

UiO : Department of Mathematics University of Oslo

STK4021
 Course notes and examples

```
UiO : Department of Mathematics
University of Oslo
```


Table of contents

1 Supplementary course notes

- The empirical Bayes approach

2 Examples

■ Single-parameter models

- Epidemiology: Estimating a rate from Poisson data

■ Multi-parameter models

- Multinomial sampling distribution with a Dirichlet prior: Application to a US 2016 presidential election poll
- Analysis of a bioassay experiment

3 References

1 Supplementary course notes

- The empirical Bayes approach

2 Examples

- Single-parameter models
- Epidemiology: Estimating a rate from Poisson data
- Multi-parameter models
- Multinomial sampling distribution with a Dirichlet prior: Application to a US 2016 presidential election poll
- Analysis of a bioassay experiment

3 References

The empirical Bayes approach- based on Ch 5 in [1]

■ Consider the model

$$
\begin{aligned}
& y \mid \theta \sim p(y \mid \theta) \\
& \theta \mid \varphi \sim p(\theta \mid \varphi)
\end{aligned}
$$

- For a full Bayesian approach, we either fix φ based on prior knowledge (two-level model), or we give φ a prior distribution $p(\phi)$ (more than two levels), which again can depend on parameters. At some level however, we have to stop adding parameters, and at the top level, some quantities must be fixed
\square For the empirical Bayes approach, we use point estimates of φ, estimated from data
- Can in principle be used for any number of levels of the hierarchy, for example if we give φ a prior distribution $p(\phi \mid \rho)$, then we could use empirical Bayes estimates of ρ

UiO : Department of Mathematics
 University of Oslo

The empirical Bayes (EB) estimates and the estimated posterior distribution

- Remember the marginal distribution of y given φ

$$
p(y \mid \varphi)=\int p(y \mid \theta) p(\theta \mid \varphi) d \theta
$$

- This is used to find the EB estimates $\hat{\varphi} \equiv \hat{\phi}(y)$, e.g. by maximising $p(y \mid \varphi)$ w.r.t ϕ
- The estimated posterior distribution is then $p(\theta \mid y, \hat{\varphi})$
$■$ This is a parametric EB approach, non-parametric approaches also exist
- NB: Posterior probability intervals for θ must be constructed with care (see e.g. [1]), to incorporate uncertainty about φ

UiO : Department of Mathematics
 University of Oslo

EB for a Normal model

■ Consider the two-layer Normal model

$$
\begin{aligned}
y_{i} \mid \theta_{i} & \sim N\left(\theta_{i}, \sigma^{2}\right), i=1, \ldots, n \\
\theta_{i} \mid \mu & \sim N\left(\mu, \tau^{2}\right), i=1, \ldots, n
\end{aligned}
$$

where σ^{2} and τ^{2} are assumed known constants, hence μ is the only random hyperparameter, for which we wish to find a EB estimate
■ Now it is quite straightforward to show that

$$
\begin{aligned}
p\left(y_{i} \mid \mu\right) & =\int\left[\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{\left(y_{i}-\theta_{i}\right)^{2}}{2 \sigma^{2}}\right) \frac{1}{\left(2 \pi \tau^{2}\right)^{1 / 2}} \exp \left(-\frac{\left(\theta_{i}-\mu\right)^{2}}{2 \tau^{2}}\right)\right] d \theta_{i} \\
& =\frac{1}{\left(2 \pi\left(\sigma^{2}+\tau^{2}\right)\right)^{1 / 2}} \exp \left(-\frac{1}{2\left(\sigma^{2}+\tau^{2}\right)}\left(y_{i}-\mu\right)^{2}\right), i=1, \ldots, n
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

EB for a Normal model

■ Hence

$$
\begin{aligned}
p(y \mid \mu) & =\prod_{i=1}^{n} p\left(y_{i} \mid \mu\right) \\
& =\frac{1}{\left(2 \pi\left(\sigma^{2}+\tau^{2}\right)\right)^{k / 2}} \exp \left(-\frac{1}{2\left(\sigma^{2}+\tau^{2}\right)} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right)
\end{aligned}
$$

which is obviously maximised for $\hat{\mu}=\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$

