-series	model	y1,	y2,	.	.	.		
with	mean	level	0,	autocorrelaGon	0.8,	residual	standard	deviaGon	1,	and	normal		
errors	can	be	wri]en	as	(yt|yt−1,	yt−2,	.	.	.)	∼	N(0.8yt−1,	1)	for	all	t.	
(a)  Prove	that	the	distribuGon	of	yt,	given	the	observaGons	at	all	other	integer		
Gme	points	t,	depends	only	on	yt−1	and	yt+1.	
(b)	What	is	the	distribuGon	of	yt	given	yt−1	and	yt+1?		






