Exercises

Applied Bayesian Analysis and Numerical Methods (STK 9021)

Boris Simovski

29.09.2016

Exercise 3: The multivariate normal distribution

The bivariate Normal distribution for two dependent variables should be known. If x_{1} has mean μ_{1} variance $\sigma_{1}{ }^{2}$, and x_{2} has mean μ_{2}, variance $\sigma_{2}{ }^{2}$, and the correlation between x_{1} and x_{2} is ρ, then $\left(x_{1}, x_{2}\right)$ has the bivariate normal distribution if the joint density of $x 1$ and $x 2$ is

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{1}}-2 \rho \frac{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}}{2\left(1-\rho^{2}\right)}\right\} \tag{1}
\end{equation*}
$$

Now let $x=\left(x_{1}, x_{2}\right)^{T}, \mu=\left(\mu_{1}, \mu_{2}\right)^{T}$ and

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

Show that we can write

$$
f(x)=f\left(x_{1}, x_{1}\right)=\frac{1}{\sqrt{(2 \pi)^{2}|\Sigma|}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}
$$

First we calculate the determinant of Σ

$$
|\Sigma|=\sigma_{1}^{2} \sigma_{2}^{2}-\rho^{2} \sigma_{1}^{2} \sigma_{2}^{2}=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

We can rewrite (1) now.
For clarity, let $f\left(x_{1}, x_{2}\right)=A \exp \{B\}$ where $A=1 / 2 \pi \sigma_{1} \sigma_{2} \mathrm{~V}\left(1-\rho^{2}\right)$ and B is the term inside the $\exp \}$ part of (1)
Then, A can be rewritten as

$$
A=\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}}=\frac{1}{2 \pi \sqrt{|\Sigma|}}
$$

And the inverse of Σ is

$$
\Sigma^{-1}=\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\rho \sigma_{1} \sigma_{2} \\
-\rho \sigma_{1} \sigma_{2} & \sigma_{1}^{2}
\end{array}\right]=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
\frac{1}{\sigma_{1}^{2}} & -\frac{\rho}{\sigma_{1} \sigma_{2}} \\
-\frac{\rho}{\sigma_{1} \sigma_{2}} & \frac{1}{\sigma_{2}^{2}}
\end{array}\right]
$$

Next we rewrite B

$$
B=-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \frac{\rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)=
$$

$$
=-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{\rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-\frac{\rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right)=
$$

$$
=-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(x_{1}-\mu_{1}\right)\left(\frac{\left(x_{1}-\mu_{1}\right)}{\sigma_{1}^{2}}-\frac{\rho\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right)+\left(x_{2}-\mu_{2}\right)\left(\frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2}^{2}}-\frac{\rho\left(x_{1}-\mu_{1}\right)}{\sigma_{1} \sigma_{2}}\right)\right)=
$$

$$
=-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x_{1}-\mu_{1}\right)}{\sigma_{1}^{2}}-\frac{\rho\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}-\frac{\rho\left(x_{1}-\mu_{1}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2}^{2}}\right]\left[\begin{array}{c}
\left(x_{1}-\mu_{1}\right) \\
\left(x_{2}-\mu_{2}\right)
\end{array}\right]=
$$

$$
\begin{aligned}
& =-\frac{1}{2\left(1-\rho^{2}\right)}\left[\begin{array}{ll}
x_{1}-\mu_{1} & x_{2}-\mu_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sigma_{1}^{2}} & \frac{-\rho}{\sigma_{1} \sigma_{2}} \\
\frac{-\rho}{\sigma_{1} \sigma_{2}} & \frac{1}{\sigma_{2}^{2}}
\end{array}\right]\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right]= \\
& =-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)
\end{aligned}
$$

$$
f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=A \exp (B)=\frac{1}{2 \pi \sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

Exercise 2.10

Discrete sample spaces: suppose there are N cable cars in San Francisco, numbered sequentially from 1 to N . You see cable car at random; it is numbered 203. You wish to estimate N .
a) Assume your prior distribution on N is geometric with mean 100 . What is your posterior distribution for N ?

$$
p(N)=(1 / 100)(99 / 100)^{N-1}
$$

Since we observed car 203 we can only conclude that there are at least 203 cars. For any $\mathrm{N}>202$ we can assume it has the same probability to be the number of the last car. So the likelihood is given by:

$$
\begin{aligned}
& \quad p(y \mid N)=\frac{1}{N} \quad \text { for } N>202, \text { else } 0 \\
& p(N \mid y) \propto p(N) p(y \mid N)=\frac{1}{N}(0.01)(0.99)^{N-1} \quad \text { For } \mathrm{N}>202 \\
& \propto \\
& \frac{1}{N}(0.99)^{N} \quad \text { For } \mathrm{N}>202
\end{aligned}
$$

b) What are the posterior mean and standard deviation of N ?