- The EB estimated posterior distribution is hence given by

$$
\begin{aligned}
p\left(\theta_{i} \mid y_{i}, \hat{\mu}\right) & \propto p\left(y_{i} \mid \theta_{i}\right) \cdot p\left(\theta_{i} \mid \hat{\mu}\right) \\
& =N\left(\frac{\sigma^{2} \hat{\mu}+\tau^{2} y_{i}}{\sigma^{2}+\tau^{2}}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+\tau^{2}}\right), i=1, \ldots, n
\end{aligned}
$$

1 Supplementary course notes - The empirical Bayes approach

2 Examples

■ Single-parameter models

- Epidemiology: Estimating a rate from Poisson data

■ Multi-parameter models

- Multinomial sampling distribution with a Dirichlet prior: Application to a US 2016 presidential election poll
- Analysis of a bioassay experiment

3 References

Single-parameter model for epidemiology

- Concerns estimating a rate from Poisson data (idealized example from the textbook [2], pp 45-46)
■ Consider a survey of the causes of death in a single year for a city in the US
■ Population 200.000, $y=3$ persons died of asthma
■ Crude estimate of $3 / 200.0000=1.5$ per 100.000 persons per year
■ For epidemiological data like this, a Poisson sampling distribution is commonly used, assuming exchangeability given exposure and rate parameter

■ Let θ be the true, underlying long-term asthma mortality rate per 100.000 persons per year in the city

- The exposure is $x=2.0$ (since θ) is defined per 100.000 persons per year)
■ Hence, the sampling distribution is $y \sim$ Poisson(2.00)

Prior distribution

- Asthma mortality rates around the world typically are around 0.6 per 100.000, and rarely above 1.5 per 100.000 in Western countries
■ Assume exchangeability between this city and other Western cities, and this year and other years
- Know that $\operatorname{Gamma}(a, b)$ is the conjugate prior prior distribution, use that for convenience, must find suitable values of a and b that match the prior information
■ Book: $\theta \sim \operatorname{Gamma}(3.0,5.0)$ (mean=0.6, 97.5% of the mass lies below 1.44 , prior probability of $\theta<1.598 .0 \%$)
- Slightly different (with more uncertainty) suggestion: $\theta \sim \operatorname{Gamma}(1.2,2.0)$ (mean=0.6, 97.5% of the mass lies below 2.05, prior probability of $\theta<1.592 .9 \%$)

■ "rarely above 1.5 per 100.000 " is open for interpretation

UiO : Department of Mathematics
 University of Oslo

Posterior distribution

- We know that the posterior distribution for θ will be Gamma($a+y, b+x)$
- Book prior: Posterior is Gamma(6.0, 7.0)
- Alternative prior: Posterior is Gamma(4.2,4.0)
- The two different priors yields somewhat different posterior distributions and conclusions (see R-script)
■ Little data!!! Prior is influential

Posterior distribution with additional data

■ Additional data: Suppose we now have 10 years of data, with 30 deaths caused by asthma over the 10 years. Assume the population size is constant at 200.000 over the period
\square Now $y=30$ and the exposure is $x=\frac{200.000 \times 10}{100.000}=20$ (since θ is defined per 100.000 persons per year)
■ Book prior: Posterior is Gamma(33.0, 25.0)

- Alternative prior: Posterior is Gamma(31.2,22.0)
- The posterior results with the two different priors are more similar now with more data, but still slightly different (see R-script)
- More data, prior is less influential

UiO : Department of Mathematics
 University of Oslo

Alternative specification with n independent outcomes

■ Could alternatively say that $y_{i}, i=1, \ldots, n$ is the number of deaths caused by asthma per 100.000 persons per year
■ Let θ still be the true, underlying long-term asthma mortality rate per 100.000 persons per year in the city
■ Then

$$
y_{i} \sim \operatorname{Pois}\left(x_{i} \theta\right), i=1, \ldots, n
$$

where the exposure is $x_{i}, i=1, \ldots, n$
■ Then we know that the likelihood is

$$
p(y \mid \theta) \propto \theta^{\sum_{i=1}^{n} y_{i}} e^{-\theta \sum_{i=1}^{n} x_{i}}
$$

where in the example we have $y_{i}=3, x_{i}=2, i=1, \ldots, n$ for (i) $n=1$ and (ii) $n=10$

