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Single-parameter model for epidemiology

Concerns estimating a rate from Poisson data (idealized
example from the textbook [1], pp 45-46)
Consider a survey of the causes of death in a single year for a
city in the US
Population 200.000, y = 3 persons died of asthma

Crude estimate of 3/200.0000 = 1.5 per 100.000 persons per
year

For epidemiological data like this, a Poisson sampling
distribution is commonly used, assuming exchangeability given
exposure and rate parameter

Let θ be the true, underlying long-term asthma mortality rate per
100.000 persons per year in the city
The exposure is x = 2.0 (since θ) is defined per 100.000
persons per year)
Hence, the sampling distribution is y ∼ Poisson(2.0θ)
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Prior distribution

Asthma mortality rates around the world typically are around
0.6 per 100.000, and rarely above 1.5 per 100.000 in Western
countries
Assume exchangeability between this city and other Western
cities, and this year and other years
Know that Gamma(a,b) is the conjugate prior prior distribution,
use that for convenience, must find suitable values of a and b
that match the prior information
Book: θ ∼ Gamma(3.0,5.0) (mean=0.6, 97.5% of the mass lies
below 1.44, prior probability of θ <1.5 98.0%)
Slightly different (with more uncertainty) suggestion:
θ ∼ Gamma(1.2,2.0) (mean=0.6, 97.5% of the mass lies below
2.05, prior probability of θ <1.5 92.9%)
“rarely above 1.5 per 100.000” is open for interpretation
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Posterior distribution

We know that the posterior distribution for θ will be
Gamma(a + y ,b + x)
Book prior: Posterior is Gamma(6.0,7.0)
Alternative prior: Posterior is Gamma(4.2,4.0)
The two different priors yields somewhat different posterior
distributions and conclusions (see R-script)
Little data!!! Prior is influential
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Posterior distribution with additional data

Additional data: Suppose we now have 10 years of data, with
30 deaths caused by asthma over the 10 years. Assume the
population size is constant at 200.000 over the period
Now y = 30 and the exposure is x = 200.000×10

100.000 = 20 (since θ is
defined per 100.000 persons per year)
Book prior: Posterior is Gamma(33.0,25.0)
Alternative prior: Posterior is Gamma(31.2,22.0)
The posterior results with the two different priors are more
similar now with more data, but still slightly different (see
R-script)
More data, prior is less influential
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Alternative specification with n independent
outcomes

Could alternatively say that yi , i = 1, . . . , n is the number of
deaths caused by asthma per 100.000 persons per year
Let θ still be the true, underlying long-term asthma mortality
rate per 100.000 persons per year in the city
Then

yi ∼ Pois(xiθ), i = 1, . . . , n
where the exposure is xi , i = 1, . . . , n
Then we know that the likelihood is

p(y | θ) ∝ θ
∑n

i=1 yi e−θ
∑n

i=1 xi

where in the example we have yi = 3, xi = 2, i = 1, . . . , n for (i) n = 1
and (ii) n = 10
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The normal approximation

The normal approximation to the posterior distribution for θ
based on log p(y | θ) = C +

∑n
i=1 yi log θ− θ∑n

i=1 xi can easily
be found. First find the mode

d log p(y | θ)
dθ =

∑n
i=1 yi

θ −
n∑

i=1

xi

which is =0 for θ = θ̂ =
∑n

i=1 yi∑n
i=1 xi

Then the Fisher information (since we allow for different
exposure-values xi , the yi ’s are not iid):

n · J(θ) = E
[
−d2 log p(y | θ)

dθ2 | θ
]
= E

[∑n
i=1 yi

θ2

]
=

(using E [yi ]=xiθ)

∑n
i=1 xiθ
θ2 =

∑n
i=1 xi

θ
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The normal approximation

Hence

θ̂ =

∑n
i=1 yi∑n
i=1 xi

n · J(θ̂) =
(∑n

i=1 xi
)2∑n

i=1 yi

and for large n

p(θ | y) ≈ N
(
θ | θ̂,

(
n · J(θ̂)

)−1
)

For n = 1 the Normal approximation is N
(3

2 , 3
22

)
= N (1.5,0.75)

and for n = 10 it is N
(

30
20 , 30

202

)
= N (1.5,0.075)
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Multinomial sampling distribution with a Dirichlet prior