In order to be a proper probability distribution the posterior probability needs to sum to 1 . We need to find a normalizing constant such that:

$$
\begin{aligned}
& \sum_{N=203}^{\infty} p(N \mid y)=\sum_{N=203}^{\infty} C \frac{1}{N}(0.99)^{N}=1 \\
& C=\frac{1}{\sum_{N=203}^{\infty} \frac{1}{N}(0.99)^{N}}
\end{aligned}
$$

We will approximate numerically the series in the denominator with an error err $<10^{-7}$. We iteratively sum the elements in the series and for each N we calculate an upper limit of the error with the formula:

$$
\operatorname{err}=\sum_{N=n}^{\infty} \frac{1}{N}(0.99)^{N}<\frac{1}{n+1} \sum_{N=n+1}^{\infty}(0.99)^{N}=\frac{1}{n+1} \frac{(0.99)^{n+1}}{1-0.99}
$$

The calculation is derived from the formula for finite and infinite geometric series:

$$
\sum_{k=n+1}^{\infty} a r^{k}=\sum_{k=0}^{\infty} a r^{k}-\sum_{k=0}^{n} a r^{k}=\frac{a}{1-r}-\frac{a-a r^{n+1}}{1-r}=\frac{a r^{n+1}}{1-r}
$$

The python script that does the calculation is:

$$
s=0
$$

$$
\mathrm{n}=203
$$

while True:

$$
\begin{aligned}
& \mathrm{s}=\mathrm{s}+(1.0 / \mathrm{n})^{*}\left(0.99^{* *} \mathrm{n}\right) \\
& \mathrm{err}=1.0 /(\mathrm{n}+1)^{*}\left(\left(0.99^{* *}(\mathrm{n}+1)\right) /(1-0.99)\right) \\
& \text { if err < } 0.0000001: \\
& \quad \text { print " } \mathrm{n}: ~ ", \mathrm{n} \\
& \quad \text { print "s: ", } \mathrm{s} \\
& \quad \text { break } \\
& \mathrm{n}=\mathrm{n}+1
\end{aligned}
$$

Resulting in the output:
n: 1345
s: 0.0465802355607
$C=1 / 0.0465802355607$
$C=21.46833$

The expected value then is:
$E(N / y)=\sum_{N=203}^{\infty} N p(N \mid y)=21.46833 \sum_{N=203}^{\infty}(0.99)^{N}$
$=21.46833 \frac{0.99^{203}}{1-0.99}=279.089$

For the standard deviation we calculate the variance first:
$\operatorname{var}(N \mid y)=\sum_{N=203}^{\infty}(N-279.089)^{2} \frac{C}{N}(0.99)^{N}$
$\approx \sum_{N=203}^{1345}(N-279.089)^{2} \frac{21.46833}{N}(0.99)^{N}=6391.6271$
$s d(N \mid y)=\sqrt{\operatorname{var}(N \mid y)}=79.9477$

Additionally to the previous observation y1 = 203, we also observe $\mathrm{y} 2=157$ and $\mathrm{y} 3=222$

$$
\begin{aligned}
& p\left(y_{2} \mid N\right)=\frac{1}{N} \quad \text { for } N>156 \text { else } 0 \\
& p\left(N \mid y_{1}, y_{2}\right) \propto p\left(N \mid y_{1}\right) p\left(y_{2} \mid N\right)= \\
& =\frac{1}{N^{2}}(0.99)^{N} \\
& p\left(y_{3} \mid N\right)=\frac{1}{N} \quad \text { for } N>221 \text { else } 0 \\
& p\left(N \mid y_{1}, y_{2}, y_{3}\right) \propto p\left(N \mid y_{1}, y_{2}\right) p\left(y_{3} \mid N\right)= \\
& =\frac{1}{N^{3}}(0.99)^{N} \quad \text { For } N>222 \text { else } 0
\end{aligned}
$$

Output from the python script:
n: 330
s: 4.08361192509e-07
$C_{3}=2448812.5178$
$E\left(N \mid y_{1}, y_{2}, y_{3}\right)=255.7372$
$\operatorname{Var}\left(N \mid y_{1}, y_{2}, y_{3}\right)=770.3968$
$\operatorname{sd}\left(N \mid y_{1}, y_{2}, y_{3}\right)=27.756$

Exercise 3.7 Poison and binomial distributions: a student sits on a street corner for an hour and records the number of bicycles b and the number of other vehicles v that go by. Two models are considered:

- The outcomes b and v have independent Poisson distributions, with unknown means θ_{b} and θ_{v}.
- The outcome b has a binomial distribution, with unknown probability p and sample size $b+v$.
Show that the two models have the same likelihood if we define $p=\theta_{b} /\left(\theta_{b}+\theta_{v}\right)$.
Model 1:

$$
\begin{aligned}
& p\left(b=y \mid \theta_{b}, \theta_{v}, b+v=n\right)=\frac{p\left(b=y, b+v=n \mid \theta_{b}, \theta_{v}\right)}{p\left(b+v=n \mid \theta_{b}, \theta_{v}\right)} \\
& =\frac{p\left(b=y \mid \theta_{b}, \theta_{v}\right) p\left(b+v=n \mid \theta_{b}, \theta_{v}\right)}{p\left(b+v=n \mid \theta_{b}, \theta_{v}\right)}=\frac{p\left(b=y \mid \theta_{b}, \theta_{v}\right) p\left(v=n-b \mid \theta_{b}, \theta_{v}\right)}{p\left(b+v=n \mid \theta_{b}, \theta_{v}\right)}
\end{aligned}
$$