UiO : Department of Mathematics
 University of Oslo

The normal approximation

- The normal approximation to the posterior distribution for θ based on $\log p(y \mid \theta)=C+\sum_{i=1}^{n} y_{i} \log \theta-\theta \sum_{i=1}^{n} x_{i}$ can easily be found. First find the mode

$$
\frac{d \log p(y \mid \theta)}{d \theta}=\frac{\sum_{i=1}^{n} y_{i}}{\theta}-\sum_{i=1}^{n} x_{i}
$$

which is $=0$ for $\theta=\hat{\theta}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}}$
\square Then the Fisher information (since we allow for different exposure-values x_{i}, the y_{i} 's are not iid):

$$
\begin{gathered}
n \cdot J(\theta)=E\left[\left.-\frac{d^{2} \log p(y \mid \theta)}{d \theta^{2}} \right\rvert\, \theta\right]=E\left[\frac{\sum_{i=1}^{n} y_{i}}{\theta^{2}}\right] \\
\text { (using } \left.\bar{E}\left[y_{i}\right]=x_{i} \theta\right) \frac{\sum_{i=1}^{n} x_{i} \theta}{\theta^{2}}=\frac{\sum_{i=1}^{n} x_{i}}{\theta}
\end{gathered}
$$

UiO : Department of Mathematics
 University of Oslo

The normal approximation

■ Hence

$$
\begin{aligned}
\hat{\theta} & =\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{i} x_{i}} \\
n \cdot J(\hat{\theta}) & =\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{\sum_{i=1}^{n} y_{i}}
\end{aligned}
$$

and for large n

$$
p(\theta \mid y) \approx N\left(\theta \mid \hat{\theta},(n \cdot J(\hat{\theta}))^{-1}\right)
$$

- For $n=1$ the Normal approximation is $N\left(\frac{3}{2}, \frac{3}{2^{2}}\right)=N(1.5,0.75)$ and for $n=10$ it is $N\left(\frac{30}{20}, \frac{30}{20^{2}}\right)=N(1.5,0.075)$

UiO : Department of Mathematics
 University of Oslo

Multinomial sampling distribution with a Dirichlet prior

- Application: 2016 US presidential election poll (Sept-16)

■ $n=911$ representative, likely voters were asked which candidate they prefer in the 2016 US presidential election
■ $y_{1}=392$ preferred Clinton, $y_{2}=364$ preferred Trump, and $y_{3}=155$ preferred other candidates or had no opinion
■ Multinomial sampling distribution with

- probability θ_{1} of preferring Clinton
- probability θ_{2} of preferring Trump
- probability θ_{3} of preferring other candidates or having no opinion
$\square \sum_{i=1}^{3} \theta_{i}=1$ (hence there are in fact only two parameters)
■ A non-informative uniform Dirichlet($1,1,1$) prior for $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- Hence, the posterior distribution for $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ is Dirichlet $\left(1+y_{1}, 1+y_{2}, 1+y_{3}\right)=\operatorname{Dirichlet}(393,365,156)$

UiO : Department of Mathematics
 University of Oslo

The posterior distribution of an estimand of interest

- Suppose we are interested in the posterior distribution of $\frac{\theta_{1}}{\theta_{2}}$

■ This can easily be approximated by for $i=1, \ldots, S$ doing
■ Sample $\theta^{(i)}$ from the posterior distribution of $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$

- Compute $\frac{\theta_{1}^{(i)}}{\theta_{2}^{(i)}}$
- The S values of $\frac{\theta_{1}^{(i)}}{\theta_{2}^{(i)}}$ for $i=1, \ldots, S$ are a then samples from the posterior distribution of $\frac{\theta_{1}}{\theta_{2}}$

UiO: Department of Mathematics
 University of Oslo

The Normal approximation

- Our interest primarily lies in θ_{1} and θ_{2}, therefore we focus on these two parameters and replace θ_{3} by $1-\theta_{1}-\theta_{2}$
- The likelihood for $\theta=\left(\theta_{1}, \theta_{2}\right)$ is

$$
p(y \mid \theta) \propto \prod_{i=1}^{3} \theta_{i}^{y_{i}}=\theta_{1}^{y_{1}} \cdot \theta_{2}^{y_{2}} \cdot\left(1-\theta_{1}-\theta_{2}\right)^{y_{3}}
$$