Application: 2016 US presidential election poll (Sept-16)
n = 911 representative, likely voters were asked which
candidate they prefer in the 2016 US presidential election
y1 = 392 preferred Clinton, y2 = 364 preferred Trump, and
y3 = 155 preferred other candidates or had no opinion

Multinomial sampling distribution with
probability θ1 of preferring Clinton
probability θ2 of preferring Trump
probability θ3 of preferring other candidates or having no opinion∑3

i=1 θi = 1 (hence there are in fact only two parameters)

A non-informative uniform Dirichlet(1,1,1) prior for (θ1, θ2, θ3)

Hence, the posterior distribution for (θ1, θ2, θ3) is
Dirichlet(1 + y1,1 + y2,1 + y3) = Dirichlet(393,365,156)
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The posterior distribution of an estimand of interest

Suppose we are interested in the posterior distribution of θ1
θ2

This can easily be approximated by for i = 1, . . . ,S doing
Sample θ(i) from the posterior distribution of (θ1, θ2, θ3)

Compute θ(i)1

θ(i)2

The S values of θ
(i)
1

θ(i)2

for i = 1, . . . ,S are a then samples from the

posterior distribution of θ1
θ2
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The Normal approximation

Our interest primarily lies in θ1 and θ2, therefore we focus on
these two parameters and replace θ3 by 1− θ1 − θ2
The likelihood for θ = (θ1, θ2) is

p(y | θ) ∝
3∏

i=1

θyi
i = θy1

1 · θ
y2
2 · (1− θ1 − θ2)

y3

The Normal approximation to the posterior distribution for θ
based on
log p(y | θ) = C + y1 log θ1 + y2 log θ2 + y3 log (1− θ1 − θ2) can
easily be found. First find the mode

d log p(y | θ)
dθi

=
yi

θi
− y3

1− θ1 − θ2
, i = 1,2

which is =0 for θi = θ̂i =
yi∑3
j=1 yj
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The Normal approximation

Then the Fisher information:

d2 log p(y | θ)
dθ2

i
= − yi

θ2
i
− y3

(1− θ1 − θ2)2 , i = 1,2

d2 log p(y | θ)
dθ1dθ2

= − y3

(1− θ1 − θ2)2

⇓

n · J(θ) = E

[
−

(
− y1
θ2

1
− y3

(1−θ1−θ2)2 − y3
(1−θ1−θ2)2

− y3
(1−θ1−θ2)2 − y2

θ2
2
− y3

(1−θ1−θ2)2

)]

=
(using E [yi ]=nθi )

(
− n
θ1
− n

1−θ1−θ2
− n

1−θ1−θ2

− n
1−θ1−θ2

− n
θ2
− n

1−θ1−θ2

)
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The Normal approximation

Hence

θ̂i =
yi∑3
j=1 yj

n · J(θ̂) = n ·

(
− 1
θ̂1
− 1

1−θ̂1−θ̂2
− 1

1−θ̂1−θ̂2

− 1
1−θ̂1−θ̂2

− 1
θ̂2
− 1

1−θ̂1−θ̂2

)

and for large n

p(θ | y) ≈ N
(
θ | θ̂,

(
n · J(θ̂)

)−1
)

Here we know the exact posterior distribution, can compare it to
the Normal approximation by for example contour-plots (see
R-script)
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The application and sampling distribution

Example from the textbook [1], section 3.7
A bioassay experiment typically concerns giving various dose
levels of a drug/chemical compound to a batch of animals and
measure a binary response (alive/dead or tumor/no tumor)
The data for k dose levels are of the form

(xi ,ni , yi), i = 1, . . . , k
where xi is the i ’th dose level given to ni animals of which yi
animals responded with ”success” (e.g. death)
Reasonable to model the response of the animals within the i ’th
group (given dose xi ) as exchangeable, by modelling them as
independent with equal probabilities of success θi , i.e. a
binomial model

yi | θi ∼ Bin(ni , θi)
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Logistic regression model for the probabilities

