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The empirical Bayes approach- based on Ch 5 in [1]

m Consider the model

y|8~ply|0)
&lo~p@|o)

m For a full Bayesian approach, we either fix ¢ based on prior
knowledge (two-level model), or we give ¢ a prior distribution
p(@) (more than two levels), which again can depend on
parameters. At some level however, we have to stop adding
parameters, and at the top level, some quantities must be fixed

m For the empirical Bayes approach, we use point estimates of @,
estimated from data

m Can in principle be used for any number of levels of the
hierarchy, for example if we give ¢ a prior distribution p(¢ | p),
then we could use empirical Bayes estimates of p
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The empirical Bayes (EB) estimates and the estimated
posterior distribution

m Remember the marginal distribution of y given ¢

Py | @) = / p(y | )p(8 | 9)d8

m This is used to find the EB estimates @ = §(y), e.g. by
maximising p(y | @) w.r.t ¢
m The estimated posterior distribution is then p(8 | y, ¢)

m This is a parametric EB approach, non-parametric approaches
also exist

m NB: Posterior probability intervals for & must be constructed
with care (see e.g. [1]), to incorporate uncertainty about ¢
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EB for a Normal model

m Consider the two-layer Normal model
Yil6i~N(6;,0%),i=1,...,n
G| u~NT2),i=1,....n

where o2 and T2 are assumed known constants, hence u is the

only random hyperparameter, for which we wish to find a EB
estimate

m Now it is quite straightforward to show that

1 (vi — 6;)? 1 0 — wy?
o(yi | 1) :/ {(27102)1/2 exp <— 262 > (27772)1/2 exp (‘ 272 ﬂ do;

1
exp(— (y'—y)z),i:1,...,n
(2m(c? 4 12)) 2 2(02 +72)
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EB for a Normal model

m Hence

ply ) =] pWyi | w)
i=1

n

L exp ( > Wi
(2 (02 _|_T2))k/2 2(02 + 12) —I—T2 —

which is obviously maximised for 1=y = 15 ST Vi
m The EB estimated posterior distribution is hence given by

p(Gi | yi. @) o< p(y; | 8;) - p(6i | 1)

N 02,&+T2y,- o272
B o2 +12 o2+ 12
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F1 Examples
m Single-parameter models

m Multi-parameter models
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Single-parameter model for epidemiology

m Concerns estimating a rate from Poisson data (idealized
example from the textbook [2], pp 45-46)

m Consider a survey of the causes of death in a single year for a
city in the US
m Population 200.000, y = 3 persons died of asthma
m Crude estimate of 3/200.0000 = 1.5 per 100.000 persons per
year
m For epidemiological data like this, a Poisson sampling
distribution is commonly used, assuming exchangeability given
exposure and rate parameter
m Let 8 be the true, underlying long-term asthma mortality rate per
100.000 persons per year in the city
m The exposure is x = 2.0 (since 8) is defined per 100.000
persons per year)
m Hence, the sampling distribution is y ~ Poisson(2.08)
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Prior distribution

m Asthma mortality rates around the world typically are around
0.6 per 100.000, and rarely above 1.5 per 100.000 in Western
countries

m Assume exchangeability between this city and other Western
cities, and this year and other years

m Know that Gamma(a, b) is the conjugate prior prior distribution,
use that for convenience, must find suitable values of a and b
that match the prior information

m Book: & ~ Gamma(3.0,5.0) (mean=0.6, 97.5% of the mass lies
below 1.44, prior probability of 8 <1.5 98.0%)

m Slightly different (with more uncertainty) suggestion:

8 ~ Gamma(1.2,2.0) (mean=0.6, 97.5% of the mass lies below
2.05, prior probability of 8 <1.5 92.9%)
m “rarely above 1.5 per 100.000” is open for interpretation
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Posterior distribution

m We know that the posterior distribution for & will be
Gamma(a+y, b+ x)

m Book prior: Posterior is Gamma(6.0,7.0)
m Alternative prior: Posterior is Gamma(4.2,4.0)

m The two different priors yields somewhat different posterior
distributions and conclusions (see R-script)

m Little data!!l Prior is influential
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Posterior distribution with additional data

m Additional data: Suppose we now have 10 years of data, with
30 deaths caused by asthma over the 10 years. Assume the
population size is constant at 200.000 over the period

m Now y = 30 and the exposure is x = 220:00x10 — 20 (since 8 is
defined per 100.000 persons per year)

m Book prior: Posterior is Gamma(33.0,25.0)