- The Normal approximation to the posterior distribution for θ based on
$\log p(y \mid \theta)=C+y_{1} \log \theta_{1}+y_{2} \log \theta_{2}+y_{3} \log \left(1-\theta_{1}-\theta_{2}\right)$ can easily be found. First find the mode

$$
\frac{d \log p(y \mid \theta)}{d \theta_{i}}=\frac{y_{i}}{\theta_{i}}-\frac{y_{3}}{1-\theta_{1}-\theta_{2}}, i=1,2
$$

which is $=0$ for $\theta_{i}=\widehat{\theta}_{i}=\frac{y_{i}}{\sum_{j=1}^{3} y_{j}}$

UiO : Department of Mathematics

University of Oslo

The Normal approximation

■ Then the Fisher information:

$$
\begin{aligned}
\frac{d^{2} \log p(y \mid \theta)}{d \theta_{i}^{2}} & =-\frac{y_{i}}{\theta_{i}^{2}}-\frac{y_{3}}{\left(1-\theta_{1}-\theta_{2}\right)^{2}}, i=1,2 \\
\frac{d^{2} \log p(y \mid \theta)}{d \theta_{1} d \theta_{2}} & =-\frac{y_{3}}{\left(1-\theta_{1}-\theta_{2}\right)^{2}} \\
& \Downarrow \\
n \cdot J(\theta) & =E\left[-\left(\begin{array}{cc}
-\frac{y_{1}}{\theta_{1}^{2}}-\frac{y_{3}}{\left(1-\theta_{1}-\theta_{2}\right)^{2}} & -\frac{y_{3}}{\left(1-\theta_{1}-\theta_{2}\right)^{2}} \\
-\frac{y_{3}}{\left(1-\theta_{1}-\theta_{2}\right)^{2}} & -\frac{y_{2}}{\theta_{2}^{2}}-\frac{y_{3}}{\left(1-\theta_{1}-\theta_{2}\right)^{2}}
\end{array}\right)\right] \\
& \left(\text { using } E\left[y_{i}\right]=n \theta_{i}\right)\left(\begin{array}{cc}
-\frac{n}{\theta_{1}}-\frac{n}{1-\theta_{1}-\theta_{2}} & -\frac{n}{1-\theta_{1}-\theta_{2}} \\
-\frac{n}{1-\theta_{1}-\theta_{2}} & -\frac{n}{\theta_{2}}-\frac{n}{1-\theta_{1}-\theta_{2}}
\end{array}\right)
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

The Normal approximation

■ Hence

$$
\begin{aligned}
\widehat{\theta}_{i} & =\frac{y_{i}}{\sum_{j=1}^{3} y_{j}} \\
n \cdot J(\widehat{\theta}) & =n \cdot\left(\begin{array}{cc}
-\frac{1}{\hat{\theta}_{1}}-\frac{1}{1-\hat{\theta}_{1}-\hat{\theta}_{2}} & -\frac{1}{1-\hat{\theta}_{1}-\hat{\theta}_{2}} \\
-\frac{1}{1-\hat{\theta_{1}-\hat{\theta}_{2}}} & -\frac{1}{\hat{\theta}_{2}}-\frac{1}{1-\hat{\theta_{1}}-\hat{\theta}_{2}}
\end{array}\right)
\end{aligned}
$$

and for large n

$$
p(\theta \mid y) \approx N\left(\theta \mid \hat{\theta},(n \cdot J(\hat{\theta}))^{-1}\right)
$$

- Here we know the exact posterior distribution, can compare it to the Normal approximation by for example contour-plots (see R-script)

The application and sampling distribution

- Example from the textbook [2], section 3.7
- A bioassay experiment typically concerns giving various dose levels of a drug/chemical compound to a batch of animals and measure a binary response (alive/dead or tumor/no tumor)
■ The data for k dose levels are of the form

$$
\left(x_{i}, n_{i}, y_{i}\right), i=1, \ldots, k
$$

where x_{i} is the i 'th dose level given to n_{i} animals of which y_{i} animals responded with "success" (e.g. death)
■ Reasonable to model the response of the animals within the i 'th group (given dose x_{i}) as exchangeable, by modelling them as independent with equal probabilities of success θ_{i}, i.e. a binomial model

$$
y_{i} \mid \theta_{i} \sim \operatorname{Bin}\left(n_{i}, \theta_{i}\right)
$$