The parameters θ1, . . . , θk should be not be modelled as
exchangeable, since we have the dose levels x1, . . . , xk
Rather model the pairs θi | xi , i = 1, . . . , k by a logistic
regression model

logit(θi) = α+ βxi , i = 1, . . . , k
where logit(θi) = log θi

1−θi
is the logistic transformation

Hence θi = logit−1(α+ βxi) =
e{α+βxi}

1+e{α+βxi}
and the likelihood

contribution from group i for the parameters α and β is

p(yi | α, β) ∝ θyi
i (1− θi)

ni−yi

=

(
e{α+βxi}

1 + e{α+βxi}

)yi (
1

1 + e{α+βxi}

)ni−yi
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Prior and posterior distributions

We assume an improper prior distribution for the parameters α
and β: p(α, β) ∝ 1
Hence, α and β are independent apriori and marginally
uniformly distributed
Hence the joint posterior distribution for α and β can be
expressed as

p(α, β | y) ∝ p(α, β)
k∏

i=1

p(yi | α, β,ni , xi)

=
k∏

i=1

(
e{α+βxi}

1 + e{α+βxi}

)yi (
1

1 + e{α+βxi}

)ni−yi
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Data and graph of the model

Bioassay data from an experiment (table
3.1 from the textbook [1], see the textbook
for reference)

Dose, xi Number of Number of
(log g/ml) animals ni deaths yi

-0.86 5 0
-0.30 5 1
-0.05 5 3
0.73 5 5
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Figure: Graph representation of the
model
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Posterior analysis

The normalised posterior distribution is not available analytically
Hence, some numerical approximation must be performed, e.g.
sampling
Book, ch 3.7, compute the posterior density on a grid of points,
then normalise by setting the total probability over the grid of
points equal to1
Later we can do e.g. MCMC
Now: Normal approximation (Exercise 2 in Chapter 4)
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The normal approximation

The ML-estimates of (α, β) can be found by using standard software for
logistic regression, the results are (from the textbook) (α̂, β̂) = (0.8, 7.7)
Log-likelihood for one datapoint:

li = log p(yi | α, β)

= C + yi log
(

e{α+βxi}

1 + e{α+βxi}

)
+ (ni − yi) log

(
1

1 + e{α+βxi}

)
= C + yi(α+ βxi)− ni log

(
1 + e{α+βxi}

)
Hence

dli
dα = yi −

nie{α+βxi}

1 + e{α+βxi}

dli
dβ = yixi −

nixie{α+βxi}

1 + e{α+βxi}
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The normal approximation
The second partial derivatives:

d2li
dα2 = −

nie{α+βxi}
(

1 + e{α+βxi}
)
− nie{α+βxi}e{α+βxi}

(1 + e{α+βxi})
2

= − nie{α+βxi}

(1 + e{α+βxi})
2

d2li
dβ2 = −

nix2
i e{α+βxi}

(
1 + e{α+βxi}

)
− nixie{α+βxi}xie{α+βxi}

(1 + e{α+βxi})
2

= − nix2
i e{α+βxi}

(1 + e{α+βxi})
2

d2li
dαdβ = −

nixie{α+βxi}
(

1 + e{α+βxi}
)
− nie{α+βxi}xie{α+βxi}

(1 + e{α+βxi})
2

= − nixie{α+βxi}

(1 + e{α+βxi})
2
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The normal approximation

The normal approximation for (α, β) has mean (α̂, β̂) and

covariance matrix
(

n · J((α̂, β̂))
)−1

, where (remember that
y1, . . . , yk are not identically distributed)

n · J((α̂, β̂)) =


∑k

i=1
ni e{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2

∑k
i=1

ni xi e{α̂+β̂xi}(
1+e{α̂+β̂xi}

)2∑k
i=1

ni xi e{α̂+β̂xi}(
1+e{α̂+β̂xi}

)2

∑k
i=1

ni x2
i e{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2


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The normal approximation

The normal approximation variances are the diagonal elements

of
(

n · J((α̂, β̂))
)−1

, hence

V̂ar(α) =

∑k
i=1

ni x
2
i e{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2

∑k
i=1

ni e
{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2


∑k

i=1
ni x2

i e{α̂+β̂xi}(
1+e{α̂+β̂xi}

)2

−
∑k

i=1
ni xi e
{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2


2

V̂ar(β) =

∑k
i=1

ni e
{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2

∑k
i=1

ni e
{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2


∑k

i=1
ni x2

i e{α̂+β̂xi}(
1+e{α̂+β̂xi}

)2

−
∑k

i=1
ni xi e
{α̂+β̂xi}(

1+e{α̂+β̂xi}
)2


2
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