m Alternative prior: Posterior is Gamma(31.2,22.0)

m The posterior results with the two different priors are more
similar now with more data, but still slightly different (see
R-script)

m More data, prior is less influential
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Alternative specification with n independent outcomes

m Could alternatively say that y;,i = 1,..., nis the number of
deaths caused by asthma per 100.000 persons per year

m Let 8 still be the true, underlying long-term asthma mortality
rate per 100.000 persons per year in the city

m Then
yi ~ Pois(x;6),i=1,...,n

where the exposure is x;,i =1,...,n
m Then we know that the likelihood is

ply | 8) o GZi=1Yig 0 Xl X

where in the example we have y; =3,x;,=2,i=1,...,nfor (i) n=1
and (i) n=10
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The normal approximation

m The normal approximation to the posterior distribution for &
based onlogp(y | 8) = C+ > 1, yilog8 — 6> 1, x; can easily
be found. First find the mode

dlogp(y |68) _ 3 1y
a6 T ZX’

which is =0 for 6 = 8 = %
m Then the Fisher information (since we allow for different
exposure-values x;, the y;’s are not iid):
a?logp(y | ) i1 Vi
n-J(@)=E —d€2|6} :E[ ’02 ]
Saxi®  Ylix

(using E:[y/']=Xi9) 62 B 0
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The normal approximation

m Hence

and for large n
p(6 | y) ~ (ere (n- J(é))‘1)

m For n = 1 the Normal approximation is N (3, %) = N(1.5,0.75)

andforn=10itis N (gg %) — N(1.5,0.075)

STK4021 October 27, 2016 14/29



UiO ¢ Department of Mathematics
University of Oslo

Multinomial sampling distribution with a Dirichlet prior

m Application: 2016 US presidential election poll (Sept-16)
m n = 911 representative, likely voters were asked which
candidate they prefer in the 2016 US presidential election
m y; = 392 preferred Clinton, y» = 364 preferred Trump, and
y3 = 155 preferred other candidates or had no opinion
m Multinomial sampling distribution with
m probability 8¢ of preferring Clinton
m probability 8 of preferring Trump
m probability 83 of preferring other candidates or having no opinion
] Z;; 8; = 1 (hence there are in fact only two parameters)

m A non-informative uniform Dirichlet(1,1,1) prior for (&4, 82, 63)

m Hence, the posterior distribution for (84, 82, 83) is
Dirichlet(1 + y4,1 + ¥»,1 + y3) = Dirichlet(393, 365, 156)
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The posterior distribution of an estimand of interest

m Suppose we are interested in the posterior distribution of g—;

m This can easily be approximated by for i =1, ..., S doing
= Sample 8) from the posterior distribution of (64, 62, 83)
()
m Compute %

()
m The S values of % fori=1,...,S are a then samples from the
2

posterior distribution of &t
2
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The Normal approximation

m Our interest primarily lies in 81 and &,, therefore we focus on
these two parameters and replace 83 by 1 — 81 — 8>
m The likelihood for 8 = (64, 82) is

3
p(y | 8) x HG{" =065 (1-6; -6
i=1
m The Normal approximation to the posterior distribution for &
based on
logp(y | 8) = C+ y1log 61 + yz2log 62 + yzlog (1 — 61 — 62) can
easily be found. First find the mode

dlogp(y[8) _yvi _ ¥s 4,

do; 6 1-64-06 ’
i iQ — _7. _ Yi
which |s_0for6,_6,_2?:1yj
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The Normal approximation

m Then the Fisher information:

62 92 (1-6,—6,)2"
d?logp(y [6) _ Y
d6,d6, (1—6; — 6,)2
I3

n-J@)=E

n ¥ SR —
2~ (1-61-0,)2 (1-61-62)2
- ___ ¥ Yo _ ¥z
(1-61—62)2 62 (1-61-06)2
_n_ _n
_ B~ 1-8:-0, N 01 (A
. i n
(using E[y;]=nt;) —1= e1 5, 5 1 01 0,
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The Normal approximation

m Hence
2 _ Y
= &3
> =1 Y
1 1
n.J(@):n.< 6 11—91—92 11—91—% )
1-6;—0, 0, 1-6,-6,

and for large n

(6| y) ~ N(e K (n-J(9)>_1>

m Here we know the exact posterior distribution, can compare it to

the Normal approximation by for example contour-plots (see
R-script)
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The application and sampling distribution

m Example from the textbook [2], section 3.7

m A bioassay experiment typically concerns giving various dose
levels of a drug/chemical compound to a batch of animals and
measure a binary response (alive/dead or tumor/no tumor)