UiO : Department of Mathematics
 University of Oslo

Logistic regression model for the probabilities

- The parameters $\theta_{1}, \ldots, \theta_{k}$ should be not be modelled as exchangeable, since we have the dose levels x_{1}, \ldots, x_{k}
■ Rather model the pairs $\theta_{i} \mid x_{i}, i=1, \ldots, k$ by a logistic regression model

$$
\operatorname{logit}\left(\theta_{i}\right)=\alpha+\beta x_{i}, i=1, \ldots, k
$$

where $\operatorname{logit}\left(\theta_{i}\right)=\log \frac{\theta_{i}}{1-\theta_{i}}$ is the logistic transformation
\square Hence $\theta_{i}=\operatorname{logit}^{-1}\left(\alpha+\beta x_{i}\right)=\frac{e^{\left\{\alpha+\beta x_{i}\right\}}}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}$ and the likelihood contribution from group i for the parameters α and β is

$$
\begin{aligned}
p\left(y_{i} \mid \alpha, \beta\right) & \propto \theta_{i}^{y_{i}}\left(1-\theta_{i}\right)^{n_{i}-y_{i}} \\
& =\left(\frac{e^{\left\{\alpha+\beta x_{i}\right\}}}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}\right)^{y_{i}}\left(\frac{1}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}\right)^{n_{i}-y_{i}}
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

Prior and posterior distributions

- We assume an improper prior distribution for the parameters α and $\beta: p(\alpha, \beta) \propto 1$
\square Hence, α and β are independent apriori and marginally uniformly distributed
■ Hence the joint posterior distribution for α and β can be expressed as

$$
\begin{aligned}
p(\alpha, \beta \mid y) & \propto p(\alpha, \beta) \prod_{i=1}^{k} p\left(y_{i} \mid \alpha, \beta, n_{i}, x_{i}\right) \\
& =\prod_{i=1}^{k}\left(\frac{e^{\left\{\alpha+\beta x_{i}\right\}}}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}\right)^{y_{i}}\left(\frac{1}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}\right)^{n_{i}-y_{i}}
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

Data and graph of the model

Bioassay data from an experiment (table 3.1 from the textbook [2], see the textbook for reference)

Dose, x_{i} $(\log \mathrm{~g} / \mathrm{ml})$	Number of animals n_{i}	Number of deaths y_{i}
-0.86	5	0
-0.30	5	1
-0.05	5	3
0.73	5	5

Figure: Graph representation of the model

UiO : Department of Mathematics
 University of Oslo

Posterior analysis

■ The normalised posterior distribution is not available analytically
■ Hence, some numerical approximation must be performed, e.g. sampling

- Book, ch 3.7, compute the posterior density on a grid of points, then normalise by setting the total probability over the grid of points equal to1
■ Later we can do e.g. MCMC
■ Now: Normal approximation (Exercise 2 in Chapter 4)

UiO : Department of Mathematics
 University of Oslo

The normal approximation

- The ML-estimates of (α, β) can be found by using standard software for logistic regression, the results are (from the textbook) $(\hat{\alpha}, \hat{\beta})=(0.8,7.7)$
- Log-likelihood for one datapoint:

$$
\begin{aligned}
I_{i} & =\log p\left(y_{i} \mid \alpha, \beta\right) \\
& =C+y_{i} \log \left(\frac{e^{\left\{\alpha+\beta x_{i}\right\}}}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{1}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}\right) \\
& =C+y_{i}\left(\alpha+\beta x_{i}\right)-n_{i} \log \left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)
\end{aligned}
$$

■ Hence

$$
\begin{aligned}
\frac{d l_{i}}{d \alpha} & =y_{i}-\frac{n_{i} e^{\left\{\alpha+\beta x_{i}\right\}}}{1+e^{\left\{\alpha+\beta x_{i}\right\}}} \\
\frac{d l_{i}}{d \beta} & =y_{i} x_{i}-\frac{n_{i} x_{i} e^{\left\{\alpha+\beta x_{i}\right\}}}{1+e^{\left\{\alpha+\beta x_{i}\right\}}}
\end{aligned}
$$

