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Ex. 2.11: Computing with a non-conjugate

single-parameter model

Suppose y1, . . . , y5 are independent samples from a Cauchy distribution

with unknown center θ and known scale 1: p(yi |θ) ∝ 1/(1 + (yi − θ)2).

Assume, for simplicity, that the prior distribution for θ is uniform on

[0, 100]. Given the observations (y1, . . . , y5) = (43, 44, 45, 46.5, 47.5):

(a) Compute the unnormalised posterior density function,

p(θ)p(y |θ), on a grid of points θ = 0, 1
m ,

2
m , . . . , 100 for some large

integer m. Using the grid approximation, compute and plot the

normalized posterior density function, p(θ|y), as a function of θ.
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Ex. 2.11: Computing with a non-conjugate

single-parameter model

(b) Sample 1000 draws of θ from the posterior density and plot a

histogram of the draws.
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Ex. 2.11: Computing with a non-conjugate

single-parameter model

(c) Use the 1000 samples of θ to obtain 1000 samples from the

predictive distribution of a future observation, y6, and plot a

histogram of the predictive draws.
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Ex. 2.11: Computing with a non-conjugate

single-parameter model

(c) Use the 1000 samples of θ to obtain 1000 samples from the

predictive distribution of a future observation, y6, and plot a

histogram of the predictive draws.
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Ex. 2.12: Jeffrey’s prior distributions

Suppose y |θ ∼ Poisson(θ). Find Jeffreys’ prior density for θ, and then

find α and β for which the Gamma(α, β) density is a close match to

Jeffreys’ density.

Poisson distribution: p(y |θ) = θy e−θ

y !

→ J(θ) = E
[
− d2 log p(y |θ)

dθ2 |θ
]

= E
[
y
θ2

]
= 1

θ

Jeffreys’ prior: p(θ) ∝ [J(θ)]1/2 = θ−1/2

Compare to Gamma distribution: p(θ) ∝ θα−1e−βθ

→ α = 1/2 and β = 0
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Ex. 3.3: Estimation from 2 independent experiments

Effects of magnetic fields on calcium flow in chicken brains

1. Control group of 32 untreated chickens

2. Exposed group of 36 treated chickens

One measurement is taken on each chicken.

Goal: measure average flows µc and µt in the two groups.

1. Control group: 32 measurements; sample mean 1.013 and std 0.24

2. Exposed group: 36 measurements; sample mean 1.173 and std 0.20
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Ex. 3.3: Estimation from 2 independent experiments

(a) Assuming control measurements taken at random from a normal

distribution with mean µc and variance σ2
c , what is the posterior

distribution of µc? Similarly, use the treatment group measurements to

determine the marginal posterior distribution of µt . Assume a uniform

prior distribution on (µc , µt , log σc , log σt).

Distribution of data:
32∏
i=1

N(yci |µc , σ
2
c )

36∏
j=1

N(ytj |µt , σ
2
t )

Joint posterior distribution:

p(µc , µt , log σc , log σt |y) = p(µc , µt , log σc , log σt)p(y |µc , µt , log σc , log σt)

=
32∏
i=1

N(yci |µc , σ
2
c )

36∏
j=1

N(ytj |µt , σ
2
t )

= p(µc , log σc |y)p(µt , log σt |y)

→ Joint posterior factorises, hence (µc , σ
2
c ) and (µt , σ

2
t ) can be treated

independently in the posterior.
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Ex. 3.3: Estimation from 2 independent experiments

(a) Assuming control measurements taken at random from a normal

distribution with mean µc and variance σ2
c , what is the posterior

distribution of µc? Similarly, use the treatment group measurements to

determine the marginal posterior distribution of µt . Assume a uniform

prior distribution on (µc , µt , log σc , log σt).

Results from §3.2 on normal data with non-informative prior:

µ− ȳ

s/
√
n
∼ tn−1(0, 1)

Hence, the marginal posteriors of µc and µt are t densities:

µc |y ∼ t31(1.013, 0.242/32) = t31(1.013, 0.0422)

µt |y ∼ t35(1.173, 0.202/36) = t35(1.173, 0.0332)
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Ex. 3.3: Estimation from 2 independent experiments

(b) What is the posterior distribution for the difference, µt − µc? To get

this, you may sample from the independent Student-t distributions you

obtained in part (a) above. Plot a histogram of your samples and give an

approximate 95% posterior interval for µt − µc .
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Ex. 3.3: Estimation from 2 independent experiments

Histogram of diff
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Ex. 3.9: Conjugate normal model

Suppose y is an independent and identically distributed sample of size n

from the distribution N(µ, σ2), where (µ, σ2) have the

N-Inv-χ2(µ0, σ
2
0/κ0; nu0, σ

2
0) prior distribution.

• Hence, σ2 ∼ Inv-χ2(ν0, σ
2
0) and µ|σ2 ∼ N(µ0, σ

2/κ0).

The posterior distribution, p(µ, σ2|y), is also normal-inverse-χ2; derive

explicitly its parameters in terms of the prior parameters and the

sufficient statistics of the data. Starting from (3.2) and (3.7):

p(µ, σ2|y) ∝ p(µ, σ2)p(y |µ, σ2)

∝ (σ2)−n/2 exp

(
− (n − 1)s2 + n(µ− ȳ)2

2σ2

)
×

σ−1(σ2)−(ν0/2+1) exp

(
−ν0σ

2
0 + κ0(µ− µ0)2

2σ2

)
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p(µ, σ2|y) ∝ p(µ, σ2)p(y |µ, σ2)

∝ (σ2)−n/2 exp

(
− (n − 1)s2 + n(µ− ȳ)2

2σ2

)
×

σ−1(σ2)−(ν0/2+1) exp

(
−ν0σ

2
0 + κ0(µ− µ0)2

2σ2

)
∝ σ−1(σ2)−((ν0+n)/2+1) exp

(
− (*)

2σ2

)
where

(*) = ν0σ
2
0 + (n − 1)s2 +

nκ0(ȳ − µ0)2

n + κ0
+ (n + κ0)

(
µ− nȳ + µ0κ0

n + κ0

)2
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p(µ, σ2|y) ∝ σ−1(σ2)−((ν0+n)/2+1) exp

(
− (*)

2σ2

)
where

(*) = ν0σ
2
0 + (n − 1)s2 +

nκ0(ȳ − µ0)2

n + κ0
+ (n + κ0)

(
µ− nȳ + µ0κ0

n + κ0

)2

.

Comparing to (3.6), this can be brought expressed as

µ, σ2|y ∼ N-Inv-χ2

(
µ0κ0 + nȳ

n + κ0
,

σ2
n

n + κ0
; n + ν0, σ

2
n

)
with

σ2
n :=

ν0σ
2
0 + (n − 1)s2 + nκ0(ȳ−µ0)2

n+κ0

n + ν0
.
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