m The data for k dose levels are of the form

(X/"nf:y/'); I:1,,k

where x; is the i’th dose level given to n; animals of which y;
animals responded with "success” (e.g. death)

m Reasonable to model the response of the animals within the /’th
group (given dose x;) as exchangeable, by modelling them as
independent with equal probabilities of success §;, i.e. a
binomial model

yi | 8 ~ Bin(n;, 6;)
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Logistic regression model for the probabilities

m The parameters 84, . . ., 8 should be not be modelled as
exchangeable, since we have the dose levels xy, . . ., Xk
m Rather model the pairs 8, | x;, i =1, ..., k by a logistic
regression model
logit(8;)) =a+Bx;, i=1,...,k

where logit(8;) = log 1%, is the logistic transformation
1 {a+Bx} T
m Hence 8; = logit™ ' (o + Bx;) = ie{w and the likelihood

contribution from group i for the parameters a and B is
Py | @) o< BF (1~ 8;)"

ela+px} Yi 1 ni—y;
~\ 11 elarBxd <1 +e{a+ﬁxf}>
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Prior and posterior distributions

m We assume an improper prior distribution for the parameters o
and B: p(a, B) o 1

m Hence, a and 3 are independent apriori and marginally
uniformly distributed

m Hence the joint posterior distribution for o and B can be
expressed as

k

p(a.B|y) o« p(a,B) [ plyi| @B nix)

i=1
k (0 glatpar \” 1 Vi
H 1 + elotBxi} (1 + e{a+/3xi}>

i=1
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Data and graph of the model

Bioassay data from an experiment (table
3.1 from the textbook [2], see the textbook

for reference)

Dose, x;  Number of Number of

(log g/ml) animals n; deaths y;
-0.86 5 0
-0.30 5 1
-0.05 5 3
0.73 5 5

Figure: Graph representation of the

model
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Posterior analysis

m The normalised posterior distribution is not available analytically

m Hence, some numerical approximation must be performed, e.g.
sampling

m Book, ch 3.7, compute the posterior density on a grid of points,
then normalise by setting the total probability over the grid of
points equal to1

m Later we can do e.g. MCMC
m Now: Normal approximation (Exercise 2 in Chapter 4)
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The normal approximation

m The ML-estimates of (a, 8) can be found by using standard software for
logistic regression, the results are (from the textbook) (&, B) = (0.8,7.7)
m Log-likelihood for one datapoint:

li=1ogp(y; | . B)
olatB) 1
— C+ Yi |Og (W) + (ni - }’/) IOg (W)

= C + yi(a + Bxi) — nilog (1 + e{”ﬁx"})

m Hence
dl; n;elotpxit
da VT Ty elerpl
dl; nix;eletPl

dp =T T ety
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The normal approximation

m The second partial derivatives:

&) nyetatBx) (1 + e{a+/3x,-}) — nyetatPxit glotr}
da? (1 + elatpx})?
el

(1 + elatPu})?
&) nix2eletpa} (1 + e{a+ﬁxf}) — nixetatPxit g glothri}
ap? (1 + efatha})?

nixfelotPl

(1 + elathi})?

&) nix;etetpxt (1 + e{a+ﬁx,-}) _ pyelatPid g glathx)
dadp (1 + elatpn})?

nixl.e{a"'/BXi}
(1 + efo+prir)?
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The normal approximation

m The normal approximation for (a, 8) has mean (&, B) and

covariance matrix (n . J((&,B)))i , Where (remember that
Y1, ..., Yk are not identically distributed)

Zk nie{&+[3x,-} Zk n,'x,'e{é‘*ﬁxf}

A = <1+e{‘”ﬁx"})2 =1 (1 pefarbi)?
n-J((&.B)) = Zk nix;elatBxi} Zk nix2el&+hxi}
= (1+elebi})? =t (1+eleepi})?
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The normal approximation

m The normal approximation variances are the diagonal elements
Ao\ 1
of (n . J((&,,B))) , hence

k n,-x,-ze{&ﬂéx"}

= (1+e{a+f“f})2

Var(a) = i
nie{a+ﬁxf} nix/?e{&*lgxf} B M
(Z’k—‘ ({m)) (27-1 ({a})) (ka-‘ (Hem}y)
i {&+f§x1}
Pyl s
Var(B) = (rele)

2
n,e{é”/gxf} n;x/?e{&*/gxf} _ n,vx,ve{ﬁ%x"}
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