UiO : Department of Mathematics

University of Oslo

The normal approximation

- The second partial derivatives:

$$
\begin{aligned}
\frac{d^{2} l_{i}}{d \alpha^{2}} & =-\frac{n_{i} e^{\left\{\alpha+\beta x_{i}\right\}}\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)-n_{i} e^{\left\{\alpha+\beta x_{i}\right\}} e^{\left\{\alpha+\beta x_{i}\right\}}}{\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)^{2}} \\
& =-\frac{n_{i} e^{\left\{\alpha+\beta x_{i}\right\}}}{\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)^{2}} \\
\frac{d^{2} l_{i}}{d \beta^{2}} & =-\frac{n_{i} x_{i}^{2} e^{\left\{\alpha+\beta x_{i}\right\}}\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)-n_{i} x_{i} e^{\left\{\alpha+\beta x_{i}\right\}} x_{i} e^{\left\{\alpha+\beta x_{i}\right\}}}{\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)^{2}} \\
& =-\frac{n_{i} x_{i}^{2} e^{\left\{\alpha+\beta x_{i}\right\}}}{\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)^{2}} \\
\frac{d^{2} l_{i}}{d \alpha d \beta} & =-\frac{n_{i} x_{i} e^{\left\{\alpha+\beta x_{i}\right\}}\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)-n_{i} e^{\left\{\alpha+\beta x_{i}\right\}} x_{i} e^{\left\{\alpha+\beta x_{i}\right\}}}{\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)^{2}} \\
& =-\frac{n_{i} x_{i} e^{\left\{\alpha+\beta x_{i}\right\}}}{\left(1+e^{\left\{\alpha+\beta x_{i}\right\}}\right)^{2}}
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

The normal approximation

- The normal approximation for (α, β) has mean $(\hat{\alpha}, \hat{\beta})$ and covariance matrix $(n \cdot J((\hat{\alpha}, \hat{\beta})))^{-1}$, where (remember that y_{1}, \ldots, y_{k} are not identically distributed)

$$
n \cdot J((\hat{\alpha}, \hat{\beta}))=\left(\begin{array}{ll}
\sum_{i=1}^{k} \frac{n_{i} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}} & \sum_{i=1}^{k} \frac{n_{i} x_{i}\left\{\hat{\alpha}+\hat{\alpha} x_{i}\right\}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}} \\
\sum_{i=1}^{k} \frac{n_{i} x_{i} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}} & \sum_{i=1}^{k} \frac{n_{i} x_{i}^{2}\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}}
\end{array}\right)
$$

UiO : Department of Mathematics
 University of Oslo

The normal approximation

■ The normal approximation variances are the diagonal elements

$$
\text { of }(n \cdot J((\hat{\alpha}, \hat{\beta})))^{-1}, \text { hence }
$$

$$
\begin{aligned}
& \sum_{i=1}^{k} \frac{n_{i} x_{i}^{2} i\left\{\hat{\alpha}+\hat{\beta_{x}}\right\}}{\left(1+e^{\left\{\alpha+\hat{\beta} x_{i}\right\}}\right)^{2}} \\
& \widehat{\operatorname{Var}(\alpha)}= \\
& \left(\sum_{i=1}^{k} \frac{n_{i}\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\alpha} x_{i}\right\}}\right)^{2}}\right)\left(\sum_{i=1}^{k} \frac{n_{i} x_{i}^{2} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}}\right)-\left(\sum_{i=1}^{k} \frac{n_{i} x_{i}\left\{\hat{\alpha}+\hat{\alpha_{i}}\right\}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}}\right) \\
& \sum_{i=1}^{k} \frac{n_{i} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}} \\
& \widehat{\operatorname{Var}(\beta)}= \\
& \left(\sum_{i=1}^{k} \frac{n_{i} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}}\right)\left(\sum_{i=1}^{k} \frac{n_{i} x_{i}^{2} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}}\right)-\left(\sum_{i=1}^{k} \frac{n_{i} x_{i} e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}}{\left(1+e^{\left\{\hat{\alpha}+\hat{\beta} x_{i}\right\}}\right)^{2}}\right)
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

References I

Q B. P. Carlin and T. A. Louis
Bayesian Methods for Data Analysis, Third edition. Chapman\&Hall/CRC Texts in statistical science, 2009.
A. Gelman, J. B. Carlin, H. Stern, D. B. Dunson, A. Vehtari and D.
B. Rubin

Bayesian Data Analysis, Third edition. Chapman\&Hall/CRC Texts in statistical science, 2014.