Since the sum of two independent Poisson distributed variables is also Poisson distributed, i.e. $b+v \sim \operatorname{Po}\left(\theta_{b}+\theta_{v}\right)$, we have

$$
=\frac{\frac{\theta_{b}^{y} e^{-\theta_{b}}}{y!} \frac{\theta_{v}^{n-y} e^{-\theta_{v}}}{(n-y)!}}{\frac{\left(\theta_{b}+\theta_{v}\right)^{n} e^{-\left(\theta_{b}+\theta_{v}\right)}}{n!}}=\frac{n!}{y!(n-y)!} \frac{\theta_{b}^{y} \theta_{v}^{n-y}}{\left(\theta_{b}+\theta_{v}\right)^{n}}
$$

Model 2:

$$
p(b \mid p, b+v)=\binom{b+v}{b} p^{b}(1-p)^{v}=
$$

$$
=\frac{(b+v)!}{b!v!}\left(\frac{\theta_{b}}{\theta_{b}+\theta_{v}}\right)^{b}\left(1-\frac{\theta_{b}}{\theta_{b}+\theta_{v}}\right)^{v}=\frac{(b+v)!}{b!v!}\left(\frac{\theta_{b}}{\theta_{b}+\theta_{v}}\right)^{b}\left(\frac{\theta_{b}+\theta_{v}-\theta_{b}}{\theta_{b}+\theta_{v}}\right)^{v}
$$

$$
=\frac{(b+v)!}{b!v!}\left(\frac{\theta_{b}}{\theta_{b}+\theta_{v}}\right)^{b}\left(\frac{\theta_{v}}{\theta_{b}+\theta_{v}}\right)^{v}=\frac{(b+v)!}{b!v!} \frac{\theta_{b}^{b}}{\left(\theta_{b}+\theta_{v}\right)^{b}} \frac{\theta_{v}^{v}}{\left(\theta_{b}+\theta_{v}\right)^{v}}=
$$

$$
=\frac{(b+v)!}{b!v!} \frac{\theta_{b}^{b} \theta_{v}^{v}}{\left(\theta_{b}+\theta_{v}\right)^{b+v}}
$$

Exercise 3.15: Joint distributions: The autoregressive time-series model $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots$ with mean level 0 , autocorrelation 0.8 , residual standard deviation 1 , and normal errors can be written as $\left(y_{t} \mid y_{t-1}, y_{t-2}, \ldots\right) \sim N\left(0.8 y_{t-1}, 1\right)$ for all t.
(a) Prove that the distribution of y_{t}, given the observations at all other integer time points t, depends only on y_{t-1} and y_{t+1}.
(b) What is the distribution of y_{t} given y_{t-1} and y_{t+1} ?
3.15

$$
\begin{aligned}
& p\left(y_{t} \mid y_{1}, y_{2} \ldots\right)= \\
= & \frac{P\left(y_{1}, y_{2}, \ldots, y_{t}, \ldots\right)}{\int p\left(y_{1}, y_{2}, \ldots, y_{t}, \ldots\right) d y_{t}}=(*)
\end{aligned}
$$

From the given condition that

$$
P\left(y_{t} \mid y_{t-1}, \ldots, y_{1}\right)=N\left(0.8 y_{t-1}, 1\right)
$$

we see that $P\left(y_{t} \mid y_{t-1}, \ldots, y_{1}\right)=P\left(y_{t} \mid y_{t-1}\right)$

$$
\begin{aligned}
(*) & =\frac{P\left(y_{1}\right) P\left(y_{2} \mid y_{1}\right) P\left(y_{3} \mid y_{1}, y_{2}\right) \ldots P\left(y_{t} \mid y_{t-1}, y_{1}\right) \ldots}{\int P\left(y_{1}\right) P\left(y_{2} \mid y_{1}\right) \ldots P\left(y_{t} \mid y_{t-1}, \ldots, y_{1}\right) \ldots d y_{t}}= \\
& =\frac{P\left(y_{1}\right) P\left(y_{2} \mid y_{1}\right) P\left(y_{3} \mid y_{2}\right) \ldots P\left(y_{t} \mid y_{t-1}\right) \ldots}{P\left(y_{1}\right) P\left(y_{2} \mid y\right) \ldots p\left(y_{t-1} \mid y_{t-2}\right) P\left(y_{t+2} \mid y_{t+1}\right) \ldots P\left(y_{t+1} \mid y_{t}\right)} \cdot \cdot P\left(y_{t} \mid y_{t-1}\right) d y_{t} \\
= & \frac{P\left(y_{t} \mid y_{t-1}\right) P\left(y_{t+1} \mid y_{t}\right)}{\int P\left(y_{t} \mid y_{t-1}\right) P\left(y_{t+1} \mid y_{t}\right) d y_{t}}
\end{aligned}
$$

